212 research outputs found

    Codes, arrangements, matroids, and their polynomial links

    Get PDF
    Codes, arrangements, matroids, and their polynomial links Many mathematical objects are closely related to each other. While studying certain aspects of a mathematical object, one tries to find a way to "view" the object in a way that is most suitable for a specific problem. Or, in other words, one tries to find the best way to model the problem. Many related fields of mathematics have evolved from one another this way. In practice, it is very useful to be able to transform a problem into other terminology: it gives a lot more available knowledge and that can be helpful to solve a problem. This thesis deals with various closely related fields in discrete mathematics, starting from linear error-correcting codes and their weight enumerator. We can generalize the weight enumerator in two ways, to the extended and generalized weight enumerators. The set of generalized weight enumerators is equivalent to the extended weight enumerator. Summarizing and extending known theory, we define the two-variable zeta polynomial of a code and its generalized zeta polynomial. These polynomials are equivalent to the extended and generalized weight enumerator of a code. We can determine the extended and generalized weight enumerator using projective systems. This calculation is explicitly done for codes coming from finite projective and affine spaces: these are the simplex code and the first order Reed-Muller code. As a result we do not only get the weight enumerator of these codes, but it also gives us information on their geometric structure. This is useful information in determining the dimension of geometric designs. To every linear code we can associate a matroid that is representable over a finite field. A famous and well-studied polynomial associated to matroids is the Tutte polynomial, or rank generating function. It is equivalent to the extended weight enumerator. This leads to a short proof of the MacWilliams relations for the extended weight enumerator. For every matroid, its flats form a geometric lattice. On the other hand, every geometric lattice induces a simple matroid. The Tutte polynomial of a matroid determines the coboundary polynomial of the associated geometric lattice. In the case of simple matroids, this becomes a two-way equivalence. Another polynomial associated to a geometric lattice (or, more general, to a poset) is the Möbius polynomial. It is not determined by the coboundary polynomial, neither the other way around. However, we can give conditions under which the Möbius polynomial of a simple matroid together with the Möbius polynomial of its dual matroid defines the coboundary polynomial. The proof of these relations involves the two-variable zeta polynomial, that can be generalized from codes to matroids. Both matroids and geometric lattices can be truncated to get an object of lower rank. The truncated matroid of a representable matroid is again representable. Truncation formulas exist for the coboundary and Möbius polynomial of a geometric lattice and the spectrum polynomial of a matroid, generalizing the known truncation formula of the Tutte polynomial of a matroid. Several examples and counterexamples are given for all the theory. To conclude, we give an overview of all polynomial relations

    An operational information decomposition via synergistic disclosure

    Get PDF
    Abstract: Multivariate information decompositions hold promise to yield insight into complex systems, and stand out for their ability to identify synergistic phenomena. However, the adoption of these approaches has been hindered by there being multiple possible decompositions, and no precise guidance for preferring one over the others. At the heart of this disagreement lies the absence of a clear operational interpretation of what synergistic information is. Here we fill this gap by proposing a new information decomposition based on a novel operationalisation of informational synergy, which leverages recent developments in the literature of data privacy. Our decomposition is defined for any number of information sources, and its atoms can be calculated using elementary optimisation techniques. The decomposition provides a natural coarse-graining that scales gracefully with the system’s size, and is applicable in a wide range of scenarios of practical interest

    M\"{o}bius transforms, cycles and q-triplets in statistical mechanics

    Full text link
    In the realm of Boltzmann-Gibbs (BG) statistical mechanics and its q-generalisation for complex systems, we analyse observed sequences of q-triplets, or q-doublets if one of them is the unity, in terms of cycles of successive M\"obius transforms of the line preserving unity ( q=1 corresponds to the BG theory). Such transforms have the form q --> (aq + 1-a)/[(1+a)q -a], where a is a real number; the particular cases a=-1 and a=0 yield respectively q --> (2-q) and q --> 1/q, currently known as additive and multiplicative dualities. This approach seemingly enables the organisation of various complex phenomena into different classes, named N-complete or incomplete. The classification that we propose here hopefully constitutes a useful guideline in the search, for non-BG systems whenever well described through q-indices, of new possibly observable physical properties.Comment: Keyword: non-additive entropy; q-statistics; M\"obius transform; complex system

    One-way communication complexity and non-adaptive decision trees

    Get PDF
    We study the relationship between various one-way communication complexity measures of a composed function with the analogous decision tree complexity of the outer function. We consider two gadgets: the AND function on 2 inputs, and the Inner Product on a constant number of inputs. More generally, we show the following when the gadget is Inner Product on 2b input bits for all b ≥ 2, denoted IP. If f is a total Boolean function that depends on all of its n input bits, then the bounded-error one-way quantum communication complexity of f ◦ IP equals Ω(n(b - 1)). If f is a partial Boolean function, then the deterministic one-way communication complexity of f ◦ IP is at least Ω(b · D→dt (f)), where D→dt (f) denotes non-adaptive decision tree complexity of f. To prove our quantum lower bound, we first show a lower bound on the VC-dimension of f ◦ IP. We then appeal to a result of Klauck [STOC’00], which immediately yields our quantum lower bound. Our deterministic lower bound relies on a combinatorial result independently proven by Ahlswede and Khachatrian [Adv. Appl. Math.’98], and Frankl and Tokushige [Comb.’99]. It is known due to a result of Montanaro and Osborne [arXiv’09] that the deterministic one-way communication complexity of f ◦ XOR equals the non-adaptive parity decision tree complexity of f. In contrast, we show the following when the inner gadget is the AND function on 2 input bits. There exists a function for which even the quantum non-adaptive AND decision tree complexity of f is exponentially large in the deterministic one-way communication complexity of f ◦ AND. However, for symmetric functions f, the non-adaptive AND decision tree complexity of f is at most quadratic in the (even two-way) communication complexity of f ◦ AND. In view of the first bullet, a lower bound on non-adaptive AND decision tree complexity of f does not lift to a lower bound on one-way communication complexity of f ◦ AND. The proof of the first bullet above uses the well-studied Odd-Max-Bit function. For the second bullet, we first observe a connection between the one-way communication complexity of f and the Möbius sparsity of f, and then give a lower bound on the Möbius sparsity of symmetric functions. An upper bound on the non-adaptive AND decision tree complexity of symmetric functions follows implicitly from prior work on combinatorial group testing; for the sake of completeness, we include a proof of this result. It is well known that the rank of the communication matrix of a function F is an upper bound on its deterministic one-way communication complexity. This bound is known to be tight for some F. However, in our final result we show that this is not the case when F = f ◦ AND. More precisely we show that for all f, the deterministic one-way communication complexity of F = f ◦ AND is at most (rank(MF))(1 - Ω(1)), where MF denotes the communication matrix of F
    • …
    corecore