10,794 research outputs found

    Monitoring drought responses of barley genotypes with semi-robotic phenotyping platform and association analysis between recorded traits and allelic variants of some stress genes

    Get PDF
    Genetic improvement of complex traits such as drought adaptation can be advanced by the combination of genomic and phenomic approaches. Semi-robotic phenotyping platform was used for computer-controlled watering, digital and thermal imaging of barley plants grown in greenhouse. The tested barley variants showed 0–76% reduction in green pixel-based shoot surface area in soil with 20% water content, compared to well-watered plants grown in soil with 60% water content. The barley HvA1 gene encoding the group 3 LEA (Late Embryogenesis Abundant) protein exhibited four (A–D) haplotypes as identified by the EcoTILLING and subsequent DNA sequencing. The green pixel mean value of genotypes with haplotype D was higher than the mean value of the remaining haplotypes, indicating a pivotal role of haplotype D in optimizing the green biomass production under drought condition. In water limitation, the canopy temperature of a highly sensitive genotype was 18.0°C, as opposed to 16.9°C of leaves from a tolerant genotype as measured by thermal imaging. Drought-induced changes in leaf temperature showed moderate correlation with the water use efficiency (r2 = 0.431). The haplotype/trait association analysis based on the t-test has revealed a positive effect of a haplotype B (SNPs:GCCCCTGC) in a gene encoding the barley fungal pathogen induced mRNA for pathogen-related protein (HvPPRPX), on harvest index, thousand grain weight, water use efficiency and grain yield. The presented pilot study established a basic methodology for the integrated use of phenotyping and haplotyping data in characterization of genotype-dependent drought responses in barley

    On the taxonomic resolution of pollen and spore records of Earth’s vegetation

    Get PDF
    Premise of research. Pollen and spores (sporomorphs) are a valuable record of plant life and have provided information on subjects ranging from the nature and timing of evolutionary events to the relationship between vegetation and climate. However, sporomorphs can be morphologically similar at the species, genus, or family level. Studies of extinct plant groups in pre-Quaternary time often include dispersed sporomorph taxa whose parent plant is known only to the class level. Consequently, sporomorph records of vegetation suffer from limited taxonomic resolution and typically record information about plant life at a taxonomic rank above species.Methodology. In this article, we review the causes of low taxonomic resolution, highlight examples where this has hampered the study of vegetation, and discuss the strategies researchers have developed to overcome the low taxonomic resolution of the sporomorph record. Based on this review, we offer our views on how greater taxonomic precision might be attained in future work. Pivotal results. Low taxonomic resolution results from a combination of several factors, including inadequate reference collections, the absence of sporomorphs in situ in fossilized reproductive structures, and damage following fossilization. A primary cause is the difficulty of accurately describing the very small morphological differences between species using descriptive terminology, which results in palynologists classifying sporomorphs conservatively at the genus or family level to ensure that classifications are reproducible between samples and between researchers. Conclusions. In our view, the most promising approach to the problem of low taxonomic resolution is a combination of high-resolution imaging and computational image analysis. In particular, we encourage palynologists to explore the utility of microscopy techniques that aim to recover morphological information from below the diffraction limit of light and to employ computational image analyses to consistently quantify small morphological differences between species

    Simple identification tools in FishBase

    Get PDF
    Simple identification tools for fish species were included in the FishBase information system from its inception. Early tools made use of the relational model and characters like fin ray meristics. Soon pictures and drawings were added as a further help, similar to a field guide. Later came the computerization of existing dichotomous keys, again in combination with pictures and other information, and the ability to restrict possible species by country, area, or taxonomic group. Today, www.FishBase.org offers four different ways to identify species. This paper describes these tools with their advantages and disadvantages, and suggests various options for further development. It explores the possibility of a holistic and integrated computeraided strategy

    High-Throughput System for the Early Quantification of Major Architectural Traits in Olive Breeding Trials Using UAV Images and OBIA Techniques

    Get PDF
    The need for the olive farm modernization have encouraged the research of more efficient crop management strategies through cross-breeding programs to release new olive cultivars more suitable for mechanization and use in intensive orchards, with high quality production and resistance to biotic and abiotic stresses. The advancement of breeding programs are hampered by the lack of efficient phenotyping methods to quickly and accurately acquire crop traits such as morphological attributes (tree vigor and vegetative growth habits), which are key to identify desirable genotypes as early as possible. In this context, an UAV-based high-throughput system for olive breeding program applications was developed to extract tree traits in large-scale phenotyping studies under field conditions. The system consisted of UAV-flight configurations, in terms of flight altitude and image overlaps, and a novel, automatic, and accurate object-based image analysis (OBIA) algorithm based on point clouds, which was evaluated in two experimental trials in the framework of a table olive breeding program, with the aim to determine the earliest date for suitable quantifying of tree architectural traits. Two training systems (intensive and hedgerow) were evaluated at two very early stages of tree growth: 15 and 27 months after planting. Digital Terrain Models (DTMs) were automatically and accurately generated by the algorithm as well as every olive tree identified, independently of the training system and tree age. The architectural traits, specially tree height and crown area, were estimated with high accuracy in the second flight campaign, i.e. 27 months after planting. Differences in the quality of 3D crown reconstruction were found for the growth patterns derived from each training system. These key phenotyping traits could be used in several olive breeding programs, as well as to address some agronomical goals. In addition, this system is cost and time optimized, so that requested architectural traits could be provided in the same day as UAV flights. This high-throughput system may solve the actual bottleneck of plant phenotyping of "linking genotype and phenotype," considered a major challenge for crop research in the 21st century, and bring forward the crucial time of decision making for breeders

    Characterization of nanostructured material images using fractal descriptors

    Get PDF
    This work presents a methodology to the morphology analysis and characterization of nanostructured material images acquired from FEG-SEM (Field Emission Gun-Scanning Electron Microscopy) technique. The metrics were extracted from the image texture (mathematical surface) by the volumetric fractal descriptors, a methodology based on the Bouligand-Minkowski fractal dimension, which considers the properties of the Minkowski dilation of the surface points. An experiment with galvanostatic anodic titanium oxide samples prepared in oxalyc acid solution using different conditions of applied current, oxalyc acid concentration and solution temperature was performed. The results demonstrate that the approach is capable of characterizing complex morphology characteristics such as those present in the anodic titanium oxide.Comment: 8 pages, 5 figures, accepted for publication Physica
    corecore