1,959 research outputs found

    Highly Efficient Gan-Based Single-Phase Transformer-Less Pv Grid-Tied Inverter

    Get PDF
    Growing energy demand and environmental concerns have led to an increased interest in renewable energy resources to provide a sustainable and low carbon emission energy supply. Among these renewable energy resources, photovoltaic (PV) systems have been the focus of many scientific researchers. The most vital component of a PV system that needs to be improved is the power converter. Grid-tied transformer-less inverters have gained a lot of interest in recent years because of their higher efficiency, reduced volume and lower cost compared to traditional line transformer inverters. This dissertation discusses single-phase transformer-less inverter challenges and provides solutions that could lead to a next generation, high performance, grid-connected, single-phase transformer-less inverter. A new topology with new current paths is proposed to increase efficiency and reduce the leakage current. A comparison study of the proposed topology and multiple transformer-less inverters is carried out in terms of leakage current, power losses and efficiency. This dissertation also investigates the impact of emerging Gallium Nitride (GaN)-based power devices on a single-phase transformer-less inverter in terms of efficiency, high switching frequency capability, volume and cooling efforts. GaN device structure, as well as static and dynamic characterization, are discussed. Furthermore, this dissertation studies GaN power devices - reverse conduction capability to provide the proposed inverter with reactive power control. Existing PWM techniques cannot provide a freewheeling path in the negative power region to generate reactive power in a single-phase transformer-less inverter. Thus, a new PWM technique is proposed to provide new modes of operation to achieve reactive power generation capability in the proposed inverter. Due to the increased penetration of PV systems into the grid and the updated grid codes concerning PV systems, next-generation PV systems will be required to have several features like high efficiency, high power quality, voltage regulation and fault ride through capability. This dissertation also explores these future requirements for PV system integration into the grid. To comply with the new grid codes and to enhance the PV inverter capability, a simple and flexible multifunctional control strategy is developed to provide PV inverters with advanced functions that will support the grid. The simulation results validate the theory that the proposed topology reduces the conduction losses of the system. The conduction losses, switching losses, and thermal analysis at different output powers and switching frequencies verify the benefits of replacing Silicon (Si) MOSFET with Gallium Nitride (GaN) HEMTs. Moreover, the use of GaN HEMTs provides superior performance at higher frequencies when compared to their Si counterparts. Consequently, the filter volume is reduced, heatsink requirements are also reduced, and the cost is lowered. Furthermore, the simulation results validate the improvement of the proposed high efficiency transformer-less inverter with the new pulse width modulation (PWM) techniques to generate reactive power. The results also prove the effectiveness of the multifunctional control strategy to provide maximum active power injection, ride through faults, and support the grid by providing reactive power during grid faults. The high efficiency PV inverter equipped with advanced functions is the key to providing a reliable and cost-effective future grid tied to a PV system that can improve power quality

    Direct usage of photovoltaic solar panels to supply a freezer motor with variable DC input voltage

    Get PDF
    In this paper, a single-phase photovoltaic (PV) inverter fed by a boost converter to supply a freezer motor with variable DC input is investigated. The proposed circuit has two stages. Firstly, the DC output of the PV panel that varies between 150 and 300 V will be applied to the boost converter. The boost converter will boost the input voltage to a fixed 300 V DC. Next, this voltage is supplied to the single-phase full-bridge inverter to obtain 230 V AC. In the end, The output of the inverter will feed a freezer motor. The PV panels can be stand-alone or grid-connected. The grid-connected PV is divided into two categories, such as with a transformer and without a transformer, a transformer type has galvanic isolation resulting in increasing the security and also provides no further DC current toward the grid, but it is expensive, heavy and bulky. The transformerless type holds high efficiency and it is cheaper, but it suffers from leakage current between PV and the grid. This paper proposes a stand-alone direct use of PV to supply a freezer; therefore, no grid connection will result in no leakage current between the PV and Grid. The proposed circuit has some features such as no filtering circuit at the output of the inverter, no battery in the system, DC-link instead of AC link that reduces no-loads, having a higher efficiency, and holding enough energy in the DC-link capacitor to get the motor started. The circuit uses no transformers, thus, it is cheaper and has a smaller size. In addition, the system does not require a complex pulse width modulation (PWM) technique, because the motor can operate with a pulsed waveform. The control strategy uses the PWM signal with the desired timing. With this type of square wave, the harmonics (5th and 7th) of the voltage are reduced. The experimental and simulation results are presented to verify the feasibility of the proposed strategy

    Neutral Point Clamped Transformerless Multilevel Converter for Grid-Connected Photovoltaic System

    Get PDF
    Transformer-less (TL) inverter topologies have elicited further special treatment in photo-voltaic (PV) power system as they provide high efficiency and low cost. Neutral point clamped (NPC) multilevel-inverter (MLI) topologies-based transformer-less are being immensely used in grid-connected medium-voltage high-power claims. Unfortunately, these topologies such as NPC-MLI, full-bridge inverter with DC bypass (FB-DCBP) suffer from the shoot-through problem on the bridge legs, which affect the reliability of the implementation. Based on the previous above credits, a T type neutral point clamped (TNP) - MLI (TNP-MLI) with Transformer-less topology called TL-TNP-MLI is presented to be an alternate which can be suitable in the grid connected PV power generation systems. The suggested TL-TNP-MLI topologies free from inverter bridge legs shoot-through burden, switching frequency common-mode current (CMC), and leakage current. The control system of the grid interface with hysteresis current control (HCC) strategy is proposed. The effectiveness of the proposed PV connected transformer-less TNP-MLI topology with different grid and PV scenario has been verified through the MATLAB/Simulink simulation model and field-programmable gate area (FPGA) based experimental results for a 1.5 kW system.publishedVersio

    Analysis and Modeling of Transformerless Photovoltaic Inverter Systems

    Get PDF

    Analysis, Design, and Control of a Single-Phase Single-Stage Grid-Connected Transformerless Solar Inverter

    Get PDF
    As energy utilization is increasing with the rise in the world’s power demand, the traditional energy sources are depleting at a high pace. It has led to attention drawn towards inexhaustible energy resources. There is a huge augmentation in the power generation from renewable energy sources (RES) like wind, solar, hydropower, biomass, etc. to reduce the stress on conventional energy sources like fossil fuels, oil, gas, etc. There has been a steep increase in interest for wind and solar energy systems. PV energy has been growing swiftly in the past two decades which made it most demanded power generation system based on RES. This worldwide requirement for solar energy has led to an immense amount of innovation and development in the Photovoltaic (PV) market. The Conventional grid-connected PV inverter was either with DC/DC converter or without DC/DC converter. These inverters were isolated using a transformer either on the grid (AC) side as a low-frequency transformer or as a high-frequency transformer on the DC side. Elimination of the transformer leads to a galvanic connection between the grid and PV module. This gives rise to the flow of leakage current which is disastrous for the system when it exceeds a specific value. Thus, minimization of this leakage current after the removal of the transformer has been an interesting topic explored by many researchers. Many topologies have been proposed targeting reduction in this leakage current either by 1.) Directly connecting the PV negative with neutral of utility grid or 2.) Disconnecting the PV panel side from AC side. This generally involved addition of more switches or diodes or supplementary branches to disconnect during the freewheeling period. Generally, the above-mentioned ways lead to a reduction in efficiency due to increased losses or complex circuitry. The motivation of this thesis is to design a transformerless inverter for single-phase PV grid-tied system with a smaller number of devices and still has minimum ground current. It discusses the prevailing inverter topologies in detail and then explains the modes of operation of the proposed inverter. A simple control strategy has been derived and passive elements of the inverter are designed. The simulation results presented have validated the theoretical claims. The experimental results which are similar to simulation results are evidence that the proposed topology is suitable for PV grid-tied systems. Also, the dynamic modeling of the inverter has been done to derive the plant transfer function. Then, the Proportional Resonant (PR) controller has been designed to ensure the flow of sinusoidal current into the grid with zero steady-state error and constant sinusoidal grid voltage irrespective of load change. The simulation and experimental results achieved high performance which makes this topology successful and promising for grid-tied PV systems

    Common-mode voltage cancellation in single- and three-phase transformer-less PV power converters

    Get PDF
    Electrical Energy generation is an issue that is continuously cause of concern around the world. Many efforts have been done in this sense to cover the requirements of the constantly growing in the electrical energy demand. But not only the electrical energy demand is growing but also clean electrical energy demand. In this sense, many countries are taking advantage from the renewable energy generation systems, considering mainly wind and solar energy. Solar energy systems provide a high percentage of the total energy production, according with the latest report of the International Energy Agency (IEA) regarding Photovoltaic Power System Program (PVPS), the cumulative installed PV power at the end of 2009 it was around 20.3 GW out of which 6.188 GW were installed in 2009. From the total PV power installed in 2009, 6.113 are grid connected systems. The growing of the PV systems is due to the new technologies and developments that have permitted to reduce costs in the total design and installation of a PV source. As the major percentage of the total PV energy installed is from grid connected systems, this thesis work deals with the analysis and proposals in the transformerless grid-connected PV systems which can provide higher efficiencies regarding PV system with transformer. In this sense, when there is not transformer between the electrical grid and the power converter, a problem regarding leakage ground currents appears, this is the main issue in this thesis work. The main research task in this thesis work is to analyze and evaluate the operation of the different transformerless topologies presented in the bibliography and then to provide some solutions to minimize the leakage ground current phenomenon in order to comply with the standard requirements

    Improved Single Phase Transformless Voltage Source Inverter for Photovoltaic Grid-Connected System With Common-Mode Leakage Current Elimination

    Get PDF
    This paper presents how to eliminate the common-mode leakage current in the transformerless photovoltaic grid-connected system, an improved single-phase inverter topology is present. Eliminating the leakage current is one of most important issues for transformer less inverters in grid connected photovoltaic applications. The technical challenge is how to keep the common mode voltage constant to reduce the leakage current. For this purpose an improved single phase transformer less inverter is proposed. Here in improved transformerless topology we used additional two switches.The improved trans- formerless inverter can sustain the same low input voltage as the full-bridge inverter and guarantee to completely meet the condition of eliminating common-mode leakage current. unipolar sinusoidal pulse width modulation (SPWM) control strategy can be applied to implement the three-level output in the presented inverter

    Analysis and Design of Solar Photo voltaic Grid Connected Inverter

    Get PDF
    This paper presents common mode voltage analysis of single phase grid connected photovoltaic inverter. Many researchers proposed different grid tie inverters for applications like domestic powering, street lighting, water pumping, cooling and heating applications, however traditional grid tie PV inverter uses either a line frequency or a high frequency transformer between the inverter and grid but losses will increase in the network leading to reduced efficiency of the system. In order to increase the efficiency, with reduced size and cost of the system, the effective solution is to remove the isolation transformer. But common mode (CM) ground leakage current due to parasitic capacitance between the PV panels and the ground making the system unreliable. The common mode current reduces the efficiency of power conversion stage, affects the quality of grid current, deteriorate the electric magnetic compatibility and give rise to the safety threats. In order to eliminate the common mode leakage current in Transformerless PV systm two control algorithms of multi-carrier pwm are implemented and compared for performance analysis.The shoot-through issue that is encountered by traditional voltage source inverter is analyzed for enhanced system reliability. These control algorithms are compared for common mode voltage and THD comparisons. The proposed system is designed using MATLAB/SIMULINK software for analysis
    corecore