85 research outputs found

    Design, Characterization And Analysis Of Electrostatic Discharge (esd) Protection Solutions In Emerging And Modern Technologies

    Get PDF
    Electrostatic Discharge (ESD) is a significant hazard to electronic components and systems. Based on a specific processing technology, a given circuit application requires a customized ESD consideration that includes the devices’ operating voltage, leakage current, breakdown constraints, and footprint. As new technology nodes mature every 3-5 years, design of effective ESD protection solutions has become more and more challenging due to the narrowed design window, elevated electric field and current density, as well as new failure mechanisms that are not well understood. The endeavor of this research is to develop novel, effective and robust ESD protection solutions for both emerging technologies and modern complementary metal–oxide–semiconductor (CMOS) technologies. The Si nanowire field-effect transistors are projected by the International Technology Roadmap for Semiconductors as promising next-generation CMOS devices due to their superior DC and RF performances, as well as ease of fabrication in existing Silicon processing. Aiming at proposing ESD protection solutions for nanowire based circuits, the dimension parameters, fabrication process, and layout dependency of such devices under Human Body Mode (HBM) ESD stresses are studied experimentally in company with failure analysis revealing the failure mechanism induced by ESD. The findings, including design methodologies, failure mechanism, and technology comparisons should provide practical knowhow of the development of ESD protection schemes for the nanowire based integrated circuits. Organic thin-film transistors (OTFTs) are the basic elements for the emerging flexible, printable, large-area, and low-cost organic electronic circuits. Although there are plentiful studies focusing on the DC stress induced reliability degradation, the operation mechanism of OTFTs iv subject to ESD is not yet available in the literature and are urgently needed before the organic technology can be pushed into consumer market. In this work, the ESD operation mechanism of OTFT depending on gate biasing condition and dimension parameters are investigated by extensive characterization and thorough evaluation. The device degradation evolution and failure mechanism under ESD are also investigated by specially designed experiments. In addition to the exploration of ESD protection solutions in emerging technologies, efforts have also been placed in the design and analysis of a major ESD protection device, diodetriggered-silicon-controlled-rectifier (DTSCR), in modern CMOS technology (90nm bulk). On the one hand, a new type DTSCR having bi-directional conduction capability, optimized design window, high HBM robustness and low parasitic capacitance are developed utilizing the combination of a bi-directional silicon-controlled-rectifier and bi-directional diode strings. On the other hand, the HBM and Charged Device Mode (CDM) ESD robustness of DTSCRs using four typical layout topologies are compared and analyzed in terms of trigger voltage, holding voltage, failure current density, turn-on time, and overshoot voltage. The advantages and drawbacks of each layout are summarized and those offering the best overall performance are suggested at the en

    Miniaturized Transistors

    Get PDF
    What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications

    Silicon on Ferroelectric Insulator Field Effect Transistor (SOFFET): A Radical Alternative to Overcome the Thermionic Limit

    Get PDF
    Title from PDF of title page viewed January 3,2018Dissertation advisor: Masud H ChowdhuryVitaIncludes bibliographical references (pages 165-180)Thesis (Ph.D.)--School of Computing and Engineering and Department of Physics and Astronomy. University of Missouri--Kansas City, 2016The path of down-scaling traditional MOSFET is reaching its technological, economic and, most importantly, fundamental physical limits. Before the dead-end of the roadmap, it is imperative to conduct a broad research to find alternative materials and new architectures to the current technology for the MOSFET devices. Beyond silicon electronic materials like group III-V heterostructure, ferroelectric material, carbon nanotubes (CNTs), and other nanowire-based designs are in development to become the core technology for non-classical CMOS structures. Field effect transistors (FETs) in general have made unprecedented progress in the last few decades by down-scaling device dimensions and power supply level leading to extremely high numbers of devices in a single chip. High density integrated circuits are now facing major challenges related to power management and heat dissipation due to excessive leakage, mainly due to subthreshold conduction. Over the years, planar MOSFET dimensional reduction was the only process followed by the semiconductor industry to improve device performance and to reduce the power supply. Further scaling increases short-channel-effect (SCE), and off-state current makes it difficult for the industry to follow the well-known Moore’s Law with bulk devices. Therefore, scaling planar MOSFET is no longer considered as a feasible solution to extend this law. The down-scaling of metal-oxide-semiconductor field effect transistors (MOSFETs) leads to severe short-channel-effects and power leakage at large-scale integrated circuits (LSIs). The device, which is governed by the thermionic emission of the carriers injected from the source to the channel region, has set a limitation of the subthreshold swing (S) of 60 / at room temperature. Devices with ‘S’ below this limit is highly desirable to reduce the power consumption and maintaining a high / current ratio. Therefore, the future of semiconductor industry hangs on new architectures, new materials or even new physics to govern the flow of carriers in new switches. As the subthreshold swing is increasing at every technology node, new structures using SOI, multi-gate, nanowire approach, and new channel materials such as III–V semiconductor have not satisfied the targeted values of subthreshold swing. Moreover, the ultra-low-power (ULP) design required a subthreshold slope lower than the thermionic emission limit of 60 /. This value was unbreakable by the new structure (SOI FinFET). On the other hand, most of the preview proposals show the ability to go beyond this limit. However, those pre-mentioned schemes have publicized very complicated physics, design difficulties, and process non-compatibility. The objective of this research is to discuss various emerging nano-devices proposed for sub-60 mV/decade designs and their possibilities to replace the silicon devices as the core technology in the future integrated circuit. This dissertation also proposes a novel design that exploits the concept of negative capacitance. The new field-effect-transistor (FET) based on ferroelectric insulator named Silicon-On-Ferroelectric Insulator Field effect-transistor (SOFFET). This proposal is a promising methodology for future ultra low-power applications because it demonstrates the ability to replace the silicon-bulk based MOSFET, and offers a subthreshold swing significantly lower than 60 / and reduced threshold voltage to form a conducting channel. The proposed SOFFET design, which utilizes the negative capacitance of a ferroelectric insulator in the body-stack, is completely different from the FeFET and NCFET designs. In addition to having the NC effect, the proposed device will have all the advantages of an SOI device. Body-stack that we are intending in this research has many advantages over the gate-stack. First, it is more compatible with the existing processes. Second, the gate and the working area of the proposed SOFFET is like the planar MOSFET. Third, the complexity and ferroelectric material interferences are shifted to the body of the device from the gate and the working area. The proposed structure offers better scalability and superior constructability because of the high-dielectric buried insulator. Here we are providing a very simplified model for the structure. Silicon-on-ferroelectric leads to several advantages including low off-state current and shift in the threshold voltage with the decrease of the ferroelectric material thickness. Moreover, having an insulator in the body of the device increases the controllability over the channel, which leads to the reduction in the short-channel-effect (SCE). The proposed SOFFET offers low value of subthreshold swing (S) leading to better performance in the on-state. The off-state current is directly related to S. So, the off-state current is also minimum in the proposed structure.Introduction -- Subthreshold swing -- Multi-gate devices -- Tunneling field effect transistors -- I-mos & FET transistors -- Ferroelectric based field effect transistors -- An analytical model to approximate the subthreshold swing for SOI-FINFET -- Multichannel tunneling carbon nanotube FET -- Partially depleted silicon-on-Ferroelectric insulator FET -- Fully depleted silicon-on-ferroelectric insulator FET -- Advantages, manufacturing process, and future work of the proposed devices -- Appendix A. Estimation of the body factor (n) [eta] of SOI FinFET -- Appendix B. Solution for the Poisson Equation of MT-CNTFE

    Evolutionary Memory: Unified Random Access Memory (URAM)

    Get PDF

    Design for Reliability and Low Power in Emerging Technologies

    Get PDF
    Die fortlaufende Verkleinerung von Transistor-StrukturgrĂ¶ĂŸen ist einer der wichtigsten Antreiber fĂŒr das Wachstum in der Halbleitertechnologiebranche. Seit Jahrzehnten erhöhen sich sowohl Integrationsdichte als auch KomplexitĂ€t von Schaltkreisen und zeigen damit einen fortlaufenden Trend, der sich ĂŒber alle modernen FertigungsgrĂ¶ĂŸen erstreckt. Bislang ging das Verkleinern von Transistoren mit einer Verringerung der Versorgungsspannung einher, was zu einer Reduktion der Leistungsaufnahme fĂŒhrte und damit eine gleichbleibenden Leistungsdichte sicherstellte. Doch mit dem Beginn von StrukturgrĂ¶ĂŸen im Nanometerbreich verlangsamte sich die fortlaufende Skalierung. Viele Schwierigkeiten, sowie das Erreichen von physikalischen Grenzen in der Fertigung und Nicht-IdealitĂ€ten beim Skalieren der Versorgungsspannung, fĂŒhrten zu einer Zunahme der Leistungsdichte und, damit einhergehend, zu erschwerten Problemen bei der Sicherstellung der ZuverlĂ€ssigkeit. Dazu zĂ€hlen, unter anderem, Alterungseffekte in Transistoren sowie ĂŒbermĂ€ĂŸige Hitzeentwicklung, nicht zuletzt durch stĂ€rkeres Auftreten von Selbsterhitzungseffekten innerhalb der Transistoren. Damit solche Probleme die ZuverlĂ€ssigkeit eines Schaltkreises nicht gefĂ€hrden, werden die internen Signallaufzeiten ĂŒblicherweise sehr pessimistisch kalkuliert. Durch den so entstandenen zeitlichen Sicherheitsabstand wird die korrekte FunktionalitĂ€t des Schaltkreises sichergestellt, allerdings auf Kosten der Performance. Alternativ kann die ZuverlĂ€ssigkeit des Schaltkreises auch durch andere Techniken erhöht werden, wie zum Beispiel durch Null-Temperatur-Koeffizienten oder Approximate Computing. Wenngleich diese Techniken einen Großteil des ĂŒblichen zeitlichen Sicherheitsabstandes einsparen können, bergen sie dennoch weitere Konsequenzen und Kompromisse. Bleibende Herausforderungen bei der Skalierung von CMOS Technologien fĂŒhren außerdem zu einem verstĂ€rkten Fokus auf vielversprechende Zukunftstechnologien. Ein Beispiel dafĂŒr ist der Negative Capacitance Field-Effect Transistor (NCFET), der eine beachtenswerte Leistungssteigerung gegenĂŒber herkömmlichen FinFET Transistoren aufweist und diese in Zukunft ersetzen könnte. Des Weiteren setzen Entwickler von Schaltkreisen vermehrt auf komplexe, parallele Strukturen statt auf höhere Taktfrequenzen. Diese komplexen Modelle benötigen moderne Power-Management Techniken in allen Aspekten des Designs. Mit dem Auftreten von neuartigen Transistortechnologien (wie zum Beispiel NCFET) mĂŒssen diese Power-Management Techniken neu bewertet werden, da sich AbhĂ€ngigkeiten und VerhĂ€ltnismĂ€ĂŸigkeiten Ă€ndern. Diese Arbeit prĂ€sentiert neue Herangehensweisen, sowohl zur Analyse als auch zur Modellierung der ZuverlĂ€ssigkeit von Schaltkreisen, um zuvor genannte Herausforderungen auf mehreren Designebenen anzugehen. Diese Herangehensweisen unterteilen sich in konventionelle Techniken ((a), (b), (c) und (d)) und unkonventionelle Techniken ((e) und (f)), wie folgt: (a)\textbf{(a)} Analyse von Leistungszunahmen in Zusammenhang mit der Maximierung von Leistungseffizienz beim Betrieb nahe der Transistor Schwellspannung, insbesondere am optimalen Leistungspunkt. Das genaue Ermitteln eines solchen optimalen Leistungspunkts ist eine besondere Herausforderung bei Multicore Designs, da dieser sich mit den jeweiligen Optimierungszielsetzungen und der Arbeitsbelastung verschiebt. (b)\textbf{(b)} Aufzeigen versteckter Interdependenzen zwischen Alterungseffekten bei Transistoren und Schwankungen in der Versorgungsspannung durch „IR-drops“. Eine neuartige Technik wird vorgestellt, die sowohl Über- als auch UnterschĂ€tzungen bei der Ermittlung des zeitlichen Sicherheitsabstands vermeidet und folglich den kleinsten, dennoch ausreichenden Sicherheitsabstand ermittelt. (c)\textbf{(c)} EindĂ€mmung von Alterungseffekten bei Transistoren durch „Graceful Approximation“, eine Technik zur Erhöhung der Taktfrequenz bei Bedarf. Der durch Alterungseffekte bedingte zeitlich Sicherheitsabstand wird durch Approximate Computing Techniken ersetzt. Des Weiteren wird Quantisierung verwendet um ausreichend Genauigkeit bei den Berechnungen zu gewĂ€hrleisten. (d)\textbf{(d)} EindĂ€mmung von temperaturabhĂ€ngigen Verschlechterungen der Signallaufzeit durch den Betrieb nahe des Null-Temperatur Koeffizienten (N-ZTC). Der Betrieb bei N-ZTC minimiert temperaturbedingte Abweichungen der Performance und der Leistungsaufnahme. Qualitative und quantitative Vergleiche gegenĂŒber dem traditionellen zeitlichen Sicherheitsabstand werden prĂ€sentiert. (e)\textbf{(e)} Modellierung von Power-Management Techniken fĂŒr NCFET-basierte Prozessoren. Die NCFET Technologie hat einzigartige Eigenschaften, durch die herkömmliche Verfahren zur Spannungs- und Frequenzskalierungen zur Laufzeit (DVS/DVFS) suboptimale Ergebnisse erzielen. Dies erfordert NCFET-spezifische Power-Management Techniken, die in dieser Arbeit vorgestellt werden. (f)\textbf{(f)} Vorstellung eines neuartigen heterogenen Multicore Designs in NCFET Technologie. Das Design beinhaltet identische Kerne; HeterogenitĂ€t entsteht durch die Anwendung der individuellen, optimalen Konfiguration der Kerne. Amdahls Gesetz wird erweitert, um neue system- und anwendungsspezifische Parameter abzudecken und die VorzĂŒge des neuen Designs aufzuzeigen. Die Auswertungen der vorgestellten Techniken werden mithilfe von Implementierungen und Simulationen auf Schaltkreisebene (gate-level) durchgefĂŒhrt. Des Weiteren werden Simulatoren auf Systemebene (system-level) verwendet, um Multicore Designs zu implementieren und zu simulieren. Zur Validierung und Bewertung der EffektivitĂ€t gegenĂŒber dem Stand der Technik werden analytische, gate-level und system-level Simulationen herangezogen, die sowohl synthetische als auch reale Anwendungen betrachten

    Silicon on ferroelectric insulator field effect transistor (SOF-FET) a new device for the next generation ultra low power circuits

    Get PDF
    Title from PDF of title page, viewed on March 12, 2014Thesis advisor: Masud H. ChowdhuryVitaIncludes bibliographical references (pages 116-131)Thesis (M. S.)--School of Computer and Engineering. University of Missouri--Kansas City, 2013Field effect transistors (FETs) are the foundation for all electronic circuits and processors. These devices have progressed massively to touch its final steps in subnanometer level. Left and right proposals are coming to rescue this progress. Emerging nano-electronic devices (resonant tunneling devices, single-atom transistors, spin devices, Heterojunction Transistors rapid flux quantum devices, carbon nanotubes, and nanowire devices) took a vast share of current scientific research. Non-Si electronic materials like III-V heterostructure, ferroelectric, carbon nanotubes (CNTs), and other nanowire based designs are in developing stage to become the core technology of non-classical CMOS structures. FinFET present the current feasible commercial nanotechnology. The scalability and low power dissipation of this device allowed for an extension of silicon based devices. High short channel effect (SCE) immunity presents its major advantage. Multi-gate structure comes to light to improve the gate electrostatic over the channel. The new structure shows a higher performance that made it the first candidate to substitute the conventional MOSFET. The device also shows a future scalability to continue Moorñ€ℱs Law. Furthermore, the device is compatible with silicon fabrication process. Moreover, the ultra-low-power (ULP) design required a subthreshold slope lower than the thermionic-emission limit of 60mV/ decade (KT/q). This value was unbreakable by the new structure (SOI-FinFET). On the other hand most of the previews proposals show the ability to go beyond this limit. However, those pre-mentioned schemes have publicized a very complicated physics, design difficulties, and process non-compatibility. The objective of this research is to discuss various emerging nano-devices proposed for ultra-low-power designs and their possibilities to replace the silicon devices as the core technology in the future integrated circuit. This thesis proposes a novel design that exploits the concept of negative capacitance. The new field effect transistor (FET) based on ferroelectric insulator named Silicon-On-Ferroelectric Insulator Field Effect Transistor (SOF-FET). This proposal is a promising methodology for future ultra-lowpower applications, because it demonstrates the ability to replace the silicon-bulk based MOSFET, and offers subthreshold swing significantly lower than 60mV/decade and reduced threshold voltage to form a conducting channel. The SOF-FET can also solve the issue of junction leakage (due to the presence of unipolar junction between the top plate of the negative capacitance and the diffused areas that form the transistor source and drain). In this device the charge hungry ferroelectric film already limits the leakage.Abstract -- List of illustrations - List of tables -- Acknowledgements -- Dedication -- Introduction -- Carbon nanotube field effect transistor -- Multi-gate transistors -FinFET -- Subthreshold swing -- Tunneling field effect transistors -- I-mos and nanowire fets -- Ferroelectric based field effect transistors -- An analytical model to approximate the subthreshold swing for soi-finfet -- Silicon-on-ferroelectric insulator field effect transistor (SOF-FET) -- Current-voltage characteristics of sof-fet -- Advantages, manufacturing process and future work of the proposed device -- Appendix -- Reference

    Multiple-Independent-Gate Field-Effect Transistors for High Computational Density and Low Power Consumption

    Get PDF
    Transistors are the fundamental elements in Integrated Circuits (IC). The development of transistors significantly improves the circuit performance. Numerous technology innovations have been adopted to maintain the continuous scaling down of transistors. With all these innovations and efforts, the transistor size is approaching the natural limitations of materials in the near future. The circuits are expected to compute in a more efficient way. From this perspective, new device concepts are desirable to exploit additional functionality. On the other hand, with the continuously increased device density on the chips, reducing the power consumption has become a key concern in IC design. To overcome the limitations of Complementary Metal-Oxide-Semiconductor (CMOS) technology in computing efficiency and power reduction, this thesis introduces the multiple- independent-gate Field-Effect Transistors (FETs) with silicon nanowires and FinFET structures. The device not only has the capability of polarity control, but also provides dual-threshold- voltage and steep-subthreshold-slope operations for power reduction in circuit design. By independently modulating the Schottky junctions between metallic source/drain and semiconductor channel, the dual-threshold-voltage characteristics with controllable polarity are achieved in a single device. This property is demonstrated in both experiments and simulations. Thanks to the compact implementation of logic functions, circuit-level benchmarking shows promising performance with a configurable dual-threshold-voltage physical design, which is suitable for low-power applications. This thesis also experimentally demonstrates the steep-subthreshold-slope operation in the multiple-independent-gate FETs. Based on a positive feedback induced by weak impact ionization, the measured characteristics of the device achieve a steep subthreshold slope of 6 mV/dec over 5 decades of current. High Ion/Ioff ratio and low leakage current are also simultaneously obtained with a good reliability. Based on a physical analysis of the device operation, feasible improvements are suggested to further enhance the performance. A physics-based surface potential and drain current model is also derived for the polarity-controllable Silicon Nanowire FETs (SiNWFETs). By solving the carrier transport at Schottky junctions and in the channel, the core model captures the operation with independent gate control. It can serve as the core framework for developing a complete compact model by integrating advanced physical effects. To summarize, multiple-independent-gate SiNWFETs and FinFETs are extensively studied in terms of fabrication, modeling, and simulation. The proposed device concept expands the family of polarity-controllable FETs. In addition to the enhanced logic functionality, the polarity-controllable SiNWFETs and FinFETs with the dual-threshold-voltage and steep-subthreshold-slope operation can be promising candidates for future IC design towards low-power applications

    Ultra-low power RF receiver based on double-gate CMOS FinFET technology

    Get PDF
    In this research, design approaches and methodologies were presented to realize the ultra-low power RF receiver front-end circuits. Moderate inversion operation was explored as a possible method of reducing power consumption along with the use of low supply voltage. The research is firstly concentrated on passive and active devices modeling. One of the most commonly used passive devices is on-chip inductor. On-chip spiral inductor model was developed firstly. Compared to the model developed by others, this model can predict the behavior of the inductors with different structural parameters over a board frequency range (from 0.1 to 10 GHz). Then the SOI varactor model was developed based on our measurement and extraction.Besides the passive devices modeling, a new most promising MOSFET candidate, FinFET, was characterized at GHz frequency range. Based on the measurement results, we found the FinFET transistors did have superior performance over bulk-Si CMOS technology. And an RF circuit model of FinFET was developed followed that, which was published in Electronics Letters. To my best knowledge, this was the first RF FinFET model published world wide at that time. It provides the basic idea about how to model this new structure MOSFET.Based on the passive and active device models developed, Global Positioning System (GPS) receiver front end circuits were designed and measured. Comparing to the previous designs with the same constrains, the ultra-low power GPS receiver building block circuits in this research have much less power consumption than the best design published before

    ?????? ????????? ????????? ???????????? ?????????????????? ?????? ?????????????????? ????????? ???????????? ?????? ??????: ?????? ?????? ??? ??? ???????????? ?????? ??????

    Get PDF
    Department of PhysicsSubthreshold swing is one of most important parameters in controversial metal-oxide-semiconductor (CMOS) technology, which is related on power consumption. In the metal-oxide-semiconductor field effect transistor (MOSFET), there is thermodynamic limit of subthreshold swing of 60 mV/dec at room temperature. In order to achieve the subthreshold swing, edge-over MOSFET structure is proposed, transistor channel of EO MOSFET is formed on sidewall of insulating pillar. Therefore, transistor channel length increases even though the lateral transistor channel length is maintained. Since the subthreshold swing is deteriorated by the short channel effect, relatively long channel due to existence of insulating pillar has advantage to suppress the subthreshold swing in nano-meter scale. By technology computer aided design (TCAD) modeling, electrical characteristics are demonstrated. Low drain induced barrier lowering (DIBL) of 13.7 mV/V and steep subthreshold swing of 62.6 mV/dec are estimated. Ternary characteristics of EO ternary inverter are investigated by TCAD Mixed mode, the voltage transfer characteristics (VTC) of EO ternary inverter gives an apparent ternary voltage states. In according to structures of EO resistor and EO MOSFET, EO ternary inverter can be formed perpendicular to substrate, therefore, which allows thin lateral dimension of the inverter. Reliability of ternary operation is explained with static noise margin (SNM) and transient response. In the transient response, ternary operation is maintained at 10 MHz frequency, and a propagation delay of 1.69 ns is evaluated. Theoretical approach to thermionic emission at Dirac semimetal source is performed. In the Dirac semimetal, since density of states are determined by linear energy dispersion near the Dirac point, thermionic emission current can be controlled by difference between Dirac point and fermi level and Schottky barrier height. As absence of direct injection of carriers from contact to Si, equation of thermionic emission is different with that of conventional up-down source/substrate structure. In case of graphene, there are singularities at negative infinity, hence the possibility of constant thermionic current exists regardless of the gate biasing of MOSFET. Meanwhile, lowest subthreshold swing of 30 mV/dec for 3 dimensional Dirac semimetal source is discussed.clos

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before
    • 

    corecore