1,426 research outputs found

    Distributed Versioning: Consistent Replication for Scaling Back-end Databases of Dynamic Content Sites

    Get PDF
    Dynamic content Web sites consist of a front-end Web server, an application server and a back-end database. In this paper we introduce distributed versioning, a new method for scaling the back-end database through replication. Distributed versioning provides both the consistency guarantees of eager replication and the scaling properties of lazy replication. It does so by combining a novel concurrency control method based on explicit versions with conflict-aware query scheduling that reduces the number of lock conflicts. We evaluate distributed versioning using three dynamic content applications: the TPC-W e-commerce benchmark with its three workload mixes, an auction site benchmark, and a bulletin board benchmark. We demonstrate that distributed versioning scales better than previous methods that provide consistency. Furthermore, we demonstrate that the benefits of relaxing consistency are limited, except for the conflict-heavy TPC-W ordering mix

    Eventual Consistency: Origin and Support

    Get PDF
    Eventual consistency is demanded nowadays in geo-replicated services that need to be highly scalable and available. According to the CAP constraints, when network partitions may arise, a distributed service should choose between being strongly consistent or being highly available. Since scalable services should be available, a relaxed consistency (while the network is partitioned) is the preferred choice. Eventual consistency is not a common data-centric consistency model, but only a state convergence condition to be added to a relaxed consistency model. There are still several aspects of eventual consistency that have not been analysed in depth in previous works: 1. which are the oldest replication proposals providing eventual consistency, 2. which replica consistency models provide the best basis for building eventually consistent services, 3. which mechanisms should be considered for implementing an eventually consistent service, and 4. which are the best combinations of those mechanisms for achieving different concrete goals. This paper provides some notes on these important topics

    Multi-Master Replication for Snapshot Isolation Databases

    Get PDF
    Lazy replication with snapshot isolation (SI) has emerged as a popular choice for distributed databases. However, lazy replication requires the execution of update transactions at one (master) site so that it is relatively easy for a total SI order to be determined for consistent installation of updates in the lazily replicated system. We propose a set of techniques that support update transaction execution over multiple partitioned sites, thereby allowing the master to scale. Our techniques determine a total SI order for update transactions over multiple master sites without requiring global coordination in the distributed system, and ensure that updates are installed in this order at all sites to provide consistent and scalable replication with SI. We have built our techniques into PostgreSQL and demonstrate their effectiveness through experimental evaluation.1 yea

    Scalable service-oriented replication with flexible consistency guarantee in the cloud

    Get PDF
    Replication techniques are widely applied in and for cloud to improve scalability and availability. In such context, the well-understood problem is how to guarantee consistency amongst different replicas and govern the trade-off between consistency and scalability requirements. Such requirements are often related to specific services and can vary considerably in the cloud. However, a major drawback of existing service-oriented replication approaches is that they only allow either restricted consistency or none at all. Consequently, service-oriented systems based on such replication techniques may violate consistency requirements or not scale well. In this paper, we present a Scalable Service Oriented Replication (SSOR) solution, a middleware that is capable of satisfying applications’ consistency requirements when replicating cloud-based services. We introduce new formalism for describing services in service-oriented replication. We propose the notion of consistency regions and relevant service oriented requirements policies, by which trading between consistency and scalability requirements can be handled within regions. We solve the associated sub-problem of atomic broadcasting by introducing a Multi-fixed Sequencers Protocol (MSP), which is a requirements aware variation of the traditional fixed sequencer approach. We also present a Region-based Election Protocol (REP) that elastically balances the workload amongst sequencers. Finally, we experimentally evaluate our approach under different loads, to show that the proposed approach achieves better scalability with more flexible consistency constraints when compared with the state-of-the-art replication technique

    Executing requests concurrently in state machine replication

    Get PDF
    State machine replication is one of the most popular ways to achieve fault tolerance. In a nutshell, the state machine replication approach maintains multiple replicas that both store a copy of the system’s data and execute operations on that data. When requests to execute operations arrive, an “agree-execute” protocol keeps replicas synchronized: they first agree on an order to execute the incoming operations, and then execute the operations one at a time in the agreed upon order, so that every replica reaches the same final state. Multi-core processors are the norm, but taking advantage of the available processor cores to execute operations simultaneously is at odds with the “agree-execute” protocol: simultaneous execution is inherently unpredictable, so in the end replicas may arrive at different final states and the system becomes inconsistent. On one hand, we want to take advantage of the available processor cores to execute operations simultaneously and improve performance. But on the other hand, replicas must abide by the operation order that they agreed upon for the system to remain consistent. This dissertation proposes a solution to this dilemma. At a high level, we propose to use speculative execution techniques to execute operations simultaneously while nonetheless ensuring that their execution is equivalent to having executed the operations sequentially in the order the replicas agreed upon. To achieve this, we: (1) propose to execute operations as serializable transactions, and (2) develop a new concurrency control protocol that ensures that the concurrent execution of a set of transactions respects the serialization order the replicas agreed upon. Since speculation is only effective if it is successful, we also (3) propose a modification to the typical API to declare transactions, which allows transactions to execute their logic over an abstract replica state, resulting in fewer conflicts between transactions and thus improving the effectiveness of the speculative executions. An experimental evaluation shows that the contributions in this dissertation can improve the performance of a state-machine-replicated server up to 4 , reaching up to 75% the performance of a concurrent fault-prone server
    • …
    corecore