14 research outputs found

    Advanced Techniques for Future Multicarrier Systems

    Get PDF
    Future multicarrier systems face the tough challenge of supporting high data-rate and high-quality services. The main limitation is the frequency-selective nature of the propagation channel that affects the received signal, thus degrading the system performance. OFDM can be envisaged as one of the most promising modulation techniques for future communication systems. It exhibits robustness to ISI even in very dispersive environments and its main characteristic is to take advantage of channel diversity by performing dynamic resource allocation. In a multi-user OFDMA scenario, the challenge is to allocate, on the basis of the channel knowledge, different portions of the available frequency spectrum among the users in the systems. Literature on resource allocation for OFDMA systems mainly focused on single-cell systems, where the objective is to assign subcarriers, power and data-rate for each user according to a predetermined criterion. The problem can be formulated with the goal of either maximizing the system sum-rate subject to a constraint on transmitted power or minimizing the overall power consumption under some predetermined constraints on rate per user. Only recently, literature focuses on resource allocation in multi-cell networks, where the goal is not only to take advantage of frequency and multi-user diversity, but also to mitigate MAI, which represents one of the most limiting factor for such problems. We consider a multi-cell OFDMA system with frequency reuse distance equal to one. Allowing all cells to transmit on the whole bandwidth unveils large potential gains in terms of spectral efficiency in comparison with conventional cellular systems. Such a scenario, however, is often deemed unfeasible because of the strong MAI that negatively affects the system performance. In this dissertation we present a layered architecture that integrates a packet scheduler with an adaptive resource allocator, explicitly designed to take care of the multiple access interference. Each cell performs its resource management in a distributed way without any central controller. Iterative resource allocation assigns radio channels to the users so as to minimize the interference. Packet scheduling guarantees that all users get a fair share of resources regardless of their position in the cell. This scheduler-allocator architecture integrates both goals and is able to self adapt to any traffic and user configuration. An adaptive, distributed load control strategy can reduce the cell load so that the iterative procedure always converges to a stable allocation, regardless of the interference. Numerical results show that the proposed architecture guarantees both high spectral efficiency and throughput fairness among flows. In the second part of this dissertation we deal with FBMC communication systems. FBMC modulation is a valid alternative to conventional OFDM signaling as it presents a set of appealing characteristics, such as robustness to narrowband interferers, more flexibility to allocate groups of subchannels to different users/services, and frequency-domain equalization without any cyclic extension. However, like any other multicarrier modulations, FBMC is strongly affected by residual CFOs that have to be accurately estimated. Unlike previously proposed algorithms, whereby frequency is recovered either relying on known pilot symbols multiplexed with the data stream or exploiting specific properties of the multicarrier signal structure following a blind approach, we present and discuss an algorithm based on the ML principle, which takes advantage both of pilot symbols and also indirectly of data symbols through knowledge and exploitation of their specific modulation format. The algorithm requires the availability of the statistical properties of channel fading up to second-order moments. It is shown that the above approach allows to improve on both frequency acquisition range and estimation accuracy of previously published schemes

    Evaluation of fourth generation air-interfaces for mobile communications

    Get PDF
    Abstract Development of the Fourth Generation of mobile communication systems, or 4G, has already begun in various organizations and research institutions worldwide. There is currently no single conclusive definition for 4G systems, and the process of 4G standardization will only begin after the World Radiocommunication Conference in 2007. The purpose of this report is to provide an objective definition of 4G systems based on user requirements, and to use this definition to determine an appropriate 4G access network architecture. By examining the current trends in user requirements, and the methodologies proposed by different researchers, an objective definition of 4G systems was developed. The definition states that the purpose of 4G systems is to provide users with the capacity to access any service at any time at a reasonable cost and at the required levels of quality. There are two developmental methodologies which are currently being considered to achieve this objective: first the evolution and convergence of existing systems, including cellular, IT and broadcasting communication systems, and second, the development of a new 4G access network capable of providing users with access to advanced services. The primary specification for this new access network is that it must provide a throughput of 1 Mbps for mobile users and 1 Gbps for users that are stationary. Other requirements include high spectral efficiency and high capacity and coverage. The primary focus of this report is the examination of the second of the above methodologies by evaluating the performance of candidate 4G air-interface architectures so that a recommendation could be made as to which of the architectures is the preferred choice as the core component in a new 4G access network. Orthogonal Frequency Division Multiplexing (OFDM) modulation is a high performance modulation technique capable of achieving high levels of spectral efficiency and is widely accepted as the technique most capable of meeting 4G access network requirements. There are two primary access network architectures that make use of OFDM modulation and could form the core components of a 4G air-interface, the physical component of a 4G access network. To determine which architecture is the appropriate choice for 4G systems, a series of simulations were run using realistic models of a wireless environment. The results of those simulations were analyzed, and it was determined that, due to the absence of multiple access interference found in MC-CDMA, OFDMA systems better met the defined requirements for a 4G air-interface. The use of additional techniques such as radio resource management, multi-antennae technologies and software defined radios are cited as potential methods for improving both OFDMA and MC-CDMA performance

    QoS based Radio Resource Management Techniques for Next Generation MU-MIMO WLANs: A Survey

    Get PDF
    IEEE 802.11 based Wireless Local Area Networks (WLANs) have emerged as a popular candidate that offers Internet services for wireless users. The demand of data traffic is increasing every day due to the increase in the use of multimedia applications, such as digital audio, video, and online gaming. With the inclusion of Physical Layer (PHY) technologies, such as the OFDM and MIMO, the current 802.11ac WLANs are claiming Gigabit speeds. Hence, the existing Medium Access Control (MAC) must be in a suitable position to convert the offered PHY data rates for efficient throughput. Further, the integration of cellular networks with WLANs requires unique changes at MAC layer. It is highly required to preserve the Quality of Service (QoS) in these scenarios. Fundamentally, many QoS issues arise from the problem of effective Radio Resource Management (RRM). Although IEEE 802.11 has lifted PHY layer aspects, there is a necessity to investigate MAC layer issues, such as resource utilization, scheduling, admission control and congestion control. In this survey, a literature overview of these techniques, namely the resource allocation and scheduling algorithms are briefly discussed in connection with the QoS at MAC layer. Further, some anticipated enhancements proposed for Multi-User Multiple-Input and Multiple-Output (MU-MIMO) WLANs are discussed

    逐次干渉除去を用いた多元接続システムのパワー割り当てに関する研究

    Get PDF
    In future wireless communication networks, the number of devices is likely to increase dramatically due to potential development of new applications such as the Internet of Things (IoT). Consequently, radio access network is required to support multiple access of massive users and achieve high spectral efficiency. From the information theoretic perspective, orthogonal multiple access protocols are suboptimal. To achieve the multiple access capacity, non-orthogonal multiple access protocols and multiuser detection (MUD) are required. For the non-orthogonal code-division multiple access (CDMA), several MUD techniques have been proposed to improve the spectrum efficiency. Successive interference cancellation (SIC) is a promising MUD techniques due to its low complexity and good decoding performance. Random access protocols are designed for the system with bursty traffic to reduce the delay, compared to the channelized multiple access. Since the users contend for the channel instead of being assigned by the base station (BS), collisions happen with a certain probability. If the traffic load becomes relatively high, the throughput of these schemes steeply falls down because of collisions. However, it has been well-recognized that more complex procedures can permit decoding of interfering signals, which is referred to as multi-packet reception (MPR). Also, an SIC decoder might decode more packets by successively subtracting the correctly decoded packets from the collision. Cognitive radio (CR) is an emerging technology to solve the problem of spectrum scarcity by dynamically sharing the spectrum. In the CR networks, the secondary users (SUs) are allowed to dynamically share the frequency bands with primary users (PUs) under primary quality-of-service (QoS) protection such as the constraint of interference temperature at the primary base station (PBS). For the uplink multiple access to the secondary base station (SBS), transmit power allocation for the SUs is critical to control the interference temperature at the PBS. Transmit power allocation has been extensively studied in various multiple access scenarios. The power allocation algorithms can be classified into two types, depending on whether the process is controlled by the base station (BS). For the centralized power allocation (CPA) algorithms, the BS allocates the transmit powers to the users through the downlink channels. For the random access protocols, there are also efforts on decentralized power allocation (DPA) that the users select transmit powers according to given distributions of power and probability, instead of being assigned the transmit power at each time slot by the BS. In this dissertation, the DPA algorithms for the random access protocols with SIC are investigated and new methods are proposed. First a decentralized multilevel power allocation algorithm to improve the MAC throughput performance is proposed, for the general SIC receiver that can decode multiple packets from one collision. Then an improved DPA algorithm to maximize the overall system sum rate is proposed, taking into account of both the MAC layer and PHY layer. Finally, a DPA algorithm for the CR secondary random access is proposed, considering the constraint of interference temperature and the practical assumption of imperfect cancellation. An opportunistic transmission protocol for the fading environment to further reduce the interference temperature is also proposed. For the future work, the optimal DPA for the random access with the SIC receiver is still an open problem. Besides, advanced multiple access schemes that aim to approach the multiple access capacity by combining the advantages of the network coded cooperation, the repetition slotted ALOHA, and the SIC receiver are also interesting.電気通信大学201

    Macro Diversity Combining Optimization in HSPA flat architecture

    Get PDF
    This thesis, Macro Diversity Combining Optimization in High Speed Packet Access (HSPA) flat architecture, concentrates on analyzing implementation alternatives of Marco Diversity Combining (MDC) in fiat architecture. When centralized elements, like Radio Network Controller (RNC), are removed from the architecture, centralized functionalities need to be implemented differently. One of the most important centralized functionality is Macro Diversity Combining which collects traffic from multiple base stations and improves radio performance like bit rate and coverage area. When this functionality is implemented inside base station traffic needs to be sent between base stations. Traffic between base stations creates new requirements for transport network and potentially also increases operator transport cost. In short, if MDC is fully implemented, traffic between base stations is maximized and opposite, if MDC is left out, radio performance is reduced. The thesis starts with the overview introduction of Universal Mobile Telecommunication System (UMTS) network. Here we discuss the architecture of the UMTS packets switched network, and the main functionalities of the Radio Resource Management (RRM): power control and handover control. A deeper look is taken into evolution of 3GPP packet access namely High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Data Access (HSUPA) plus the relevant HSDPA cell change and HSUPA handovers are covered. A short glance is also taken into the gains introduced by MDC. In this thesis four proposals presented in 3GPP to improve the MDC with regards to utilization of transport network, implementation complexity, radio performance, latency and amount of additions to existing 3GPP specifications are evaluated. Finally, an implementation alternative for MDC optimization in flat architecture is presented based on the proposals in 3GPP

    Tutorial on LTE/LTE-A Cellular Network Dimensioning Using Iterative Statistical Analysis

    Get PDF
    LTE is the fastest growing cellular technology and is expected to increase its footprint in the coming years, as well as progress toward LTE-A. The race among operators to deliver the expected quality of experience to their users is tight and demands sophisticated skills in network planning. Radio network dimensioning (RND) is an essential step in the process of network planning and has been used as a fast, but indicative, approximation of radio site count. RND is a prerequisite to the lengthy process of thorough planning. Moreover, results from RND are used by players in the industry to estimate preplanning costs of deploying and running a network; thus, RND is, as well, a key tool in cellular business modelling. In this work, we present a tutorial on radio network dimensioning, focused on LTE/LTE-A, using an iterative approach to find a balanced design that mediates among the three design requirements: coverage, capacity, and quality. This approach uses a statistical link budget analysis methodology, which jointly accounts for small and large scale fading in the channel, as well as loading due to traffic demand, in the interference calculation. A complete RND manual is thus presented, which is of key importance to operators deploying or upgrading LTE/LTE-A networks for two reasons. It is purely analytical, hence it enables fast results, a prime factor in the race undertaken. Moreover, it captures essential variables affecting network dimensions and manages conflicting targets to ensure user quality of experience, another major criterion in the competition. The described approach is compared to the traditional RND using a commercial LTE network planning tool. The outcome further dismisses the traditional RND for LTE due to unjustified increase in number of radio sites and related cost, and motivates further research in developing more effective and novel RND procedures

    Previsão de capacidade para redes de acesso rádio

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesThe mobile networks market (focus of this work) strategy is based on the consolidation of the installed structure and the optimization of the already existent resources. The increasingly competition and aggression of this market requires, to the mobile operators, a continuous maintenance and update of the networks in order to obtain the minimum number of fails and provide the best experience for its subscribers. In this context, this dissertation presents a study aiming to assist the mobile operators improving future network modifications. In overview, this dissertation compares several forecasting methods (mostly based on time series analysis) capable of support mobile operators with their network planning. Moreover, it presents several network indicators about the more common bottlenecks.A estratégia comum dos operadores no mercado das redes móveis (área onde este trabalho se debruça) passa por uma consolidação da sua rede base já instalada e pela otimização dos recursos já existentes. A crescente competitividade e agressividade deste mercado obrigam a que os operadores mantenham a sua rede atualizada e com o menor número de falhas possível, com a finalidade de oferecer a melhor experiência aos seus utilizadores. Neste contexto, esta dissertação apresenta um estudo que auxilia os operadores a aperfeiçoar futuras alterações na sua rede. De um modo geral, esta dissertação compara alguns métodos de previsão (baseados maioritariamente na análise de séries temporais) capazes de assistir os operadores no planeamento da sua rede e ainda apresenta alguns indicadores de rede onde as limitações de desempenho são mais frequentes
    corecore