2,339 research outputs found

    Aspect-Oriented Programming with Type Classes

    Get PDF
    We consider the problem of adding aspects to a strongly typed language which supports type classes. We show that type classes as supported by the Glasgow Haskell Compiler can model an AOP style of programming via a simple syntax-directed transformation scheme where AOP programming idioms are mapped to type classes. The drawback of this approach is that we cannot easily advise functions in programs which carry type annotations. We sketch a more principled approach which is free of such problems by combining ideas from intentional type analysis with advanced overloading resolution strategies. Our results show that type-directed static weaving is closely related to type class resolution -- the process of typing and translating type class programs

    Algorithmic Debugging of Real-World Haskell Programs: Deriving Dependencies from the Cost Centre Stack

    Get PDF
    Existing algorithmic debuggers for Haskell require a transformation of all modules in a program, even libraries that the user does not want to debug and which may use language features not supported by the debugger. This is a pity, because a promising ap- proach to debugging is therefore not applicable to many real-world programs. We use the cost centre stack from the Glasgow Haskell Compiler profiling environment together with runtime value observations as provided by the Haskell Object Observation Debugger (HOOD) to collect enough information for algorithmic debugging. Program annotations are in suspected modules only. With this technique algorithmic debugging is applicable to a much larger set of Haskell programs. This demonstrates that for functional languages in general a simple stack trace extension is useful to support tasks such as profiling and debugging

    The FF Heuristic for Lifted Classical Planning

    Get PDF
    Heuristics for lifted planning are not yet as informed as the best heuristics for ground planning. Recent work introduced the idea of using Datalog programs to compute the additive heuristic over lifted tasks. Based on this work, we show how to compute the more informed FF heuristic in a lifted manner. We extend the Datalog program with executable annotations that can also be used to define other delete-relaxation heuristics. In our experiments, we show that a planner using the lifted FF implementation produces state-of-the-art results for lifted planners. It also reduces the gap to state-of-the-art ground planners in domains where grounding is feasible

    JWalk: a tool for lazy, systematic testing of java classes by design introspection and user interaction

    Get PDF
    Popular software testing tools, such as JUnit, allow frequent retesting of modified code; yet the manually created test scripts are often seriously incomplete. A unit-testing tool called JWalk has therefore been developed to address the need for systematic unit testing within the context of agile methods. The tool operates directly on the compiled code for Java classes and uses a new lazy method for inducing the changing design of a class on the fly. This is achieved partly through introspection, using Java’s reflection capability, and partly through interaction with the user, constructing and saving test oracles on the fly. Predictive rules reduce the number of oracle values that must be confirmed by the tester. Without human intervention, JWalk performs bounded exhaustive exploration of the class’s method protocols and may be directed to explore the space of algebraic constructions, or the intended design state-space of the tested class. With some human interaction, JWalk performs up to the equivalent of fully automated state-based testing, from a specification that was acquired incrementally

    Optimizing Abstract Abstract Machines

    Full text link
    The technique of abstracting abstract machines (AAM) provides a systematic approach for deriving computable approximations of evaluators that are easily proved sound. This article contributes a complementary step-by-step process for subsequently going from a naive analyzer derived under the AAM approach, to an efficient and correct implementation. The end result of the process is a two to three order-of-magnitude improvement over the systematically derived analyzer, making it competitive with hand-optimized implementations that compute fundamentally less precise results.Comment: Proceedings of the International Conference on Functional Programming 2013 (ICFP 2013). Boston, Massachusetts. September, 201

    Liveness-Based Garbage Collection for Lazy Languages

    Full text link
    We consider the problem of reducing the memory required to run lazy first-order functional programs. Our approach is to analyze programs for liveness of heap-allocated data. The result of the analysis is used to preserve only live data---a subset of reachable data---during garbage collection. The result is an increase in the garbage reclaimed and a reduction in the peak memory requirement of programs. While this technique has already been shown to yield benefits for eager first-order languages, the lack of a statically determinable execution order and the presence of closures pose new challenges for lazy languages. These require changes both in the liveness analysis itself and in the design of the garbage collector. To show the effectiveness of our method, we implemented a copying collector that uses the results of the liveness analysis to preserve live objects, both evaluated (i.e., in WHNF) and closures. Our experiments confirm that for programs running with a liveness-based garbage collector, there is a significant decrease in peak memory requirements. In addition, a sizable reduction in the number of collections ensures that in spite of using a more complex garbage collector, the execution times of programs running with liveness and reachability-based collectors remain comparable
    corecore