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Abstract. Dynamic content Web sites consist of a front-end Web server, an ap-
plication server and a back-end database. In this paper we introduce distributed
versioning, a new method for scaling the back-end database through replication.
Distributed versioning provides both the consistency guarantees of eager repli-
cation and the scaling properties of lazy replication. It does so by combining a
novel concurrency control method based on explicit versions with conflict-aware
query scheduling that reduces the number of lock conflicts.
We evaluate distributed versioning using three dynamic content applications: the
TPC-W e-commerce benchmark with its three workload mixes, an auction site
benchmark, and a bulletin board benchmark. We demonstrate that distributed
versioning scales better than previous methods that provide consistency. Further-
more, we demonstrate that the benefits of relaxing consistency are limited, except
for the conflict-heavy TPC-W ordering mix.

1 Introduction

Web sites serving dynamic content usually consist of a Web server, an application server
and a back-end database (see Figure 1). A client request for dynamic content causes the
Web server to invoke a method in the application server. The application server issues a
number of queries to the database and formats the results as an HTML page. The Web
server then returns this page in an HTTP response to the client.
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Fig. 1. Common architecture for dynamic content Web sites

Replication [4, 13, 15, 27] of the database back-end allows improved data availabil-
ity and performance scaling. Providing consistency at the same time as performance
scaling has, however, proven to be a difficult challenge. Eager replication schemes,
which provide strong consistency (1-copy serializability [7]), severely limit perfor-
mance, mainly due to conflicts [11]. Lazy replication with delayed propagation of mod-
ifications provides better performance, but writes can arrive out-of-order at different
sites and reads can access inconsistent data.

Recent work has argued that several distinct consistency models should be supplied,
since dynamic content applications have different consistency requirements. Neptune
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proposes three levels of consistency [22]. An extension of this idea proposes a contin-
uum of consistency models with tunable parameters [28]. The programmer then chooses
the appropriate consistency model and the appropriate parameters for the application or
adjusts the application to fit one of the available models. Adjusting the application may
require non-trivial programmer effort.

In this paper we introduce distributed versioning, a technique that maintains strong
consistency (1-copy serializability [7]) but at the same time allows good scaling be-
havior. Distributed versioning improves on our earlier work on conflict-aware sched-
ulers [3] in two ways:

1. A limitation of the previous scheme is the use of conservative two-phase lock-
ing which, while avoiding deadlocks, severely limits concurrency. We introduce
a novel deadlock-free concurrency control algorithm based on explicit versions,
which allows increased concurrency. Distributed versioning integrates this concur-
rency control algorithm with a conflict-aware scheduler to improve performance
over the methods introduced earlier [3].

2. We investigate the overhead of using 1-copy serializability compared to looser con-
sistency models provided by lazy replication. We study this overhead using a vari-
ety of applications with different consistency requirements.

In our evaluation we use the three workload mixes (browsing, shopping and order-
ing) of the TPC-W benchmark [26], an auction site benchmark [1], and a bulletin board
benchmark [1]. We have implemented these Web sites using three popular open source
software packages: the Apache Web server [5], the PHP Web-scripting/application de-
velopment language [18], and the MySQL database server [16]. Our results are as fol-
lows:

1. Distributed versioning increases throughput compared to a traditional (eager) pro-
tocol with serializability by factors of 2.2, 4.8, 4.3, 5.4, and 1.1 for the browsing,
shopping, ordering mixes of TPC-W, the auction site and the bulletin board, respec-
tively, in the largest configuration studied.

2. For the browsing and shopping workloads of TPC-W and for the bulletin board,
distributed versioning achieves performance within 5% of the best lazy protocol
with loose consistency. The auction site’s performance is within 25%. The differ-
ence is larger in the TPC-W ordering mix, because of the large number of conflicts,
but the best lazy protocol does not respect the application’s semantics.

3. There is no penalty for enforcing serializability for applications with loose consis-
tency (e.g., the bulletin board).

The outline of rest of the paper is as follows. Section 2 describes the programming
model, the consistency model and the cluster design used for distributed versioning.
Section 3 introduces distributed versioning. Section 4 describes our prototype imple-
mentation. Sections 5 describes the consistency models and the implementation of the
different lazy protocols with loose consistency models explored in the paper. Section 6
presents our benchmarks. Section 7 presents our experimental platform and our evalua-
tion methodology. We investigate how distributed versioning affects scaling, and com-
pare it against the other lazy protocols in Section 8. Section 9 discusses related work.
Section 10 concludes the paper.

2 Environment

This section describes the environment in which distributed versioning is meant to
work. In particular, we describe the programming model, the desired consistency, and
the cluster architecture.



2.1 Programming Model

A single (client) Web interaction may include one or more transactions, and a single
transaction may include one or more read or write queries. The application writer spec-
ifies where in the application code transactions begin and end. In the absence of trans-
action delimiters, each single query is considered a transaction and is automatically
committed (so called ”auto-commit” mode).

At the beginning of each transaction consisting of more than one query, the pro-
grammer inserts a pre-declaration of the tables accessed in the transaction and their
modes of access (read or write). The tables accessed by single-operation transactions do
not need to be pre-declared. Additionally, the programmer inserts a last-use annotation
after the last use of a particular table in a transaction. These annotations are currently
done by hand, but could be automated.

2.2 Consistency Model

The consistency model we use for distributed versioning is 1-copy-serializability [7].
With 1-copy-serializability, conflicting operations of different transactions execute in
the same order on all replicas (i.e., the execution of all transactions is equivalent to a
serial execution in a total order).

2.3 Cluster Architecture

We consider a cluster architecture for a dynamic content site, in which a scheduler dis-
tributes incoming requests on a cluster of database replicas and delivers the responses to
the application server (see Figure 2). The scheduler may itself be replicated for perfor-
mance or for availability. The application server interacts directly only with the sched-
ulers. If there is more than one scheduler in a particular configuration, the application
server is assigned a particular scheduler at the beginning of a transaction by round-
robin. For each query of this transaction, the application server only interacts with this
single scheduler. These interactions are synchronous: for each query, the application
server blocks until it receives a response from the scheduler. To the application servers,
a scheduler looks like a database engine. At the other end, each database engine inter-
acts with the scheduler as if it were a regular application server. As a result, we can
use any off-the-shelf Web server (e.g., Apache) and application server (e.g., PHP), and
any off-the-shelf database (e.g., MySQL) without modification. When more than one
front-end node is present, an L4 switch is also included. The use of an L4 switch makes
the distributed nature of the server transparent to the clients.
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Fig. 2. Cluster design for a dynamic content Web site



3 Distributed Versioning

Distributed versioning achieves 1-copy serializability, absence of deadlock and a high
degree of concurrency using a lazy read-one, write-all replication scheme augmented
with version numbers, as described next.

3.1 Lazy Read-one, Write-all Replication

When the scheduler receives a write or a commit query from the application server, it
sends it to all replicas and returns the response as soon as it receives a response from
any of the replicas. Reads are sent only to a single replica, and the response is sent back
to the application server as soon as it is received from that replica.

3.2 Assigning and Using Version Numbers

A separate version number is maintained for each table in the database. A transaction is
assigned a version number for each table that it accesses (except for single-read trans-
actions, see below). As discussed in Section 2.1, each multi-query transaction declares
what tables it reads or writes before it starts execution. The tables accessed by single-
query transactions are implicitly declared by the query itself. Based on this information,
the scheduler assigns table versions to be accessed by the queries in that transaction.
This assignment is done atomically, i.e., the scheduler assigns all version numbers for
one transaction, before it assigns any version numbers for the next transaction. Version
number assignment is done in such a way that, if there is a conflict between the current
transaction and an earlier one, the version numbers given to the current transaction for
the tables involved in the conflicts are higher than the version numbers received by the
earlier conflicting transaction.

All operations on a particular table are executed at all replicas in version number
order. In particular, an operation waits until its version is available. New versions be-
come available as a result of a previous transaction committing or as a result of last-use
declarations (see Section 3.5).

Transactions consisting of a single read query are treated differently. No version
numbers are assigned. Instead, the query is simply forwarded to one of the replicas,
where it executes after all conflicting transactions complete. This optimization results
in a very substantial performance improvement without violating 1-copy serializability.

3.3 1-Copy Serializability and Absence of Deadlock

If transactions have conflicting operations involving one or more tables, then the version
numbers for the conflicting tables assigned to the earlier transaction are strictly lower
than those assigned to the same tables for the later transaction. Since all conflicting op-
erations execute in version number order at all replicas, all conflicting operations of all
transactions execute in the same total order at all replicas. Hence, 1-copy serializability
is established.

A similar argument shows that distributed versioning avoids deadlock. For all tables
that cause conflicts between transactions, the version numbers assigned to one transac-
tion must be either all smaller or all larger than those assigned to another transaction.
Since transactions only wait for the completion of operations with a lower version num-
ber than their own, there can never be a circular wait, and therefore deadlock is avoided.



3.4 Limiting the Number of Conflicts

The scheduler sends write queries to all replicas and relies on their asynchronous execu-
tion in order of version numbers. At a given time, a write on a data item may have been
sent to all replicas, but it may have completed only at a subset of them. A conflict-aware
scheduler [3] maintains the completion status of outstanding write operations, and the
current version for each table at all database replicas. Using this information, the sched-
uler sends a read that immediately follows a particular write in version number order to
a replica where it knows the write has already finished (i.e., the corresponding required
version has been produced). This avoids waiting due to read-write conflicts.

3.5 Reducing Conflict Duration

In the absence of last-use declarations in a transactions, the versions of various tables
produced by the current transaction become available only at commit time. The pres-
ence of a last-use declaration allows the version to be produced immediately after the
time that declaration appears in the application code. This early release of a version re-
duces the time that later transactions have to wait for that version to become available.
Early releases do not compromise 1-copy-serializability. All versions are atomically
pre-assigned at the beginning of each transaction, and a version release occurs only af-
ter the last use of a particular table. Hence, the total ordering of conflicting transactions
at all replicas is the same as the one in the system without early releases.

3.6 Rationale

In our earlier work [3] we use conservative two-phase locking as the concurrency con-
trol method for conflict-aware scheduling. We now demonstrate why distributed ver-
sioning leads to more concurrency than conservative 2PL.

In both conservative 2PL, and distributed versioning the declaration of which tables
are going to be accessed by a transaction is done at the beginning of the transaction. The
behavior of the two schemes in terms of waiting for conflicts to be resolved is, however,
totally different. In particular, conflict waiting times are potentially much lower for dis-
tributed versioning, for two reasons. First, in conservative 2PL, a particular transaction
waits at the beginning until all its locks become available. In contrast, in distributed ver-
sioning, there is no waiting at the beginning of a transaction. Only version numbers are
assigned. Waiting occurs when an operation tries to access a table for which conflicting
operations with an earlier version number have not yet completed. The key difference is
that at a given operation, distributed versioning only waits for the proper versions of the
tables in that particular operation to become available. Second, with conservative 2PL,
all locks are held until commit. In contrast, with distributed versioning, a new version
of a table is produced as soon as a transaction completes its last access to that table. In
summary, the increased concurrency of distributed versioning comes from more selec-
tive (per-table) waiting for conflicts to be resolved and from earlier availability of new
versions of tables (early version releases).

We illustrate the increase in concurrency with an example. Assume that transactions���
, and

� � both execute the code shown in Figure 3, writing three different tables. As-
sume also that transaction

� �
is serialized before transaction

� � . In conservative 2PL,
transaction

� � waits for the locks on all three tables to be freed by
� �

before it starts
executing (see Figure 4). In contrast, with distributed versioning the operations on the
different tables are pipelined. This example also clearly demonstrates that, in general,
both features of distributed versioning (selective per-table waiting and early availabil-
ity of versions) are essential. Any single feature in isolation would produce the same
behavior as conservative 2PL and thus less concurrency.



begin
write a
write b
write c

end

Fig. 3. Sequence of updates in a transaction

1 2 3 4 5 6 1 2 3 4
T0: a0,b0,c0 T0: a0,b0,c0
T1: a1,b1,c1 T1: a1,b1,c1

Fig. 4. Serial execution in conservative 2PL (left) versus increased concurrency in distributed
versioning (right)

One may wonder if similar benefits are not available with alternative 2PL schemes.
This is not the case. Selective waiting for locks can be achieved by implicit 2PL, in
which locks are acquired immediately before each operation. Implicit 2PL achieves se-
lective waiting, but at the expense of potential deadlocks. Given that the probability
of deadlock increases approximately quadratically with the number of replicas [11],
any concurrency control algorithm that allows deadlock is undesirable for large clus-
ters. Even if a deadlock-avoidance scheme could be used in conjunction with selective
waiting for locks, early releases of locks are limited by the two-phase nature of 2PL,
necessary for achieving serializability.

4 Implementation

4.1 Overview

The implementation consists of three types of processes: scheduler processes (one per
scheduler machine), a sequencer process (one for the entire cluster), and database proxy
processes (one for each database replica).

The sequencer assigns unique version numbers to the tables accessed by each trans-
action. The database proxy regulates access to its database server by only letting a query
proceed if the database has the right versions for the tables named in the query. The
schedulers receive the various operations from the application server (begin transaction,
read and write queries, and commit or abort transaction), forward them as appropriate to
the sequencer and/or one or all of the database proxies, and relay the responses back to
the application server. In the following, we describe the actions taken by the scheduler
and database proxy when each type of operation is received for processing, and when
its response is received from the database.

4.2 Transaction Start

The application server informs the scheduler of all tables that are going to be accessed,
and whether a particular table is read or written. The scheduler forwards this message
to the sequencer (see Figure 5-a). The sequencer assigns version numbers to each of the
tables for this transaction, and returns the result to the scheduler. The scheduler stores
this information for the length of the transaction. It then responds to the application
server so that it can continue with the transaction. The version numbers are not passed
to the application server.
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operation w w r w r r r w
next_for_read 0 1 2 2 4 4 4 4 7
next_for_write 0 1 2 3 4 5 6 7 7
version assigned 0 1 2 3 4 4 4 7

Fig. 6. Sequencer assigned version numbers for a series of operations

For each table, the sequencer remembers two values: the sequence number next-
for-read, to be assigned if the next request is for a read, and the sequence number
next-for-write, to be assigned if the next request is for a write. When the se-
quencer receives a request from the scheduler for a set of version numbers for tables
accessed in a particular transaction, the sequencer returns for each table the next-
for-read or the next-for-write sequence number, depending on whether that
particular table is to be read or written in that transaction. After a sequence number is
assigned for a write, next-for-write is incremented and next-for-read is set
to the new value of next-for-write. After a sequence number is assigned for a
read, only next-for-write is incremented.

The intuition behind this version number assignment is that the version number
assigned to a transaction for a particular table increases by one every time the new
transaction contains a conflicting operation with the previous transaction to access that
table. For example, Figure 6 shows a series of read and write operations on a particular
table, each belonging to a different transaction, in the order of arrival of the transaction’s
version number request at the sequencer. The figure also shows the version numbers
assigned by the sequencer for that table to each transaction and the values of next-
for-read and next-for-write. As long as the successive accesses are reads,
their transactions are assigned the same version number. Whenever there is a read-write,
write-read, or write-write conflict, a higher version number is assigned.

The assignment of version numbers for a particular transaction is atomic. In other
words, all version numbers for a given transaction are assigned before any version num-
ber for a subsequent transaction is assigned. As a result, the version numbers for all



tables accessed by a particular transaction are either less than or equal to the version
numbers for the same tables for any subsequent transaction. They are only equal if the
transactions do not conflict.

4.3 Read and Write

As the application server executes the transaction, it sends read and write queries to the
scheduler. In the following, we explain how the scheduler and database proxies enforce
the total order for read and write operations necessary for 1-copy-serializability.

Enforcing 1-copy-serializability. Both for read and write queries, the scheduler tags
each table with the version number that was assigned to that table for this transaction.
It then sends write queries to all replicas, while read queries are sent only to one replica
(see Figure 5-b and c).

The following rules govern the execution of a query:

– A write query is executed only when the version numbers for each table at the
database match the version numbers in the query.

– A read query is executed only when the version numbers for each table at the
database are greater than or equal to the version numbers in the query.

If a write query needs to wait for its assigned versions at a particular replica, it is
blocked by the database proxy at that replica. If a read query needs to wait, it is blocked
at the scheduler until one of the replicas becomes ready to execute the query.

In more detail, the scheduler keeps track of the current version numbers of all tables
at all database replicas. The scheduler blocks read queries until at least one database
has, for all tables in the query, version numbers that are greater than or equal to the
version numbers assigned to the transaction for these tables. If there are several such
replicas, the least loaded replica is chosen.

If there is only a single scheduler, then it automatically becomes aware of version
number changes at the database replicas as a result of responses to commits or early
version releases. If multiple schedulers are present, extra communication is needed to
inform the schedulers of version number changes resulting from transactions handled
by other schedulers.

Single-Read Transactions. Since a single-read transaction executes only at one replica,
there is no need to assign cluster-wide version numbers to such a transaction. Instead,
the scheduler forwards the transaction to the chosen replica, without assigning version
numbers. At the chosen database replica, the read query executes after the update trans-
action with the highest version numbers for the corresponding tables in the proxy’s
queues releases these table versions.

Because the order of execution for a single-read transaction is ultimately decided
by the database proxy, the scheduler does not block such queries. In case of conflict, the
read query waits at the database proxy. The scheduler attempts to reduce this wait by
selecting a replica that has an up-to-date version of each table needed by the query. In
this case, up-to-date version means that the table has a version number greater than or
equal to the highest version number assigned to any previous transaction on that table.
Such a replica may not necessarily exist.

4.4 Completion of Reads and Writes

On the completion of a read or a write at the database (see Figure 5-b and c), the
database proxy receives the response and forwards it back to the scheduler.



The scheduler returns the response to the application server if this is the first re-
sponse it received for a write query or it is the response to a read query. The scheduler
keeps track of the state of outstanding writes and updates its internal data structures
when one of the database engines sends back a reply.

4.5 Early Version Releases

The scheduler uses the last-use annotation to send an explicit version release message
that increments the specified table’s version at each database.

4.6 Commit/Abort

The scheduler tags the commit/abort with the tables accessed in the transaction, their
version numbers and a corresponding version release flag, and forwards the commit/abort
to all replicas (see Figure 5-d). The transaction’s commit carries a version release flag
only for the tables where early version releases have not already been performed. Single-
update transactions carry an implicit commit (and version release).

Upon completion at a database, the corresponding database proxy increments the
version number of all tables for which a version release flag was included in the mes-
sage from the scheduler. It returns the answer to the scheduler, which updates its state
to reflect the reply. If this is the first reply, the scheduler forwards the response to the
application server.

4.7 1-Copy-Serializability

The algorithm achieves 1-copy-serializability by forcing transactions that have conflict-
ing operations on a particular table to execute in the total order of the version numbers
assigned to them.

A transaction containing a write on a table conflicts with all previous transactions
that access the same table. Therefore, it needs to execute after all such transactions
with lower version numbers for that table. This is achieved by the combination of the
assignment of version numbers and the rule that governs execution of write queries at a
database replica, as seen by the following argument:

1. next-for-write counts all the earlier transactions that access the same table.
This value is assigned as the version number for the table for this transaction.

2. The database proxy increments its version number every time a transaction that
accesses that table completes.

3. Since the transaction is allowed to execute only when its version number for the
table equals the version number for that table at the database proxy, it follows that
all previous transactions that have accessed that table have completed.

A transaction containing a read on a table conflicts with all previous transactions
containing a write on the same table. It follows that it needs to execute after the trans-
action containing a write on that table with the highest version number lower than its
own. This is again achieved by the combination of the assignment of version numbers
and the rule that governs execution of read queries at a database replica, as seen by the
following argument:

1. next-for-read remembers the highest version number produced by a trans-
action with a write on this table. This value is assigned to the transaction as the
version number for this table.



2. The current transaction is not allowed to execute at a database proxy before the ver-
sion number for that table at that database proxy reaches (at least) the transaction’s
version number for this table.

3. The algorithm also allows a read query to execute at a database proxy if the database
proxy’s version number for the table is higher than that of the transaction. The
only way this can happen is as a result of a sequence of transactions with reads
on the table, and these can execute in parallel without violating the total order on
conflicting operations.

In figure 7, using our earlier example, we now add the version numbers produced by
each transaction’s commit to those assigned by the sequencer. All three reads assigned
version number 4 by the sequencer can also read versions 5 and 6 (i.e., versions pro-
duced by other concurrent readers). A write is required to wait until all previous readers
are done and the version at the database has been incremented to match its own (e.g.,
the write assigned version number 7).

operation w w r w r r r w
version assigned 0 1 2 3 4 4 4 7
version produced 1 2 3 4 5 6 7 8

Fig. 7. Sequencer-assigned version numbers for a series of transactions and the version number
produced at the database proxy after each transaction commits

4.8 Load Balancing

We use the Shortest Execution Length First (SELF) load balancing algorithm [2]. We
measure off-line the execution time of each query on an idle machine. At run-time,
the scheduler estimates the load on a replica as the sum of the (a priori measured)
execution times of all queries outstanding on that back-end. The scheduler updates the
load estimate for each replica with feedback provided by the database proxy in each
reply. SELF tries to take into account the widely varying execution times for different
query types. We have shown elsewhere [2] that SELF outperforms round-robin and
shortest-queue-first algorithms for dynamic content applications.

4.9 Fault Tolerance and Data Availability

The scheduler and the Web server return the result of an update request to the user as
soon as a commit response from any database replica has been received. The sched-
ulers then become responsible for coordinating the completion of the updates on the
other database back-ends, in the case of a scheduler, sequencer, or a back-end database
failure. To meet this goal, the completion status, and all the write queries of any up-
date transaction together with the transaction’s version numbers, are maintained in a
fault-tolerant and highly-available manner at the schedulers. High data availability is
achieved by replicating the state among the schedulers. Additional fault tolerance is
provided by also logging this information to stable storage. The details of our avail-
ability and fault-tolerance protocol are similar to the ones described in our previous
paper [3], in which we also demonstrate that these aspects of our solution do not incur
significant overhead in terms of computation, memory, or disk accesses.



5 Loose Consistency Models

In the performance evaluation section of this paper, we compare distributed versioning
to a number of replication methods that provide looser consistency than 1-copy serial-
izability. These methods and their implementation are introduced next.

5.1 Definition

We describe the three consistency levels specified in Neptune [22], and the types of
dynamic content Web sites for which they are suitable. We further extend these con-
sistency models with an additional model designed to incorporate features from the
continuous consistency model spectrum [28].

Level 0. Write-anywhere replication. This is the basic lazy consistency scheme that
offers no ordering or consistency guarantees. Writes that arrive out-of-order are not
reconciled later. This scheme is only applicable to simple services with append-only,
commutative or total-updates such as an e-mail service.

Level 1. Ordered writes. Writes are totally ordered at all replicas, but reads can access
inconsistent data without any staleness bounds. This scheme is applicable to services
which allow partial updates, and where reads can access stale or inconsistent data such
as discussion groups.

Level 2. Ordered writes and staleness control for reads. Writes are totally ordered
at all replicas, and reads satisfy the following two criteria:

– Each read is serviced by a replica which is at most � seconds stale, where � is a
given staleness bound.

– Each read of a particular client perceives all previous writes performed by the same
client in the correct order.

This consistency model is suitable for sites that need stronger consistency requirements
such as auction sites. For example, a client needs to perceive his previous bids in their
correct order and should be guaranteed to see a sufficiently recent maximum bid.

Special. Per interaction or per object consistency This model is application-specific.
For each interaction or for each object a consistency model is defined. This approach
can be applied to Web sites which have in general strong consistency needs, but where
relaxations can be made on a case by case basis, for specific interactions or objects.

5.2 Implementation of Loose Consistency Methods

For Levels 0, 1 and 2, we remove any transaction delimiters and other annotations from
the application code. The scheduler and database proxy are modified as follows.

For Level 0, we remove any checks pertaining to in-order delivery of writes at the
database proxy. The database proxy still implements conflict resolution, but all writes
are handled in the order of their arrival, which may be different at different replicas.
No version numbers are used. The scheduler load balances reads among all database
replicas.

To implement Level 1, the scheduler obtains version numbers for each write, and the
database proxies deliver the writes in version number order, as in distributed versioning.



No version numbers are assigned to reads. The scheduler load balances reads among all
database replicas.

In addition to the functionality implemented for Level 0 and 1, for Level 2 the
scheduler augments its data structures with a wall-clock timestamp for each database
replica and for each table. The appropriate timestamp is set every time a database replica
acknowledges execution of a write on a table. The scheduler load balances reads only
among the database machines that satisfy the staleness bound for all tables accessed
in the query, and, in addition, have finished all writes pertaining to the same client
connection. A 30-second staleness bound is used for all applications. As in the original
scheme described in Neptune, the staleness bound is loose in the sense that network
time between the scheduler and the database proxy is not taken into account.

The implementation of Special consistency models is application-specific, and its
implementation is deferred to Section 6 where we discuss application benchmarks.

6 Benchmarks

We provide the basic characteristics of the benchmarks used in this study. More detail
can be found in an earlier paper [1].

6.1 TPC-W

The TPC-W benchmark from the Transaction Processing Council (TPC) [26] is a trans-
actional Web benchmark designed to evaluate e-commerce systems. Several interac-
tions are used to simulate the activity of a bookstore.

The database contains eight tables; the most frequently used are order line, orders
and credit info, which give information about the orders placed, and item and author,
which contain information about the books.

We implement the 14 different interactions specified in the TPC-W benchmark spec-
ification. Of the 14 interactions, 6 are read-only, while 8 cause the database to be up-
dated. The read-only interactions include access to the home page, listing of new prod-
ucts and best-sellers, requests for product detail, order display, and two interactions
involving searches. Update transactions include user registration, updates of the shop-
ping cart, two order-placement transactions, two involving order display, and two for
administrative tasks.

The database size is determined by the number of items in the inventory and the
size of the customer population. We use 100K items and 2.8 million customers, which
results in a database of about 4 GB. The inventory images, totaling 1.8 GB, are resident
on the Web server.

TPC-W uses three different workload mixes, differing in the ratio of read-only to
read-write interactions. The browsing mix contains 95% read-only interactions, the
shopping mix 80%, and the ordering mix 50%.

For TPC-W we implement a Special consistency model. This model follows the
specification of TPC-W, which allows for some departures from (1-copy) serializabil-
ity. In more detail, the specification requires that all update interactions respect serial-
izability. Read-only interactions on the retail inventory (i.e., best-sellers, new products,
searches and product detail interactions) are allowed to return data that is at most 30
seconds old. Read-only interactions related to a particular customer (i.e., home and or-
der display interactions) are required to return up-to-date data. Even if allowed to read
stale data, all queries need to respect the atomicity of the update transactions that they
conflict with. We add a number of ad-hoc rules to the scheduler to implement this Spe-
cial consistency model.



6.2 Auction Site Benchmark

Our auction site benchmark, modeled after eBay [10], implements the core functionality
of an auction site: selling, browsing and bidding.

The database contains seven tables: users, items, bids, buy now, comments, cate-
gories and regions. The users and items tables contain information about the users, and
items on sale, respectively. Every bid is stored in the bids table, which includes the
seller, the bid, and a max bid value. Items that are directly bought without any auction
are stored in a separate buy now table. To speed up displaying the bid history when
browsing an item, some information about the bids such as the maximum bid and the
current number of bids is kept with the relevant item in the items table.

Our auction site defines 26 interactions where the main ones are: browsing items
by category or region, bidding, buying or selling items, leaving comments on other
users and consulting one’s own user page (known as myEbay on eBay). Browsing items
includes consulting the bid history and the seller’s information.

We size our system according to some observations found on the eBay Web site.
We have about 33,000 items for sale, distributed among 40 categories and 62 regions,
and an average of 10 bids per item. There is an average of 10 bids per item, or 330,000
entries in the bids table. The total size of the database is 1.4GB.

We use a workload mix that includes 15% read-write interactions. This mix is the
most representative of an auction site workload according to an earlier study of eBay
workloads mentioned in [22].

Although it has been argued that an auction site can be supported by a Level 2
consistency model, as described in Section 5, program modifications are necessary to
ensure correct outcome of the auction site with Level 2 consistency. The problem is that
the code in several places relies on atomic sequences, which are no longer available
in the absence of transactions. For instance, suppose we do not use a transaction for
placing a bid. In the transaction for placing a bid, the maximum bid is first read from
the item table and then updated if the input bid is acceptable (higher). If reading and
updating the maximum bid for an item are not done in a critical section, then if two
clients submit bids concurrently, they can both read the same maximum bid value for
that item. Assuming that both bids are higher, both will be accepted, and the maximum
bid stored in the items table for that item could be wrong (e.g., the lower one of the new
bids). Thus, additional code is necessary to verify the correctness of the maximum bid.

6.3 Bulletin Board

Our bulletin board benchmark is modeled after an online news forum like Slashdot [23].
In particular, as in Slashcode, we support discussion threads. A discussion thread is a
logical tree, containing a story at its root, and a number of comments for that story,
which may be nested.

The main tables in the database are the users, stories, comments, and submissions
tables. Stories and comments are maintained in separate new and old tables. In the new
stories table we keep the most recent stories with a cut-off of one month. We keep old
stories for a period of three years. The new and old comments tables correspond to the
new and old stories respectively. The majority of the browsing requests are expected
to access the new stories and comments tables, which are much smaller and therefore
much more efficiently accessible. Each story submission is initially placed in the sub-
missions table, unless submitted by a moderator.

We have defined ten Web interactions. The main ones are: generate the stories of
the day, browse new stories, older stories, or stories by category, show a particular story
with different options on filtering comments, search for keywords in story titles, com-
ments and user names, submit a story, add a comment, and review submitted stories and
rate comments. None of the interactions contain transactions. For instance, stories are



first inserted into the submission table, later moderated, then inserted in their respective
tables but not as a part of a multi-query atomic transaction, although each individual
update is durable.

We generate the story and comment bodies with words from a given dictionary and
lengths between 1KB and 8KB. Short stories and comments are much more common,
so we use a Zipf-like distribution for story length [8]. The database contains 3 years of
stories and comments with an average of 15 to 25 stories per day and between 20 and 50
comments per story. We emulate 500 K total users, out of which 10% have moderator
access privilege. The database size using these parameters is 560 MB.

We use a workload mix which contains 15% story and comment submissions and
moderation interactions. This mix corresponds to the maximum posting activity of an
active newsgroup, as observed by browsing the Internet for typical breakdowns of URL
requests in bulletin board sites [1].

Among the loose consistency models discussed in Section 5, the normal semantics
of bulletin boards can be supported by the Level 1 consistency model.

6.4 Client Emulation

We implement a client-browser emulator. A client session is a sequence of interactions
for the same client. For each client session, the client emulator opens a persistent HTTP
connection to the Web server and closes it at the end of the session. Each emulated client
waits for a certain think time before initiating the next interaction. The next interaction
is determined by a state transition matrix that specifies the probability to go from one
interaction to another. The session time and think time are generated from a random
distribution with a specified mean.

7 Experimental Environment and Methodology

We study the performance of distributed versioning and compare them to loose con-
sistency models, using measurement for a small number of database replicas and using
simulation for larger degrees of replication. We first describe the hardware and software
used for the prototype implementation. Next, we describe the simulation methodology.

7.1 Hardware

We use the same hardware for all machines running the emulated-client, schedulers and
Web servers, and database engines (or corresponding simulators). Each one of them has
an AMD Athlon 800Mhz processor running FreeBSD 4.1.1, 256MB SDRAM, and a
30GB ATA-66 disk drive. They are all connected through 100MBps Ethernet LAN.

7.2 Software

We use three popular open source software packages: the Apache Web server [5], the
PHP Web-scripting/application development language [18], and the MySQL database
server [16]. Since PHP is implemented as an Apache module, the Web server and ap-
plication server co-exist on the same machine(s).

We use Apache v.1.3.22 [5] for our Web server, configured with the PHP v.4.0.1
module [18] providing server-side scripting for generating dynamic content. We use
MySQL v.4.0.1 [16] with InnoDB transactional extensions as our database server.



7.3 Simulation Methodology

To study the scaling of our distributed versioning techniques on a large number of repli-
cas, we use two configurable cluster simulators: one for the Web/application server
front-ends and the other for the database back-ends. We use these front-end and back-
end simulators to drive actual execution of the schedulers and the database proxies.

Each simulator models a powerful server of the given type (Web/application server
or database) equivalent to running a much larger number of real servers. The Web/application
server simulator takes each HTTP request generated by the client emulator and sends
the corresponding queries with dummy arguments to one of the schedulers.

The database simulator maintains a separate queue for each simulated database
replica. Whenever the simulator receives a query destined for a particular replica, a
record is placed on that replica’s queue. The record contains the predicted termination
time for that query. The termination time is predicted by adding a cost estimate for
the query to the current simulation time. The same method of cost estimation is used
as described earlier for load balancing (see Section 4.8). These estimates are relatively
accurate, because for the applications we consider, the cost of a query is primarily deter-
mined by the type of the query, and largely independent of its arguments. The database
simulator polls the queues and sends responses when the simulated time reaches the
termination time for each query. The database simulator does not model disk accesses,
because profiling of real runs indicates that disk accesses are overlapped with compu-
tation. This overlap is partly due to the locality in the application, resulting in few disk
accesses for reads, and partly due to the lazy commit style for writes.

8 Results

First, we present a performance comparison of distributed versioning with a conserva-
tive 2PL algorithm. Next, we compare the performance of distributed versioning with
various loose consistency models.

All results are obtained using a cluster with two schedulers (for data availability).
For each experiment, we drive the server with increasing numbers of clients (and a
sufficient number of Web/application servers) until performance peaks. We report the
throughput at that peak.

The simulators were calibrated using data from measurements on the prototype im-
plementation. The simulated throughput numbers are within 12% of the experimental
numbers for all workloads.

8.1 Comparison of Distributed Versioning and Conservative 2PL

Figures 8 through 10 compare distributed versioning to conservative 2PL for the TPC-
W shopping mix, the TPC-W ordering mix, and the auction site, respectively. We omit
the results for the TPC-W browsing and bulletin board workloads because there is no
performance difference between distributed versioning and conservative 2PL. The ex-
planation is that these workloads have low conflict rates. These and all further graphs
have in the x axis the number of database engines, and in the y axis the throughput
in (client) Web interactions per second. The graphs also show two protocols that only
use a subset of the features of distributed versioning. Dversion - EarlyRel uses ver-
sion numbers to selectively wait for the right version of tables, but it does not produce
a new version of the tables until commit. Vice versa, DVersion - LateAcq waits for
the correct versions of all tables at the beginning of the transaction, but produces new
versions immediately after the transaction’s last use of a particular table. The results
clearly confirm the discussion in Section 3.6. With increased conflict rates, distributed
versioning produces superior throughput compared to conservative 2PL. Both features
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of distributed versioning, selective waiting for table versions and early production of
new versions, are essential. Without either one of them, improvement over conservative
2PL is minimal.

8.2 Comparison of Distributed Versioning and Loose Consistency Methods

In this section, we investigate the overhead of consistency maintenance for maintain-
ing serializability in distributed versioning. For this purpose, we compare our protocol
with all other protocols for all levels of consistency including specialized, and looser
than required for each of the three applications. This allows us to detect the overhead
of various parts of our solution. For example, we can detect the overhead of in-order
delivery for writes or the success of our conflict avoidance and reduction techniques by
comparison to the upper bound obtained by assuming that these overheads (for ordering
writes or resolving read-write conflicts) do not exist.

Figures 11 through 15 show a comparison of the throughput between distributed
versioning protocol (DVersion) and various lazy replication methods. As a baseline,
we also include the Eager protocol. These figures allow us to draw the following
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conclusions. First, for all applications, the differences between Levels 0, 1, and 2 are
negligible. Second, for the workloads with low conflict rates (i.e., TPC-W browsing and
bulletin board), there is no difference between any of the protocols. Third, as the conflict
rate increases, there is a growing difference between Levels 0, 1, and 2, on one hand, and
DVersion on the other. For the largest simulated configuration, these differences are 5%,
25% and 50%, for the TPC-W shopping mix, the auction site, and the TPC-W ordering
mix, respectively. Fourth, the differences between the Special consistency model and
DVersion are small for all workloads of TPC-W. Finally, for the bulletin board, which
has no transactional requirements, the overhead of enforcing 1-copy-serializability is
minimal.

In a cluster, messages usually arrive in the order that they are sent, and the delay in
message delivery is low. Furthermore, interactions between the client and the database
are such that at least one database replica must have completed the previous request
before the next one is issued. A conflict-aware scheduler directs this next request pre-
cisely to that replica. These observations explain the small differences in performance
between Levels 0, 1 and 2 for all applications, and between DVersion and Special for
TPC-W. Loose consistency models show a benefit, instead, when transactional atomic-
ity is removed, and hence the cost of waiting for read-write conflicts is alleviated. As
the number of such conflicts increases, the benefit of loose consistency models grows.
Among our applications, this is the case for the TPC-W shopping mix, the auction site,
and the TPC-W ordering mix. These results should be viewed with the caveat that, as
explained in Section 6, these looser consistency models do not, by themselves, provide
the right semantics for these applications. Additional programming effort is required to
achieve the right semantics, possibly entailing additional execution time overhead.

9 Related Work

Concurrency control protocols based on multiple versions have been discussed [7] and
implemented in real systems [19] to increase concurrency while maintaining serializ-
ability in stand-alone database systems. More recently, multiversion ordering [6, 12, 20,
21] has been used and optimized for distributed database systems as well. Most of these
systems use transaction aborts to resolve serialization inconsistencies. Some systems
targeted at advanced database applications such as computer-aided design and collabo-
rative software development environments [6] use pre-declared write-sets to determine
if a schedule conflicting at the object level can be serialized, thus avoiding transaction
aborts.

Such systems maintain a history of old versions at each distributed location and need
a special scheme for reducing version space consumption and version access time [9],
or limiting the number of versions stored [12]. Furthermore, if replication is used at
all in these distributed systems, the goal is to increase the availability of a particular
version [20]. In contrast, in our versioning concurrency control algorithm we do not
maintain old copies of items, all modifications are made in place. The goal of our extra-
database algorithm is to allow us to choose the correct version among the different
versions of a table which occur naturally due to asynchronous replication. On the other
hand, multiversion systems have the advantage that the execution of read-only transac-
tions can be made more efficient by completely decoupling their execution from update
transactions [12, 20].

Optimistic replication of data [25] has been used in disconnected mobile devices
allowing such devices to perform local updates. In this case multiple versions of the
same item can arise with the need of serializing potentially conflicting updates by dis-
connected clients on all replicas.

Eager replication based on group communication has been proposed [24, 27], and
optimized [14, 15, 17], to tackle the same problem: providing serializability and scaling



at the same time. Their approach is implemented inside the database layer. Each replica
functions independently. During the transaction execution, the local database acquires
the proper locks for the read and write accesses on its own machine, performs the op-
erations, then sends the other replicas the write-sets through group communication.
Conflicts are solved by each replica locally. This implies the need to abort transactions
when a write-set coming in conflicts with the local transaction. Approaches that elim-
inate the need for transaction aborts exist [24, 14], but they either imply relaxing the
serializability requirement [14], or introducing an acknowledgment coordination phase
between all replicas, at the end of the transaction [24]. These approaches differ from
ours in that databases are considered independent (e.g. distributed on a wide area net-
work), where clients have little choice other than executing transactions locally. In our
work, the state of the database replicas, the consistency level between them, and the
data that the user sees are all controlled by the scheduler(s). We use an extra-database
approach where no database modifications are necessary.

Recent work [22, 28] avoids paying the price of serializability for applications that
don’t need it by providing specialized loose consistency models. Neptune [22] adopts a
primary-copy approach to providing consistency in a partitioned service cluster. How-
ever, their scalability study is limited to Web applications with loose consistency where
scaling is easier to achieve. They do not address e-commerce workloads or other Web
applications with relatively strong consistency requirements.

10 Conclusions

The conventional wisdom has been that in replicated databases one could have either
1-copy serializability or scalability, but not both. As a result, looser consistency models
have been developed that allow better scalability. In this paper we have demonstrated
that for clusters of databases that serve as the back-end of dynamic content Web sites,
1-copy serializability and scalability can go hand-in-hand. This allows for uniform han-
dling of applications and for the use of familiar programming abstractions, such as the
use of transactions.

In order to achieve these results, we use a novel technique, called distributed ver-
sioning. This technique combines a new concurrency control algorithm based on ex-
plicit versions and conflict-aware scheduling to achieve scalability. We have demon-
strated that distributed versioning provides much better performance than earlier tech-
niques for providing 1-copy serializability, including eager protocols, and our own ear-
lier work based on conservative two-phase locking. Furthermore, we have compared
distributed versioning to various replication methods which only provide loose con-
sistency guarantees. We find that for all our applications, except those with very high
conflict rates, the performance of distributed versioning equals or approaches that of
looser consistency models.
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