
Lattice QCD Simulations towards Strong and Weak
Coupling Limits

Jiqun Tu

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2020



c⃝2019

Jiqun Tu

All Rights Reserved



Abstract

Lattice QCD Simulations towards Strong and Weak Coupling Limits

Jiqun Tu

Lattice gauge theory is a special regularization of continuum gauge theories and the numerical

simulation of lattice quantum chromodynamics (QCD) remains as the only first principle method

to study non-perturbative QCD at low energy. The lattice spacing a, which serves as the ultraviolet

cut off, plays a significant role in determining error on any lattice simulation results. Physical results

come from extrapolating a series of simulations with different values for a to a = 0. Reducing the

size of these errors for non-zero a improves the extrapolation and minimizes the error.

In the strong coupling limit the coarse lattice spacing pushes the analysis of the finite lattice

spacing error to its limit. Section 4 measures two renormalized physical observables, the neutral

kaon mixing parameter BK and the ∆I = 3/2 K → ππ decay amplitude A2 on a lattice with coarse

lattice spacing of a ∼ 1 GeV and explores the a2 scaling properties at this scale.

In the weak coupling limit the lattice simulations suffer from critical slowing down where for the

Monte Carlo Markov evolution the cost of generating decorrelated samples increases significantly as

the lattice spacing decreases, which makes reliable error analysis on the results expensive. Among

the observables the topological charge of the configurations appears to have the longest integrated

autocorrelation time. Based on a previous work where a diffusion model is proposed to describe

the evolution of the topological charge, section 2 extends this model to lattices with dynamical

fermions using a new numerical method that captures the behavior for different Fourier modes.

Section 3 describes our effort to find a practical renormalization group transformation to trans-

form lattice QCD between two different scales, whose knowledge could ultimately leads to a multi-

scale evolution algorithm that solves the problem of critical slowing down. For a particular choice

of action, we have found that doubling the lattice spacing of a fine lattice yields observables that

agree at the few precent level with direct simulations on the coarser lattice.

Section 5 aims at speeding up the lattice simulations in the weak coupling limit from the

numerical method and hardware perspective. It proposes a preconditioner for solving the Dirac

equation targeting the ensemble generation phase and details its implementation on currently the



fastest supercomputer in the world.
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1 Introduction

In this section a brief introduction to lattice QCD will be given. It will be more as a display of

what it is in practice rather than an explanation of the motivations why things are performed in a

certain way.

1.1 Quantum Chromodynamics (QCD)

Quantum Chromodynamics (QCD) is an Yang-Mills theory with SU(3) as the gauge group. Under

the path integral representation the correlation functions in QCD are defined as

⟨O⟩ = 1

Z

∫
[dψ̄][dψ][dAµ]O exp [iS[Aµ, ψ̄, ψ]], (1)

where Z is the partition function

Z =

∫
[dψ̄][dψ][dAµ] exp [iS[Aµ, ψ̄, ψ]]. (2)

The QCD action S[Aµ, ψ̄, ψ] is the space-time integration of the QCD Lagrangian L(x)

S =

∫
d4x L(x), (3)

L(x) = −1

2
trGµνG

µν + ψ̄iγµDµψ +mψ̄ψ. (4)

The various elements in this equation will be introduced below.

1.1.1 The Fermionic Fields

Technically speaking the spin-12 fermionic fields ψ, whose quanta are called quarks, are anti-

commuting (Grassmann) fields that has a commuting and an anti-commuting part:

ψ(x) =
∑
i

θiϕi(x). (5)
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The θi’s are anti-commute and form a basis of the anti-commuting algebra,

θiθj = −θjθi. (6)

The complex valued commuting part ϕi(x) lives in the fundamental representation of the SU(3)

gauge group. This index of ϕi, which runs from 1 to 3, is called color and it gives rise the word

chromo in QCD. ϕi also carries a spin index that runs from 0 to 3 and acts as a vector in the

corresponding Dirac algebra. The γµ’s are the γ-matrices and they form a matrix representation

of the Dirac algebra. Details about the lattice (Euclidean) version and Minkowski version of the

γ-matrices and the Dirac algebra will be given in the appendix.

In a canonical quantization framework ψ̄ indicates a combination of transpose, complex conju-

gate and a right multiplication of γ0:

ψ̄ = ψ†γ0. (7)

As a path integral field ψ̄ is an independent Grassmann field.

Currently there are 6 flavors of quarks in the theory: the up, down, charm, strange, top, and

bottom quark.

1.1.2 The Bosonic Fields

The spin-1 bosonic gauge field Aµ, whose quanta are called gluons, lives in the adjoint representation

of the gauge group and is su(3)-valued. Gµν is the field strength tensor of Aµ, given by

Gµν = ∂µAν − ∂νAµ − igs[Aµ, Aν ], (8)

where gs is the strong coupling constant. With the definition of the gauge field the covariant

derivative Dµ is defined,

Dµ = ∂µ − igsAµ. (9)

Through out this document we will be using the lower case “tr •” to indicate taking the trace over

the three su(3) or SU(3) color index.
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1.1.3 Gauge Invariance

Under a local SU(3) gauge transformation, denoted by V (x), Aµ and ψ transform as

Aµ(x)→ V (x)

[
Aµ(x) +

i

gs
∂µ

]
V †(x), (10)

ψ(x)→ V (x)ψ(x). (11)

The Lagrangian, and thus the action is gauge invariant since they are unchanged under gauge

transformations.

Local gauge transformations assign phases to the fermion and gauge fields locally and the idea

of gauge invariance comes from the assumption that the unphysical local phase changes should not

affect physical interpretation of the theory. Geometrically it shares some similarity with the idea

of parallel transport on Riemannian manifolds.

1.1.4 The Index Theorem and Topological Charge

One important concept realized through the use of the γ-matrices is the idea of chiral projectors,

γ5 = iγ0γ1γ2γ3, P± =
1

2
(1± γ5). (12)

Under the chiral representation of γ-matrices the chiral Dirac operator D is defined as

0 D†

D 0

 ≡ iγµDµ (13)

the famous index theorem states that

I(D) ≡ dimker(D)− dimker(D†) = g2s
16π2

∫
d4x ϵµναβ trGµνGαβ. (14)

Here dimker(D) means the dimension of the space of all non-zero χ such that

Dχ = 0. (15)
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ϵµναβ is the total anti-symmetric tensor. The right hand side of the equation is known as the

topological charge of a gauge configuration, which, and thus the index, is integer-valued and is

invariant under continuous defamation of the gauge field. It states that the difference between

number of the zero modes of the Dirac operator with plus chirality and those with minus chirality

equals to the topological charge. The index theorem can be viewed as an application of the more

general Atiyah-Singer index theorem [1] in local gauge theory. Detailed discussion and the proof of

the theorem could be found in [2], as well as a variety of other literatures.

The term on the right hand side of equation (14) is also related to the strong CP problem.

Gauge invariance does not prevent a term like

∆Lθ = θϵµναβ trGµνGαβ (16)

from entering the QCD Lagrangian. This term does not enter perturbation theory at any order

since it is a total derivative yet a non-zero θ predicts a non-zero neutron electric dipole moment [3],

which has not been observed in experiments. Why this term is strictly zero remains a theoretical

problem to this day.

In lattice QCD calculations we are able to measure the topological charge distributed over the

lattice explicitly and this will be the focus of section 2.

1.2 Lattice QCD

Perturbative calculations in QCD show that the strong coupling constant, αs(µ) = g2s(µ)/4π,

becomes greater than 1 at ΛQCD, where ΛQCD ∼ 258 MeV. Perturbative calculations at these

low energies are clearly unreliable and even at 1 GeV substantial errors are expected in QCD

perturbative theory due to the size of αs. The techniques that lead to the great theoretical success

of QED fail in explaining the inner structure and interactions of light mesons and baryons that

QCD should describe in detail. A non-perturbative approach is needed.

The lattice method enters as an ultraviolet regularizer of the continuum theory. The fermion and

gauge field are discretized on a lattice and the correlation functions in equation (20) are calculated

by evaluating the path integral explicitly. The lattice spacing a acts as a natural cut off and all the

singularities the continuum theory has are removed.
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Physical predictions of lattice QCD, however, can only derived after great numerical and theo-

retical challenges are overcome. These issues are discussed below.

1.2.1 Discretization of the Continuous Theory

Because of the non-perturbative nature of lattice QCD we first promote all su(3)-valued gauge

fields Aµ(x) to SU(3) elements Uµ(x)

Uµ(x) = exp[iagsAµ(x)] (17)

and for the rest of this document we will be dealing with Uµ(x).

We perform a Wick rotation such that

x0 → −ix4. (18)

The metric now becomes Euclidian

x2 = xµxµ = x21 + x22 + x23 + x24, (19)

and the weight factor in the path integral becomes real as well

⟨0|T{ψ(x1)ψ̄(x2)}|0⟩ =
1

Z

∫
[dψ̄][dψ][dUµ]ψ(x1)ψ̄(x2) exp[−S[Uµ, ψ̄, ψ]]. (20)

Here the symbol S is still used to denote the Euclidian action. Given that S[Uµ, ψ̄, ψ] is a real

valued number the path integral formulation defines a probability that can be used in a Monte

Carlo algorithm. Samples of Uµ, ψ̄ and ψ are drawn according to the probability exp[−S[Uµ, ψ̄, ψ]]

and the desired quantity ψ(x1)ψ̄(x2) is measured on these samples. By taking the average of the

values we acquire an approximation of the true correlation function

⟨O⟩ ≃ 1

n

∑
j

[O]j , (21)

where [ • ]j indicates the quantity measured on sample j. By the strong law of large numbers the
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right hand side is an unbiased estimator of the true expectation and its variance falls as O(1/n) as

n becomes large.

Discretization of the gauge part of the action goes straight forwardly. We require the gauge

action, to leading order in the same small a expansion, to have the same action as the continuum

theory. A general form of the gauge action is

Sg = −β
3

[
(1− 8c1)

∑
x,µ<ν

Pµν(x) + c1
∑
x,µ ̸=ν

Rµν(x)
]
, (22)

where P and R are the ordered plaquette and rectangular link products,

Pµν(x) = trUµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x), (23)

Rµν(x) = trUµ(x)Uµ(x+ µ̂)Uν(x+ 2µ̂)U †µ(x+ µ̂+ ν̂)U †µ(x+ ν̂)U †ν (x). (24)

When c1 = 0, Sg only contains the plaquette part and is called the Wilson gauge action; Sg is

called the Iwasaki gauge action (DBW2 gauge action) when c1 = −0.331 (c1 = −1.4088).

1.2.2 Discretization of the Fermion Fields

The discretization of the fermion fields is much more complicated. A straightforward finite difference

version of the differential operator in (9) gives us 16 excitation modes when the lattice spacing a→ 0

limit is taken: 15 redundant modes are added as lattice artifacts. A theorem proved by Nielsen and

Ninomiya [4] states that it is not possible to have a fermion formulation in a four dimensional space

that is simultaneously hermitian, local, and translationally invariant without explicitly breaking

chiral symmetry while free of these lattice artifacts.

The lattice fermion formulation that will be used throughout this document is (Möbius) domain

wall fermions [5]. It adds a fifth dimension s with size Ls to each 4-dimensional site on the lattice.

With good approximation the low energy fermion modes with plus chirality (left handed) are placed

on the s = 0 slice and those with minus chirality (right handed) are put on the s = Ls − 1 slice.

Chiral symmetry is approximately preserved and the breaking is of order O(e−Ls). An illustration

can be found in figure 1. Note that there is no fifth component of the gauge fields.

Here we introduce the notation of the Möbius domain wall fermion that will be reviewed further
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Figure 1: An illustration of adding a fictitious fifth dimension to the original four dimensional lattice.

in section 5. The set of parameters of the formulation includes real and constant Möbius parameters

b and c, which are related by

b− c = 1, (25)

the fermion input mass mf , the height of the domain wall m5 and lastly the size of the fifth

dimension Ls. Sometimes the term Möbius scale refers to the combination

α = b+ c. (26)

Upon discretization the previous continuous Dirac operator turns into a matrix acting on the

fermion vectors. First we introduce

κ−1b = 2[b(4−m5) + 1], (27)

κ−1c = 2[c(4−m5)− 1]. (28)

We label the four dimensional points as even or odd, depending on whether x1+x2+x3+x4 is
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even or odd. In an even(e)-odd(o) basis the Möbius domain wall fermion operator acts as

Dψ =

Mee Meo

Moe Moo


ψe

ψo

 =

ϕe
ϕo

 . (29)

Moo and Mee are nontrivial in the fifth dimension, even though they are diagonal in the even-odd

basis:

Moo =Mee ≡M5 = 1 +
κb
κc
D5, (30)

D5[s,t] = P+(δs−1,t −mfδs,0δt,Ls−1) + P−(δs+1,t −mfδs,Ls−1δt,0). (31)

The fifth dimension index s, t runs from 0 to Ls − 1. On the other hand,

Moe =Meo = −κbDw(b+ cD5) ≡ −κbDwMϕ. (32)

Dw is the usual Wilson fermion matrix,

Dw[x,y] =
∑
µ

(1 + γµ)U
†
x−µ̂,µδx−µ̂,y + (1− γµ)Ux,µδx+µ̂,y. (33)

Note that the convention used here is equivalent to that in [5] (Brower) when the bs and cs are real

and constant, up to a numerical factor

[
D
]

here
= 2κb ·

[
D
]

Brower
(34)

The D− operator, which is diagonal in the fifth dimensional, is defined as

D− = −c(4−m5) +
1

2
Dw. (35)

The Möbius domain wall fermion enters the lattice action as

Sf = ψ̄D(mf )ψ + ϕ†D(1)ϕ. (36)

The second (Pauli-Villar) term, ϕ†D(1)ϕ, enters to cancel the divergence that arise when the Ls →
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∞ is taken in the first term, ψ̄D(mf )ψ [6]. The pseudo-fermion field ϕ is a bosonic (commuting)

field with color and spinor indices.

1.3 The Evolution

A complete lattice QCD simulation consists of two phases: the Monte Carlo phase in which samples

of the gauge configurations are drawn according to the probability e−S , often called the evolution

phase, and the phase in which lattice correlation functions are measured and renormalization pro-

cedures are performed, often called the measurement phase. One of the most important feature of

lattice QCD results, if not the most important one, is the statistical and systematic error that come

along with the results. Lattice results are meaningless without reliable error analysis. Both phases

contribute to both types of error of the final results. They are both important, if not equally impor-

tant. When measurements are performed the statistical error scales as O(1/
√
n) but the number

of independent samples n one can possibly measure on during the measurement phase is limited by

the number of independent samples that are generated during the evolution phase. Due to limited

computational resources the number of samples is limited and samples can be correlated. These

limitations play a central role in the error analysis.

An introduction of the evolution phase will be given in this subsection.

1.3.1 The Markov Chain and the Metropolis Steps

For reasons that will be clear later the samples we are generating are only the gauge configurations,

i.e. the set of SU(3) gauge matrices on the lattice sites. All possible gauge configurations are

identified as the random variable of a Markov chain, whose transition matrix, which we need to

construct, should lead to a stationary distribution that is identical to our target probability e−S[U ].

Next we construct the transition matrix. Suppose we start with a configuration {U0}. Once a

new configuration {U1} is proposed we accept it with the detailed balance probability

P =


1, S[U1] ≤ S[U0]

exp[S[U0]− S[U1]], S[U1] > S[U0]

(37)

otherwise the {U0} is kept unchanged.
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Note that this is the approach that will be used in this document but it is not the only possible

way to achieve the desired stationary distribution.

1.3.2 The Hybrid Monte Carlo Algorithm

We still need a way to propose random but reasonably probable new configuration {U1}’s such that

S[U1] is equal or close to S[U0] to maintain a decent acceptance. The hybrid Monte Carlo (HMC)

algorithm [7] achieves this by constructing a Hamiltonian system combining the gauge field Uµ(x)

and their hypothetical conjugate momenta πµ(x), together with a fictitious molecular dynamics

(MD) time τ . Specifically πµ(x) lives in the Lie-algebra of SU(3),

πµ(x) = ωa
µ(x)t

a, (38)

where ta are the eight generators of SU(3) and ωa
µ(x) are eight real numbers for each lattice site.

Here we assume the generators are normalized as

tr tatb =
1

2
δab. (39)

The Hamiltonian of the system is

H[πµ(x), Uµ(x)] =
∑
x,µ

1

2
ωa
µ(x)ω

a
µ(x) + S[U ] (40)

With a set of Hamiltonian equations the system undergoes a fictitious evolution in τ , which is the

reason why the evolution phase gets its name. The set of equations are

d

dτ
Uµ(x) = iπµ(x)Uµ(x), (41)

d

dτ
πµ(x) = −∂ax,µS[U ]ta, (42)
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where the Lie derivative ∂ax,µ is defined as

∂ax,µS[U ] =
d

ds
S[U s,a]

∣∣∣∣
s=0

, U s,a
ν (y) =


eist

a
Uµ(x) µ = ν, x = y

Uν(y) else

(43)

The conjugate momenta πµ(x) introduce randomness into the system and drive the gauge field

U to move in a certain direction with the Hamiltonian trajectory. The path integral is extended to

include these momenta and the joint partition function is now

Z =

∫
[dπ][dU ] exp [−H[π, U ]] . (44)

At the beginning of every trajectory the momenta are refreshed without much technical difficul-

ties due to the fact that this part of the joint probability e−H is gaussian. The Hamiltonian system

is then evolved with a certain trajectory length. If the molecular dynamics evolution is performed

exactly without any finite step-size error and machine rounding error, the Hamiltonian is conserved

exactly and the change is always accepted in the metropolis step at the end of the trajectory. With

the finite step-size errors present in a practical trajectory an accept-reject step at the end of the

trajectory is still needed for the joint system H(π, U).

The above procedure is repeated for every trajectory and a series of gauge configurations are

generated.

1.3.3 Incorporating the fermion fields into the HMC

So far we have ignored the presence of the fermion fields in the action S and their treatment in

the evolution phase. The fermion fields are constructed from a basis of anti-commuting grassmann

variables, which makes them difficult to compute on conventional modern computers, at least

before the existence of large-scale general purpose quantum computers. In this subsubsection we

will discuss the current method to incorporate the fermion fields into the HMC.

It turns out that the fermion fields can be integrated out analytically

∫
[dψ̄][dψ] exp[−ψ̄Dψ] = detD. (45)
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All the information about the fermion fields are embedded in the determinant of the Dirac matrix

D[U ], which could be calculated in principle. In reality, however, modern lattice QCD simulations

usually deal with a Dirac matrix of size ∼ 1010 by ∼ 1010. Calculating the determinant of an

N ×N matrix requires O(N3) floating point operations, which in our case scales to O(1030). Even

with an exascale machine (a machine with a computational capability of more than 1018 floating

point operations per second (flops)) a single evaluation would take around ∼ 1012 seconds, or ∼ 104

years.

This computation difficulty can be overcome by evaluating the determinant stochastically rather

than analytically. By introducing a pseudo fermion field ϕ the determinant is stochastically esti-

mated by ∫
[dψ̄][dψ] exp[−ψ̄Dψ] = detD =

∫
[dϕ†][dϕ] exp[−ϕ†D−1ϕ]. (46)

In addition although detD is guaranteed be be real, the matrix D itself has complex spectrum.

For a specific ϕ, ϕ†D−1ϕ will likely become complex and jeopardize the probability interpretation

of the exponential. A more sophisticated approach is to hermitianize the form

detD = det(D†D)1/4(D†D)1/4 =

∫
[dϕ†][dϕ] exp[−ϕ†(D†D)−1/4(D†D)−1/4ϕ] (47)

=

∫
[dϕ†][dϕ] exp[−∥(D†D)−1/4ϕ∥2]. (48)

The right most side of (46) can now be calculated on a computer but the price we pay is that

we need to invert a fractional power p (in this case p = 1/4) of the (usually gigantic) matrix D.

The traditional way to calculate this is to use the Chebyshev rational approximation method [8].

A rational polynomial is constructed to approximate the inverse fractional power

x−p ≃ rp(x) = α0 +
∑
i

αi(x+ θi)
−1, 0 < λmin < x < λmax, (49)

where λmin and λmax are the minimum and maximum of the eigenvalue of the matrix D†D. The

inverse fractional power is then calculated with

(D†D)−p = rp(D
†D) = α0 +

∑
i

αi(D
†D + θi)

−1, (50)
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where a series of shifted inversions of the normal operator D†D needs to be performed on the

pseudo-fermion vector ϕ. Here the term inversion refers to solving the following Dirac equations,

i.e. linear equations with the Dirac matrix D,

D†Dx = y → x = (D†D)−1y. (51)

With current computation power of the state-of-art supercomputers and fairly sophisticated solving

techniques these inversions can be done within a reasonable amount of time. This will be the focus

of section 5.

More recently the exact one flavor algorithm (EOFA) has been proposed [9] to calculate detD

without the need to perform a series of shifted inversions for every evolution step.

For a 2+1 flavor lattice QCD simulation only the up, down and strange quarks are dynamically

included in the evolution. Current Particle Data Group (PDG) values of the MS mass of the up and

down quark are 2.2 and 4.7 MeV. Both these values, as well as their difference, are much smaller

than ΛQCD. Thus the usual practice is to treat the up and down as quarks (the light quarks)

with the same mass. This gives a technological advantage in that now the combination of the two

fermion determinants is

detD detD = det(D†D) =

∫
[dϕ†][dϕ] exp[−ϕ†(D†D)−1ϕ], (52)

thus evaluation of the part of the action that arises from degenerate light quarks does not need

the rational approximation and it involves only a single inversion (D†D)−1ϕ. The strange quark is

sometimes called the heavy quark because of this reason1.

The pseudo-fermion field ϕ needs to be refreshed before each HMC trajectory, which involves

an additional Dirac matrix inversion, just as the conjugate momenta do. The Lie-derivatives of the

single and degenerate flavor part of the fermion action are easily constructed with the introduction

of the ϕ.

1Note that in most of the literatures the term heavy quark refers to the charm, bottom and top quark.
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1.4 The Measurements

1.4.1 The Propagators

The measurement phase of lattice QCD simulation centers around the measurement of the propago-

tors of the form

⟨ψ(x1, s)ψ̄(x2, t)⟩ =
1

Z

∫
[dψ̄][dψ][dU ]ψ(x1, s)ψ̄(x2, t) exp[−ψ̄Dψ + · · ·] (53)

=
1

Z

∫
[dψ̄][dψ][dU ]D−1(x1, s;x2, t) exp[−ψ̄Dψ + · · ·] (54)

= ⟨D−1(x1, s;x2, t)⟩, (55)

where the second equal can be shown by generating functional method. Note that most of the time

we are only interested in the correlation function of the fermion field ψ and the pseudo-fermion

field ϕ corresponds to the Pauli-Villar term in the action does not enter here.

For the measurement phase we typically want to calculate the correlation functions in four

dimensional space. Based on the five dimensional current analysis [5], up to the O(e−Ls) chiral

symmetry breaking, the effective four dimensional fermion field could be defined as

q(x) = P+ψ(x, s = 1) + P−ψ(x, s = Ls). (56)

q̄(x) = ψ̄(y, s = 1)D−(y, x)P− + ψ̄(y, s = Ls)D−(y, x)P+. (57)

The four dimensional propagator can thus be calculated as

⟨q(x1)q̄(x2)⟩ =⟨P+[D
−1D−](x1, 1;x2, Ls)P+ + P+[D

−1D−](x1, 1;x2, 1)P−

+ P−[D
−1D−](x1, Ls;x2, Ls)P+ + P−[D

−1D−](x1, Ls;x2, 1)P−⟩ (58)

≡⟨D−1(x1, x2)⟩ ≡ ⟨Sq(x1 ← x2)⟩. (59)

⟨D−1(x1, x2)⟩, or ⟨Sq(x1 ← x2)⟩, as well as ⟨q(x1)q̄(x2)⟩, are often referred as the (four dimen-

sional) lattice quark propagator. Evaluation of the full inverted matrix is not realistic with current
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computation power but linear combinations of the form are possible to be computed,

∑
x2

Sq(x1 ← x2)η(x2) = ξ(x1), (60)

which is equivalent to solving for ξ in the linear equation

∑
x2

D(x1, x2)ξ(x2) = η(x1). (61)

The field is η is referred to as the source of the propagator. It should only be understood as a

collection of complex numbers: all the particle nature of the original fermion fields ψ has been

removed. More measurement techniques will be introduced in section 4.

1.4.2 The Correlation Functions

With propagators correlation functions of quark bound states can be constructed. Single pion

correlation function, for example, can be expressed as (u and d are the up and down quark, t1 and

t2 are time coordinates while x1, x2 and y are space coordinates.)

〈 ∑
x1,y1

d̄(x1, t1)γ5u(y1, t1)
∑
x2,y2

ū(x2, t2)γ5d(y2, t2)

〉
= ⟨γ5Su(t1 ← t2)γ5Sd(t2 ← t1)⟩ , (62)

where the wall source wall sink propagator is defined on two time slices as

Sq(t1 ← t2) =
∑
x,y

Sq(x, t1 ← y, t2). (63)

Another common propagator is the wall source point sink propagator

Sq(x, t1 ← t2) =
∑
y

Sq(x, t1 ← y, t2). (64)

For Möbius domain wall fermion the propagator has γ5-hermiticity so we can easily revert the

direction of the arrow:

Sq(x, t1 ← y, t2) = γ5S
†
q(y, t2 ← x, t1)γ5, (65)

Sq(t1 ← x, t2) = γ5S
†
q(x, t2 ← t1)γ5, (66)
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Sq(t1 ← t2) = γ5S
†
q(t2 ← t1)γ5. (67)

1.4.3 Fitting Strategy

According to Proposition 2 in [10] a generic correlation function in lattice gauge theory can be

related to a statistical theory with a corresponding Euclidean Hamiltonian:

⟨ϕ1(t1) · · ·ϕk(tk)⟩g =
1

Z
Tr

[
e−Ĥ(T+t1)N [ϕ̂1]e

−Ĥ(t2−t1)N [ϕ̂2] · · ·N [ϕ̂k]e
−Ĥ(−tk)

]
, t1 < t2 · · · < tk,

(68)

where ⟨•⟩g means correlation function with the gauge configuration fixed to a certain gauge g,

Ĥ is the Euclidean Hamiltonian associated with the gauge theory action, N [•] stands for normal

ordering defined also in [10].

For a meson corrector k = 2, e.g. in (62). According to (68)

⟨ϕ1(t1)ϕ2(t2)⟩ =
1

Z
Tr

[
e−Ĥ(T−t)ϕ̂1e

−Ĥtϕ̂2

]
. (69)

Expand the trace in the basis consists of the eigenstates of Ĥ:

Ĥ|i⟩ = Ei|i⟩, i = 0, 1, 2, · · · , E0 = 0, (70)

⟨ϕ1(t1)ϕ2(t2)⟩ =
1

Z

∑
i,j

e−Ej(T−t)e−Eit⟨j|ϕ̂1|i⟩⟨i|ϕ̂2|j⟩ (71)

=
1

Z

[
e−E1t⟨0|ϕ̂1|1⟩⟨1|ϕ̂2|0⟩+ e−E1(T−t)⟨1|ϕ̂1|0⟩⟨0|ϕ̂2|1⟩+O

(
e−E1t + e−E1(T−t)

)]
(72)

∗
= A

[
e−E1t ± e−E1(T−t)

]
, (73)

where t = t2−t1 and the amplitude A has absorbed the various constants. The condition ∗ indicates

that with a given range of t all other higher order terms in (72) are suppressed. The sign choice in

the fit form depends on the relative sign difference between ⟨0|ϕ̂1|1⟩⟨1|ϕ̂2|0⟩ and ⟨1|ϕ̂1|0⟩⟨0|ϕ̂2|1⟩.

Fitting to forms similar to (73) yields physical energy levels of the quark bound states as well as

the amplitude information contained in A.
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1.4.4 Fitting Forms for Meson Correlators

The extraction of the matrix elements frequently involves meson (and hadron) states such as the

pion and kaon states. While there is no known easy way to construct these particle states exactly2,

interpolating operators are used to create these particles states by paying the price of an overlapping

factor in the fitting form. Specifically we choose the ϕ1 and ϕ2 in (71) to be the correlator that has

the same quantum numbers as the particle to be extracted. For example in order to create a π+

state and calculate the pion correlator we use ūγ5d as the interpolating operator

Cπ(t1, t2) = ⟨[ūγ5d]†(t1)[ūγ5d](t2)⟩. (74)

The correlator Cπ is then fitted as

Cπ(t1, t2)→ |Zπ|2
[
e−mπt + e−mπ(T−t)

]
, Zπ ∝ ⟨π|ūγ5d|0⟩ (75)

since the lowest energy state that has the same quantum number and net quark content is indeed

a pion state.

1.5 Lattices Setup

In table 1 the lattices involved in this work are listed. See the caption for a description of the all

the labels.

2In fact measurement of the parton distribution functions (PDF) that describes the inner structure of the particles
is a hot topic in lattice QCD.
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Ensemble β L3 × T × Ls α aml amh amπ

24I 2.13
243 × 64× 16 1.0 0.005 0.04 0.19032(67)

243 × 64× 16 1.0 0.01 0.04 0.24221(78)

32I 2.25

323 × 64× 16 1.0 0.004 0.03 0.16924(62)

323 × 64× 16 1.0 0.006 0.03 0.15101(50)

323 × 64× 16 1.0 0.008 0.03 0.17246(63)

32I-fine 2.37 323 × 64× 12 1.0 0.0047 0.0186 0.11778(23)

48I 2.13 483 × 96× 24 2.0 0.00078 0.0362 0.08050(14)

64I 2.25 643 × 128× 12 1.0 0.000678 0.02661 0.05905(11)

96I 2.31 963 × 192× 12 2.0 0.00054 0.02132 0.0483∗

32ID 1.75

323 × 64× 32 1.0 0.001 0.046 0.1250(2)

323 × 64× 32 1.0 0.0042 0.046 0.1810(2)

323 × 64× 12 32/12 0.0001 0.045 0.10468(32)

32ID-M1 1.633 323 × 64× 24 4.0 0.00022 0.0596 0.11806(25)

24ID 1.633 243 × 64× 24 4.0 0.00107 0.085 0.13974(16)

32ID
1.633

323 × 64× 24 4.0 0.00107 0.085 0.13945(15)

32ID-kaon 323 × 64× 24 4.0 0.00107 0.0305 0.13412(27)

32ID-M2 1.943 323 × 64× 12 4.0 0.00478 0.03297 0.19483(64)

Table 1: Summary of ensembles included in this work and their input parameters. Here β is the gauge

coupling, L3×T ×Ls is the lattice volume decomposed into the length of the spatial (L), temporal (T ), and

fifth (Ls) dimensions, and aml and amh are the bare, input light and heavy quark masses. α = b+ c is the

Möbius parameter. The value of amπ quoted is the unitary pion mass. Label I in ensemble names indicate

Iwasaki gauge action and ID indicates Iwasaki gauge action plus the dislocation suppressing determinant

ratio (DSDR) term. The pion mass for 96I, which is measured from one single wall source on one single

configuration, is very preliminary.

1.6 Global Chiral Fit

The particle mass and matrix elements measured on the lattices contain finite lattice spacing errors

and finite volume errors, in addition to other lattice artifacts, and need to be extrapolated to the

physical quark mass point in order to give physical predicitons. The strategy to remove these

errors is to fit the measured low energy observables to a combined theory that includes quark mass

dependence through chiral perturbation theory (ChPT) and a linear analytic anzatz for the a2
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dependence,

X(m, a2) ≃ X0(1 + f(m) + cA
Xa

2), (76)

where f(m) is the ChPT form, which depends on the input quark masses, and cA
Xa

2 is the linear

anzatz. The a2 coefficient is different between the Iwasaki (cI
X) and ID (cID

X ) lattices. If SU(2)

ChPT is used the theory also includes a linear analytic anzatz in the heavy quark mass mh. The

fitting strategy is detailed extensively in [11].

1.7 Wilson Flow

The Wilson flow evolves (flows) the lattice gauge fields according to a certain differential equation

shown in (1.4) of [12]. In this work it mainly serves two purposes:

1. On the flowed gauge field, compared to the unflowed one, localized fluctuations that reflect

detailed ultraviolet lattice artifacts are smeared away. This allows topological charge to be

measured on lattices with much less noise.

2. The Wilson flow time t, together with the Wilson flow energy, which is an gauge invariant

quantities defined also in [12], can be used to set the lattice scale. Specifically two quantities,
√
t0 and w0, have been defined in [12] and [13], respectively. By measuring them in lattice

unit and matching them to the physical value, the lattice spacing of the underlying lattice is

determined.
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2 Evolution of Topological Charge on Lattices: the Diffusion Model

2.1 Abstract

We apply the diffusion model, which successfully describes how topological charge density moves

across Euclidean space-time lattices and tunnels across molecular dynamics time during hybrid

Monte Carlo(HMC) evolution of a series of pure DBW2 gauge ensembles, is applied to ensembles

with dynamical fermions. A new Fourier transform approach is proposed and used in the fitting.

Apart from some possible lattice artifacts the diffusion model fits well to the dynamical ensembles.

The diffusion constant D, which is shown to scale as a2, serves as a key performance parameter to

tell the success of new algorithms beyond the traditional HMC.

2.2 Introduction

The only currently viable algorithm for the numerical evaluation of the Feynman path integral

for Quantum Chromodynamics (QCD), including fermions, is the hybrid Monte Carlo (HMC)

algorithm. As the lattice spacing a decreases, the production of independent lattice configurations

suffers from critical slowing down; the integrated autocorrelation time τint for an observable, such

as the topological charge or energy density of the gauge configurations, increases dramatically. For

quenched QCD, the scaling behavior of the integrated autocorrelation time for currently accessible

values of a can be fit to the form

τint ∝ a−z, (77)

with z reported to be as large as 5 [14]. The presence of long correlations between the configurations

jeopardizes the quality of the Monte Carlo samples and makes it harder to estimate the statistical

error on the physical quantities measured on them.

The topological charge, Qtop, or topological charge density, ρ(x, t), are generally found to be

observables with the largest integrated autocorrelation times. While only parity even combinations

of these variables, such as Q2
top are relevant to physical observables, their rate of evolution during

HMC simulations provides a stringent test of the quality of the evolution algorithm in avoiding

critical slowing down. Given that continuum fields of different topologies are not connected by con-
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tinuous deformations, it is not surprising that evolution algorithms are slow to change the topology

of lattice fields. Improved algorithms should evolve these variables more rapidly. To provide a

more quantitative method to describe the evolution of topology, a diffusion model is proposed in

[15] to describe the correlations in Euclidean space (on the lattice) and between configurations (in

molecular dynamics (MD) time) of the topological charge on a Euclidean time-slice t at MD time

τ , denoted by Q(t, τ).

The diffusion model in [15] was found to well-describe the evolution of quenched QCD with

the HMC algorithm. With the wide use of full QCD gauge configurations, which include physical

dynamical light and strange quarks, it is natural to ask whether this model equally well describes the

evolution of topology on lattice configurations with fermions. In this report, we detail results from

studies of topological evolution in full QCD and observe that, as an empirical model, the diffusion

model works well on dynamical lattices with fine enough lattice spacing. On coarse lattices with

dynamical fermions, we find that the long distance behavior of the topological charge correlations

in Euclidean space deviates from the diffusion model prediction.

By fitting data to the diffusion model, we gain a quantitative measure of the rate at which

topological charge is moving around the lattice, given by the diffusion constant D, and also the

rate at which it is created and destroyed, given by τtunn. The diffusion constant D is observed to

be proportional to a2 for the dynamical lattices used in this paper; a similar result was found in

the quenched case. We see that D serves as a key performance parameter, in addition to the usual

integrated autocorrelation time, to quantify the success of new algorithms aimed at resolving the

critical slowing down of lattice gauge theory simulations.

2.3 The Diffusion Model

In a continuum non-abelian gauge theory topological charge is an integer valued index of the gauge

field that stays constant during continuous deformation of the field:

Q =
g2

32π2

∫
d4xF a

µνF̃
aµν , (78)

where F is the usual field strength tensor, F̃ being its dual. In lattice QCD a finite cut off of

lattice spacing a is introduced. In this work we use the “5Li” [16] method to discretize the above
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continuous definition of the topological charge. Specifically we Wilson flow [12] the gauge field

configuration to a reference flow time defined in equation (3.3) of [12] and use the following

Q =
∑
x,t

1

32π2
ϵµνρλTr[F̂µν(x, t)F̂ρλ(x, t)] =

∑
x,t

ρ(x, t), (79)

to find the topological charge density ρ(x, t) on each lattice site. The Wilson flow smoothes the

gauge fields and reduces localized fluctuations which reflect detailed ultraviolet lattice physics. The

total topological charge is the sum of the density over the whole lattice. The detailed form of F̂µν

can be found in [16].

A diffusion model is proposed and the necessary quantities are constructed in [15]. Here we

give a summary of the procedures. The topological charge observable Q(t, τ) is measured as

Q(t, τ) =
∑
x

ρ(x, t; τ), (80)

where τ is the molecular dynamics(MD) time. The topological charge density is summed on each

time slice t and each MD time τ . Then correlation functions C(t, τ) are constructed3:

C(t, τ) = ⟨Q(t0 + t, τ0 + τ)Q(t0, τ0)⟩t0,τ0 . (81)

Here ⟨•⟩t0,τ0 means averaging over all possible t0’s and τ0’s. We will focus only on lattices with

periodic boundary condition, thus this definition is different from that defined for lattice with open

boundary condition in [15].

The diffusion model states the correlation function evolves according to the famous diffusion

equation:
∂

∂τ
C(t, τ) = D

∂2

∂t2
C(t, τ)− 1

τtunn
C(t, τ). (82)

There are two parameters in the diffusion model: D and τtunn. D is the diffusion constant and

intuitively measures the diffusion or the Euclidean space-time movement of topological charge over

the lattice. τtunn is the tunneling time scale and measures the rate at which topological charge is

3In technical statistics language this is the natural estimator of the true correlation function Ĉ(t, τ) = ⟨Q(t0 +

t, τ0 + τ)Q(t0, τ0)⟩.
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created or annihilated.

2.4 Simulation Method and Parameters

2.4.1 Ensembles

In this section five ensembles with dynamical fermions are analyzed: three of them are generated

with fermions in the Möbius domain wall formulation and the other two are generated with highly-

improved staggered-quarks. In addition, in [15] five pure gauge ensembles generated with DBW2

gauge action were analyzed.

2.4.2 Ensembles with Möbius domain wall fermion

We analyze three of the RBC/UKQCD Collaborations’ ensembles with Iwasaki gauge action,

Möbius domain wall fermions (MDWF) for degenerate light (up and down) and strange quarks, and

the dislocation suppressed determinant ratio (DSDR). Details of these ensembles are summarized

in table 2. Discussion of the Möbius parameters α = b + c and the DSDR term are presented

in [17]. The Hasenbusch mass splitting setups for the light quark determinant are also listed as

(m1,m2, · · · ,mn). Instead of calculating the ratio det[D(ml)/D(1)] directly, we rewrite that into

the product of several ratios to reduce the scale of the fermion forces:

det

[
D(ml)

D(1)

]
= det

[
D(ml)

D(m1)

]
· det

[
D(m1)

D(m2)

]
· · · det

[
D(mn)

D(1)

]
. (83)

Here D is the Dirac operator. For the strange quark determinant we use the rational approximation

to calculate the fractional power.

For all three ensembles we use a nested Sexton-Weingarten integration scheme [18] for the

molecular dynamics in HMC. A complete description can be found in Appendix A in [19] and we

give a summary here. Specifically the full lattice Hamiltonian is

H = T +
∑

SR +
∑

SQ + SDSDR + SG, (84)

where
∑
SR is the rational quotient action4 for strange quark;

∑
SQ means the quotient action for

4Here we use the rational approximation to evaluate the fractional power of the fermion matrix, which is needed
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MDWF1 MDWF2 MDWF3

size L3 × T × Ls 123 × 32× 12 243 × 64× 24 243 × 64× 12

β 1.633 1.633 1.943

aml 0.008521 0.00107 0.000787

(m1,m2, · · · ,mn) (0.0291,0.095,0.3,0.548) (0.0291,0.095,0.3,0.548) (0.00789,0.00291,0.095,0.3)

amh 0.065073 0.085 0.019896

α = b+ c 4.0 4.0 4.0

∆τ 1/12 1/8 1/6

a−1 [GeV] 1.01 1.01 1.98

mπ [MeV] 308 140 297

Table 2: Lattice simulation parameters for the MDWF ensembles. (m1,m2, · · · ,mn) shows the Hasenbusch

mass splitting used for the light quark part of the action. α = b + c shows the Möbius scale. mπ is the

unitary pion mass. ∆τ refers to the step size for the top level integrator.

the light quark; SG is the gauge action and SDSDR is the DSDR action. T is the kinetic part of

the Hamiltonian. Three levels of QPQPQ force gradient integrators(FGI) defined in equation (A6)

in [19] are used. Denote the FGI integrator with generic kinetic part T̂ and potential part Ŝ and

trajectory length τ as

ÛFGI

(
τ ; T̂ , Ŝ

)
=exp

(
ατT̂

)
exp

(1
2
τ Ŝ − βτ3{Ŝ, {Ŝ, T̂}}

)
· exp

(
γτT̂

)
exp

(1
2
τ Ŝ − βτ3{Ŝ, {Ŝ, T̂}}

)
exp

(
ατT̂

)
, (85)

where α = (3−
√
3)/6, β = (2−

√
3)/48 and γ =

√
3/3. The original Hamiltonian is decomposed

as

H = T ′0 +
∑

SR, (86)

T ′0 = T ′1 +
∑

SQ, (87)

T ′1 = T + (SG + SDSDR). (88)

for the strange quark. See equation (A16) in of [19].
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The integrator we finally use is

exp
(
∆τH

)
= ÛFGI

(
∆τ ;T ′0,

∑
SR

)
(89)

= ÛFGI

(
∆τ ;

[
ÛFGI

(
1/n1;T

′
1,
∑

SQ

)]n1

,
∑

SR

)
(90)

= ÛFGI

(
∆τ ;

[
ÛFGI

(
1/n1;

[
ÛFGI

(
1/n2;T, SG + SDSDR

)]n2

,
∑

SQ

)]n1

,
∑

SR

)
.

(91)

In the first level we treat the composite operator T ′0 as the kinetic part in the FGI integrator, where

whenever we need to integrate exp(τT ′0) for some trajectory length τ we deploy a second level of

FGI integrator with T ′1 as the kinetic part. For this second level whenever we encounter T ′1 a third

level of FGI integrator with T as the kinetic part is used. The n1 and n2 could be any positive

integers and for this document we always use n1 = n2 = 1. The ∆τ for the top level integrator can

be found in table 2.

2.4.3 Ensembles with Highly-improved Staggered-quark Fermion

We also analyze two of the MILC Collaboration’s ensembles of QCD gauge-field configurations with

four flavors of highly-improved staggered-quark(HISQ) fermions. Labelled in this work with MILC1

and MILC2, these two ensembles are listed in line 4(Key ms/5 with a ∼ 0.12 fm) and line 16(Key

ms/5 with a ∼ 0.09 fm) in table I of [20], respectively. A summary of these two ensembles are

presented in table 3 but readers should refer to [20] for further details.

MILC1 MILC2

size L3 × T 243 × 64 323 × 96

β 6.00 6.30

aml 0.0102 0.0509

amh 0.0074 0.037

amc 0.635 0.440

a−1 [GeV] 1.64 2.19

mπ [MeV] 299 301

Table 3: Lattice simulation parameters for the MILC ensembles.
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2.5 Approaches to Fit to the Diffusion Model

2.5.1 Partial Differential Equation (PDE) Approach

In [15] the simulation data is fitted to the partial differential equation of diffusion model directly.

Consider the discretized version of equation (82):

C(t, τ + 1)− C(t, τ) = D[C(t+ 1, τ) + C(t− 1, τ)− 2C(t, τ)]− 1

τtunn
C(t, τ). (92)

With the correlation function C(t, τ) constructed, starting from the initial condition C(t, τ = 0)

this equation is integrated numerically to obtain the model prediction for the correlation functions

for τ > 0, symbolically denoted as Cmodel(t, τ). The two free parameters, diffusion constant D and

tunneling scale τtunn, are then varied to minimize the χ2 defined as

χ2 =
∑
t

τcut∑
τ>0

[
Cmodel(t, τ)− C(t, τ)

Err[C(t, τ)]

]2
, (93)

where a cufoff τcut is introduced to truncate the long summation over τ since the correlation function

is expected to vanish for large enough τ .

The error of the constructed correlation function C(t, τ)(donated as Err[C(t, τ)]) is estimated

using the following formula [21]5

Err[C(t, τ)]2 =
〈
C(t0, τ0)

2 + C(t0 + t, τ0 + τ)C(t0 − t, τ0 − τ)
〉
τ0,t0

. (94)

To prevent data from being completely polluted with noise this error function is only calculated

for τ ≤ τerr, where τerr is some other cutoff which is chosen to be less than τcut. For τerr < τ < τcut

the limit value is used, i.e.

Err[C(t, τerr < τ < τcut)] = Err[C(t, τerr)]. (95)

5Again technically speaking this is actually an estimator for the square root of the variance of the correlation
function, which is itself an estimator.
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2.5.2 Fourier Transform Approach

Here we propose a new approach. Equation (82) is organized into the following form

∂

∂τ
C(t, τ) = D[C(t+ 1, τ) + C(t− 1, τ)− 2C(t, τ)]− 1

τtunn
C(t, τ), (96)

i.e. the τ derivative is kept continuous and the double derivative with respect to t is turned into

its finite difference form. Performing discrete Fourier transform on C(t, τ) with respect to t gives

the following
∂

∂τ
c(k, τ) =

[
D(2 cos k − 2)− 1

τtunn

]
c(k, τ), (97)

where the Fourier convention is

c(k, τ) =

T−1∑
t=0

C(t, τ)eikt, k =
2π

T
(−T/2), 2π

T
(−T/2 + 1), · · · , 2π

T
(+T/2− 1). (98)

Equation (97) is trivially solved using an exponential ansätz

c(k, τ) = c0 exp

[
−
(
D(2− 2 cos k) +

1

τtunn

)
τ

]
. (99)

Numerically we form the following ratio

B(k) = log

[
c(k, τ)

c(k, τ + 1)

]
= D(2− 2 cos k) +

1

τtunn
. (100)

Fitting the ratio B(k) to the above equation gives us D and τtunn.

On the five ensembles with dynamical fermions we adopt this Fourier transform approach instead

of the PDE one. The necessity of this choice will be clear later in the results section.

2.6 Results

2.6.1 Ensembles with Dynamical Fermions

The fitting results on the five ensembles with dynamical fermions could be found in table 4 and the

fitting shapes are presented in figure 2.

The diffusion model, and consequently equation (100), indicates a linear relationship between
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B(k)(defined in equation (100)) and (2− 2 cos k) with D as the slope and 1/τtunn as the intercept.

This is not, however, entirely the case as shown in figure 2. We find a range of k values where we

can reliably conclude a linear relationship and extract D and 1/τtunn. Correlations deviate from

linear relationship when k is close to zero on ensembles with coarse lattice spacing(MDWF1, MDWF2

and MILC1) and spikes are present for these k values. On ensembles with fine lattice spacing(MDWF3

and MILC2) the correlations fit to the diffusion model over full range of k values.

2.6.2 Pure DBW2 Gauge Ensembles

As a comparison we also apply the new Fourier transform approach to the five pure gauge ensembles

previously analyzed in [15]. The fitting shapes are presented in figure 3.

The deviations from linearity that appear on ensembles with dynamical fermions at small k

values are absent. Correlations at large k values for the ensembles with fine lattice spacing deviate

from a linear behavior. This appears to be the consequence from how the correlation data is

measured on the pure DBW2 gauge ensembles. While we measure correlation functions for every

1 MD time unit on the dynamical ensembles, the same data are measured every 28 and 40 MD

time units on the DBW2-14 and DBW2-16 ensemble, respectively. For large k values the magnitude

of the correlation signal over such a long MD time period diminishes and is likely polluted by noise.

As a result for the Fourier transform approach we only extract D and 1/τtunn from the first few k

values(indicated in the figure 3), while effectively the PDE approach always fits over the full range

of k values. The diffusion constant D extracted from the two approaches, listed in table 5, are

consistent despite different fitting range.

2.6.3 Scaling of Diffusion Constant

We plot the diffusion constant D for all ten pure DBW2 gauge and dynamical ensembles versus

their respective lattice spacing a in figure 4. Apart from a small a4 term, D scales as a2.

2.7 Conclusions

We observe that on dynamical fermion lattices with periodic boundary conditions the evolution of

the topological charge is well described by the diffusion model, if the lattice spacing is finer than

(2 GeV)−1, as our analysis shows on MDWF3 and MILC2 lattices. The same conclusion holds on
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FT approach

D/a2 τtunn

MDWF1 0.094(11) 5.00(31)

MDWF2 0.103(13) 4.63(39)

MDWF3 0.092(11) 31.5(71)

MILC1 0.093(11) 19.0(32)

MILC2 0.0875(88) 28.3(28)

Table 4: Fitting results on the ensembles with dynamical fermions using the new Fourier transform approach.

FT approach PDE approach

D/a2 τtunn D/a2 τtunn

DBW2-08 0.0777(72) 18(1) 0.090(12) 20(1)

DBW2-10 0.0918(53) 45(4) 0.1018(73) 56(3)

DBW2-12 0.0879(56) 104(15) 0.1085(97) 185(12)

DBW2-14 0.0976(64) 271(92) 0.1080(56) 561(59)

DBW2-16 0.0916(66) 300(106) 0.1155(29) 2350(389)

Table 5: Fitting results on the pure DBW2 gauge ensembles in [15] using the new Fourier transform approach

and the PDE approach.
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Figure 2: Results of fitting correlation functions to the diffusion model on the ensembles with dynamical

fermions, using the new Fourier transform approach.
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Figure 3: Results of fitting correlation functions to the diffusion model on the pure DBW2 gauge ensembles,

using the new Fourier transform approach.
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Figure 4: Plot of the diffusion constant D versus lattice spacing a2.

dynamical lattices with lattice spacing coarser than (2 GeV)−1 when focusing on shorter distance

correlations. The long distance correlations of the topological charge observables on these coarse

lattices does not follow the simple diffusion model behavior, which is different from the quenched

case. At present we do not have an explanation for this observation and, since it is not present at

weaker coupling, appears to be a lattice artifact. From the point of view of critical slowing down in

lattice QCD, this long-distance discrepancy is not relevant given the focus on small lattice spacings

when discussing critical slowing down.

We note that the value for D/a2 is relatively similar between the quenched and dynamical

lattices. The presence of fermions does not make a marked difference in the effectiveness of the

HMC at moving existing topological charge density around on the lattice. Successful new algorithms

beyond the traditional HMC aimed at resolving critical slowing down are expected to have a larger

value for D/a2.
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3 Studies on Multiscale Lattice QCD Action Matching

3.1 Abstract

The RBC and UKQCD Collaborations have shown that light hadron masses and meson decay

constants measured on 2+1 flavor Mobius DWF ensembles generated with the Iwasaki gauge action

and a dislocation suppressing determinant ratio (DSDR) term show few percent O(a2) scaling

violations for ensembles with a−1 = 1 GeV. We call this combination the ID+MDWF action and

this scaling implies that, to a good approximation, these ensembles lie on a renormalization group

trajectory, where the form of the action is unchanged and only the bare parameters need to be

tuned to stay on the trajectory. Here we investigate whether a single-step APE-like blocking kernel

can reproduce this trajectory and test its accuracy via measurements of the light hadron spectrum

and non-perturbative renormalization. As we report, we find close matching to the renormalization

group trajectory from this simple blocking kernel.

3.2 Introduction

The RBC and UKQCD Collaborations have recently generated several 2 + 1 flavor ensembles with

the ID+MDWF action at three different lattice spacings and various values for the quark masses.

Global fits to these ensembles and ensembles at weaker coupling generated with the Iwasaki gauge

action were performed, using fit anzätz from SU(2) chiral perturbation theory, including analytic

expansions for variations in the strange quark mass around its physical value [11]. A typical fit

takes the form of (equation (9) in [11])

X(m, a2) ≃ X0(1 + f(m) + cXa
2), (101)

where X are observables, X0 is the chiral and continuum limit and f(m) is the chiral perturbation

theory or analytic function giving the quark mass dependence. We observe that on ID+MDWF

ensembles these cX coefficients are typically ∼ 0.02 GeV2 for X = fπ and X = fK .6 This leads to

percent scale scaling errors on our a−1 = 1 GeV ensembles.

While measurements of more complicated quantities such as BK and the ∆I = 3/2 K → ππ

6mπ, mK and mΩ were used to determine the scale so these quantities have zero cX .
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matrix elements are underway, these small scaling errors imply that theories with the ID+DSDR

action lie, to a good approximation, on a renormalization group (RG) trajectory, up to a few percent

discrepancy. While knowing a good approximation to an RG trajectory might help in producing a

multiscale evolution algorithm, it is also of interest to investigate whether a numerically tractable

blocking kernel, which carries the transformation on this RG trajectory, exists. This latter topic is

the subject of this report.

We start with the pair of ID+MDWF ensembles shown in Table 6. These have mπ ∼ 300 MeV,

physical kaon masses, lattice spacings that differ by close to a factor of 2 (actually 1.97) and

essentially the same physical volume. We refer to these as the coarse and fine ensembles, with

actions Sc and Sf respectively, which are both ID+MDWF actions. From the table one can see

that they have the same physics at the 5% level and this agreement could be made closer by more

careful tuning of the input parameters, but this precision is accurate enough for this study.

In general, a blocking kernel G[Uc, Uf ] [22] will map a fine configuration with links Uf to a

coarse configuration with links Uc. The action for the blocked coarse lattice, Sb
c [Uc] is given by

e−S
b
c [Uc] ∝

∫
[dUf ]e

−Sf [Uf ]G[Uc, Uf ]. (102)

Here we seek a numerically tractable blocking kernel that produces a blocked coarse lattice, with

action Sb
c [Uc], that is as close as possible to Sc[Uc]. We will work with a coarse and a fine ensemble

whose lattice spacings differ by a factor of essentially 2. Since we will not have a closed form

expression for Sb
c [Uc], we will use measurements of physical quantities on the blocked, coarse lattice

as a measure of the agreement between it and the original coarse action ensemble. Figure 5 gives

a diagram showing our strategy.

A general blocking kernel G[Uc, Uf ] is a functional defined as a product of delta functions, with

arguments which are SU(3) links from both the coarse and fine lattice, denoted by Uc and Uf ,

respectively.

G[Uc, Uf ] =
∏
x,µ

δ (Uc(x, µ)− gb[Uf ;x, µ]) . (103)

Here gb[Uf ;x, µ] is a function which determines the blocking kernel. Figure 6 shows the blocking

kernel we experiment with in this paper. The kernel is similar to the well known APE smearing
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Figure 5: Strategy of our comparison.

method [23], except that it produces a coarse ensemble link from a pair of links in the fine lattice,

plus staples spanning the two fine-lattice links. α is an adjustable parameter which we will determine

later.

•
Uf,1

•
Uf,2

•

→ •

gb[Uf ] = P[(1− α)Uf,1Uf,2 + αC/6]

•C =
∑
µ

•

Uf,3

•
Uf,4

•
Uf,5

••

Uf,6

•

Figure 6: Single-step APE-like blocking kernel. P is a projection operator from a sum of SU(3) matrices

back to SU(3).

3.3 Numerical Methods

We start by generating a coarse and fine ensemble with the ID+MDWF actions, whose lattice

spacings differ by a factor of 2. As mentioned, the RBC and UKQCD Collaborations have seen

small O(a2) errors for this action. To make our studies easier, we use smaller volumes and target

mπ ∼ 300 MeV. Table 6 shows the results for basic observables on these ensembles. The lattice

spacing comes from
√
t0 and w0 measurements and we have used the global fits results [11] to

determine the input quark masses. Our input quark masses could be refined to reduce the 2− 7%

errors seen in the table to perhaps below 3%, but we believe this agreement is accurate enough for
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our current purposes. Both ensembles have physical spatial volumes of about (2.4 fm)3.

⟨O⟩c ⟨O⟩f % diff.

size 123 × 32× 12 243 × 64× 12 −

β 1.633 1.943 −

aml 0.008521 0.000787 −

amh 0.065073 0.019896 −

a−1[GeV] 1.015(16) 2.001(18) −

amres 0.007439(86) 0.004522(12) −

mπ[MeV] 307(5) 300(3) 2.3

mK [MeV] 506(8) 491(5) 3.0

mΩ[MeV] 1652(27) 1557(71) 5.9

fπ[MeV] 147(2) 138(2) 6.3

fK [MeV] 166(3) 155(2) 6.8

Table 6: Parameters and measurements of the fine and coarse lattices. The lattice spacing comes from
√
t0

and w0 measurements.

Figure 7 allows us to further explain our next numerical test. The shaded plane is the space of

all ID+MDWF actions, and the points locate our coarse and fine ensembles. A general RG blocking

of the fine lattice will lead out of the plane, as shown by the dashed line. Assuming perfect scaling

between the coarse and fine ensemble, there is some RG blocking of the fine lattice which will

remain in the ID+MDWF plane; our task is to see if we can get a good approximation to this RG

blocking from our single-step APE-like blocking kernel.

A simple minded way to proceed would be to choose a value for α, block the fine ensemble

and measure physics observables on the resulting blocked, coarse ensemble and compare with the

original coarse ensemble. We believe a better way to do this is to utilize the demon algorithm [24].

Applying this algorithm to the lattices in an ensemble, one can find the coefficients (couplings)

for any term in the action which could have appeared in the generation of the ensemble, or in an

effective representation of the action. Here we are generating ensembles including fermions and we

can use the demon algorithm to find an action, expressed as a sum of Wilson loops, that would
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Figure 7: Illustration of the comparison. A general blocking kernel G[Uc, Uf ] will lead the fine lattice action

out of the hyperplane of actions consisting of only ID+MDWF terms, as shown by the dashed line. There

exists some blocking kernel which will keep the fine action close to the ID+MDWF hyperplane, giving a

good scaling between the coarse and fine ensemble. The complexity of the kernel is not known a priori.

produce the same ensemble.

Given a configuration generated according to some action, possibly including fermions, we can

introduce a series of demon variables to determine the underlining βi in an expansion of the action in

terms of a set of Wilson loops, denoted by Si. These terms can be the plaquette(P ), rectangular(R),

chair loop(C), twist loop(T ), etc.

∫
[DU ]

∫ ∏
i

[dEi] exp

[
−
∑
i

(βiSi[U ] + βiEi)

]
.

The update scheme for the demon consists of two parts:

1. update U ’s only.

2. update U ’s and Ei’s at the same time while keeping Si + Ei constant. In this case the

accept/reject step does not require knowledge of βi’s.

Since the integration of the Ei’s factorizes we can measure the average value of them and probe

the underlying βi’s through the relation
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⟨Ei⟩ =
1

βi
− Emax

tanh(βiEmax)
.

We apply the demon algorithm on the configurations generated by Sc[Uc]
7, and configurations

generated by Sb
c [Uc] with different α’s. The result is shown in table 7. We choose to use α = 0.688,

which gives the closest match for the coefficient of the plaquette, βP , between the coarse and blocked

coarse ensembles. For this choice of α, we also see that the coefficient of βR for the coarse and

blocked-coarse ensembles differ by 50%, although both are small. No further matching is possible

with our single parameter blocking kernel, so we will work with this value of α.

ensemble βP βR βC βT

Sc[Uc] 2.035(36) −0.1018(33) −0.0026(30) −0.0006(30)

α = 0.0 0.617(11) 0.0491(33) 0.0032(32) 0.0010(32)

α = 0.5 1.478(35) −0.0020(44) 0.0043(42) −0.0016(43)

α = 0.688 2.030(28) −0.1522(30) −0.0021(24) 0.0038(24)

α = 0.7 2.069(33) −0.1589(33) 0.0009(27) −0.0003(27)

Table 7: Results of the demon algorithm applied to different blocked coarse ensembles, produced with various

values for the blocking parameter, α. The results of applying the demon algorithm to the coarse lattice are

given in the first row.

3.4 Results

We can now compare physical observables on the coarse and blocked coarse lattices. For pure gauge

quantities, we use the same observable to do the measurement on both ensembles. For fermionic

observables, we need to calculate propagators on the blocked coarse lattice, which means we need

to choose which gauge fields and quark masses to use in the MDWF Dirac operator. To the extent

that the blocked coarse and coarse lattices are equivalent, we can use the same quark masses in

both cases. Since the MDWF residual mass may be different between the two cases, we will present

results with the total quark masses the same, i.e. the input quark mass plus the residual mass.

7Fermion determinants are in principle sums of Wilson loops. Our inclusion of only 4 types of Wilson loops is
justified by the fact that we only want to determine 1 free parameter α.
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Turning first to the Wilson flow, Figure 8 shows the results on the coarse and blocked coarse

lattices. One sees very good agreement between the two ensembles up to very large flow times.

〈t
2
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coarse
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Figure 8: Wilson flow of the coarse and blocked coarse ensembles.

We have also measured some light hadron masses and meson decay constants on the two en-

sembles and Table 8 shows the results. The differences are at the 1− 3% level between the coarse

and blocked coarse lattices. We note that for the coarse ensemble, we know the sea quark mass and

use this mass for the measurements (they are unitary). For the blocked coarse ensemble we do not

know the sea quark mass, but use the same total quark mass as the coarse ensemble. To do this,

we have to measure the residual mass on the blocked coarse ensemble, which we do by choosing

the fifth dimension, Ls, to be 12, as it is on the coarse ensemble. (The residual mass does depend

modestly on the quark mass used in the measurement. This is generally a small effect and we do

not correct for it here.) Our condition on the quark masses is

[aml + amres]coarse = [aml + amres]blocked coarse. (104)

It is worth pointing out that by using the same total quark mass on the coarse and blocked

coarse ensembles, and finding the same physical hadron masses, we are implicitly seeing that the

renormalization factors for the quarks are the same on these two ensembles. This is a statement

not just about the equivalence of long distance physics on both ensembles, but also includes at least
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⟨O⟩c ⟨O⟩bc % diff.

size 123 × 32× 12 123 × 32× 12 −

β 1.633 − −

aml 0.008521∗ 0.007494 −

amh 0.065073∗ 0.064150 −

a−1[GeV] 1.015(16) 1.010(16) 0.5(2.3)

amres 0.007439(86) 0.00847(21) −

amπ 0.3026(13) 0.3050(35) 0.8(1.2)

amK 0.4982(11) 0.5018(25) 0.7(0.5)

amΩ 1.628(10) 1.668(25) 2.4(1.6)

afπ 0.14472(64) 0.1491(10) 2.9(0.8)

afK 0.16333(47) 0.16723(85) 2.3(0.6)

Table 8: Spectrum measurements on coarse and blocked coarse lattices. See section 3.4 for the choice of

valence quark mass on the blocked coarse ensemble. Again the lattice spacing comes from
√
t0 and w0

measurements.

some of the short distance physics.

To pursue this question further, we have also measured the non-perturbative renormalization

(NPR) factors for quark bilinears on the coarse and blocked coarse ensembles using the RI/SMOM

scheme [25]. These NPR factors renormalize quark bilinear operators multiplicatively, e.g. for the

vector bilinear operator, [
ψ̄γµψ

]
renormalized

=
ZV

Zq

[
ψ̄γµψ

]
lattice

. (105)

A detailed introduction to NPR can be found in section 4.1.

We find generally very good agreement between the two measurements, with differences of

∼ 1% over a range of renormalization scales. Figure 9-13 shows the NPR Z factors, for the bilinear

operators, as a function of the renormalization scale on the two ensembles. One sees that the

differences of Z’s at high energy scales (compared to the lattice spacing) are around 1%. Given the

matching between low energy measurements, this further shows that the two actions, Sc[Uc] and

Sb
c [Uc] can be considered as the same action, up to an accuracy of a few percent.

40



1.06

1.08

1.10

1.12

1.14

1.16

1.18

1.0 1.5 2.0 2.5 3.0

Λ
A

=
Z
q
/Z

A

ap, a−1 ∼ 1 GeV

blocked coarse : axial vector 〈ΛA〉b

coarse : axial vector 〈ΛA〉

Figure 9: Non-perturbative renormalization factor ZA of the coarse and blocked coarse ensembles.
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Figure 10: Non-perturbative renormalization factor ZV of the coarse and blocked coarse ensembles.

41



1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.0 1.5 2.0 2.5 3.0

Λ
S

=
Z
q
/Z

S

ap, a−1 ∼ 1 GeV

blocked coarse : scalar 〈ΛS〉b

coarse : scalar 〈ΛS〉

Figure 11: Non-perturbative renormalization factor ZS of the coarse and blocked coarse ensembles.
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Figure 12: Non-perturbative renormalization factor ZP of the coarse and blocked coarse ensembles.
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Figure 13: Non-perturbative renormalization factor ZT of the coarse and blocked coarse ensembles.

3.5 Conclusion

We have generated a matched pair of lattices, coarse and fine, with 300 MeV pions and lattice spac-

ings differing by a factor of 2, using the ID+MDWF actions. Using the demon algorithm, a simple

APE-like blocking kernel is tuned to block the fine lattice into a blocked coarse lattice. Measure-

ments of physical hadron masses, meson decay constants and the Wilson flow scale were made on

the coarse and blocked coarse ensembles. The results show only a few percent difference. We have

also measured renormalization factors using non-perturbative renormalization on the coarse and

blocked-coarse ensembles and find good agreement between them. The good scaling properties of

the ID+MDWF action imply that the coarse and fine lattices are related, to a good approximation,

by an RG blocking transformation. We have found that a simple, numerically tractable, blocking

kernel provides a good RG blocking transformation between these lattices.

Beyond understanding the properties of these ensembles better, we were also motivated to

undertake this study to think about ways of improving evolution algorithms. If Sc[Uc] and Sb
c [Uc]

are very nearly equal, we could imagine evolving both coarse and fine lattice concurrently, by
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writing the following:

⟨O⟩ =
∫
[dUf ]e

−Sf [Uf ]O[Uf ]∫
[dUf ]e

−Sf [Uf ]
(106)

=

∫
[dUc]G[Uc, Uf ][dUf ]e

−Sf [Uf ]O[Uf ]∫
[dUc]G[Uc, Uf ][dUf ]e

−Sf [Uf ]
(107)

=

∫
[dUc]e

−Sb
c [Uc]

∫
[dUf ]e

−Sf [Uf ]G[Uc, Uf ]O[Uf ]∫
[dUf ]e

−Sf [Uf ]G[Uc, Uf ]∫
[dUc]e−S

b
c [Uc]

(108)

In the second line we have inserted a [dUc]G[Uc, Uf ] factor which is a constant when integrated over

Uc and the third line uses the definition of the blocked action, equation (102).

Equation (108) states that we will get the same value for observables if we perform constrained

Monte Carlo on the fine lattice in the background of coarse lattices generated with the action

Sb
c [Uc]. This is a further step from what is described in [26]: this is a multiscale evolution algorithm,

rather than just a multiscale thermalization algorithm. The coarse (free) evolution and the fine

constrained evolution can be performed successively with no additional thermalization needed.

The coarse evolution gives us short decorrelation length for various quantities including the global

topological charge and the fine evolution fills in the much wanted short scale details, which enable

the inclusion of heavy quarks.

Unfortunately, an exact evolution algorithm requires that Sc[Uc] and Sb
c [Uc] agree much more

accurately than we have seen here. A viable algorithm would need a correction step or a reweighting

factor, or other improvements, to facilitate such a multiscale Monte Carlo.
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4 Physical Output from the Coarse DSDR Lattice

The RBC/UKQCD collaborations have generated coarse lattice configurations at inverse lattice

spacing of around 1 GeV with Iwasaki gauge action, dislocation suppressed determinant ratio

(DSDR) and Möbius domain wall fermions (MDWF) for degenerate light quarks with physical

masses and a physical mass strange quark (2+1 flavor). The coarse lattice spacing makes it possible

to have a large physical volume (e.g. around 4.8 fm3×9.6 fm) with a relatively small lattice volume

(e.g. 243 × 64). Given a fixed amount of machine resources this greatly increases the number of

configurations that can be generated as well as the amount of statistics that can be achieved during

the measurement phase. These coarse lattices are also ideal testing ground for new measurements

of more complicated observables with physical quark masses.

Measurements made on coarse lattices can carry large finite lattice spacing errors, due to the

large lattice spacing a. A natural question to ask is whether or not we can reliably estimate the

finite lattice spacing errors and make corresponding correction to give physics predictions in the

continuum. While global chiral fits results excluding these a−1 = 1 GeV coarse lattices suggest

small O(a2) error for ensembles generated with the Iwasaki/DSDR (ID) and MDWF actions, it is

interesting to see if the simple analytic form of

X(m, a2) ≃ X0(1 + f(m) + cA
Xa

2) (109)

in the global chiral fit still holds at this coarse a or if measurable a4 and higher order terms are

needed. If the answer is yes, while the finite lattice spacing correction cA
Xa

2 can be large at this

coarse a, the simple linear form puts the a2 dependence under control and consequently, without the

higher order terms in a2, the continuum limit extrapolation can be performed much more reliably.

Here we distinguish the a2 coefficient cA
X between the ID and the IW lattices as cID

X and

cIW
X . Lattices with both actions have the same continuum ChPT form f(m) and continuum limit

prediction X0. For a specific physical observable, measurements made on ID lattices with different

lattice spacing a, together with its continuum limit are examined to see if the data points fit to the

form shown in (109).
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Recent results of global chiral fits [11] that includes the basic physical quantities8 measured on

the coarse lattices confirms the above description is still valid yet it is still worthwhile to investigate

this with more complicated quantities. In this work we measure the neutral kaon mixing parameter

BK and the ∆I = 3/2 K → ππ amplitude A2 on the coarse 24ID(β = 1.633) lattice9. Both

quantities require non-perturbative renormalization which is done at this coarse lattice spacing for

the first time.

Our investigation gives us a better understanding of the finite lattice spacing effect on the more

noisier ∆I = 1/2 K → ππ process and ϵ′/ϵ that are currently being measured on the ID lattices

with a−1 = 1.37 GeV.

4.1 Non-perturbative Renormalization

Typically, renormalization scheme dependent quantities are expressed in dimensional regulariza-

tion schemes such as the MS scheme. These schemes parametrize the divergences of the gauge

theory with a non-integer variadic number of dimensions and relies on perturbative expansion of

the coupling constant, both of which are not feasible in a non-perturbative lattice gauge theory

simulation.

One approach to translating scheme dependent quantities measured on the lattice to those

expressed in dimensional regularization schemes is to have an intermediate scheme which can be

used with both a lattice regularization and dimensional regularization. The lattice results are first

renormalized to this intermediate scheme with renormalization factors measured on the lattice at

an energy scale µ low enough to suppress finite lattice spacing errors:

µ≪ π

a
. (110)

If µ is low enough that perturbative QCD theory is not reliable the target quantity is first step

scaled to a higher scale µ′ such that

µ→ µ′ ≫ ΛQCD (111)

through another lattice calculation on a finer lattice where both scales µ and µ′ can be used. This

8such as mπ, mK , mΩ, fπ and fK .
9See table 1
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quantity is then converted to the target dimensional regularization scheme with the conversion

factor calculated perturbatively at µ′. Note that the desired physical quantity (generally a matrix

element) is only calculated on the coarse lattice at scale µ.

As a summary if the lattice simulation itself is also viewed as a renormalization/regularization

scheme (“lat”) for a matrix element M lat measured on the lattice the following conversion factors

are applied before arriving at the corresponding matrix element in the MS scheme:

MMS = RIS→MS(µ′)σ(µ→ µ′)Z lat→IS(µ)M lat, (112)

where IS means the intermediate scheme. Later in this section the subscripts indicating the source

and destination schemes are skipped for simplicity. Generally under renormalization the underlying

operators of the matrix elements mix and as a result (112) generally indicates a matrix multiplica-

tion.

The non-perturbative renormalization (NPR) calculations in this work are performed with the

Rome-Southampton regularization independent momentum-subtraction renormalization scheme

with non-exceptional, symmetric subtraction point (RI-SMOM) [27] as the intermediate scheme.

4.1.1 Renormalization of Bilinear Operators

From the lattice scheme to RI-SMOM, multiplicative conversion factors (Z’s) are introduced for

the quark fields,

quark: Z−1/2q ψ (113)

as well as each of the five bilinear operators,

vector: (ZV /Zq)ψ̄γµψ, (114)

axial vector: (ZA/Zq)ψ̄γµγ5ψ, (115)

scalar: (ZS/Zq)ψ̄ψ, (116)

pseudo scalar: (ZP /Zq)ψ̄γ5ψ, (117)

tensor: (ZT /Zq)ψ̄[γµ, γν ]ψ. (118)
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In the RI-SMOM scheme, the renormalization factors are determined by first measuring ψ̄Γψ on

the target lattice and then determining (ZΓ/Zq) such that (ZΓ/Zq)ψ̄Γψ has its10 tree level value

at the scale µ.

Momentum p is inserted into and/or extracted from the bilinear operators by constructing the

Fourier transformed volume source propagator with a Fourier transformed source and sink,

G(p) =
∑
x,y

e−ip·yξ(y, p), (119)

where ξ is the volume source propagators and

ξ(y, p) = D−1(y, x)eip·x14 ⊗ 13, (120)

where D(y, x)−1 is the usual four dimensional propagator and 14 ⊗ 13 is the identity matrix in

spin-color. Only a finite number of discrete momenta are allowed in this approach due to the

restriction on a lattice with finite volume. Another approach is proposed and used in [28] which

allows continuous momenta by applying twist boundary condition on the quark fields in µ-direction,

q(x+ Lµ̂) = eiθq(x), θ/L = p. (121)

Now to measure ψ̄Γψ on the lattice we measure the following vertex for operator Γ with non-

exceptional momenta p1 and p2 with p21 = p22 = (p1−p2)2 = q2: quark source and sink are attached

to the bilinear to form the propagators,

[
FΓ(p1, p2)

]
ij
=
〈∑

y

ei(p1−p2)·yψi(y, p1)
[
ψ̄Γψ

]
(y)ψ̄j(y, p2)

〉
(122)

Wick
=

∑
y

ei(p1−p2)·y
[
γ5ξ
†(y, p1)γ5Γξ(y, p2)

]
ij
, (123)

where i,j,k are spin-color indices and the Wick contractions are performed in the second equal sign.

The statistical average of the vertex over gauge configurations (⟨•⟩g) is further amputated by the

10the RI-SMOM scheme
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propagators, [
ΠΓ(p1, p2)

]
ij
=

[
γ5⟨G†(p1)⟩−1g γ5⟨FΓ(p1, p2)⟩g⟨G(p2)⟩−1g

]
ij
. (124)

The amputated vertices are still spin-color matrices and they are projected to their corresponding

projection operator P(s)
Γ ’s before the renormalization condition is applied

ZΓ

Zq

tr
[
ΠΓP(s)

Γ

]
tr
[
ΓP(s)

Γ

] =
ZΓ

Zq
ΛΓ = 1. (125)

Here the subscript (s) indicates the different projection operators corresponds to different schemes

in RI-SMOM and tr
[
ΓP(s)

Γ

]
is the tree level value in RI-SMOM. For the γµ scheme the projection

operator are simply the Γ itself, as shown in table 9; for the /q scheme the projector depends on

the input momentum q = p1 − p2. The two schemes are equivalent in the limit of vanishing finite

lattice spacing error yet in the /q scheme it is more substantially suppressed. [27] The existence of

these two different schemes allows us to use the difference between their corresponding results to

estimate the systematic error from our NPR procedures.

operator name Γ P(γµ)
Γ P(/q)

Γ tr
[
ΓP(s)

Γ

]
vector (V) γµ γµ /̂qq̂µ//̂q

2 48

axial vector (A) γµγ5 γµγ5 /̂qq̂µγ5//̂q
2 48

scalar (S) 1 1 1 12

pseudo scalar (P) γ5 γ5 γ5 12

tensor (T) [γµ, γν ] [γµ, γν ] [γµ, γν ] 72

Table 9: The projection operators of the γµ and /q schemes in RI-SMOM.

4.1.2 Renormalization of the ∆S = 2 Four-quarks Operators

The original ∆S = 2 four-quark operator O∆S=2 related to the neutral kaon mixing in the standard

model is

O∆S=2 =
[
s̄γµ(1− γ5)d

][
s̄γµ(1− γ5)d

]
. (126)
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This operator comes from [29]. The spin structure γµ’s come from the weak interaction between

quarks and the W boson Wµ and the (1 − γ5) factors come from the fact that only left-handed

fermion participate in weak interactions. For lattice NPR calculation purposes it is convenient to

only consider the parity even part of the operator

OV V+AA =
[
s̄γµd

][
s̄γµd

]
+

[
s̄γµγ5d

][
s̄γµγ5d

]
. (127)

The OV V+AA operator transforms under the (27,1) representation11 of the SU(3)L× SU(3)R

chiral transformation for massless QCD. While in the standard model it is the only ∆S = 2

operator there are 4 more operators possible beyond the standard model and they are listed in

table 10. Under renormalization these operators mix with each other and a 5 by 5 matrix Z factor

is introduced
ZabOb

Z2
q

, (128)

where a and b are operator indices. On lattices with good chiral symmetry there is little mixing

between operators under different representation.

Measuring beyond the standard model (BSM) ∆S = 2 renormalization factors is interesting on

its own: with these renormalization factors available the BSM theories are able to give physical

predictions on neutral kaon mixings. [30] In addition measuring the ∆I = 3/2 K → ππ amplitude

A2 also needs renormalization factors for the (27,1) and (8,8) operators.

Similar to the bilinear case quark sources and sinks are attached to the operator to form vertices,

except in this case the Wick contraction structure is more complicated,

[
FΓΓ(p1, p2)

]
ijkl

=
〈∑

y

ei·2(p1−p2)·ysi(y, p1)d̄j(y, p2)
[
s̄Γds̄Γd

]
(y)sk(y, p1)d̄l(y, p2)

〉
(129)

=
∑
y

ei·2(p1−p2)·y
{
2 ·

[
γ5ξ
†(y, p1)γ5Γξ(y, p2)

]
ij

[
γ5ξ
†(y, p1)γ5Γξ(y, p2)

]
kl

(130)

− 2 ·
[
γ5ξ
†(y, p1)γ5Γξ(y, p2)

]
il

[
γ5ξ
†(y, p1)γ5Γξ(y, p2)

]
kj

}
(131)

11See appendix A.4 for the derivation of the representations.
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The vertex is then amputated

[
ΠΓΓ(p1, p2)

]
ijkl

= (132)[
γ5⟨G†(p1)⟩−1γ5

]
im

[
γ5⟨G†(p1)⟩−1γ5

]
ko

[
⟨FΓΓ(p1, p2)⟩

]
mnop

[
⟨G(p2)⟩−1

]
nj
[⟨G(p2)⟩−1

]
pl
. (133)

and linearly combined to form the vertex in a certain representation,

ΠΓΓ±ΣΣ(p1, p2) = ΠΓΓ(p1, p2)±ΠΣΣ(p1, p2). (134)

The two Γ’s in the four-quark operator give more flexibility in choosing the projection operator.

Each of the Γ’s can be projected to either the γµ or the /q scheme and for the full operator there

are four combinations: (γµ, γµ), (γµ, /q), (/q, γµ) and (/q, /q). In table 10 we list the corresponding

projection operators for the first and last combination. The spin-color tensor convention in the

table is listed in (139) and (140). With a chosen scheme the vertices are calculated with

Λab =
[
Pa

]
jilk

[
Πb

]
ijkl

. (135)

The conversion matrix Zab is determined by applying the renormalization condition

Zab

Z2
q

Λbc = Fac,
Zac

Z2
q

= FabΛ
−1
bc , (136)

where F are the tree level values in RI-SMOM in a specific scheme, e.g.

F
(γµ,γµ)
ab =



3072

2304 −384

−384 576

480 288

288 2016


, (137)
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F
(/q,/q)

ab =



768

576 192

−96 −288

432 144

720 1008


. (138)

index operator rep. P(γµ,γµ) P(/q,/q)

1 V V +AA (27,1) [γµ × γµ + γµγ5 × γµγ5]diag
1
q2
[/q × /q + /qγ5 × /qγ5]diag

2 V V −AA
(8,8)

[γµ × γµ − γµγ5 × γµγ5]diag
1
q2
[/q × /q − /qγ5 × /qγ5]diag

3 SS − PP [1× 1− γ5 × γ5]diag
1
q2
[/q × /q − /qγ5 × /qγ5]mix

4 SS + PP
(6, 6̄)

[1× 1 + γ5 × γ5]diag
1

2q2
qµqν [σµρ × σνρ + σµργ5 × σνργ5]diag

5 TT 1
2 [σµν × σµν ]diag

1
2q2
qµqν [σµρ × σνρ + σµργ5 × σνργ5]mix

Table 10: The beyond standard model ∆S = 2 operators, their representation and the corresponding

projection operators. See (139) and (140) for the notations for the projectors.

[[ • × • ]diag]
ab,cd
αβ,δγ = [ • ]αβ[ • ]δγδ

abδcd; (139)

[[ • × • ]mix]
ab,cd
αβ,δγ = [ • ]αβ[ • ]δγδ

adδcb. (140)

4.1.3 Renormalization factors of the ∆S = 2 Operators on the Coarse 243× 64 Lattice

Here we show the results for the renormalization factor Z of the ∆S = 2 operators on the coarse

243 × 64 lattice to the (γµ, γµ) and (/q, /q) schemes in RI-SMOM. The calculation is done on config-

urations 300 to 440 with increment of 4 and a jackknife bin size of 2. The calculation is done with

non-exceptional momenta p1 = (−x, 0, x, 0) and p2 = (0, x, x, 0) where x = 3.8474 · 2π24 thus giving

µ = 1.4363 GeV.

The coarse 243×64 lattice has a small chiral symmetry breaking (i.e. small residual mass) thus

the mixing between operators under different representations is expected to be small. We show

both the block-diagonal (BD) result, where the matrix elements in Λ that connect between different

representations are explicitly zeroed before being inverted
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Z(γµ,γµ)

Z2
A

[BD] =



0.88276(14)

1.04748(60) 0.37374(81)

0.03721(59) 0.7406(14)

0.7968(16) −0.00832(17)

−1.4511(40) 1.08711(70)


, (141)

Z(/q,/q)

Z2
A

[BD] =



0.96777(35)

1.05392(85) 0.3768(11)

0.07818(92) 0.9340(24)

0.9876(20) −0.01032(21)

−1.7986(48) 1.34750(90)


, (142)

as well as the non-block-diagonal (NBD) result where no zeroing is done,

Z(γµ,γµ)

Z2
A

[NBD] =



0.88276(14) −0.00226(39) −0.00197(43) 0.00195(41) −0.000053(53)

−0.00202(32) 1.04749(60) 0.37360(81) −0.00619(88) −0.000167(90)

−0.00023(21) 0.03721(59) 0.7410(14) 0.0197(15) −0.000087(92)

0.00027(35) 0.00028(31) 0.0170(12) 0.7972(16) −0.00833(17)

0.00101(80) −0.0019(11) 0.0172(28) −1.4506(40) 1.08711(70)


,

(143)

Z(/q,/q)

Z2
A

[NBD] =



0.96777(35) −0.00061(35) −0.00254(79) 0.00209(45) −0.000058(58)

−0.00131(32) 1.05392(84) 0.3766(11) −0.00620(88) −0.000168(90)

−0.00008(41) 0.07816(91) 0.9345(24) 0.0244(19) −0.00011(11)

−0.00024(52) −0.00052(77) 0.0194(21) 0.9882(20) −0.01032(21)

−0.0006(13) −0.0062(20) 0.0156(62) −1.7981(48) 1.34749(90)


.

(144)

The mixing between different representations is indeed small.
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4.2 The Neutral Kaon Mixing Parameter BK

The neutral kaon mixing parameter BK plays a central role in explaining the short distance part of

the KL-KS mass difference within the standard model. The short distance part involves evaluating

the box diagrams shown in figure 14 that allow neutral kaon states |K0⟩ and |K0⟩ to mix with each

other. Following the operator product expansion, under the assumption that the energy scale in the

process is much lower than the energy scale of the W boson mW , it is factorized into a high energy

part where a perturbative calculation can determine the Wilson coefficients and a non-perturbative

part where a lattice calculation is needed to evaluate the matrix elements.

d

u, c, t

s̄

s

u, c, t

d̄

W

W

K0 K0

d
u, c, t

s̄

s

u, c, t
d̄

W WK0 K0

Figure 14: The box diagrams that mix the two neutral kaon states.

BK is defined as [29]

⟨K0|O∆S=2|K0⟩ = ⟨K0|
[
s̄γµ(1− γ5)d

][
s̄γµ(1− γ5)d

]
|K0⟩ = 8

3
BKf

2
Km

2
K , (145)
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where fK is the kaon decay constant and mK is the kaon mass. BK is defined in the renormalization

scheme (usually the MS scheme) and at the energy scale µ where the matrix element is evaluated.

Following (112) the path from the matrix element measured on the lattice, which will be denote as

BK [lat], to that renormalized within the MS scheme BK [MS, µ] is

BK [MS, µ] = BK [lat]·ZBK
[(s, s), µ0]·σ[(s, s), µ0 → µ]·R[(s, s)→ MS, µ] = BK [lat]·Z[lat→ MS, µ].

(146)

4.2.1 The Renormalization Factors for BK

In (146) ZBK
[(s, s), µ0] is the renormalization factor for BK in the (s, s) scheme under RI-SMOM

at a relatively low energy scale µ0. In the definition (145) fK is defined as

⟨0|A0|K0⟩ = fKmK , (147)

which needs an additional renormalization factor of ZA. Therefore for BK

ZBK
=
ZV V+AA

Z2
A

. (148)

The results for these factors are already given in the previous section. The R[(s, s)→ MS, µ] factor

in (146) is the conversion factor from (s, s) scheme under RI-SMOM to MS at a higher energy

scale µ and is calculated perturbatively in [31]12. Finally The Step Scaling Factor σ[(s, s), µ0 → µ]

step scales the Z factor from µ0 to µ within the (s, s) scheme [17]13. The values used in this work

are summarized in table 11, where results from different intermediate schemes (γµ, γµ) and (/q, /q)

are reported. In addition another intermediate energy scale (µ0 = 1.1199 GeV) different from the

previous 1.4363 GeV value is also used to give a check on whether or not it actually suppresses the

finite lattice spacing error as discussed in (110).

12See TABLE V of [31].
13See TABLE XLIII of [17].
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(γµ, γµ) (/q, /q)

R[(s, s)→ MS, µ] 1.00414 0.99112

µ0 = 1.1199 GeV

ZBK
[(s, s), µ0] 0.89481(51) 0.9962(10)

σ[(s, s), µ0 → µ] 0.9339(22) 0.8706(37)

Z[lat→ MS, µ] 0.5727(15) 0.5866(26)

µ0 = 1.4363 GeV

ZBK
[(s, s), µ1] 0.88271(13) 0.96773(37)

σ[(s, s), µ0 → µ] 0.9573(21) 0.9103(31)

Z[lat→ MS, µ] 0.5791(14) 0.5959(22)

Table 11: The complete renormalization factors for the coarse 243×64 lattice. Note that the σ[(s, s), µ0 → µ]

numbers with µ0 = 1.1199 GeV are re-measured within this work.

The Z[lat → MS, µ] number should be independent from the intermediate renormalization

schemes and energy scales, apart from finite lattice spacing errors, finite number of loops included

in the perturbative calculation of the matching factors and finite volume errors. The results shown

in the table indicates that the NPR procedures give an overall systematic error of 3 percent to the

final result.

4.2.2 The Matrix Element on Lattice BK [lat]

The last piece in (146) that has not been taken care of is the lattice matrix element itself BK [lat].

Combining (145) and (147) the correlation functions are fitted as

⟨0|A0|K0⟩ =
∑
x

⟨d̄(x, 0)γ4γ5s(x, 0)s̄(t)γ5d(t)⟩ (149)

=
∑
x

tr
[
γ4D

−†(t→ x, 0)γ5D
−1(t→ x, 0)

]
(150)

→
ZK,wallfK

2ZA

[
e−mKt − e−mK(T−t)

]
(151)
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⟨K0|
[
s̄γµ(1− γ5)d

][
s̄γµ(1− γ5)d

]
|K0⟩ (152)

=
∑
x

⟨
[
d̄(t2)γ5s(t2)

][
s̄(x, t)Γd(x, t)s̄(x, t)Γd(x, t)

]
V V+AA

[
d̄(t1)γ5s(t1)

]
⟩ (153)

= 2 · (trace-trace term)− 2 · (trace term) (154)

→ −8

3

BK [lat]Z2
K,wallf

2
K

4Z2
AV

[
e−mK(t2−t1)

]
, (155)

where the contractions are

(trace-trace term) =
∑
x

tr
[
S†s(t2 → x, t)γ5ΓSd(t2 → x, t)

]
tr
[
S†s(t1 → x, t)γ5ΓSd(t1 → x, t)

]
,

(156)

(trace term) =
∑
x

tr
[
S†s(t1 → x, t)γ5ΓSd(t2 → x, t)S†s(t2 → x, t)γ5ΓSd(t1 → x, t)

]
. (157)

Here we have used the notation for the quark field on a fixed time slice

q(t) =
∑
x

q(x, t). (158)

For the purpose of performing global chiral fit for BK we give the result of BK in (/q, /q) of

RI-SMOM, i.e. (146) but without the R[(s, s) → MS, µ] factor, measured on the coarse 243 × 64

lattice as

BK [(/q, /q), µ = 3.0 GeV] = 0.6012(22). (159)

The error on this number only includes the statistical error: it does not include the error introduced

during the NPR procedures, as discussed in the previous chapter; in addition it does not include

the finite lattice spacing error, finite volume error of the lattice and corrections from extrapolation

to the physical point, which will be the issues addressed in the global chiral fit in the next section.

4.3 Chiral Fits of BK

In addition to the global chiral fit for the low energy constants (LECs) for the low energy effective

theory for QCD based on chiral perturbation theory there is a similar chiral fit for BK as well. The
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fit form is [17]

Bxy = B0
K

[
1 + cA

BK ,a2a
2 +

cBK ,ml
χl

f2
+
cBK ,mxχx

f2
− χl

32π2f2
log

(
χx

Λ2
χ

)]
+ cBK ,my(my −mphys

h ) + cBK ,mh
(mh −mphys

h ) + (F.V. corr.), (160)

where the subscripts x,y mean valence light and heavy quark masses, l, h mean dynamic/sea light

and heavy quark masses and the finite volume correction (F.V. corr.) terms can be found in [32].

LECs, including f , B (hiding in all the χ•’s) and Λχ are needed from the global chiral fit. The

term cA
BK ,a2a

2 describes the finite lattice spacing effect on the lattices. Different coefficients are

introduced for the different gauge actions: The superscript A is either IW for the lattices with

Iwasaki gauge action, or ID for the lattices with Iwasaki gauge action plus the DSDR term; all

other coefficients are common for the two gauge actions. The second line of (160) is the analytic

fit form for the heavy quark around the physical heavy quark mass point. The physical prediction

of BK is obtained by evaluating (160) at the physical light and heavy quark masses.

Previously such BK chiral fit only includes the IW lattices [17] due to the fact that there is

only one DSDR lattice in the global chiral fit. Several other DSDR lattices, including the coarse

243× 64 lattice, have since been generated and the renormalized BK [(/q, /q), µ = 3.0 GeV] as well as

other basic quantities have been measured on three DSDR lattices. They are listed in table 14. On

top of the results presented in [17] the global chiral fit and BK chiral fit are rerun including these

three new DSDR lattices.

In particular we are interested in the lattice spacing dependence of BK on the DSDR lattice.

The fit result is shown in table 15 and figure 22 and 21. The result does not indicate a significant

a4 term needed to describe the finite lattice spacing effect on BK even on the coarse 243×64 lattice

with lattice spacing of a−1 ∼ 1 GeV.

4.3.1 Measurements on the New ID Lattices

Measurements of the basic physical quantities are needed for the global chiral fit and lattice regu-

larized BK [lat] is needed for BK chiral fit. Here we summarize the results on the 24ID(β = 1.633)

and 32ID(β = 1.75) physical lattices.
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Observable Fit

amres(ml = 0.0001) 0.0018915(75)

amres(mh = 0.045) 0.0017091(51)

amπ 0.10468(32)

amK 0.35581(43)

amΩ 1.2030(36)

am′Ω 1.610(21)

afπ 0.09490(20)

afK 0.11339(17)

ZA 0.68779(11)

Zπ
V 0.68339(82)

ZK
V 0.6911(25)

BK 0.61632(91)

Table 12: Spectrum from 33 measurements (configuration 120 to 430 with increments of 10), with no binning,

on the 32ID(β = 1.75) physical lattice. For this ensemble eigenvectors of the Dirac operator have already

been calculated for other measurements. They are used to speed up light quark propagator calculations,

which are done to 10−8 precision on all time slices, i.e. without all Mode Averaging (AMA).
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Observable Fit

amres(ml = 0.00107) 0.0022824(70)

amπ 0.13975(10)

amK 0.504154(89)

amΩ 1.6726(25)

am′Ω 2.040(63)

afπ 0.13055(11)

afK 0.15815(13)

ZA 0.73457(11)

Zπ
V 0.72672(35)

ZK
V 0.7390(11)

BK 0.68253(70)

Table 13: Spectrum from 378 measurements (configuration 300 to 1808 with increments of 4), binned over

every 3 successive measurements, on the 24ID(β = 1.633) physical lattice, measured by David Murphy. All

Mode Averaging (AMA) is done with sloppy (10−4 CG precision) solves over all time slices and precise (10−8

CG precision) solves over 7 time slices from each configuration.

4.3.2 Global Chiral Fit Including the New ID Lattices

See table 14 and its caption for detailed setup and result of the global chiral fit including the latest

measurement results for the coarse DSDR lattices.
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mcut
π 370 MeV

χ2/dof 0.78(22)

a−1

32I 2.378(10)

24I 1.7798(66)

48I∗ 1.7301(29)

64I∗ 2.3607(78)

32I-fine 3.142(21)

32ID(β = 1.75)∗ 1.3787(48)

24ID(β = 1.633) 1.0230(20)

32ID-kaon(β = 1.633) 1.0230(20)

32ID(β = 1.633) 1.0230(20)

32ID(β = 1.943)∗ 2.069(16)

fπ [GeV] 0.13002(79)

fK [GeV] 0.15516(76)

√
t0[GeV] 0.7283(46)

w0 [GeV] 0.8743(44)

mπa
2
0 −0.0409(16)

Table 14: The global chiral fit results. The 48I and 64I are overweighted, i.e. their χ2 weight 5000 times more

than other lattices. For the 32ID(β = 1.75) lattice only unitary data with ml = 0.0001 and mh = 0.045 is

included. The lattices with β = 1.633 are restricted to have the same lattice spacing. The 32ID(β = 1.943)

lattice is still included in spite of its pion mass (∼ 400 MeV) being over the 370 MeV cut.
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Figure 15: The a2 dependence of fπ for the IW lattices.

0.1260

0.1280

0.1300

0.1320

0.1340

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

f π
[G

eV
]

a2[GeV−2]

32ID(β = 1.75)

24ID(β = 1.633)

32ID-M1(β = 1.633)

32ID(β = 1.633)

32ID(β = 1.943)
0.1260

0.1280

0.1300

0.1320

0.1340

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Figure 16: The a2 dependence of fπ for the ID lattices.
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Figure 17: The a2 dependence of fK for the IW lattices.
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Figure 18: The a2 dependence of fK for the ID lattices.
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Figure 19: Light quark mass dependence of fπ.
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Figure 20: Light quark mass dependence of fK .

4.3.3 BK Chiral Fit Including the New ID Lattices

The BK fit is performed based on the Global Chiral Fit with the 64I and 48I lattices overweighted.

The result is shown in table 15. The much wanted a2 dependence for the IW and ID lattices are

shown in figure 21 and 22.
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ChPTFV ChPTFV[17]

χ2/dof 0.28(32) −

Bphys
K [(/q, /q), µ = 3.0 GeV] 0.5349(19) 0.5341(18)

B0
K 0.5280(17) 0.5278(16)

cIW
BK ,a2 [GeV2] 0.115(11) 0.128(12)

cID
BK ,a2 [GeV2] 0.1352(72) 0.153(15)

cBK ,ml
−0.0074(10) −0.00728(95)

cBK ,mx 0.00449(67) 0.00420(64)

cBK ,mh
−0.16(18) −0.06(18)

cBK ,my 1.208(29) 1.324(32)

Table 15: The BK chiral fit result. The “phys” superscript indicates extrapolation to the physical quark

masses.
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Figure 21: The a2 dependence of BK for the IW lattices.
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Figure 22: The a2 dependence of BK for the ID lattices.
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Figure 23: Light quark mass dependence of BK .

4.4 ∆I = 3/2 K → ππ Decay Amplitude A2

4.4.1 Introduction

The decay amplitude A2 for a kaon to decay into two-pion state with isospin I = 2 plays an

important role in understanding the kaon decay processes within the framework of the standard

model. The fact that the state-of-art lattice QCD simulation is able to calculate these physical

quantities continues to prove the power and capability of the lattice gauge theory. Further physical

66



implications of A2 are found in [33].

Here in this work we describe the method and results of the A2 calculation on the 24ID(β =

1.633) lattice. This calculation allows us to probe the lattice spacing a2 dependence of the quantity

at a−1 ∼ 1 GeV scale, which is interesting in its own right, as well as in that it gives insight into

the scaling behavior of the more complicated A0 calculation.

4.4.2 The Wigner-Eckart Trick

The ∆I = 3/2 K → ππ decay amplitude A2 is defined as

√
2A2 = ⟨(π0π0)I=2

I3=0|Hw|K0⟩, (161)

where on lattice Hw is the weak Hamiltonian after the operator product expansion,

Hw =
GF√
2
V ∗udVus

∑
i

Ci(µ)Qi(µ). (162)

Here Ci(µ) are the Wilson coefficients and Qi(µ) are the ∆I = 3/2,∆I3 = 1/2 operators, both

renormalized under MS at µ. Explicitly the operators are

Q(27,1) = (s̄αdα)V−A(ūβuβ − d̄βdβ)V−A + (s̄αuα)V−A(ūβdβ)V−A, (163)

Q(8,8),unmix = (s̄αdα)V−A(ūβuβ − d̄βdβ)V+A + (s̄αuα)V−A(ūβdβ)V+A, (164)

Q(8,8),mix = (s̄αdβ)V−A(ūαuβ − d̄βdα)V+A + (s̄αuβ)V−A(ūβdα)V+A. (165)

The subscripts (•, •) are the corresponding representation of the operator under SU(3)L × SU(3)R

in the chiral limit. From this point on we will focus on evaluating the right hand side of (161),

specifically the renormalized matrix elements

MMS
i (µ) = Zij(µ)⟨π0π0|Qj |K0⟩ = Zij(µ)M

lat
j . (166)

These three operators, however, make it difficult to construct and extract the on shell ππ state.

Physically mK > 2mπ so on shell the final ππ state will have a zero center of mass momentum
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but each pion will possess a non-zero momentum. On the lattice these excited states are difficult

to construct, extract or even identify without changing the ground state of the ππ state. In [34]

two lattice boundary conditions are proposed to change the ππ ground state on the lattice: the

G-parity boundary condition and the H-parity boundary condition. The later one, which is used

in this work, is able to change the ground state of the |π+π+⟩ (and |π−π−⟩) without generating

new lattice configurations. We will discuss this in the this section.

Still our final ππ state is |π0π0⟩ instead of |π+π+⟩. The Wigner-Eckart theorem is used to

change the final state to the desired one. The |π0π0⟩ state has I3 = 0 and |π+π+⟩ state has I3 = 2.

Applying the Wigner-Eckart theorem gives

⟨(π0π0)I=2
I3=0|Q

∆I=3/2
∆I3=+1/2|(K

0)
I=1/2
I3=−1/2⟩ =

⟨12 ,−
1
2 ;

3
2 ,

1
2 |2, 0⟩

⟨12 ,
1
2 ;

3
2 ,

3
2 |2, 2⟩

⟨(π+π+)I=2
I3=2|Q

∆I=3/2
∆I3=3/2|(K

+)
I=1/2
I3=1/2⟩.

(167)

Thus

⟨π0π0|Q∆I=3/2
∆I3=+1/2|K

0⟩ = 1√
2
⟨π+π+|Q∆I=3/2

∆I3=+3/2|K
+⟩. (168)

The Q∆I=3/2
∆I3=+3/2 operators are obtained by applying raising operator of isospin to the Q∆I=3/2

∆I3=+1/2

operators in (169)-(171),

Q
∆I3=3/2
(27,1) = (s̄αdα)V−A(ūβdβ)V−A, (169)

Q
∆I3=3/2
(8,8),unmix = (s̄αdα)V−A(ūβdβ)V+A, (170)

Q
∆I3=3/2
(8,8),mix = (s̄αdβ)V−A(ūβdα)V+A. (171)

In addition the raising operator adds a normalization factor of
√
3 to each of the operators. This

process is physically forbidden from the standard model by EM charge conservation and the matrix

element only exists on the lattice.

The decay amplitude is now

√
2A2 =

GF√
2
VudV

∗
us ·
√
3√
2

∑
ij

Ci(µ)Zij(µ)M
lat
j , (172)

where

M lat
j = ⟨π+π+|Q∆I=3/2

j |K+⟩. (173)
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4.4.3 Extraction of ππ State

The H-parity boundary condition [34] applies anti-periodic boundary condition on the down quark

in one or more of the spatial directions and keeps periodic boundary condition for other directions

and other quarks:

(u, d)(xi + L) = (u,−d)(xi). (174)

With this boundary condition the π+ state has an anti-periodic boundary in these spatial directions,

|π+⟩(xi + L) = −|π+⟩(xi), (175)

which raises the ground state energy of π+ to

Eπ(ntw) =

√
m2

π +
(
ntw

π

L

)2
, (176)

where ntw is the number of spatial direction with anti-periodic boundary condition, or the number

of twists. In other words a momentum of π/L is inserted into the π+ for each twist applied. Pions

with more energy leads to π+π+ states with more energy, whose ground state is now a π+π+ state

with zero center of mass momentum but the two pion each possess +π/L or −π/L of relative

momentum in the directions where H-parity is applied. For later convenience this momentum is

label as p.

The benefit of adopting H-parity boundary condition is that it does not require generating

new gauge configurations. This is because H-parity is equivalent to applying the following phase

transformation

ψ(x)→ eip·xψ(x). (177)

A fermion field redefinition in (20) keeps the action unchanged while the measurement function, or

the integrand, of the path integral is changed to

ψ(x1)ψ̄(x2)→ ψ(x1)ψ̄(x2)e
−ip·x1e+ip·x2 . (178)

As a result the gauge field configuration can be reused while the measurement forms acquire addi-
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tional phase factors. Since H-parity is applied on the down quark its propagator is calculated with

cosine-wall source,

Sd(x, t1 ← t2;p) = cos(p1y1) cos(p2y2) cos(p3y3)Sd(x, t1 ← y, t2). (179)

The use of cosine, instead of the e±ip1y1 form, averages over e+ip1y1 and e−ip1y1 in one propagator

and reduces the number of expensive inversion needed to be performed [33]. At the location of the

sink additional phase factors are needed before contractions are summed over. The π+π+ to π+π+

correlator, for example, is constructed as

Cππ(t1, t2) = ⟨[d̄γ5ud̄γ5u](t2)[ūγ5dūγ5d](t1)⟩ = 2 · (trace-trace term)− 2 · (trace term). (180)

(trace-trace term) =
∑
x,y

tr
[
Su(t2 → t1)S

†
d(x, t1 ← t2;p)e

+ip·x
]
·tr

[
Su(t2 → t1)S

†
d(y, t1 ← t2;p)e

−ip·y
]
,

(181)

(trace term) =
∑
x,y

tr
[
Su(t2 → t1)S

†
d(x, t1 ← t2;p)e

+ip·x · Su(t2 → t1)S
†
d(y, t1 ← t2;p)e

−ip·y
]
,

(182)

Compared to the usual correlator with periodic boundary condition in all spatial directions it bears

with it a factor of 1/2ntw :

cos(p1y1) cos(p2y2) cos(p3y3) cos(p1x1) cos(p2x2) cos(p3x3) = (183)
1

22ntw

∑
±
e±ip1(x1−y1)e±ip2(x2−y2)e±ip3(x3−y3) + · · · (184)

In other words the cosine-wall source already sums over terms with all possible combinations of

±π/L in each twisted spatial direction with total momentum of zero (e.g. the summation over ±).

There are 2ntw terms of this kind. The terms with non-zero momentum are annihilated at the sinks

with the above phase choice. The factor of 1/22ntw in front of the summation sign comes from the

2’s in cosx = (eix + e−ix)/2. Therefore the overall factor is

1

22ntw
· 2ntw =

1

2ntw
. (185)

This numerical factor will be useful for the fitting form of the K → ππ decay amplitude.
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It is possible to twist an arbitrary number of spatial directions but in practice the number of

twists are chosen to make the ground state energy of the ππ state close to the kaon state thus

making the measured matrix elements measured close to being on shell.

4.4.4 Measurements of the Matrix Elements

One of the major difficulties of measuring the K → ππ decay matrix element in the continuum and

infinite volume limit is how to extract it from Euclidean correlation functions measured on a lattice

with finite volume: there is no apparent or simple relationship between these two for the desired

ππ final state. For a single particle final state it is shown that the finite volume effect vanishes

exponentially with e−mπL, which is the reason why this problem does not draw much tension when

measuring the basic quantities or BK . In [35] the needed relationship is derived as

|A|2= 8π

[
q
∂ϕ

∂q
+ k

∂δ0
∂k

]
k=kπ

(
mKE

2
ππ

k3π

)
|M |2. (186)

Here A is the decay amplitude in infinite volume and M is the matrix element measured on a

finite volume lattice. δ0 is the ππ s-wave scattering phase shift and kπ is the center of mass pion

momentum for the ππ we are calculating,

kπ =
1

2

√
E2

ππ − 4m2
π, (187)

nπ − δ0(k) = ϕ(q), q =
kL

2π
, (188)

where ϕ(q) is a mathematical function defined as

tanϕ(q) = − π3/2q

Zd
00(1; q

2)
, ϕ(0) = 0 (189)

and the function Zd
00(1; q

2) is to be calculated according to (A8) of [36] with d indicates the twisted

spatial directions14. On the other hand in order to evaluate ∂δ0/∂k a cubic ansatz is used to

14Technically speaking in that formula d indicates the total momentum of the ππ state, which is not the case for
us: our ππ final state always has zero total momentum. We, however, has an anti-periodic boundary condition in
some of the directions, which requires to sum over the modes that satisfies it in (A1) of [36] (e.g. d = (1/2, 1/2, 0)

indicates the x and y directions are twisted) and with γ̂ = 1. Therefore effectively (A8) is used in our case with a
different interpretation for d.
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parametrize δ0(k),

δ0(k) = a0k + a1k
3. (190)

To summarize, in order to calculate the factor in (186) the following steps are taken: for each

spatial boundary condition,

1. kπ is calculated based on the corresponding Eππ with (187).

2. The phase shift δ0(k = kπ) and q is calculated with kπ using (188).

3. The q∂ϕ/∂q term in (186) is calculated.

4. a0 and a1 are fitted with all available k’s and their corresponding δ0(k)’s. With a0 and a1

the k∂δ0/∂k term in (186) is calculated.

This numerical factor is usually referred to as the Lüscher-Lellouch (LL) factor

√
LL =

√
8π

[
q
∂ϕ

∂q
+ k

∂δ0
∂k

]
k=kπ

(
mKE2

ππ

k3π

)
. (191)

4.5 Fitting Strategy

The kaon correlator is constructed and fitted as

CK(t1, t2) = ⟨[ūγ5s](t2)[s̄γ5u](t1)⟩ → |ZK |2
(
e−mK∆t + e−mK(T−∆t)

)
, ∆t = t2 − t1. (192)

The ππ correlator is constructed in (180) and is fitted as

Cππ(t2, t1)→
1

2ntw
|Zππ|2

[
e−Eππ∆t + e−Eππ(T−∆t) + C

]
. (193)

The constant C in the fitting form accounts for all the around world effects and the additional

factor 1
2ntw comes from the source we use for the down quark. An new ratio method is used in

order to reduce the noise in the extraction of the ππ state. The ππ correlator is combined with the

π correlator to form the following ratio:

Rππ(t) ≡
∂tCππ

∂tC2
π

=
Z2
ππEππ

2Z4
πmπ

e−∆ππT/2
[
cosh(∆ππ t̂) + sinh(∆ππ t̂) coth(2mπ t̂)

]
, (194)

72



where t̂ = T/2− t.

The K → ππ correlator is constructed as the following. For a four-quark operator with spin

structure Γ1 and Γ2 the contractions are calculated as

O[Γ1,Γ2; diag](t) =
∑
x

[s̄α(x, t)Γ1dα(x, t)][ūβ(x, t)Γ2dβ(x, t)] (195)

O[Γ1,Γ2;mix](t) =
∑
x

[s̄α(x, t)Γ1dβ(x, t)][ūα(x, t)Γ2dβ(x, t)] (196)

The matrix element

CΓ1,Γ2;diag ≡ ⟨K(t1)|O[Γ1,Γ2; diag](t)|ππ(t2)⟩ (197)

=
∑
x

⟨0|ū(t1)γ5s(t1)[s̄α(x, t)Γ1dα(x, t)][ūβ(x, t)Γ2dβ(x, t)]d̄(t2)γ5u(t2)d̄(t2)γ5u(t2)|0⟩ (198)

=
∑
x

trsc [p1Γ1] trsc [p2Γ2]− trsc [p1Γ1p2Γ2], (199)

CΓ1,Γ2;mix ≡ ⟨K(t1)|O[Γ1,Γ2;mix](t)|ππ(t2)⟩ (200)

=
∑
x

⟨0|ū(t1)γ5s(t1)[s̄α(x, t)Γ1dβ(x, t)][ūβ(x, t)Γ2dα(x, t)]d̄(t2)γ5u(t2)d̄(t2)γ5u(t2)|0⟩ (201)

=
∑
x

trc [ trs [p1Γ1] trs [p2Γ2]]− trs [ trc [p1Γ1] trc [p2Γ2]]. (202)

where

p1 = Sd(x, t← t2)γ5Su(t2 ← t1)γ5Ss(t1 ← x, t), (203)

p2 = Sd(x, t← t2)γ5Su(t2 ← x, t). (204)

For the three operators in (169)-(171) the correlators are calculated with plugging in the corre-

sponding Γ1 and Γ2. The fitting form is15

CK→ππ,j(t1, t, t2)→
1

2ntw
|ZK ||Zππ|M lat

j e−mK(t1−t)e−Eππ(t−t2). (205)

15Compared to the fitting for BK the volume factor V does not appear here since in [35] the states are normalized
to unity instead of ⟨n|n⟩ = 1

2EnV
.
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With all the numerical factors introduced in here the physical ∆I = 2, K → ππ amplitude A2

is

√
2a3A2 =

GF√
2
VudV

∗
us ·

√
3

2︸︷︷︸
∆I3=3/2

·
[

1

πq3/2

√
q
∂ϕ

∂q
+ k

∂δ

∂k

√
mKEππL

3/2

]
J︸ ︷︷ ︸√

LL

·
∑
ij

Ci(µ)Zij(µ)

[
M lat

j

]
J

, (206)

where J is jackknife index and i, j are operator indices. Ci(µ) are the Wilson coefficients. a, A2 and

GF have units of GeV−1, GeV and GeV−2, respectively, and all other quantities are dimentionless.

4.5.1 Non-perturbative Renormalization

The structure of the K → ππ operators is very similar to the operators in the BSM ∆S = 2

operators. If we follow the same NPR procedures and carries out the same calculations in (129)

the contractions of the vertices are exactly the same except without the factors of 2’s,

2 ·


Λ[Q

∆I3=3/2
(27,1) ]

Λ[Q(8,8),unmix]

Λ[Q(8,8),mix]


K→ππ

parity even
=


Λ[V V +AA]

Λ[V V −AA]unmix

Λ[V V −AA]mix


∆S=2

. (207)

The Λ[V V −AA]mix term can be rewritten using the Fiertz identity,


[V V +AA]

[V V −AA]unmix

[V V −AA]mix


∆S=2

=


Q1 ≡ [V V +AA]

Q2 ≡ [V V −AA]unmix

−2Q3 ≡ −2[SS − PP ]unmix


∆S=2

. (208)

Therefore the renormalization conversion factors previously calculated for BK can be reused with

the following modification:

ZK→ππ =


Z∆S=2
11

Z∆S=2
22 −1

2Z
∆S=2
23

−2Z∆S=2
32 Z∆S=2

33

 . (209)

Note that in this case there is no Z2
A factor in the denominator.
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4.5.2 ππ Results

We show the results for ππ part of the measurements, where results from both the ratio method

and the more conventional direct fitting are included.

Observable Fit error %

amπ 0.13993(35) 0.25

amK 0.50425(49) 0.10

→ ntw = 3

aEI=2
ππ [R] 0.5634(40) 0.72

aEI=2
ππ [C] 0.5511(54) 0.98

a∆I=2
ππ 0.2836(40) 1.39

δI=2
0 (p) −14.5(19) 12.94
√

LL 30.00(13) 0.42

→ ntw = 2

aEI=2
ππ [R] 0.4768(17) 0.36

aEI=2
ππ [C] 0.475(11) 2.25

a∆I=2
ππ 0.1969(16) 0.82

δI=2
0 (p) −8.6(11) 12.75
√

LL 37.91(13) 0.33

→ ntw = 0

aEI=2
ππ [R] 0.28221(70) 0.25

aEI=2
ππ [C] 0.2809(47) 1.68

a∆I=2
ππ 0.002351(91) 3.87

δI=2
0 (p) −0.363(21) 5.65
√

LL 45.1(48) 10.71

Table 16: Spectrum from 58 AMA measurements [1000..2140..20], with no binning. The LL factor is calcu-

lated by fitting δ∆I=2
0 (p) = a1p+ a3p

3.

Both the ratio (R) and the conventional method (C) are used to extract the ππ state.
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Figure 24: Effective mass plot for Rππ with ntw = 3.
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Figure 25: Effective mass plot for Eππ with ntw = 3.
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Figure 26: Effective mass plot for Rππ with ntw = 2.
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Figure 27: Effective mass plot for Eππ with ntw = 2.
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Figure 28: Effective mass plot for Rππ with ntw = 0.
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Figure 29: Effective mass plot for Eππ with ntw = 0.

4.5.3 K → ππ Results

In table 17 we show the results from measuring the relevant matrix elements for A2 with different

number of twists and the final result for A2 is shown in table 18. Since the Eππ from ntw = 2 and

ntw = 3 are both different from mK we interpolate A2 with physical kinematics (where mK = Eππ)

with an linear anzatz in E2
ππ in figure 30. Our final result for A2 on the 24ID(β = 1.633) is

Re[A2] = 1.508(8)stat.(50)NPR × 10−8 GeV, [24ID(β = 1.633), this work] (210)
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Im[A2] = −5.77(13)stat.(43)NPR × 10−13 GeV. [24ID(β = 1.633), this work] (211)

Again for NPR the central value is taken from the (/q, /q) scheme and the difference between (/q, /q)

and (γµ, γµ) is taken as the systematic error from our NPR procedure.

Observable M lat Fit error %

→ ntw = 3

(27, 1) 0.000924(20) 2.15

(8, 8) mixed 0.00944(20) 2.13

(8, 8) unmixed 0.03257(69) 2.12

→ ntw = 2

(27, 1) 0.0008595(49) 0.56

(8, 8) mixed 0.011594(58) 0.50

(8, 8) unmixed 0.03909(20) 0.51

→ ntw = 0

(27, 1) 0.0007372(20) 0.27

(8, 8) mixed 0.025405(81) 0.32

(8, 8) unmixed 0.08211(26) 0.32

Table 17: Spectrum from 58 AMA measurements [1000..2140..20], with no binning.

ntw amK aEI=2
ππ Re[A2][10

−8 GeV] Im[A2][10
−13 GeV]

3 0.50425(49) 0.5634(40) 1.7125(68)stat.(575)NPR −5.27(15)stat.(41)NPR

2 0.50425(49) 0.4768(17) 1.4206(57)stat.(476)NPR −5.98(16)stat.(45)NPR

0 0.50425(49) 0.28221(70) 0.7132(39)stat.(233)NPR −8.32(20)stat.(58)NPR

∗ 0.50425(49) amK 1.5079(80)stat.(505)NPR −5.77(13)stat.(43)NPR

Table 18: NPR is done in MS, (/q, /q) scheme and µ = 3 GeV. a−1 = 1.0083 GeV. The NPR error is taken as

the difference between (/q, /q) and (γµ, γµ) scheme. ∗ is the result from linear extrapolation in E2
ππ to physical

kinematics.
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Figure 30: Interpolation to physical kinematics.

In addition the a2 dependence of A2 is plotted in figure 31 and 32. The continuum limit value

is quoted from [33] where A2 is measured from a continuum extrapolation between the 48I and 64I

lattices:

Re[A2] = 1.50(4)stat.(14)NPR × 10−8 GeV, [continuum limit] (212)

Im[A2] = −6.99(20)stat.(84)NPR × 10−13 GeV. [continuum limit] (213)

The 32ID(β = 1.75) value is quoted from [37]:

Re[A2] = 1.381(46)stat.(258)syst. × 10−8 GeV, [32ID(β = 1.75), no interp. to physical kinematics]

(214)

Im[A2] = −6.54(46)stat.(120)syst. × 10−13 GeV. [32ID(β = 1.75), no interp. to physical kinematics]

(215)

These values, however, have not been interpolated to the physical kinematics: the error due to

unphysical kinematics is included in the systematic (syst.) error. With the results measured on

the 24ID(β = 1.633), in this work, these quoted 32ID(β = 1.75) results are corrected as follows:

∆[32ID] = ∆[24ID] ·
(m2

K − E2
ππ)[32ID]

(m2
K − E2

ππ)[24ID]
, (216)

where ∆ is the difference between the A2 measured with ntw = 2 and the A2 that has been
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interpolated to physical kinematics,

∆[lat] = A2[ntw = 2, lat]−A2[physical kinematics, lat], lat = 24ID/32ID. (217)

Re[A2] = 1.445(46)stat.(258)syst. × 10−8 GeV, [32ID(β = 1.75), corrected] (218)

Im[A2] = −6.39(46)stat.(120)syst. × 10−13 GeV. [32ID(β = 1.75), corrected] (219)

The error bars shown in figure 31 and 32 only include statistical errors (does not include

systematic errors).
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Figure 31: a2 dependence of Re[A2]. The error bars shown are statistical only.
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Figure 32: a2 dependence of Im[A2]. The error bars shown are statistical only.

4.6 Conclusion

Based on the a2 dependence plots of BK and A2, figure 22, figure 31 and figure 32, even only

considering the statistical errors, neither BK nor A2 show the presence of a significant a4 term

in their continuum limit extrapolation: given the level of statistical error for these two quantities

shown in this work, the simple analytic form of (109) is still enough to capture the their behavior

running towards the a = 0 limit.

This linearity of the a2 dependence (with the absence of a large a4 dependence) of BK and A2

on the 24ID(β = 1.633) and the 32ID(β = 1.75) lattices, on top of the similar behaviors shown in

the basic meson spectrums, makes these coarse ID lattices ideal for making cheap measurements

of low energy physics while having finite lattice spacing errors under control to give continuum

predictions.

Specifically for the ∆I = 1/2 K → ππ amplitude A0 and the corresponding ϵ′/ϵ, this linearity

makes it reasonable to perform a linear continuum limit extrapolation in a2 with results measured

on as few as two ID lattices with different lattice spacings, which greatly reduces the amount of

computational resources needed.
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5 The Multisplitting Preconditioned Conjugate Gradient Algo-

rithm

5.1 Overview of the Problem

The cost of lattice QCD simulations with dynamical fermions is dominated by the solution of the

Dirac equation in both the evolution phase and the measurement phase. The Dirac matrix, which is

the gauge field dependent discretization of the fermion part of the continuous QCD action, is a large

sparse linear system and inverting the corresponding Dirac equation poses tremendous numerical

difficulty. For domain wall fermions the conjugate gradient (CG) algorithm proves to be a stable

algorithm to solve the Dirac equation but the convergence rate is limited by the condition number

of the Dirac matrix, which is typically large in simulations with physical pion mass.

For the measurement phase various eigen-space methods, including EigCG [38] and the im-

plicitly restarted Lanczos algorithm with Chebyshev polynomial preconditioning [39], have been

successfully developed to speed up the inversion. Low-lying eigenvectors (eigenvectors correspond-

ing to small eigenvalues) of the Dirac matrix are generated and the previously large condition

number is effectively reduced to improve the convergence rate of CG. In this phase for one gauge

field configuration typically a large number of Dirac equations with the same Dirac matrix but

different right hand sides (RHS, or sources) are solved. The large number of sources amortizes the

cost of eigenvector generation and the total computation time is reduced.

This is, however, not the case for the evolution phase. During a typical hybrid Monte Carlo

evolution of a gauge field as few as one Dirac equation is solved for a single Dirac matrix. This

renders it not worthwhile to generate the low-lying eigenvectors for a particular Dirac matrix.

The development of supercomputers has greatly increased the number of floating point op-

erations per second (flops) that can be performed on each processor. Modern lattice simulations

usually divide the gauge field and pseudo-fermion fields into sub-fields that are stored and computed

locally on different processors of a large parallel computer. This increases the total theoretical float-

ing point operation capability. Inter-processor data transfer (communication), however, is needed

to perform coherent operations, including the Dirac matrix multiplication. Computations locally

performed on one processor require contents of the sub-fields that are stored and updated on other
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processors. For a specific operation if the rate of communication can not keep up with the local

flops then communication becomes the bottleneck and the high flops are not utilized.

For the standard CG solver with DWF one Dirac matrix multiplication is performed for each

iteration. The precise requirement varies with the size of the lattice and processor grid, but roughly

this requires one byte of communication for each local floating point operation. On some of the

newest machines, for example the SUMMIT machine at Oak Ridge National Laboratory (ORNL),

inter-processor communication speed is much less than the requirement set by their high local

floating point operation capability.

In [40] a domain decomposition algorithm is proposed for solving the Dirac equation with Wilson

fermions. Local inversions are performed on two halves of the lattice iteratively. However, attempts

to apply the same or similar algorithms to the inversion of the DWF Dirac equation have not been

successful.

In this work we report on our investigation into a preconditioned CG solver for solving the

DWF Dirac equation for the ensemble generation phase of the simulation. We find a precondi-

tioner that decreases the number of CG iterations needed for a solution, while increasing the local

computation required per iteration, thus changing the balance of local computation to off-processor

communication.

5.2 The Conjugate Gradient Algorithm

The conjugate gradient (CG) algorithm is a Krylov space iterative method to solve linear equations

Ax = b, where A is a hermitian and positive definite matrix. The solution vector is updated

in every iteration to minimize the residual in the newly expanded Krylov space. Here we show

the original algorithm first. The convergence rate of the CG algorithm largely depends on the

conditioned number κ, which is the ratio between the largest eigenvalue and smallest eigenvalue,

of the underlying matrix of interest. A widely quoted result16 on the upper bound of the residual

after k iterations is

∥b−Axk∥A≤ 2r−k∥b−Ax0∥A, (220)

16For example see [41].
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Algorithm 1 Conjugate Gradient Ax = b

r0 = b−Ax0
p0 = r0

k = 0

while have not converged do

αk = ⟨rk, rk⟩/⟨pk, Apk⟩

xk+1 = xk + αkpk

rk+1 = rk − αkApk

βk = ⟨rk+1, rk+1⟩/⟨rk, rk⟩

pk+1 = rk+1 + βkpk

k = k + 1

end while

where ∥x∥2A= ⟨x,Ax⟩ and r is (lower bound of) the convergence rate,

r =

√
κ(A) + 1√
κ(A)− 1

κ(A)≫1
≃ 1 +

2√
κ(A)

. (221)

In practice this lower bound is usually too pessimistic and is only conceptually useful. The spectrum

structure in the middle of the eigenvalue range does affect the actual convergence rate [41]. Very

few theoretical studies, however, have been done on this topic.

5.2.1 The Preconditioned Conjugate Gradient Algorithm

One way to reduce the condition number and increase the convergence rate is to precondition

the original matrix A with a preconditioner Apre. The idea is to find a preconditioning matrix

(preconditioner) Apre that is easy to invert while making the combination AA−1pre (or A−1preA) have

a smaller condition number than A’s.17 If the preconditioner Apre is also hermitian and positive

definite we have the following preconditioned conjugate gradient algorithm.

17The lattice QCD community uses the word precondition to describe a number of different things. A nonexclusive
list includes the general preconditioning to reduce the condition number and the even-odd preconditioning, where a
lattice operator is decomposed according to sites with even or odd coordinates (see section 1.2.2 for further details).
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Algorithm 2 Preconditioned Conjugate Gradient Ax = b

r0 = b−Ax0
z0 =M−1r0

p0 = z0

k = 0

while have not converged do

αk = ⟨rk, zk⟩/⟨pk, Apk⟩

xk+1 = xk + αkpk

rk+1 = rk − αkApk

zk+1 = A−1prerk+1

βk = ⟨zk+1, rk+1⟩/⟨zk, rk⟩

pk+1 = zk+1 + βkpk

k = k + 1

end while

For later convenience and consistency the preconditioning inversion step zk+1 = A−1prerk+1 will

be referred to as the inner inversion, as compared to the outer inversion. The iterations of the

preconditioned CG will be called outer iterations. If the inner inversion is performed also with an

iterative method, say, an unpreconditioned CG, its iterations are to be called inner iterations.

Note that the above preconditioned CG algorithm requires the preconditioner to be fixed.

In practice this is usually a requirement too expensive to satisfy. On one hand for inversions

performed on computers, depending on the underlying floating point number representation, finite

floating point precision compromises exact arithmetics. On the other hand, the application of A−1pre

is usually itself an inversion problem. Requiring this inner inversion to be performed to very high

precision, if not infinite precision, amortizes the possible speed up gained from preconditioning the

linear equation solving in the first place.

An inexact preconditioned conjugate gradient method with inner-outer iterations is proposed

with its convergence proved in [42]. The inner inversion is performed using CG to a certain precision

while the convergence is still maintained. The algorithm stays unchanged except the calculation of

βk, which is marked with blue in algorithm 2, is changed to

βk = ⟨zk+1, rk+1 − rk⟩/⟨zk, rk⟩. (222)
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In the literature the above formula for βk is often referred as the Polak-Ribière version while the

original βk = ⟨zk+1, rk+1⟩/⟨zk, rk⟩ is referred as the Fletcher-Reeves version.

5.2.2 Mixed Precision Solver and Residual Replacement Strategies

When solving the Dirac equation we want the solution vector in higher precision while lower preci-

sion arithmetics gives higher computation flops and memory traffic bandwidth. A combination of

these two, whose idea is to perform most of the iterations using lower precision while make higher

precision corrections at the right moments, gives precise the solution more quickly.

It is well known that even in higher precision the accumulated residual, accumulated through

steps in red in algorithm 2, differs from the true residual rn = b−Axn significantly due to the floating

point rounding errors occur during the accumulations. Mixed precisions makes things worse: the

deviation of accumulated residual from the true residual in addition receives contribution from

the lower precision arithmetic. Over the course of the iterations corrections with higher precision

arithmetic is needed. This correction is referred to as a reliable update, defect correlation or residual

replacement in the literature.

The non-trivial aspect of this is when to make the correlation. Making corrections with higher

precision more frequently than needed amortizes the speed up gained from using lower precision

while making corrections less frequently than needed compromises the convergence due to the

inexact nature of the lower precision.

Naive conditions include performing the correction whenever the residual is reduced by a con-

stant factor from the last corrected residual or the initial residual, or simply always performing

correction after a fixed number of lower precision iterations have been executed. A more sophisti-

cated approach, however, is to dynamically estimate the accumulated floating point error during

the lower precision iterations and perform the higher precision correlation whenever this estimated

error is larger than a constant threshold [43]. For (preconditioned) CG the floating point error

accumulated dn during the lower precision iterations can be simplified as

dk = dk−1 + ϵl (∥A∥·∥xk∥+∥rk∥) (223)

and a higher precision correlation is made if dk >
√
ϵl∥rk∥.
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5.3 The Numerical Situation

5.3.1 Hardware Specifications of SUMMIT

The SUMMIT machine at Oak Ridge National Laboratory (ORNL) is a pre-exascale supercomputer

with 200 peta-flops of peak double precision computation capability. Its flops are concentrated on

the 27, 648 NVIDIA Tesla V100-SXM2-16GB graphic processor units (GPUs) distributed on 4, 608

compute nodes of the machine (6 GPUs per node).18 Specifications of each of the Tesla V100 GPUs

that will be useful in this thesis are listed in table 19.

Double Precision Performance 7.8 tera-flops

Single Precision Performance 15.7 tera-flops

Half Precision Tensor Core Performance 125 tera-flops

(Global) Memory Bandwidth 900 GB/sec

Table 19: Relevant specifications of the Tesla V100 GPU.

Because MDWF requires more flops to solve, due to its fifth dimension, the pseudo-fermion

fields are usually spread out to more processors, shrinking the local 4d volume, increasing the

surface area to volume ratio on each processor and requiring more inter-processor communications.

5.3.2 Target Lattice Generation

We first summarize the parameters of the 96I lattice whose configurations we are currently gen-

erating on SUMMIT in table 20. It is designed to be a 2+1 flavor lattice with Iwasaki gauge

action, a−1 ∼ 2.8 GeV and physical quark mass, which will serve as a solid data point on the finite

lattice spacing a2 extrapolation curve together with the 48I and 64I lattices with lattice spacings

of a−1 ∼ 1.73 GeV and a−1 ∼ 2.36 GeV. The larger volume puts the finite volume error under

control.

18See https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide/.
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size 963 × 128× 12

β 2.31

aml 0.00054

amh 0.02132

Möbius scale α 2.0

Table 20: Running parameters of the target lattice generation on SUMMIT.

The evolution time is dominated by the Dirac matrix solving for the light and heavy quark de-

terminants, which accounts for over 90% of the total time. The detailed evolution timing, including

the strategies and optimizations described in this work, will be given in the result section.

5.4 The Theory

5.4.1 The Multisplitting Algorithm

In [44] a multisplitting algorithm is proposed for solving generic large linear systems distributed

across a parallel computer. Compared to the domain decomposition algorithm in [40], it does

not require checkerboarding. Before each iteration the boundary content of the solution field on

each of the processors is communicated to its neighbors. During each iteration, the algorithm uses

this communicated neighboring solution field as the Dirichlet boundary condition to perform the

inversion of a local matrix on each processor. After each iteration, the updated boundary content

is again communicated to prepare for the next iteration.
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Figure 33: Decomposition of the matrix A, the solution vector x and the right-hand-side(RHS) vector b into

local parts on each processor.

Following [45], suppose the equation to be solved is Ax = b. For a particular processor the

matrix A and vectors x and b are decomposed according to figure 33, where xs and bs are the part

that is locally stored on this processor. On each processor the original equation turns into

Asxs +Alxl +Arxr = bs. (224)

The Alxl + Arxr part involves off-processor content and is calculated before each iteration via

communication. As is the part of the matrix that requires only the locally stored part of x on a

certain processor s, i.e. xs. Then for each iteration the algorithm solves the equation

Asxs = bs −Alxl −Arxr (225)

locally for xs on this processor. The updated solution xs will then be communicated to the neigh-

boring processors. This whole procedure can be done concurrently on all processors once the

communication work to calculate Alxl +Arxr is done.
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5.4.2 Further Domain Wall Fermion Simulation Strategies

Modern numerical implementations of DWF utilize the fact that only the matrix elements that

connect the even sites to odd sites and those connecting odd sites to even sites (Meo and Meo in

equation (29)) depend the gauge field. The matrix entries that connect even sites to even sites

and those connect odd sites to odd sites (Mee and Moo in equation (29)) are constant, which makes

them easy to invert explicitly. Here the even-odd parity is defined by the 4 dimensional coordinate

of a site:

parity ≡ (x+ y + z + t) mod 2. (226)

In the 4 dimensional even-odd preconditioning form the Möbius DWF Dirac equation can be written

as,

Mee Meo

Moe Moo


ψe

ψo

 =

Mee Meo

0 Moo


1−M−1ee MeoM

−1
oo Moe 0

0 1


 1 0

M−1oo Moe 1


ψe

ψo

 =

ϕe
ϕo

 .

(227)

This is equivalent to solving the following even-odd preconditioned Dirac equation,

Dprecψe = ϕ̂e, Dprec ≡ 1−M−1ee MeoM
−1
oo Moe, ϕ̂e ≡M−1ee (ϕe −MeoM

−1
oo ϕo) (228)

and with ψe the odd parity solution ψo can be trivially obtained by

ψo =M−1oo (ϕo −Moeψe). (229)

Here Meo/oe includes the Wilson hopping term Dw[x,y] that connects sites to their nearest 4 dimen-

sional space-time neighbors,

Moe/eo = −κbDw[x,y]Mϕ, Dw[x,y] ≡
∑
µ

[
(1 + γµ)U

†
x−µ̂,µδx−µ̂,y + (1− γµ)U †x,µδx+µ̂,y

]
. (230)

The CG algorithm requires the matrix to be hermitian and positive definite. A common practice

to satisfy this requirement is to multiply both sides of (228) with D†prec and solve the equation with
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the normal operator D†precDprec and the new RHS D†precϕ̂e instead,

D†precDprecψe = D†precϕ̂e. (231)

5.4.3 Dirichlet Boundary Condition on the 4-Hop Normal Operator

There are four Wilson hopping terms, one in each Meo/oe, in the normal operator D†precDprec, which

is the underlying matrix A to be solved,

A = D†precDprec = [1−M−1ee MeoM
−1
oo Moe]

†[1−M−1ee MeoM
−1
oo Moe]. (232)

To apply the multisplitting algorithm to equation (231) Dirichlet boundary conditions are to be

enforced on the normal operator D†precDprec, i.e. local parts (the As in (224)) of this normal operator

needs to be constructed. As the vector content is distributed across the processors according to

its 4 dimensional space-time location, the local parts of D†precDprec includes snake terms that hop

out of the boundary and hop back in as the various components in (232) are evaluated. Figure 34

illustrates this and gives some examples of the snake terms. These terms are truncated if Dirichlet

boundary conditions are enforced on each of the four Meo/oe hopping terms sequentially. Our

simulation results show that the inclusion of these snake terms is crucial to the convergence when

applying the multisplitting algorithm to solve the Dirac equation.

Figure 34: The normal operator D†
precDprec has as many as 4 Wilson hopping terms. Enforcing Dirichlet

boundary condition on it requires the inclusion of the snake terms, e.g. the black arrows.
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The importance of these snake terms can be understood from another prospective. Applying

the local part of the normal operator (As of equation (225)) without truncations to local parts

of the vector x on each processor (xs of equation (225)) is equivalent to applying the full normal

operator A to the extended vector x̂s with the same local content with xs on this processor s but

zero everywhere else, and then extracting the local part, i.e. ([•]s means extracting the local part

on s)

Asxs = [Ax̂s]s, x̂s =


xs, on processor s,

0, on processors other than s.

(233)

Thus the local operations share the same eigenspace structure with the normal operator. For

example if A has a eigenspace structure of {λ, vλ}

[Ax̂s]s = Asxs = λ⟨vλ, xs⟩[vλ]s (234)

The low lying components of the local operation are suppressed in the same way as the full operation

with small λ’s. If, however, the snake terms are truncated this equivalence of eigenspace structure

is broken and the convergence is jeopardized.

5.4.4 Multisplitting Algorithm as a Preconditioner of CG

In [40] to achieve faster convergence the domain decomposition algorithm is eventually used as

a preconditioner of the generalized conjugate residual (GCR) method. In this work we use the

multisplitting algorithm as a preconditioner of CG. While paying the price of performing one inner

inversion, which does not need communication, for each outer iteration, the outer iteration count is

reduced by the preconditioning. Given that communication is much more costly than local memory

bandwidth and computation under the current numerical situation such trade off is able to bring

an overall speed up.

Now for the preconditioning step in the preconditioned CG (gray part in algorithm 2) we use

the multisplitting algorithm to solve for zk+1 in

Azk+1 = rk+1. (235)
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To avoid inter-processor communication, a zero initial guess (xl = xr = 0) is used in (225) and only

the first iteration is performed. With rk+1 as the RHS and zk+1 the solution,

Asxs = bs −Alxl −Arxr → Aszk+1,s = rk+1,s. (236)

This is equivalent to using the local part of the matrix A, As, on each processor as the preconditioner

Apre in the preconditioned CG,

Apre =
⊕
s

As, s = processor index. (237)

The local nature of As makes it possible to perform the preconditioning step concurrently on all the

processors without communication. We refer to this as multisplitting preconditioned CG (MSPCG).

We note that while the multisplitting algorithm can split the general matrix A in a variety

of ways, the splitting presented here, used as a preconditioner in CG, makes it equivalent to the

additive Schwarz algorithm, which has been used for the Dirac equation inversion for the fermions

[46, 47]. We use the name MSPCG, as it is through the process of applying the multisplitting

algorithm to the DWF Dirac equation that we realize the necessity of including the snake terms in

the local matrix.

5.5 Implementation Details

MSPCG reduces the amount of communication needed between processors by reducing the number

of outer iterations at the expense of performing inner inversions. Comparing to plain CG it changes

the demand for network bandwidth, GPU memory bandwidth and GPU compute flops. Being able

to performing fast inner inversions is crucial to achieving an overall time-to-solution speed up since

expensive local solves amortize the speed up gained from communication reduction.

The inner inversions are performed with plain CG, whose cost is dominated by the local pre-

conditioner matrix multiplication (the inner dslash). In this section we detail the techniques used

to improve the inner dslash performance on the SUMMIT machine.

The production version of MSPCG, specifically targeting SUMMIT, is implemented within the

94



framework of QUDA19 [47], a library for performing calculations in lattice QCD on GPUs leveraging

NVIDIA’s CUDA platform.

In this section we detail several of the important aspects of the implementation of MSPCG as

well as the underlying technical motivation behind them.

5.5.1 The Original Hierarchy of Compute Flops, Memory and Network Bandwidth

Using CG to solve the Dirac equations without the preconditioning introduced in this work requires

one Dirac matrix multiplication per iteration. As an example if the the 96× 96× 96× 128 lattice

is distributed onto 6× 8× 8× 16 GPUs with one rank20 per GPU the local 4 dimensional-volume

is 8 × 12 × 12 × 12. The fifth dimension size is Ls = 12, the combined color-spin-complex (c-s-c)

has a size of 24 and to represent a half-precision floating point number we need (2+ 4/24) bytes21.

The size of the fermion vector needed to be read from and save to GPU memory for each

iteration is

8× 12× 12× 12︸ ︷︷ ︸
local 4-d vol.

× 12︸︷︷︸
Ls

× 24︸︷︷︸
c-s-c
× 2.17︸︷︷︸

(2+4/24) byte

× 2︸︷︷︸
r/w

× 4︸︷︷︸
4 hops

× 8 · 50%︸ ︷︷ ︸
stencils

= 276.4 MB. (238)

Note that this number already takes into account the kernel fusion that fuses the matrix multiplica-

tions in the fifth dimension into neighboring four dimensional hopping operations of (232). Details

of this fusion will be covered later. The last factor of 50% takes into account the approximate L2

cache hit rate.

Meanwhile the amount of data that needs to be transferred between different nodes for one

GPU is

8× 12× 12︸ ︷︷ ︸
face surface area

× 6︸︷︷︸
6 faces

× 12︸︷︷︸
Ls

× 24︸︷︷︸
c-s-c
× 2.17︸︷︷︸

(2+4/24) byte

× 1

2︸︷︷︸
spin proj.

× 2︸︷︷︸
→/←

× 4︸︷︷︸
4 hops

= 17.3 MB. (239)

A four dimensional hypercube has 8 faces but only 6 of them need inter-processor communication

19See https://github.com/lattice/quda.
20The term rank usually means the maximum software programing unit within which different threads share (CPU

and/or GPU) memory. Threads on different ranks needs to exchange data through communication.
21For half precision QUDA represents the floating point numbers with a 16-bit signed integer together with a

single precision floating point number that as the overall scale for the 24 numbers on a lattice site.
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since the ranks distributed in the first dimension are placed on the same node. The factor 1
2 comes

from spin projection in which the γ-matrices’ property of only being of rank-2 matrices is utilized.

For later discussions we also calculate the number of floating point operations (ops.) needed

8× 12× 12× 12︸ ︷︷ ︸
local 4-d vol.

× 12︸︷︷︸
Ls

× 24︸︷︷︸
c-s-c
×[2 · (3× 2)− 1︸ ︷︷ ︸

Mϕ

+8× 2 · (6× 2)− 1︸ ︷︷ ︸
Dw

+2 · (12× 2)− 1︸ ︷︷ ︸
M−1

5

]× 4︸︷︷︸
4 hops

= 3965 mega-ops.

(240)

In table 21 we compare the compute flops22 and the bandwidth we need (demand) to those we

have on SUMMIT (supply). Notes that this comparison is only on-paper: latencies of memory and

network transfers are not taken into account; GPU’s parallelization strategy is more complicated

than the over simplified picture represented by this table, which merely gives a proof-of-concept

illustration. It is, however, clear that the overall performance is almost completely limited by the

supply demand per iteration with plain CG

compute flops (fp32) 15.7 tera-flops 2166 mega-ops

memory bandwidth 900 GB/sec 276.4 MB

network bandwidth 8.3 GB/sec 17.3 MB

compute/memory 17.4 ops/byte 14.3 ops/byte (0.8×supply)

network/memory 0.009 0.062 (7.0×supply)

Table 21: Compute flops, memory and network bandwidth demand versus supply on SUMMIT.

network bandwidth. Any effort in performance improvement needs to be focusing on reducing

and/or hiding the communication overhead. One should, however, be aware that algorithmic

changes could result in the change of demand for compute flops and bandwidth and previously

insignificant part could become the dominant contributor to computational cost, which proves to

be the case in this work.

5.5.2 Capturing the Snake Terms

The first challenge even before all the later optimizations is how to implement the local precon-

ditioning matrix multiplication (the inner dslash) to effectively capture the snake terms. Our

22For half precision in QUDA the actual floating point computing part is still performed with single precision
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approach here is to pad the fermion fields so that the existing functions that performs the various

multiplications can be used with no or little modifications. There are several reasons why this

approach is chosen:

• Compared to writing new code to calculate the snake terms directly reusing the existing code

reduces the amount of coding needed to be done.

• This approach inherits the already optimized parallelizing strategy used by the existing func-

tions.

• Compared to calculating each of the 4-hop paths independently this approach calculates one

hop at a time and allows the later hops to used the results of the previous ones, which greatly

increases computation reuse.

As our strategy the fermion field is padded in both directions of each dimension by size of 2 and

the original field is placed at the center of the padded field while the padded region is initialized to

zero. The operators in equation (232) of the full normal operator are then applied to the padded

lattice vector sequentially with zero Dirichlet boundary condition on the padded boundary. The

center of the resulting vector thus includes the snake terms: their 4 hops are propagated through

the padded and center region. The padding size is chosen to be 2 since the result we want is the

vector content at the center. With only 4 hops, in order to go back to the center the snake terms

are only able to hop out of the original boundary by as far as 2. An illustration can be found in

figure 35.
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Figure 35: An illustration on using padded fermion field to capture the snake terms by applying the hopping

terms sequentially.

5.5.3 Kernel Fusion

A closer look at (232) gives the following series of operators.

A = D†precDprec =
[
1− κ2bM

†
ϕD
†
wM

−†
5 M †ϕD

†
wM

−†
5

][
1− κ2bM−15 DwMϕM

−1
5 DwMϕ

]
. (241)
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Mathematically the operators are matrices to be left multiplied on the vector sequentially; nu-

merically the operators are functions to be called to apply these multiplications; on the GPUs

the operators are implemented as kernels to be launched. Without diving into details of GPU

programming each of these kernels carries out these three steps:

1. Load the input vector from memory into the registers;

2. Perform computation with the data loaded in the registers;

3. Store the output vector from the registers to memory.

Skipping the [1 − ...][1 − ...] part in (241) for simplicity we have 12 operators/kernels to be

applied sequentially and input data of the kernels is exactly the output data of the ones right

before them. Instead of storing the vector all the way down to memory and then loading the very

same vector all the way up to the registers a better strategy is to keep all the data in cache to

avoid the memory traffic and latency from the repeated loading and storing. This cache reuse is

automatically done by the hardware but it is limited by the cache size: the lowest level L2 cache

size is 6 MB on a Tesla V100 while in our previous example the data in the vector has a size of

around 9 MB: the L2 cache is not large enough to hold all the data.

In this work more cache reuse is achieved by utilizing the structure of the matrices and the fact

that Tesla V100 has a programable L1 cache (called shared memory in NVIDIA’s terminology).

The Dw’s in (241) are matrices that hop in space-time dimensions (4d operator) and are diagonal

in the fifth dimension; the Mϕ’s and M−15 ’s in (241) are matrices that only operate in the fifth

dimension (5d operators) and are diagonal in the space-time dimensions. The vector is divided into

blocks according to its space-time coordinates. For each block the 4d operators are first applied

and the result are held in the L1 cache; for the 5d operators right after this what is held in the L1

cache is all they need for performing the computation due to their diagonality in the space-time

dimensions. Naturally the 4d and 5d operators/kernels are fused into one combined kernel. The size

of the block is chosen such that the size of the L1 cache is large enough to hold all the intermediate

data.

The kernel fusion approach outperforms the previous strategy for two reasons:

• The L1 cache, as a higher level cache than L2, has faster traffic and lower latency.
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• With cache reuse explicitly programed at the software level it is more consistent than relying

on run time hardware level cache reuse.

Thus instead of launching 12 kernels for the 12 matrices only 5 kernels are launched ([1−...][1−...]

part is again skipped for simplicity):

M †ϕD
†
w, M−†5 M †ϕD

†
w, M−†5 M−15 Dw, MϕM

−1
5 Dw, Mϕ. (242)

5.5.4 Changed Hierarchy

Before discussing further into the implementation details a review of the numerical situation is

needed to motivate the use of the tensor cores available on the Tesla V100 GPUs.

With the introduction of the preconditioning inversions in each CG iteration more local floating

point operations and local memory traffic is demanded. In our simulations typically 6 inner dslashes

are needed for the inner inversion; these matrix multiplications operate on the padded fermion field

and thus consume more flops and memory bandwidth than their non-padded counterparts. As an

illustration both the compute flops and memory bandwidth are estimated to increase by a factor

of 12. The updated supply-demand comparison is shown in table 22.

supply demand per iteration with plain CG demand per outer iteration with MSPCG

compute flops (fp32) 15.7 tera-flops 3965 mega-ops 3965× 12 mega-ops

memory bandwidth 900 GB/sec 276.4 MB 276.4× 12 MB

network bandwidth 8.3 GB/sec 17.3 MB 17.3 MB

compute/memory 17.4 ops/byte 14.3 ops/byte (0.8×supply) 14.3 ops/byte (0.8×supply)

network/memory 0.009 0.062 (7.0×supply) 0.005 (0.6×supply)

Table 22: Compute flops, memory and network bandwidth demand versus supply on SUMMIT with MSPCG.

The overall performance is no longer only limited by the network bandwidth: the compute flops

and memory bandwidth also get close to the hardware limits and consumes a considerable amount

of computing time.

5.5.5 Tensor Core

The M−15 operator in (241) is a dense matrix multiplication in the fifth dimension. Following the

kernel fusion strategy described earlier the input data is held in L1 cache (shared memory) before
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the matrix multiplication is applied: no memory loading is needed. On the other hand compute

flops become one of the bottlenecks of the overall performance of MSPCG, motivating us to use

the tensor cores available on the Tesla V100 GPUs to accelerate the M−15 operations.

The tensor cores used in this work perform matrix multiplication and accumulation of the form

D = AB + C at the hardware level intrinsically instead of performing the same operation with

the traditional column-row loops. These cores perform the multiplication with half precision23

and the accumulation with either half or single precision with a stunning peak performance of

125 tera-flops, as compared to that of the traditional single precision operations of 15.7 tera-flops.

The use of tensor cores fits well in the kernel fusion framework: it does not introduce additional

memory/cache management overhead. On the compute side it speeds up the 5d operation part of

the matrix multiplication by almost an order of magnitude.

The only overhead introduced by using tensor cores comes from the much narrower representa-

tion range of half precision (6.1×10−5 to 65504), compared to that of single precision (1.18×10−38

to 1.4 × 1045). The maximum absolute value of the all the numbers in the block is found and

the numbers need to be scaled accordingly to be representable in half precision before the tensor

core are used. After the matrix multiplication the numbers are scaled back before being stored to

memory as output. With highly parallelized reduction and scaling code this overhead is negligible

compared to the overall performance.

While the tensor cores are designed mostly to “accelerate large matrix operations, which are

at the heart of AI, and perform mixed-precision matrix multiply and accumulate calculations in

a single operation”24 we are able to use them, possibly for the first time in high performance

computing, in our simulation.

5.5.6 L1 Cache Management Design

“Lattice coding is simply index calculations.” – said someone who has done lots of lattice coding.

Turning lattice calculation ideas (brilliant or not) into correctly running code on a specific

hardware involves assigning data to different threads, retrieving the assigned data, performing the

desired calculation and finally storing the results back to memory. The whole process relies on a

23In this case half precision is the IEEE half precision standard, instead of the QUDA one.
24Quoted from https://www.nvidia.com/en-us/data-center/tensorcore/.

101

https://www.nvidia.com/en-us/data-center/tensorcore/


clear mapping between the physical indices in lattice QCD, including the four spatial dimensions,

the fifth dimension, spin, color, complex, and possibly the four directions for the gauge links, and

one single address location (machine index) in the data buffer.

Almost all code bases used in this work, either directly or indirectly, calculate the machine index

with the lexicographic order of a permutation of the physical indices. Usually the permutations are

simply called the order. One possible order, for example, from the slowest changing index to the

fastest changing index, is

• the four spatial dimensions, the fifth dimension, spin, color, complex.

The order can be very different depending on the code base, fermion formulation, collaboration

history and personal taste.

In this work for the kernel fusion and the later tensor core usage a separate mapping between

physical indices and the machine index on the programmable L1 cache is needed. For kernel fusion

any 1-on-1 mapping satisfies the demand but in order to use the tensor cores the fifth dimension

and the spin indices need to be separated from the other indices. The order we end up choosing is

the following,

• the four spatial dimensions, color, complex, the fifth dimension, spin.

Note that the four spatial dimensions here is only a subset of the entire four spatial dimension.

This order is illustrated in figure 36.
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pack all 5th dimension sites on threadIdx.x to this block (blockDim.y = Ls)

Distribute the 4d-spatial indices into blocks (blockDim.x)

threadIdx.x × color(3) × complex(2)

4d store

5d op.

Figure 36: Illustration of the L1 cache memory mapping between physical indices and the machine index.

The blockDim.x, threadIdx.x, blockDim.y, threadIdx.y are CUDA terminologies. See http://docs.

nvidia.com/cuda/cuda-c-programming-guide/index.html.

With this memory design the tensor core matrix multiplications are performed with the sub-

block multiplication fashion shown in figure 37.

=

M−1
5 , column major input vector, row major output vector, row major

pad to reduce bank conflict

Ls × spin

Ls × spin 4d-spatial × color × complex 4d-spatial × color × complex

×

tensor core: ×16

16

+ × + × =

Figure 37: Illustration of the way tensor core matrix multiplications are performed for the fifth dimension

operations.
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5.6 The Results

5.6.1 The Light Quark Sector

The multisplitting preconditioned CG is applied to solving the Dirac equations for the light quark

determinant in our target evolution run on SUMMIT.

Standard CG is used to perform the inner inversion. Instead of adopting a precision based stop-

ping condition, a fixed number of inner iterations, are performed for these preconditioning solves.

In table 23 the numbers of outer iterations and time-to-solution needed for the preconditioned CG

to converge are reported on the different number of SUMMIT nodes, together with the perfor-

mance achieved and the timing partition. The numbers of iterations to reach the same precision

with standard CG are also included for comparison.

With 6 inner iterations the preconditioned CG reduces the outer iteration count by a factor

of 3. More inner iterations reduce the outer iteration count more but the reduction saturates as

the inner iteration count increases: with large number of inner iterations the inner CG solves the

preconditioning inversion completely and no further numerical benefit can be exploited.

The preconditioned CG converges algorithmically if the preconditioner (Apre in algorithm 2) is

fixed and its inversions are performed exactly. In our case with as few as 6 inner iterations the

preconditioner is only solved to a very relaxed stopping condition (See figure 38) and effectively the

preconditioner becomes unfixed and inexact. While the convergence of inexact preconditioned CG

method with inner-outer iteration is proved in [42] our stopping condition is far more relaxed than

their convergence condition. This pessimism from the given convergence condition is mentioned in

[42] itself as well.

The CG inversion we perform includes a combination of inexact preconditioning and mixed

double (fp64) and half (fp16) precision. It is found that the use of the Polak-Ribière formula and

the more sophisticated reliable update scheme, both introduced in 5.2.1, is necessary to secure a

stable and smooth convergence of MSPCG. The residuals and iteration counts are plotted in figure

38 for the solve performed on 1024 SUMMIT nodes. In table 23 the strong scaling performance

data is given.
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nodes local volume solver inner iter. (outer) iter. r.u. performance/node time speed up

256 16 · 24 · 12 · 24

CG − 42133 471 4.66 486.3

1.10x

MSPCG 05 16903 195 1.56(01)/5.45(35)/37.29(53) 456.0

MSPCG 06 14860 173 1.56(01)/5.51(31)/37.60(58) 442.6

MSPCG 07 13787 161 1.56(01)/5.48(28)/37.49(60) 460.2

MSPCG 08 12922 151 1.56(01)/5.44(26)/37.55(63) 469.5

512 16 · 12 · 12 · 24

CG − 42427 474 3.85 296.6

1.13x

MSPCG 05 17625 203 1.26(01)/4.54(37)/36.21(52) 271.0

MSPCG 06 15425 179 1.27(01)/4.55(33)/36.26(57) 262.1

MSPCG 07 14409 168 1.26(01)/4.57(30)/36.39(60) 268.3

MSPCG 08 13597 159 1.27(01)/4.53(28)/36.35(63) 276.0

1024 16 · 12 · 12 · 12

CG − 42482 474 2.93 195.2

1.22x

MSPCG 05 18250 210 1.00(01)/3.68(34)/34.62(45) 183.3

MSPCG 06 15959 185 1.01(01)/3.68(35)/34.79(54) 159.7

MSPCG 07 14985 174 1.01(01)/3.68(32)/35.06(58) 163.6

MSPCG 08 14287 167 1.00(01)/3.69(29)/34.76(61) 169.1

Table 23: Strong scaling of the MSPCG on SUMMIT solving Dirac equation M†Mx = y to the accuracy of

10−12 on the 963 × 192 × 12, 2+1 flavor Möbius domain wall fermion, a−1 ≃ 2.8 GeV lattice with physical

pion mass. y is a gaussian random source vector. The time are time-to-solutions given in units of second. r.u.

means number of reliable updates performed. Performance numbers are expressed in tera-flops per node. For

CG solves the performance is given as the total performance, including precise and sloppy dslash and linear

algebra operations. For MSPCG solves the performance is given in format of precise/sloppy/precondition

dslash with their respective time percentage in parentheses.
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Figure 38: Residual versus (outer) iteration of the MSPCG on SUMMIT solving Dirac equation M†Mx =

M†y to the accuracy of 10−10 on the 963×192×12, 2+1 flavor Möbius domain wall fermion, a−1 ≃ 2.8 GeV

lattice with physical pion mass. y is a gaussian random source vector.

5.6.2 The Heavy Quark Sector and the Rest

The EOFA algorithm is, for the first time, targeting GPU based hardware. It is implemented in

QUDA to calculate the fermion determinant for strange quark in our target evolution. Compared

to the RHMC algorithm, EOFA speeds up the heavy quark part of the evolution significantly by

greatly reducing the amount of force term calculations. The achieved evolution timing, including

the optimizations for both the light quark and heavy quark sectors, is shown in table 24.

heavy quark (EOFA) 18.2 %

light quark (quotient) 73.9 %

gauge 7.2 %

total time (512 nodes) 6328 seconds

Table 24: Achieved timing of the target lattice generation on SUMMIT.

5.7 Conclusion and Discussion

As a conclusion MSPCG is able to reduce the (outer) iteration count by a factor of 3 with as few

as 6 inner preconditioning iterations and achieve an around 20% time-to-solution speed up on 1024
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SUMMIT nodes utilizing the tensor core units on the Tesla V100 GPUs, together various other

optimizations and improvements. This is the first time the tensor cores, which are specifically

designed for deep learning operations, are used to speed up lattice QCD simulations.

The speed up is not, admittedly, significant compared to other exciting numbers the computer

science field is seeing, yet it proves the possibility of using local preconditioning to improve scaling

of lattice QCD simulations with (Möbius) domain wall fermion. Currently the performance of

the preconditioning step is mainly limited by the GPU memory bandwidth and its cache efficiency,

which are likely to be greatly improved in the near future, especially on the exascale supercomputers.

The network bandwidth, however, is not likely to have a comparable increase, given that lattice

QCD (with domain wall fermion) is almost the only field that has such large demand for inter-

processor communication.

As an example we compare the SUMMIT system to the TITAN system, which was also launched

at ORNL in 2010. Each TITAN node has a network bandwidth of 25 GB/sec and 1 Kepler 20X

GPU, which has a memory bandwidth of 235 GB/sec.25 On the other hand each SUMMIT node

has a network bandwidth of 50 GB/sec and 6 Tesla V100 GPUs, each has a memory bandwidth of

900 GB/sec. As a node to node comparison over the course of eight years the network bandwidth

has increased by a factor of 2 while the total GPU memory bandwidth has increased by a factor of

23.

MSPCG is expected to bring more significant speed up with this ever growing inequality between

network and memory bandwidth (under the lattice QCD perspective). The idea of using local

preconditioning to improve overall scaling can also be applied to lattice QCD simulation with other

fermion formulations and other scientific computing fields.

25See https://www.olcf.ornl.gov/wp-content/uploads/2013/02/Titan_Architecture_1-JL.pdf.
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6 Conclusion and Future Works

We conclude this thesis by considering how future research can be built upon this work.

6.1 The Weak Coupling Limit

Since the lattice spacing a serves as the ultraviolet cut off for lattice gauge theory, lattice QCD

simulations have to scale towards the weak coupling limit (a → 0) to be able to reliably address

physical processes involving valence heavy quarks (charm, bottom, and even top quark). Two

aspects of the critical slowing down, however, poses significant difficulties to this scaling.

As the lattice spacing grows finer, the lattice volume that is needed to have a large enough

physical volume increases according to a−4. While simulating with physical quark masses the com-

putational resources needed to perform the fermion matrix inversions increase as a→ 0. This is the

solver aspect of the critical slowing down. Over the years large parallel supercomputers have been

designed and built to provide the computational capabilities needed. The inter-processor commu-

nication on these state-of-art supercomputers, however, is increasingly becoming the bottleneck of

the overall performance, despite their high on-processor flops and memory bandwidth.

In section 5 we show that it is possible to trade local on-processor flops and memory bandwidth

for inter-processor communication, thus improving the scaling of the computational resources for

lattice QCD simulations and achieving a speed up with the multisplitting preconditioned conjugate

gradient (MSPCG) algorithm. The algorithm is expected to bring greater speed up on exascale

supercomputers, where even greater inequality between local on-processor computational power

and inter-processor communication is expected.

There is also an ongoing effort to reduce the inner inversion cost to further speed up the

MSPCG on the current pre-exascale supercomputers by using cheap approximation to perform the

inner inversions.

The algorithmic aspect of the critical slowing down, where the amount of molecular dynamics

time needed to generate independent gauge configurations by hybrid Monte Carlo (HMC) simu-

lations increases dramatically, proves to be an even more serious problem for lattice QCD. It has

been observed that the integrated autocorrelation time of the topological charge, for example, of

the gauge configurations grows as a−5. Correlations between gauge configurations makes it difficult

108



to reliably estimate the error of the quantities measured on these configurations.

In section 2 we apply the diffusion model, a model that describes how topological charge density

evolves during HMC evolutions, to lattices with dynamical fermions and observe the expected

diffusing behavior.

In section 3 we studied matching lattice actions at different scales to have the same low energy

physics. A blocking kernel is tuned to block a fine lattice into a coarse one. The measurements

made on this blocked coarse lattice are found to deviate only a few percent away from those made on

a simulated blocked lattice. While exactly matched lattice actions at two scales lead to a multiscale

evolution algorithm without critical slowing down, the high numerical accuracy needed is not found

in our study.

Despite these studies, evolution algorithms that are free from the critical slowing down are still

needed to move lattice simulations towards the weak coupling limit. There are multiple ongoing

efforts, including part of the exascale computing project (ECP), that are expected to solve or at

least levitate the problem.

6.2 The Strong Coupling Limit

Lattice QCD simulations are always performed with finite amount of computational resources. It

is worthwhile to explore ways to perform cheap lattice simulations while having errors, especially

the finite lattice spacing error, under control. The coarse lattices, which the RBC/UKQCD col-

laborations have generated with Iwasaki gauge action and the dislocation suppressed determinant

ratio (DSDR) term (ID) as well as Möbius domain wall fermions, serve as compelling candidates

towards this goal.

In section 4 we measure the kaon bag parameter BK and the ∆I = 1/2 K → ππ amplitude

A2 on the coarse 24ID(β = 1.633) lattice. The finite lattice spacing corrections are examined by

comparing the results with those measured on the 32ID(β = 1.75) lattice, as well as the continuum

limit values obtained from two finer Iwasaki lattices. The a2 dependences of these two quantities

does not reveal a measurable a4 term in the continuum limit extrapolation. This simple a2 scaling

property makes these coarse ID lattices among the ideal ones to measure low energy physics with

low computational cost.

There is, however, evidence from hadronic vacuum polarization (HVP) calculations that a4
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terms are needed to perform continuum limit extrapolation for matrix elements involving the local

vector current. We have no evidence, to date, of a4 scaling terms being needed in the spectrum

(eigenvalues of the Hamiltonian). Further studies on the a2 scaling property on these coarse ID

lattices are still needed.

110



References

[1] M. F. Atiyah and I. M. Singer, Bulletin of the American Mathematical Society 69, 422 (1963).

[2] E. J. Weinberg, Classical solutions in quantum field theory: Solitons and Instantons in High

Energy Physics (Cambridge University Press, 2012).

[3] R. J. Crewther et al., Physics Letters B 88, 123 (1979).

[4] H. B. Nielsen and M. Ninomiya, Physics Letters B 105, 219 (1981).

[5] R. C. Brower, H. Neff, and K. Orginos, Nuclear Physics B - Proceedings Supplements 140,

686 (2005), [arXiv:hep-lat/0409118].

[6] P. Vranas, Nuclear Physics B - Proceedings Supplements 53, 278 (1997), [arXiv:hep-lat/

9608078].

[7] A. D. Kennedy, Nuclear Physics B (Proceedings Supplements) 4, 576 (1988).

[8] A. D. Kennedy, Nuclear Physics B - Proceedings Supplements 128, 107 (2004), [arXiv:hep-

lat/0402037].

[9] C. Jung et al., Physical Review D 97 (2018), [arXiv:1706.05843].

[10] M. Lüscher, Communications in Mathematical Physics 54, 283 (1977).

[11] P. A. Boyle et al., Physical Review D 93, 054502 (2016), [arXiv:1511.01950].

[12] M. Lüscher, Journal of High Energy Physics 2010, 1 (2010), [arXiv:1006.4518].

[13] S. Borsányi et al., Journal of High Energy Physics 2012 (2012), [arXiv:arXiv:1203.4469v2].

[14] S. Schaefer, R. Sommer, and F. Virotta, Nuclear Physics B 845, 93 (2011), [arXiv:1009.

5228].

[15] G. McGlynn and R. D. Mawhinney, Physical Review D 90, 1 (2014), [arXiv:1406.4551].

[16] P. de Forcrand, M. García Pérez, and I.-O. Stamatescu, Nuclear Physics B 499, 409 (1997),

[arXiv:hep-lat/9701012].

[17] T. Blum et al., Physical Review D 93 (2016), [arXiv:1411.7017].

[18] J. Sexton and D. Weingarten, Nuclear Physics B (1992).

111

http://arxiv.org/abs/hep-lat/0409118
http://arxiv.org/abs/hep-lat/9608078
http://arxiv.org/abs/hep-lat/9608078
http://arxiv.org/abs/hep-lat/0402037
http://arxiv.org/abs/hep-lat/0402037
http://arxiv.org/abs/1706.05843
http://arxiv.org/abs/1511.01950
http://arxiv.org/abs/1006.4518
http://arxiv.org/abs/arXiv:1203.4469v2
http://arxiv.org/abs/1009.5228
http://arxiv.org/abs/1009.5228
http://arxiv.org/abs/1406.4551
http://arxiv.org/abs/hep-lat/9701012
http://arxiv.org/abs/1411.7017


[19] R. Arthur et al., Physical Review D - Particles, Fields, Gravitation and Cosmology 87 (2013),

[arXiv:1208.4412].

[20] A. Bazavov et al., (2017), [arXiv:1712.09262].

[21] N. Madras and a. D. Sokal, J. Stat. Phys. 50, 109 (1988).

[22] Y. Iwasaki, UTHEP 118, 20 (1983), [arXiv:1111.7054].

[23] M. Albanese et al., Physics Letters B 192, 163 (1987).

[24] M. Hasenbusch, K. Pinn, and C. Wieczerkowski, Physics Letters B 338, 308 (1994), [arXiv:

hep-lat/9406019].

[25] Y. Aoki et al., Physical Review D 78, 1 (2008), [arXiv:0712.1061].

[26] M. G. Endres et al., Physical Review D 92 (2015), [arXiv:1510.04675].

[27] C. Sturm et al., Physical Review D - Particles, Fields, Gravitation and Cosmology 80 (2009),

[arXiv:0901.2599].

[28] R. Arthur and P. A. Boyle, Physical Review D 83, 1 (2011), [arXiv:1006.0422].

[29] A. J. Buras, (1998), [arXiv:hep-ph/9806471].

[30] N. Garron, R. J. Hudspith, and A. T. Lytle, Journal of High Energy Physics 2016, 1 (2016),

[arXiv:hep-lat/1609.03334].

[31] P. A. Boyle et al., Journal of High Energy Physics 2017, 1 (2017), [arXiv:1708.03552].

[32] D. Beirevi and G. Villadoro, Physical Review D - Particles, Fields, Gravitation and Cosmology

69 (2004), [arXiv:hep-lat/0311028].

[33] T. Blum et al., Physical Review D - Particles, Fields, Gravitation and Cosmology 91 (2015),

[arXiv:1502.00263].

[34] C. Kim, Nuclear Physics B - Proceedings Supplements 140, 381 (2005).

[35] L. Lellouch and M. Lüscher, Communications in Mathematical Physics 219, 31 (2001),

[arXiv:hep-lat/0003023].

[36] T. Yamazaki et al., Physical Review D - Particles, Fields, Gravitation and Cosmology 70

(2004), [arXiv:hep-lat/0402025].

112

http://arxiv.org/abs/1208.4412
http://arxiv.org/abs/1712.09262
http://arxiv.org/abs/1111.7054
http://arxiv.org/abs/hep-lat/9406019
http://arxiv.org/abs/hep-lat/9406019
http://arxiv.org/abs/0712.1061
http://arxiv.org/abs/1510.04675
http://arxiv.org/abs/0901.2599
http://arxiv.org/abs/1006.0422
http://arxiv.org/abs/hep-ph/9806471
http://arxiv.org/abs/hep-lat/1609.03334
http://arxiv.org/abs/1708.03552
http://arxiv.org/abs/hep-lat/0311028
http://arxiv.org/abs/1502.00263
http://arxiv.org/abs/hep-lat/0003023
http://arxiv.org/abs/hep-lat/0402025


[37] T. Blum et al., Physical Review D - Particles, Fields, Gravitation and Cosmology 86, 074513

(2012), [arXiv:1206.5142].

[38] A. Stathopoulos and K. Orginos, SIAM Journal on Scientific Computing 32, 439 (2010).

[39] Y. Saad, SIAM Journal on Numerical Analysis 17, 687 (1980).

[40] M. Lüscher, Computer Physics Communications 156, 209 (2004), [arXiv:hep-lat/0310048].

[41] R. Winther and W. Hacksbusch, Mathematics of Computation 64, 1759 (2006).

[42] G. H. Golub and Q. Ye, SIAM Journal on Scientific Computing 21, 1305 (1999).

[43] H. A. van der Vorst and Q. Ye, SIAM Journal on Scientific Computing 22, 835 (2000).

[44] D. P. O’Leary and R. E. White, SIAM Journal on Algebraic Discrete Methods 6, 630 (1985).

[45] F. Jezequel, R. Couturier, and C. Denis, Journal of Supercomputing 59, 1517 (2012).

[46] Y. Osaki and K. I. Ishikawa, Proceedings of Science 105, 1 (2010), [arXiv:1011.3318].

[47] R. Babich et al., Proceedings of 2011 SC - International Conference for High Performance

Computing, Networking, Storage and Analysis (2011), [arXiv:1109.2935].

[48] R. G. Miller, Biometrika 61, 1 (1974).

[49] B. Hall, Lie Groups, Lie Algebras, and Representations - An Elementary Introduction (2015).

113

http://arxiv.org/abs/1206.5142
http://arxiv.org/abs/hep-lat/0310048
http://arxiv.org/abs/1011.3318
http://arxiv.org/abs/1109.2935


Appendices

A.1 Minkowski γ-matrices

The Minkowski γ-matrices are defined by the following anti-commutation relations:

{γµ, γν} = 2gµν1. (243)

A.1.1 The Dirac Representation

γ0 =

+1 0

0 −1

 , γi =

 0 +σi

−σi 0

 , γ5 =

 0 +1

+1 0

 . (244)

A.1.2 The Weyl/Chiral Representation

γ0 =

 0 +1

+1 0

 , γi =

 0 +σi

−σi 0

 , γ5 =

−1 0

0 +1

 . (245)

A.2 Lattice (Euclidean) γ-matrices

A.2.1 Definition

The Euclidean/lattice γ-matrices are defined by the following anti-commutation relation and we

will be considering the four dimensional case only, i.e. µ, ν = 1, 2, 3, 4.

{γµ, γν} = 2δµν1. (246)

Several representations exist, yet the question of how to transform between different represen-

tations is not well presented in most of the literature. Specifically if we have two representations,

γµ and γ̃µ, they are related by an similarity transformation,

S−1γ̃µS = γµ. (247)

The question is therefore given these two representations how do we find this transformation S?
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A.2.2 Construction of the Algebra

The way to construct the algebra needed is detailed in [Jauch, Rohrlich, 1976]. In the following

repeated symbol does not imply summation.

Five sets of matrices Γt(t = 1, 2, 3, 4, 5) are constructed from the four matrices γµ’s:

Γ1 : 1,

Γ2 : γµ,

Γ3 : γµγν(µ < ν)

Γ4 : γ5γµ,

Γ5 : γ5 = γ1γ2γ3γ4.

These 16 matrices constructed, which will be called γr(r = 1, 2, · · · , 16), are linearly independent

and form a basis Γ. They square to ±1, i.e.

γrγr = ξr = ±1. (248)

Furthermore, the product of any two elements of Γ is equal to another element up to a sign,

γrγs = ϵrsγ⟨r,s⟩. (249)

Due to the anitcommuting nature we have

⟨r, s⟩ = ⟨s, r⟩.

Now with some trick,

γrγsγrγs = ϵ2rsγ⟨r,s⟩γ⟨r,s⟩ = ξ⟨r,s⟩, (250)

left multiply by γr and right multiply by γs,

ξrξsγsγr = ξ⟨r,s⟩γrγs → ξrξsϵrsγ⟨r,s⟩ = ξ⟨r,s⟩ϵsrγ⟨r,s⟩. (251)
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or,

ξrξsϵrs = ξtϵsr. (252)

A.2.3 Construction of the Transformation Matrix

The claim is that the transformation matrix in equation (247) is

S =
∑
r

ξrγ̃rFγr, (253)

where the matrices γ̃r’s are constructed in the way γr’s are constructed and F is an arbitrary 4 by

4 matrix that makes S invertible. Here is the proof:

γ̃sSγs =
∑
r

ξrγ̃sγ̃rFγrγs

=
∑
r

ξrϵsrϵrsγ̃⟨r,s⟩Fγ⟨r,s⟩

=
∑
r

ξrξ⟨r,s⟩ξrξsγ̃⟨r,s⟩Fγ⟨r,s⟩

=
∑
r

ξsξ⟨r,s⟩γ̃⟨r,s⟩Fγ⟨r,s⟩

= ξsS,

left multiply by S−1 and right multiply by γs and the claim is proved.

A.2.4 CPS/Grid Representation

γ1,3 =

 0 +iσ1,3

−iσ1,3 0

 , γ2 =

 0 −iσ2

+iσ2 0

 , γ4 =

 0 +1

+1 0

 , γ5 =

+1 0

0 −1

 .

A.2.5 QUDA Representation

γi =

 0 +iσi

−iσi 0

 , γ4 =

+1 0

0 −1

 , γ5 =

 0 +1

+1 0

 .
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A.3 Jackknife Resampling Technique [48]

Let [X1, · · · , Xn] be n (independent and identically distributed) random variables. We split this

sample into g groups of size h each, n = gh26. Let T be an estimator of some parameter θ based

on sample size n, T−i be the corresponding estimator based on the sample of size (g − 1)h, where

the i-th group of size h has been excluded:

T = f [X1, · · · , Xn],

T−i = f [X1, · · · , X(i−1)h, Xih+1, · · · , Xn].

Write T̄• as the mean of the T−i’s, the jackknife estimator is defined as

Tj = gT − (g − 1)T̄•, T̄• = ⟨T−i⟩i =
1

g

g∑
i=1

T−i,

and the estimator of the variance of the Tj is

var[Tj ] =
g − 1

g

g∑
i=1

(T−i − T̄•)2.

Usually we use T instead of Tj , since they have the same expectation value.

A.4 Quark Operators as Representations of the Chiral Group

Irreducible representations of SU(3) are classified according to its highest weights as explained in

Theorem 5.9 of [49]. An irreducible representation π with highest weights (m1,m2) with m1 and

m2 being non-negative integers is of dimension

dim(π) =
1

2
(m1 + 1)(m2 + 1)(m1 +m2 + 2). (254)

In physics m1 is the number of quarks and m2 is the number of anti-quarks due to the fact that

quarks live in the fundamental, or the (1, 0), representation of flavor SU(3) group while anti-

26If h is longer than the autocorrelation time of the random variables it seems the requirement that the random
variables be independent and identically distributed can be skipped.
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quarks live in the dual of the fundamental, or the (0, 1), representation of SU(3). Quark field

combinations generally form reducible representations. For example q̄1γµq2 forms a dimension 9

reducible representation of (1, 0)⊗(0, 1) which can be reduced to (1, 1)⊕(0, 0). We say an operator,

or a quark field combination, transforms under the representation with the highest dimension

after reduction, thus q̄1γµq2 transforms under the (1, 1) representation, or simply using dimension

number, the 8 representation of SU(3). Several other examples are27:

(•Γq1)(•Γq1)→ (1, 0)⊗ (1, 0) = (2, 0)⊕ (0, 1) = 6⊕ 3̄→ 6. (255)

(q̄1Γq2)(q̄1Γq2)→ (1, 0)⊗ (0, 1)⊗ (1, 0)⊗ (0, 1) = 27⊕10⊕10⊕8⊕8⊕8⊕8⊕1⊕1→ 27. (256)

To summarize the underlying representation of an operator is determined by counting the number

of quarks and anti-quarks.

Under SU(3)L ⊗ SU(3)R we have two copies of SU(3) representation tensor product together.

The V V +AA operator in (127) is decomposed into left and right hand components:

OV V+AA = 2 ·
[
(s̄LγµdL)(s̄LγµdL) + (s̄RγµdR)(s̄RγµdR)

]
. (257)

It is a combination of (27,1) and (1,27) representations. Here the first number is the representation

number for the left handed quarks and second number is that for the right handed quarks. Similarly

OV V−AA = 2 ·
[
(s̄LγµdL)(s̄RγµdR) + (s̄RγµdR)(s̄LγµdL)

]
, (258)

OSS−PP = 2 ·
[
(s̄LdR)(s̄RdL) + (s̄RdL)(s̄LdR)

]
. (259)

By counting the number of quarks and anti-quarks they both transform under the (8,8) represen-

tation. Finally

OTT =
[
(s̄LγµdR)(s̄LγµdR) + (s̄RγµdL)(s̄RγµdL)

]
, (260)

OSS+PP = 2 ·
[
(s̄LdR)(s̄LdR) + (s̄RdL)(s̄RdL)

]
(261)

and they are combinations of the (6̄,6) and (6, 6̄) representation.

27(0, 2) ≡ 6̄ to dinstinguish it from (2, 0). Similarly (0, 1) ≡ 3̄, (0, 3) ≡ 10.
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