326 research outputs found

    Engineering environment-mediated coordination via nature-inspired laws

    Get PDF
    SAPERE is a general multiagent framework to support the development of self-organizing pervasive computing services. One of the key aspects of the SAPERE approach is to have all interactions between agents take place in an indirect way, via a shared spatial environment. In such environment, a set of nature-inspired coordination laws have been defined to rule the coordination activities of the application agents and promote the provisioning of adaptive and self-organizing services

    Organisational Abstractions for the Analysis and Design of Multi-Agent Systems

    No full text
    The architecture of a multi-agent system can naturally be viewed as a computational organisation. For this reason, we believe organisational abstractions should play a central role in the analysis and design of such systems. To this end, the concepts of agent roles and role models are increasingly being used to specify and design multi-agent systems. However, this is not the full picture. In this paper we introduce three additional organisational concepts - organisational rules, organisational structures, and organisational patterns - that we believe are necessary for the complete specification of computational organisations. We view the introduction of these concepts as a step towards a comprehensive methodology for agent-oriented systems

    Agent Based Modeling and Simulation: An Informatics Perspective

    Get PDF
    The term computer simulation is related to the usage of a computational model in order to improve the understanding of a system's behavior and/or to evaluate strategies for its operation, in explanatory or predictive schemes. There are cases in which practical or ethical reasons make it impossible to realize direct observations: in these cases, the possibility of realizing 'in-machina' experiments may represent the only way to study, analyze and evaluate models of those realities. Different situations and systems are characterized by the presence of autonomous entities whose local behaviors (actions and interactions) determine the evolution of the overall system; agent-based models are particularly suited to support the definition of models of such systems, but also to support the design and implementation of simulators. Agent-Based models and Multi-Agent Systems (MAS) have been adopted to simulate very different kinds of complex systems, from the simulation of socio-economic systems to the elaboration of scenarios for logistics optimization, from biological systems to urban planning. This paper discusses the specific aspects of this approach to modeling and simulation from the perspective of Informatics, describing the typical elements of an agent-based simulation model and the relevant research.Multi-Agent Systems, Agent-Based Modeling and Simulation

    From Physical to Virtual: Widening the Perspective on Multi-Agent Environments

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-23850-0_9Since more than a decade, the environment is seen as a key element when analyzing, developing or deploying Multi-Agent Systems (MAS) applications. Especially, for the development of multi-agent platforms it has become a key concept, similarly to many application in the area of location-based, distributed systems. An emerging, prominent application area for MAS is related to Virtual Environments. The underlying technology has evolved in a way, that these applications have grown out of science fiction novels till research papers and even real applications. Even more, current technologies enable MAS to be key components of such virtual environments. In this paper, we widen the concept of the environment of a MAS to encompass new and mixed physical, virtual, simulated, etc. forms of environments. We analyze currently most interesting application domains based on three dimensions: the way different "realities" are mixed via the environment, the underlying natures of agents, the possible forms and sophistication of interactions. In addition to this characterization, we discuss how this widened concept of possible environments influences the support it can give for developing applications in the respective domains.Carrascosa Casamayor, C.; Klugl, F.; Ricci, A.; Boissier, O. (2015). From Physical to Virtual: Widening the Perspective on Multi-Agent Environments. En Agent Environments for Multi-Agent Systems IV. 4th International Workshop, E4MAS 2014 - 10 Years Later, Paris, France, May 6, 2014. 133-146. https://doi.org/10.1007/978-3-319-23850-0_9S133146Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: a review. ACM Comput. Surv. 43(3), 16:1–16:43 (2011)Argente, E., Boissier, O., Carrascosa, C., Fornara, N., McBurney, P., Noriega, P., Ricci, A., Sabater-Mir, J., et al.: The role of the environment in agreement technologies. AI Rev. 39(1), 21–38 (2013)Barreteau, O., et al.: Our companion modelling approach. J. Artif. Soc. Soc. Simul. 6(1), 1–6 (2003)Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented programming with jacamo. Sci. Comput. Program. 78(6), 747–761 (2013)Burdea, G., Coiffet, P.: Virtual Reality Technology. Wiley, New York (2003)Castelfranchi, C., Pezzullo, G., Tummolini, L.: Behavioral implicit communication (BIC): communicating with smart environments via our practical behavior and its traces. Int. J. Ambient Comput. Intell. 2(1), 1–12 (2010)Castelfranchi, C., Piunti, M., Ricci, A., Tummolini, L.: AMI systems as agent-based mirror worlds: bridging humans and agents through stigmergy. In: Bosse, T. (ed.) Agents and Ambient Intelligence, Ambient Intelligence and Smart Environments, pp. 17–31. IOS Press, Amsterdam (2012)Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison Wesley Longman, Harlow (1999)Gelernter, D.: Mirror Worlds - or the Day Software Puts the Universe in a Shoebox: How it Will Happen and What it Will Mean. Oxford University Press, New York (1992)Gibson, W.: Neuromancer. Ace, New York (1984)Klügl, F., Fehler, M., Herrler, R.: About the role of the environment in multi-agent simulations. In: Weyns, D., Van Parunak, H.D., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 127–149. Springer, Heidelberg (2005)Krueger, M.: Artificial Reality II. Addison-Wesley, New York (1991)Luck, M., Aylett, R.: Applying artificial intelligence to virtual reality: intelligent virtual environments. Appl. Artif. Intell. 14(1), 3–32 (2000)Dorigo, M., Floreano, D., Gambardella, L.M., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Autom. Mag. 20(4), 60–71 (2013)Milgram, P., Kishino, A.F.: Taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. E77–D(12), 1321–1329 (1994)Olsson, T., Salo, M.: Online user survey on current mobile augmented reality applications. In: Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2011, pp. 75–84. IEEE Computer Society, Washington, DC, USA (2011)Saunier, J., Balbo, F., Pinson, S.: A formal model of communication and context awareness in multiagent systems. J. Logic Lang. Inform. 23(2), 219–247 (2014)Stephenson, N.: Snow Crash. Bantam Books, New York (1992)Tummolini, L., Castelfranchi, C.: Trace signals: the meanings of stigmergy. In: Weyns, D., Van Parunak, H.D., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 141–156. Springer, Heidelberg (2007)Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in multiagent systems. Auton. Agent. Multi-Agent Syst. 14(1), 5–30 (2007)Weyns, D., Schelfthout, K., Holvoet, T., Lefever, T.: Decentralized control of e’gv transportation systems. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 67–74. ACM (2005)Weyns, D., Schumacher, M., Ricci, A., Viroli, M., Holvoet, T.: Environments in multiagent systems. Knowl. Eng. Rev. 20(2), 127–141 (2005

    Semantic technologies for open interaction systems

    Get PDF
    Open interaction systems play a crucial role in agreement technologies because they are software devised for enabling autonomous agents (software or human) to interact, negotiate, collaborate, and coordinate their activities in order to establish agreements and manage their execution. Following the approach proposed by the recent literature on agent environments those open distributed systems can be efficiently and effectively modeled as a set of correlated physical and institutional spaces of interaction where objects and agents are situated. In our view in distributed open systems, spaces are fundamental for modeling the fact that events, actions, and social concepts (like norms and institutional objects) should be perceivable only by the agents situated in the spaces where they happen or where they are situated. Institutional spaces are also crucial for their active functional role of keeping track of the state of the interaction, and for monitoring and enforcing norms. Given that in an open distributed and dynamic system it is fundamental to be able to create and destroy spaces of interaction at run-time, in this paper we propose to create them using Artificial Institutions (AIs) specified at design time. This dynamic creation is a complex task that deserves to be studied in all details. For doing that, in this paper, we will first define the various components of AIs and spaces using Semantic Web Technologies, then we will describe the mechanisms for using AIs specification for realizing spaces of interaction. We will exemplify this process by formalizing the components of the auction Artificial Institution and of the spaces created for running concrete auction

    Towards next generation coordination infrastructures

    Get PDF
    Coordination infrastructures play a central role in the engineering of multiagent systems. Since the advent of agent technology, research on coordination infrastructures has produced a significant number of infrastructures with varying features. In this paper, we review the the state-of-the-art coordination infrastructures with the purpose of identifying open research challenges that next generation coordination infrastructures should address. Our analysis concludes that next generation coordination infrastructures must address a number of challenges: (i) to become socially aware, by facilitating human interaction within a MAS; (ii) to assist agents in their decision making by providing decision support that helps them reduce the scope of reasoning and facilitates the achievement of their goals; and (iii) to increase openness to support on-line, fully decentralised design and execution. Furthermore, we identify some promising approaches in the literature, together with the research issues worth investigating, to cope with such challenges. © Cambridge University Press, 2015.The work presented in this paper has been partially funded by projects EVE (TIN2009-14702-C02-01), AT (CSD2007-0022), and the Generalitat of Catalunya grant 2009-SGR-1434Peer Reviewe

    Towards next generation coordination infrastructures

    Get PDF
    Coordination infrastructures play a central role in the engineering of multiagent systems. Since the advent of agent technology, research on coordination infrastructures has produced a significant number of infrastructures with varying features. In this paper, we review the the state-of-the-art coordination infrastructures with the purpose of identifying open research challenges that next generation coordination infrastructures should address. Our analysis concludes that next generation coordination infrastructures must address a number of challenges: (i) to become socially aware, by facilitating human interaction within a MAS; (ii) to assist agents in their decision making by providing decision support that helps them reduce the scope of reasoning and facilitates the achievement of their goals; and (iii) to increase openness to support on-line, fully decentralised design and execution. Furthermore, we identify some promising approaches in the literature, together with the research issues worth investigating, to cope with such challenges
    corecore