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Codes, arrangements, matroids,
and their polynomial links

Many mathematical objects are closely related to each other. While studying certain as-
pects of a mathematical object, one tries to find a way to “view” the object in a way that
is most suitable for a specific problem. Or, in other words, one tries to find the best way
to model the problem. Many related fields of mathematics have evolved from one another
this way. In practice, it is very useful to be able to transform a problem into other termi-
nology: it gives a lot more available knowledge and that can be helpful to solve a problem.

This thesis deals with various closely related fields in discrete mathematics, starting from
linear error-correcting codes and their weight enumerator. We can generalize the weight
enumerator in two ways, to the extended and generalized weight enumerators. The set
of generalized weight enumerators is equivalent to the extended weight enumerator.

Summarizing and extending known theory, we define the two-variable zeta polynomial
of a code and its generalized zeta polynomial. These polynomials are equivalent to the
extended and generalized weight enumerator of a code.

We can determine the extended and generalized weight enumerator using projective sys-
tems. This calculation is explicitly done for codes coming from finite projective and affine
spaces: these are the simplex code and the first order Reed-Muller code. As a result we
do not only get the weight enumerator of these codes, but it also gives us information
on their geometric structure. This is useful information in determining the dimension of
geometric designs.

To every linear code we can associate a matroid that is representable over a finite field. A
famous and well-studied polynomial associated to matroids is the Tutte polynomial, or
rank generating function. It is equivalent to the extended weight enumerator. This leads
to a short proof of the MacWilliams relations for the extended weight enumerator.

For every matroid, its flats form a geometric lattice. On the other hand, every geomet-
ric lattice induces a simple matroid. The Tutte polynomial of a matroid determines the
coboundary polynomial of the associated geometric lattice. In the case of simple ma-
troids, this becomes a two-way equivalence.

Another polynomial associated to a geometric lattice (or, more general, to a poset) is
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the Möbius polynomial. It is not determined by the coboundary polynomial, neither the
other way around. However, we can give conditions under which the Möbius polynomial
of a simple matroid together with the Möbius polynomial of its dual matroid defines
the coboundary polynomial. The proof of these relations involves the two-variable zeta
polynomial, that can be generalized from codes to matroids.

Both matroids and geometric lattices can be truncated to get an object of lower rank.
The truncated matroid of a representable matroid is again representable. Truncation for-
mulas exist for the coboundary and Möbius polynomial of a geometric lattice and the
spectrum polynomial of a matroid, generalizing the known truncation formula of the
Tutte polynomial of a matroid.

Several examples and counterexamples are given for all the theory. To conclude, we give
an overview of all polynomial relations.



Outline and origin of research

It is common to start a thesis with a chapter that lists the necessary background infor-
mation about the research topics of the thesis. Such a chapter summarizes definitions
and known results that are necessary for understanding the new results. I choose to di-
vide this background information into four chapters, treating linear codes (Chapter 1),
projective systems and arrangements (Chapter 4), matroids (Chapter 7), and geometric
lattices (Chapter 9). I think this outline improves readability of the thesis, especially for
someone who is only interested in parts of the results.

The outline of this thesis is mainly taken from [58]. This paper gives an overview of
the connections between codes, arrangements, and matroids. It originates from lecture
notes for the 2009 Soria Summer School in Computational Mathematics. Since it gives
a very thorough introduction to the subjects in the title, the introduction chapters on
linear codes (Chapter 1) and matroids (Chapter 7) are highly condensed versions of the
material in the paper. Chapter 4 on projective systems and arrangements is fairy similar
to Section 4 of [58] and Chapter 9 on geometric lattices is like Section 7 of [58] but with
less examples. Chapter 10 is roughly a copy of Section 8 in [58].

My research on weight enumerators and their generalizations, as well as the connection
to matroids, started in the final project for my Masters degree. Chapter 2 on generalized
and extended weight enumerators and Chapter 8 on the Tutte polynomial originate from
my Master thesis [52]. This results were also presented at the Workshop on Coding and
Cryptography [55].

Chapter 3 studies the zeta polynomial of a code and its generalizations. Most of this is
a summary of known results, therefore this material is unpublished. The novelty is that
it is written in the context of Chapter 2, showing clearly the close relation between the
various generalizations of the zeta function and the similar generalizations of the weight
enumerator. The theory is also used in Chapter 11.

Chapter 5 contains the results of my paper in Designs, Codes and Cryptography [53].
Chapter 6 reports on ongoing research on the coset leader weight enumerator. The first
results on that topic were presented at the Symposium on Information Theory in the
Benelux [56].

Most of my PhD research involves matroids and their associated polynomials. In Chap-
ter 11 new results are explained about the relation between the Möbius and coboundary
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polynomial [54]. Chapter 13 contains new results on truncation [57]. Both papers will be
published in a special issue of Mathematics in Computer Science on matroids in coding
theory and related topics.

The spectrum polynomial is introduced in Chapter 12 and a concrete calculation is given.
I was hoping to achieve new results on the link between the spectrum polynomial and
the Tutte polynomial, but unfortunately was not able to. Therefore, Chapter 12 does not
contain enough new information for publication.

Finally, in Chapter 14 an overview is given of the established polynomial links. Parts of
this chapter come from [58].

New results
The new research in this thesis is published in three journal papers [53, 54, 57], two
conference proceedings [55, 56] and a book chapter [58]. We summarize the new results
contained in this thesis.

• A generalization of a method by Tsfasman and Vlǎdut to determine the generalized
and extended weight enumerator.

• Establishing the two-way correspondence between the generalized and extended
weight enumerator.

• An example showing that the generalized and extended weight enumerator are not
enough to distinguish between codes with the same parameters.

• An overview of the relations between generalizations of the zeta function for codes
introduced by Duursma and the generalized and extended weight enumerator.

• Determination of the generalized and extended weight enumerators for the q-ary
Simplex codes and the q-ary first order Reed-Muller codes and a complete deter-
mination of the set of supports of subcodes and words in an extension code.

• Some preliminary results on the coset leader and list enumerator.

• Results on the connection between weight enumerators and the Tutte polynomial.

• A study of the relations between the Möbius and coboundary polynomial, including
examples that show that the two polynomials do, in general, not determine each
other.

• Results on the representation of the truncation of a matroid.

• A general approach to truncation formulas, leading to truncation formulas for the
Möbius and spectrum polynomial.

• An overview of the relations between polynomials studied in this thesis.
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Part I

Codes

1





1
Introduction to linear codes

The idea of error-correcting codes is to add redundant information to a message in such
a way that it is possible to detect or even correct errors after transmission. In written
language, this redundant information is already present: misspellings and typos in a text
seldom lead to misinterpretation of the meaning of the text. In the sequences of zeros
and ones used in digital communication, this redundant information is not automatically
present.
Legend goes that Hamming was so frustrated the computer halted every time it detected
an error after he handed in a stack of punch cards, he thought about a way the computer
would be able not only to detect the error but also to correct it automatically. He came up
with the nowadays famous code named after him. Whereas the theory of Hamming [45]
is about the actual construction, the encoding and decoding of codes and uses tools from
combinatorics and algebra, the approach of Shannon [84] leads to information theory and
his theorems tell us what is and what is not possible in a probabilistic sense.
This thesis will focus on error-correcting codes as mathematical objects: we are not
interested in the practical issues of encoding and decoding. Also, we will only consider
linear codes. In this chapter we give the necessary definitions for our purpose. For a more
thorough treatment of the theory of error-correcting codes, see Berlekamp [11], Blahut
[16], MacWilliams and Sloan [70], or Van Lint [98].

1.1 Linear codes

Definition 1.1. Let q be a prime power, and let Fq be the finite field with q elements. A
linear subspace of Fnq of dimension k is called a linear [n, k] code and is usually denoted
by C. The elements of the code are called (code)words.

A code can be given by writing down all elements, but because the code is a linear
subspace, it has a basis.

Definition 1.2. A generator matrix of a linear [n, k] code C is a k × n matrix of full
rank over Fq whose rows form a basis of C. It is usually denoted by G.

Note that this matrix is not unique. We can rewrite the definition of a code in terms of
the generator matrix:

C = {mG : m ∈ Fkq}.
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A second way to describe a linear code is not by its basis, but as the null space of a
matrix.

Definition 1.3. A parity check matrix of a linear [n, k] code C is an (n− k)×n matrix
of full rank over Fq such that C is the null space of this matrix. It is usually denoted by
H.

Like the generator matrix, the parity check matrix is not unique. We can rewrite the
definition of a code in terms of the parity check matrix:

C = {c ∈ Fnq : HcT = 0}.

We will assume all our codes to be nondegenerate: there are no coordinates that are zero
for all codewords, i.e., the generator matrix does not contain any zero columns.

1.2 Weight distributions

For a vector x ∈ Fnq the support is the set indexing its nonzero coordinates. The (Ham-
ming) weight is the number of nonzero coordinates of the vector, i.e., the size of its
support. So, the zero vector has weight 0 and the maximum possible weight is n. The
(Hamming) distance between two vectors is the number of coordinates where the vectors
differ. In a linear code C the minimum of all nonzero distances between codewords is
called the minimum distance. Because C is assumed to be linear, this is equal to the
minimum nonzero weight of the code. We summarize all this in the following definition:

Definition 1.4. Let C be a linear [n, k] code and let x,y ∈ Fnq . Then we define

supp(x) = {i : xi 6= 0},
wt(x) = |supp(x)|,
d(x,y) = |{i : xi 6= yi}|,

d = min{d(x,y) : x,y ∈ C,x 6= y}
= min{wt(x) : x ∈ C,x 6= 0}.

The number of codewords c ∈ C with wt(c) = w is denoted by Aw. Note that A0 = 1
and that d is the smallest w > 0 for which Aw > 0. The numbers Aw for all 0 ≤ w ≤ n
form the weight distribution of the code. They also form the coefficients of the weight
enumerator :

Definition 1.5. The (homogeneous) weight enumerator of a linear [n, k] code C is the
polynomial

WC(X,Y ) =

n∑
w=0

AwX
n−wY w.

Another way to define the weight enumerator is

WC(X,Y ) =
∑
c∈C

Xn−wt(c)Y wt(c).

We will always use this homogeneous form of the weight enumerator. There is also the
one-variable form,WC(Z), which is connected to the homogeneous form viaWC(X,Y ) =
XnWC(Y X−1) and WC(Z) = WC(1, Z).
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1.3 Duality

Let < , > be the inner product on Fnq given by the symmetric linear form < x,y >=∑n
i=1 xiyi. Then the dual code of a linear [n, k] code C over Fq is the subspace of Fnq

orthogonal to C with respect to < , >.

Definition 1.6. Let C be a linear [n, k] code over Fq. Then the dual code is

C⊥ = {x ∈ Fnq : < x, c >= 0 for all c ∈ C}.

It is clear that the dual code is again a linear code of length n over Fq and has dimension
n− k. Furthermore, (C⊥)⊥ = C.

Theorem 1.7. Let C be a linear [n, k] code over Fq with generator matrix G. Then C⊥
is a linear [n, n− k] code with parity check matrix G.

Proof. By definition, C is the row space of G. Since C⊥ is the subspace orthogonal to
C, it is the null space of G. Hence G is a parity check matrix for C⊥.

The minimum distance of the dual code is usually denoted by d⊥. It is not determined
by the minimum distance of the code itself. However, the weight enumerators of C and
C⊥ do determine each other.

Theorem 1.8 (MacWilliams). Let C be a linear [n, k] code over Fq. Then

WC⊥(X,Y ) = q−kWC(X + (q − 1)Y,X − Y ).

Proof. See [70, Theorem 5.2.1] for a proof for binary codes. A general proof will be
given via matroids in Theorem 2.19.

1.4 MDS codes

The following proposition gives a method to determine the minimum distance of a code
by looking at linear dependencies between the columns of a parity check matrix.

Proposition 1.9. Let H be a parity check matrix of a code C. Then the minimum
distance d of C is the smallest integer d such that there are d columns of H that are
linearly dependent.

Proof. Let h1, . . . ,hn be the columns of H. Let c be a nonzero codeword of weight w.
Let supp(c) = {j1, . . . , jw} with 1 ≤ j1 < . . . < jw ≤ n. Then HcT = 0, so cj1hj1 +
. . . + cjwhjw = 0 with cji 6= 0 for all i = 1, . . . , w. Therefore, the columns hj1 , . . . ,hjw
are dependent.
Conversely, if hj1 , . . . ,hjw are dependent, then there exist constants a1, . . . , aw, not all
zero, such that a1hj1 + . . . + awhjw = 0. Let c be the word defined by cj = 0 if j 6= ji
for all i, and cj = ai if j = ji for some i. Then HcT = 0, hence c is a nonzero codeword
of weight at most w.

With this proposition, we can prove the following important bound for linear codes.
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Theorem 1.10 (Singleton bound). Let C be a linear [n, k] code over Fq. Then d ≤
n− k + 1.

Proof. Let H be a parity check matrix of C. This is an (n − k) × n matrix of rank
n − k. The minimum distance of C is the smallest integer d such that H has d linearly
dependent columns, by Proposition 1.9. This means that every d − 1 columns of H are
linearly independent. Hence, the column rank of H is at least d− 1. By the fact that the
column rank of a matrix is equal to the row rank, we have n − k ≥ d − 1. This implies
the Singleton bound.

Definition 1.11 (MDS code). A linear [n, k] code C is called maximum distance sepa-
rable if it achieves the Singleton bound, i.e., if d = n− k + 1.

Theorem 1.12. The dual of an MDS code is also an MDS code, with d⊥ = k + 1.

Proof. Let C be an MDS code and let H be a parity check matrix for C. The Singleton
bound for the dual code C⊥ tells us that d⊥ ≤ k + 1. Suppose we have a word c ∈ C⊥
of weight w with 0 < w ≤ k. Then at least n − k coordinates of c are zero. Take any
n− k of these coordinates, and let H ′ be the (n− k)× (n− k) submatrix of H consisting
of the columns corresponding to these coordinates. The row rank of H ′ is strictly less
than n−k, because a linear combination of them gives the chosen n−k zero coordinates
of c. This means the column rank of H ′ is also strictly less then n − k. Hence we have
found n− k linearly dependent columns in H. But since d = n− k + 1, this contradicts
Proposition 1.9. Therefore, there can not be a word of weight 0 < w ≤ k in C⊥, so
d⊥ = k + 1 and C⊥ is an MDS code.

1.5 Cosets and syndromes

We define the distance between a vector x ∈ Fnq and the code C as the minimum of all
distances between x and a codeword in C, so d(C,x) = min{d(c,x) : c ∈ C}.

Definition 1.13. The covering radius ρ(C) of C is the maximum possible distance a
vector x ∈ Fnq can have to the code. In other words, it is the smallest ρ such that
d(C,x) ≤ ρ for all x ∈ Fnq .

Let x be a vector in Fnq . We call the set x+C = {x+c : c ∈ C} the coset of x with respect
to C. If x is a codeword, the coset is equal to the code itself. If x is not a codeword, the
coset is not a linear subspace.

Definition 1.14. A coset leader of x + C is an element of minimal weight in the coset
x + C.

The coset leader of the coset x+C is unique if d(C,x) ≤ (d−1)/2. If ρ(C) is the covering
radius of the code, then there is at least one codeword c such that d(c,x) ≤ ρ(C). Hence
the weight of a coset leader is at most ρ(C).

We know we can write a linear code as the nullspace of its parity check matrix: HcT = 0
for all words c ∈ C. For a vector x ∈ Fnq that is not in C, HxT is not zero.
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Definition 1.15. Let C be a linear [n, k] code with parity check matrix H. For every
x ∈ Fnq , we call s = HxT the syndrome of x. The syndrome is zero if and only if x is a
codeword.

Note that all vectors in a coset x + C have the same syndrome s = HxT , since for all
codewords c we have H(x + c)T = HxT +HcT = s + 0 = s.

1.6 Equivalence

We will now define what it means for two codes to be equivalent. There are several ways
to do this. The most easy one is to call two linear [n, k] codes over Fq equivalent if they
are equal, i.e., if the row space of their generator matrices is the same. We are giving a
more general definition, in order to let equivalent codes coincide with equivalent matroids
and projective systems.

Definition 1.16. Two linear [n, k] codes over Fq are called equivalent if their generator
matrices are the same up to

• left multiplication with an invertible k × k matrix over Fq;

• permutation of the columns;

• multiplication of columns with an element of F ∗q .

The last property is sometimes referred to as generalized equivalence or monomial equiv-
alence. Note that two equivalent codes have the same weight distribution.

1.7 Gaussian binomials and other products

The following definition is not directly related to linear codes, but we will use it mainly
in the theory about weight enumerators of linear codes.

Definition 1.17. We introduce the following notations:

[m, r]q =

r−1∏
i=0

(qm − qi),

〈r〉q = [r, r]q,[
k

r

]
q

=
[k, r]q
〈r〉q

.

The first number is equal to the number ofm×r matrices of rank r over Fq. The second is
the number of bases of Frq. The third number is the Gaussian binomial and it represents
the number of r-dimensional subspaces of Fkq . The following useful relation can easily be
verified from the definitions:

[m, r]q =
q−r(m−r)〈m〉q
〈m− r〉q

.
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2
The extended and generalized

weight enumerator

The weight enumerator is an important and well-studied polynomial. Besides its intrinsic
importance as a mathematical object, it is used in the probability treatment of codes.
For example, the weight enumerator of a binary code is very useful if we want to study
the probability that a received message is closer to a different codeword than to the
codeword sent. (Or, rephrased: the probability that a maximum likelihood decoder makes
a decoding error.) This chapter treats two generalizations of the weight enumerator of
a linear code, how to compute them, and the connections between them. Most of the
material in this chapter comes from [52] and [55].
The notion of the generalized weight enumerator was first introduced by Helleseth, Kløve
and Mykkeltveit [49, 61] and later studied by Wei [101]. See also Simonis [85]. This notion
has applications in the wire-tap channel II [78] and trellis complexity [42]. The weight
enumerator of extension codes has been studied for example by Kløve [61], but never in
the form of the extended weight enumerator. We generalize the method of Tsfasman and
Vlǎdut [92] to determine the generalized and extended weight enumerator.

2.1 Generalized weight enumerators

Instead of looking at words of C, we consider all the subcodes of C of a certain dimension
r. We say that the support of a subcode is equal to the union of all the supports of words
in the subcode. The coordinates that are not in the support of the subcode are zero for
all the words in the subcode. The weight of a subcode (also called the effective length
or support weight) is the size of its support. The smallest weight for which a subcode of
dimension r exists is called the r-th generalized Hamming weight of C. To summarize:

Definition 2.1. Let D be an r-dimensional subcode of a linear [n, k] code C. Then we
define

supp(D) =
⋃
c∈D

supp(c),

wt(D) = |supp(D)|,
dr = min{wt(D) : D ⊆ C subcode,dimD = r}.
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Note that d0 = 0 and d1 = d, the minimum distance of the code. If the code is nondegen-
erate, then dk = n. We list two important facts about the generalized Hamming weights.
The first theorem was proved in [101] and [61], the second theorem follows directly from
the first and Theorem 1.10.

Theorem 2.2. The generalized Hamming weights form a strictly increasing sequence,
that is:

d0 < d1 < d2 < . . . < dk.

Theorem 2.3 (Generalized Singleton bound). Let C be a linear [n, k] code over Fq. Then
dr ≤ n− k + r.

An MDS code attains the generalized Singleton bound for all 0 ≤ r ≤ k because of
Theorem 2.2.

The number of subcodes with a given weight w and dimension r is denoted by A
(r)
w .

Together they form the r-th generalized weight distribution of the code. Just as with
the ordinary weight distribution, we can define a polynomial with the distribution as
coefficients: the generalized weight enumerator .

Definition 2.4. For 0 ≤ r ≤ k the r-th generalized weight enumerator is given by

W
(r)
C (X,Y ) =

n∑
w=0

A(r)
w Xn−wY w,

where A(r)
w = |{D ⊆ C subcode : dimD = r,wt(D) = w}|.

We can see from this definition that A(0)
0 = 1 and A(r)

0 = 0 for all 0 < r ≤ k. Furthermore,
every 1-dimensional subspace of C contains q−1 nonzero codewords, so (q−1)A

(1)
w = Aw

for 0 < w ≤ n. This means we can find back the original weight enumerator by using

WC(X,Y ) = W
(0)
C (X,Y ) + (q − 1)W

(1)
C (X,Y ).

The following notations are introduced to find a formalism for the computation of the
weight enumerator. This method is based on Katsman and Tsfasman [60]. Later we will
encounter two more methods: by matroids and the Tutte polynomial in Chapter 8 and
by geometric lattices and the characteristic polynomial in Chapter 10.

Definition 2.5. For a subset J of [n] := {1, 2, . . . , n} define

C(J) = {c ∈ C : cj = 0 for all j ∈ J},
l(J) = dimC(J).

Thus the subcode C(J) is the code C shortened by J , and embedded in Fnq again. We
give two lemmas about the determination of l(J) that will become useful later.

Lemma 2.6. Let C be a linear [n, k] code with generator matrix G. Let J ⊆ [n] and
|J | = t. Let GJ be the k × t submatrix of G formed by the columns of G indexed by J ,
and let r(J) be the rank of GJ . Then the dimension l(J) is equal to k − r(J).
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Proof. Let CJ be the code generated by GJ . Consider the projection map π : C → Ftq
given by deleting the coordinates that are not indexed by J . Then π is a linear map,
the image of C under π is CJ and the kernel is C(J) by definition. It follows that
dimCJ + dimC(J) = dimC. So, l(J) = k − r(J).

Lemma 2.7. Let d and d⊥ be the minimum distance of C and C⊥, respectively. Let
J ⊆ [n] and |J | = t. Then

l(J) =

{
k − t, for all t < d⊥,

0, for all t > n− d.

Proof. Let t > n − d and let c ∈ C(J). Then J is contained in the complement of
supp(c), so t ≤ n − wt(c). It follows that wt(c) ≤ n − t < d, so c is the zero word and
therefore l(J) = 0.
Let G be a generator matrix for C, then G is also a parity check matrix for C⊥. We saw
in Lemma 2.6 that l(J) = k − r(J), where r(J) is the rank of the matrix formed by the
columns of G indexed by J . Let t < d⊥, then every t-tuple of columns of G is linearly
independent by Proposition 1.9, so r(J) = t and l(J) = k − t.

Note that by the Singleton bound we have d⊥ ≤ n−(n−k)+1 = k+1 and n−d ≥ k−1,
so for t = k both of the above cases apply. This is no problem, because if t = k then
k − t = 0. We furthermore introduce the following:

Definition 2.8. For J ⊆ [n] and r ≥ 0 an integer we define:

B
(r)
J = |{D ⊆ C(J) : D subspace of dimension r}|,

B
(r)
t =

∑
|J|=t

B
(r)
J .

Note that B(r)
J =

[
l(J)
r

]
q
. For r = 0 this gives B(0)

t =
(
n
t

)
. Therefore, we see that in

general l(J) = 0 does not imply B(r)
J = 0, because

[
0
0

]
q

= 1. But if r 6= 0, we do have

that l(J) = 0 implies B(r)
J = 0 and B(r)

t = 0.

Proposition 2.9. Let r be an integer. Let dr be the r-th generalized Hamming weight of
C, and d⊥ the minimum distance of the dual code C⊥. Then we have

B
(r)
t =

{ (
n
t

) [
k−t
r

]
q

for all t < d⊥

0 for all t > n− dr.

Proof. The first case is a direct corollary of Lemma 2.7, since there are
(
n
t

)
subsets

J ⊆ [n] with |J | = t. The proof of the second case goes analogously to the proof of
the same lemma: let |J | = t, t > n − dr and suppose there is a subspace D ⊆ C(J) of
dimension r. Then J is contained in the complement of supp(D), so t ≤ n − wt(D). It
follows that wt(D) ≤ n − t < dr, which is impossible, so such a D does not exist. So,
B

(r)
J = 0 for all J with |J | = t and t > n− dr and therefore B(r)

t = 0 for t > n− dr.

We can check that the formula is well-defined: if t < d⊥ then l(J) = k − t. If also
t > n− dr, we have t > n− dr ≥ k− r by the generalized Singleton bound. This implies
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r > k − t = l(J), so
[
k−t
r

]
q

= 0. The relation between B(r)
t and A(r)

w becomes clear in

the next proposition.

Proposition 2.10. The following formula holds:

B
(r)
t =

n∑
w=0

(
n− w
t

)
A(r)
w .

Proof. We will count the elements of the set

B(r)
t = {(D,J) : J ⊆ [n], |J | = t,D ⊆ C(J) subspace of dimension r}

in two different ways. For each J with |J | = t there are B(r)
J pairs (D,J) in B(r)

t , so the
total number of elements in this set is

∑
|J|=tB

(r)
J = B

(r)
t . On the other hand, let D be

an r-dimensional subcode of C with wt(D) = w. There are A(r)
w possibilities for such a

D. If we want to find a J such that D ⊆ C(J), we have to pick t coordinates from the
n− w all-zero coordinates of D. Summation over all w proves the given formula.

Note that because A(r)
w = 0 for all w < dr, we can start summation at w = dr. We can

end summation at w = n − t because for t > n − w we have
(
n−w
t

)
= 0. Therefore, the

formula can be rewritten as

B
(r)
t =

n−t∑
w=dr

(
n− w
t

)
A(r)
w .

In practice, we will often prefer the summation given in the proposition.

Theorem 2.11. The generalized weight enumerator is given by:

W
(r)
C (X,Y ) =

n∑
t=0

B
(r)
t (X − Y )tY n−t.

Proof. By using the previous proposition, changing the order of summation and using
the binomial expansion of Xn−w = ((X − Y ) + Y )n−w we have

n∑
t=0

B
(r)
t (X − Y )tY n−t =

n∑
t=0

n∑
w=0

(
n− w
t

)
A(r)
w (X − Y )tY n−t

=

n∑
w=0

A(r)
w

(
n−w∑
t=0

(
n− w
t

)
(X − Y )tY n−w−t

)
Y w

=

n∑
w=0

A(r)
w Xn−wY w

= W
(r)
C (X,Y ).

In the second step, we can let the summation over t run up to n−w instead of n because(
n−w
t

)
= 0 for t > n− w.
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It is possible to determine the A(r)
w directly from the B(r)

t , by using the next proposition.

Proposition 2.12. The following formula holds:

A(r)
w =

n−dr∑
t=n−w

(−1)n+w+t

(
t

n− w

)
B

(r)
t .

Proof. For w < dr the summation is empty, which gives the correct formula A(r)
w = 0.

For w ≥ dr we rewrite the generalized weight enumerator in the form of Theorem 2.11.
By using the binomial expansion of (X − Y )t, substituting w = n− t+ j, and changing
the order of summation we find that

W
(r)
C (X,Y ) =

n−dr∑
t=0

B
(r)
t (X − Y )tY n−t

=

n−dr∑
t=0

B
(r)
t

 t∑
j=0

(
t

j

)
(−1)jXt−jY j

Y n−t

=

n−dr∑
t=0

n∑
w=n−t

B
(r)
t

(
t

t− n+ w

)
(−1)w+t−nXn−wY w

=

n∑
w=dr

n−dr∑
t=n−w

(−1)n+w+t

(
t

n− w

)
B

(r)
t Xn−wY w.

The given formula follows from comparing with Definition 2.4 of the generalized weight
enumerator.

Note that, like in Proposition 2.10, we can take the summation up to n instead of n−dr,
because B(r)

t = 0 for t < n− dr by Proposition 2.9.

2.2 Extended weight enumerator

Let G be the generator matrix of a linear [n, k] code C over Fq. Then we can form the
[n, k] code C ⊗ Fqm over Fqm by taking all Fqm -linear combinations of the codewords in
C. We call this the extension code of C over Fqm . We denote the number of codewords
in C ⊗ Fqm of weight w by AC⊗Fqm ,w. We can determine the weight enumerator of such
an extension code by using only the code C.

By embedding its entries in Fqm , we find that G is also a generator matrix for the
extension code C ⊗ Fqm . In Lemma 2.6 we saw that l(J) = k − r(J). Because r(J) is
independent of the extension field Fqm , we have dimFq C(J) = dimFqm (C⊗Fqm)(J). This
motivates the usage of U as a variable for qm in the next definition.

Definition 2.13. Let C be a linear code over Fq. Then we define

BJ(U) = U l(J) − 1,

Bt(U) =
∑
|J|=t

BJ(U).
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The extended weight enumerator is given by

WC(X,Y, U) = Xn +

n∑
t=0

Bt(U)(X − Y )tY n−t.

Note that BJ(qm) is the number of nonzero codewords in (C ⊗ Fqm)(J).

Proposition 2.14. Let d and d⊥ be the minimum distance of C and C⊥ respectively.
Then we have

Bt(U) =

{ (
n
t

)
(Uk−t − 1) for all t < d⊥

0 for all t > n− d.

Proof. The proof is similar to the proof of Proposition 2.9 and is a direct consequence
of Lemma 2.7. For t < d⊥ we have l(J) = k − t, so BJ(U) = Uk−t − 1 and Bt(U) =(
n
t

)
(Uk−t − 1). For t > n− d we have l(J) = 0, so BJ(U) = 0 and Bt(U) = 0.

Theorem 2.15. The following holds:

WC(X,Y, U) =

n∑
w=0

Aw(U)Xn−wY w

with Aw(U) ∈ Z[U ] given by A0(U) = 1 and

Aw(U) =

n∑
t=n−w

(−1)n+w+t

(
t

n− w

)
Bt(U)

for 0 < w ≤ n.

Proof. Note that Aw(U) = 0 for 0 < w < d because the summation is empty. By
substituting w = n− t+ j and reversing the order of summation, we have

WC(X,Y, U) = Xn +

n∑
t=0

Bt(U)(X − Y )tY n−t

= Xn +

n∑
t=0

Bt(U)

 t∑
j=0

(
t

j

)
(−1)jXt−jY j

Y n−t

= Xn +

n∑
t=0

t∑
j=0

(−1)j
(
t

j

)
Bt(U)Xt−jY n−t+j

= Xn +

n∑
t=0

n∑
w=n−t

(−1)t−n+w

(
t

t− n+ w

)
Bt(U)Xn−wY w

= Xn +

n∑
w=0

n∑
t=n−w

(−1)n+w+t

(
t

n− w

)
Bt(U)Xn−wY w.

Since the second term is zero for w = 0, we see that WC(X,Y, U) is of the form∑n
w=0Aw(U)Xn−wY w with Aw(U) of the form given in the theorem.
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Note that in the definition of Aw(U) we can let the summation over t run up to n − d
instead of n, because Bt(U) = 0 for t > n− d.

Proposition 2.16. The following formula holds:

Bt(U) =

n−t∑
w=d

(
n− w
t

)
Aw(U).

Proof. We start with the extended weight enumerator in the form of Theorem 2.15 and
then rewrite as follows.

WC(X,Y, U) = Xn +

n∑
w=d

Aw(U)((X − Y ) + Y )n−wY w

= Xn +

n∑
w=d

Aw(U)

(
n−w∑
t=0

(
n− w
t

)
(X − Y )tY n−w−t

)
Y w

= Xn +

n∑
w=d

n−w∑
t=0

Aw(U)

(
n− w
t

)
(X − Y )tY n−t

= Xn +

n∑
t=0

n−t∑
w=d

(
n− w
t

)
Aw(U)(X − Y )tY n−t

The given formula follows from comparing with Definition 2.13 of the extended weight
enumerator.

Note that, unlike in Proposition 2.10, we can not let the summation start at w = 0. This
is because Aw(U) = 1 6= 0. We can let the summation run up to w = n, because the
binomial is zero for w > n− t.

As we said before, the motivation for looking at the extended weight enumerator comes
from the extension codes. In the next proposition we show that the extended weight
enumerator for U = qm is indeed the weight enumerator of the extension code C ⊗ Fqm .

Proposition 2.17. Let C be a linear [n, k] code over Fq. Then we have

WC(X,Y, qm) = WC⊗Fqm (X,Y ).

Proof. For w = 0 it is clear that A0(qm) = AC⊗Fqm ,0 = 1, so assume w 6= 0. It is
enough to show that Aw(qm) = (qm − 1)A

(1)
C⊗Fqm ,w. First we have

Bt(q
m) =

∑
|J|=t

BJ(qm)

=
∑
|J|=t

|{c ∈ (C ⊗ Fqm)(J) : c 6= 0}|

= (qm − 1)
∑
|J|=t

|{D ⊆ (C ⊗ Fqm)(J) : dimD = 1}

= (qm − 1)B
(1)
t (C ⊗ Fqm).
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We also know that Aw(U) and Bt(U) are related the same way as A(1)
w and B(1)

t . Com-
bining this proves the statement.

Because of Proposition 2.17 we can interpret WC(X,Y, U) as the weight enumerator of
the extension code over the algebraic closure of Fq. For further applications, the next
way of writing the extended weight enumerator will be useful.

Proposition 2.18. The extended weight enumerator of a linear code C can be written
as

WC(X,Y, U) =

n∑
t=0

∑
|J|=t

U l(J)(X − Y )tY n−t.

Proof. By rewriting and using the binomial expansion of ((X − Y ) + Y )n, we get

n∑
t=0

∑
|J|=t

U l(J)(X − Y )tY n−t

=

n∑
t=0

(X − Y )tY n−t
∑
|J|=t

(
(U l(J) − 1) + 1

)

=

n∑
t=0

(X − Y )tY n−t

∑
|J|=t

(U l(J) − 1) +

(
n

t

)
=

n∑
t=0

Bt(U)(X − Y )tY n−t +

n∑
t=0

(
n

t

)
(X − Y )tY n−t

=

n∑
t=0

Bt(U)(X − Y )tY n−t +Xn

= WC(X,Y, U).

The MacWilliams identity we saw in Theorem 1.8 can be extended to the extended weight
enumerator. We will give the proof of this theorem in Section 8.2.

Theorem 2.19 (MacWilliams). Let C be a code and let C⊥ be its dual. Then the extended
weight enumerator of C completely determines the extended weight enumerator of C⊥ and
vice versa, via the following formula:

WC⊥(X,Y, U) = U−kWC(X + (U − 1)Y,X − Y,U).

2.3 Connections

There is a connection between the extended weight enumerator and the generalized weight
enumerators. We first prove the next proposition.

Proposition 2.20. Let C be a linear [n, k] code over Fq, and let Cm be the linear sub-
space consisting of the m × n matrices over Fq whose rows are in C. Then there is an
isomorphism of Fq-vector spaces between C ⊗ Fqm and Cm.
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Proof. First, fix an isomorphism ϕ : Fqm → Fmq . (For example, let α be a primitive
m-th root of unity in Fqm and write an element of Fqm in a unique way on the basis
(1, α, α2, . . . , αm−1).) We now create a map C⊗Fqm → Cm as follows. Let c = (c1, . . . , cn)
be a word in C⊗Fqm . Apply ϕ coordinate-wise to c, and write the ϕ(ci) as column vectors.
This gives an m× n matrix over Fq. The rows of this matrix are words of C, because C
and C ⊗ Fqm have the same generator matrix. This map is clearly injective. There are
(qm)k = qkm words in C ⊗ Fqm , and the number of elements of Cm is (qk)m = qkm,
so our map is a bijection. Moreover, the map is Fq-linear, so it gives an isomorphism of
Fq-vector spaces C ⊗ Fqm → Cm.

Note that this isomorphism depends on the choice of an isomorphism ϕ : Fqm → Fmq .
The use of this isomorphism for the proof of Theorem 2.23 was suggested by Simonis
[85]. We also need the next lemma.

Lemma 2.21. Let c ∈ C ⊗ Fqm and M ∈ Cm the corresponding m × n matrix under
a given isomorphism. Let D ⊆ C be the subcode generated by the rows of M . Then
supp(c) = supp(D) and hence wt(c) = wt(D).

Proof. Since ϕ : Fqm → Fmq is an isomorphism, we have that ϕ(ci) = 0 if and only if
ci = 0. Also, the i-th column of M is zero if and only if i /∈ supp(D). Therefore,wt(c) =
wt(D).

Proposition 2.22. Let C be a linear code over Fq. Then the weight enumerator of an
extension code and the generalized weight enumerator are connected via

Aw(qm) =

m∑
r=0

[m, r]qA
(r)
w .

Proof. We count the number of words in C ⊗ Fqm of weight w in two ways, using the
bijection of Proposition 2.20. The first way is just by substituting U = qm in Aw(U):
since AC⊗Fqm ,w = Aw(qm) by Proposition 2.17, this gives the left side of the equation.
For the second way we use Lemma 2.21. Fix a weight w and a dimension r. There are A(r)

w

subcodes of C of dimension r and weight w. Every such subcode is generated by an r×n
matrix whose rows are words of C. Left multiplication by a m× r matrix of rank r gives
an element of Cm that generates the same subcode of C, and all such elements of Cm
are obtained this way. The number of m× r matrices of rank r is [m, r]q, so summation
over all dimensions r gives

Aw(qm) =

k∑
r=0

[m, r]qA
(r)
w .

We can let the summation run up to m, because A(r)
w = 0 for r > k and [m, r]q = 0 for

r > m. This proves the given formula.

This result first appears in [49, Theorem 3.2], although the term “generalized weight
enumerator” was yet to be invented. In general, we have the following theorem.
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Theorem 2.23. Let C be a linear code over Fq. Then the extended weight enumerator
and the generalized weight enumerators are connected via

WC(X,Y, U) =

k∑
r=0

r−1∏
j=0

(U − qj)

W
(r)
C (X,Y ).

Proof. If we know A
(r)
w for all r, we can determine Aw(qm) for every m. If we have

k+ 1 values of m for which Aw(qm) is known, we can use Lagrange interpolation to find
Aw(U), for this is a polynomial in U of degree at most k. In fact, we have

Aw(U) =

k∑
r=0

r−1∏
j=0

(U − qj)

A(r)
w .

This formula has the right degree and is correct for U = qm for all integer values m ≥ 0,
so we know it must be the correct polynomial. Now the theorem follows.

The converse of the theorem is also true: we can write the generalized weight enumerator
in terms of the extended weight enumerator. We first give a combinatorial identity that
we will use in several rewriting proofs. It is a generalization of Newton’s binomial identity
to the Gaussian binomial and can be proven by induction.

Lemma 2.24. For every positive integer r the following identity holds:

r−1∏
j=0

(Z − qj) =

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j
2 )Zj .

Theorem 2.25. Let C be a linear code over Fq. Then the generalized weight enumerator
and the extended weight enumerator are connected via

W
(r)
C (X,Y ) =

1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j
2 ) WC(X,Y, qj).

Proof. We consider the generalized weight enumerator in terms of Theorem 2.11. Rewrit-
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ing that expression gives the following:

W
(r)
C (X,Y ) =

n∑
t=0

B
(r)
t (X − Y )tY n−t

=

n∑
t=0

∑
|J|=t

[
l(J)

r

]
q

(X − Y )tY n−t

=
n∑
t=0

∑
|J|=t

r−1∏
j=0

ql(J) − qj

qr − qj

 (X − Y )tY n−t

=
1∏r−1

v=0(qr − qv)

n∑
t=0

∑
|J|=t

r−1∏
j=0

(ql(J) − qj)

 (X − Y )tY n−t

=
1

〈r〉q

n∑
t=0

∑
|J|=t

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j
2 )qj·l(J)(X − Y )tY n−t

=
1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j
2 )

n∑
t=0

∑
|J|=t

(qj)l(J)(X − Y )tY n−t

=
1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j
2 ) WC(X,Y, qj).

In the fourth step, we use the identity in Lemma 2.24. The last step follows from Propo-
sition 2.18. See also [1, 20, 61, 99, 87].

2.4 Application to MDS codes

We can use the theory in Sections 2.1 and 2.2 to calculate the weight distribution, gen-
eralized weight distribution, and extended weight distribution of a linear [n, k] code C.
This is done by determining the values l(J) for each J ⊆ [n]. In general, we have to look
at the 2n different subcodes of C to find the l(J), but for the special case of MDS codes
we can find the weight distributions much faster.

Proposition 2.26. Let C be a linear [n, k] MDS code. Let J ⊆ [n] and |J | = t. Then we
have

l(J) =

{
0, for t > k,

k − t, for t ≤ k.

So for a given t the value of l(J) is independent of the choice of J .

Proof. We know that the dual of an MDS code is also MDS, so d⊥ = k + 1. Now use
d = n− k + 1 in Lemma 2.7.

Now that we know all the l(J) for an MDS code, it is easy to find the weight distribution.
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Theorem 2.27. Let C be an MDS code with parameters [n, k]. Then the generalized
weight distribution is given by

A(r)
w =

(
n

w

)w−d∑
j=0

(−1)j
(
w

j

)[
w − d+ 1− j

r

]
q

.

The coefficients of the extended weight enumerator for w > 0 are given by

Aw(U) =

(
n

w

)w−d∑
j=0

(−1)j
(
w

j

)
(Uw−d+1−j − 1).

Proof. We will give the construction for the generalized weight enumerator here: the
case of the extended weight enumerator is similar and is left as an exercise. We know
from Proposition 2.26 that for an MDS code, B(r)

t depends only on the size of J , so
B

(r)
t =

(
n
t

) [
k−t
r

]
q
. Using this in the formula for A(r)

w and substituting j = t− n+w, we

have

A(r)
w =

n−dr∑
t=n−w

(−1)n+w+t

(
t

n− w

)
B

(r)
t

=

n−dr∑
t=n−w

(−1)t−n+w

(
t

n− w

)(
n

t

)[
k − t
r

]
q

=

w−dr∑
j=0

(−1)j
(
n

w

)(
w

j

)[
k + w − n− j

r

]
q

=

(
n

w

)w−dr∑
j=0

(−1)j
(
w

j

)[
w − d+ 1− j

r

]
q

.

In the second step, we are using the binomial equivalence(
n

t

)(
t

n− w

)
=

(
n

n− w

)(
n− (n− w)

t− (n− w)

)
=

(
n

w

)(
w

n− t

)
.

So for all MDS-codes the extended and generalized weight distributions are completely
determined by the parameters [n, k]. But not all such codes are equivalent. We can
conclude from this, that the generalized and extended weight enumerators are not enough
to distinguish between codes with the same parameters. We illustrate the non-equivalence
of two MDS codes by an example.

Example 2.28. Let C be a linear [n, 3] MDS code over Fq and let n ≥ 5. Because C is
MDS we have d = n− 2 ≥ 3. We now view the n columns of G as distinct points in the
projective plane P2(Fq), say P1, . . . , Pn. The MDS property that every k columns of G
are independent is now equivalent to saying that no three points are on a line.
To see that these n points do not always determine an equivalent code, consider the
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following construction. Through the n points there are
(
n
2

)
= N lines, the set N . These

lines determine (the generator matrix of) an [n, 3] code Ĉ. The minimum distance of the
code Ĉ is equal to the total number of lines minus the maximum number of lines from N
through an arbitrary point P ∈ P2(Fq). If P /∈ {P1, . . . , Pn} then the maximum number
of lines from N through P is at most 1

2n, since no three points of N lie on a line. If
P = Pi for some i ∈ [n] then P lies on exactly n − 1 lines of N , namely the lines PiPj
for j 6= i. Therefore, the minimum distance of Ĉ is d = N − n+ 1.

We now have constructed an [n, 3, N −n+ 1] code Ĉ from the original code C. Note that
two codes Ĉ1 and Ĉ2 are generalized equivalent if C1 and C2 are generalized equivalent.
The generalized and extended weight enumerators of an MDS code of length n and di-
mension k are completely determined by the pair (n, k), but this is not generally true for
the weight enumerator of Ĉ.

Take for example n = 6 and q = 9, then Ĉ is a [15, 3, 10] code. Look at the codes C1 and
C2 generated by the following matrices respectively, where α ∈ F9 is a primitive element: 1 1 1 1 1 1

0 1 0 1 α5 α6

0 0 1 α3 α α3

 ,

 1 1 1 1 1 1
0 1 0 α7 α4 α6

0 0 1 α5 α 1

 .

Being both MDS codes, the weight distribution is (1, 0, 0, 120, 240, 368). If we now apply
the above construction, we get Ĉ1 and Ĉ2 generated by 1 0 0 1 1 α4 α6 α3 α7 α 1 α2 1 α7 1

0 1 0 α7 1 0 0 α4 1 1 0 α6 α 1 α3

0 0 1 1 0 1 1 1 0 0 1 1 1 1 1

 ,

 1 0 0 α7 α2 α3 α 0 α7 α7 α4 α7 α 0 0
0 1 0 1 0 α3 0 α6 α6 0 α7 α α6 α3 α
0 0 1 α5 α5 α6 α3 α7 α4 α3 α5 α2 α4 α α5

 .

The weight distributions of Ĉ1 and Ĉ2 are, respectively,

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 16, 312, 288, 64) and
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 32, 264, 336, 48).

So the latter two codes are not generalized equivalent, and therefore not all [6, 3, 4] MDS
codes over F9 are generalized equivalent.

Another example was given in [86, 22] showing that two [6, 3, 4] MDS codes could have
distinct covering radii.
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3
Zeta functions and their

generalizations

The notion of a zeta function originates from the theory of algebraic curves. Via alge-
braic geometry codes Duursma extended the definition to linear codes [36, 37]. The zeta
function admits two generalizations, along the same lines as the generalizations of the
weight enumerator in Chapter 2. We can extend the field over which the code is defined:
this leads to the two-variable zeta function. Looking at subcodes instead of codewords
leads to the generalized zeta function.
Most of this chapter is a summary of known results from Duursma [39], but presented in
a way to match with the previous chapter. The definition of the generalized zeta function
via generalized binomial moments differs from the approach in [39]. Where Duursma uses
the decomposition of zeta functions to define the generalized zeta function, we find in
Theorem 3.8 new formulas that directly express the coefficients of the generalized zeta
polynomial in terms of the generalized binomial moments.
The theory in this chapter is also used in Chapter 11. Following the literature, we will
restrict ourselves in this chapter to codes with minimum distance and dual minimum
distance at least three, i.e., d, d⊥ ≥ 3.

3.1 The (two-variable) zeta function

The two-variable zeta polynomial is extensively studied by Duursma [39], who defined
and studied the one-variable case in [36, 37].

Definition 3.1. Let C be a linear [n, k, d] code over Fq with extended weight enumer-
ator WC(X,Y, U). The two-variable zeta polynomial PC(T,U) of this code is the unique
polynomial in Q[T,U ] of degree at most n−d in T such that if we expand the generating
function

PC(T,U)

(1− T )(1− TU)
(Y (1− T ) +XT )n

as a power series in the variable T , we get

. . .+ . . . Tn−d−1 +
WC(X,Y, U)−Xn

U − 1
Tn−d + . . . Tn−d+1 + . . . .
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The quotient ZC(T,U) = PC(T,U)/((1 − T )(1 − TU)) is called the two-variable zeta
function.

Just as with the extended weight enumerator, the variable U can be interpreted as the
size of the finite field over which the code is defined. We will often refer to the zeta
polynomial in the following form:

PC(T,U) =

r∑
i=0

Pi(U)T i.

The extended weight enumerator of an MDS code is completely determined by its param-
eters, see Theorem 2.27. So, even if there does not exist an MDS code with parameters
[n, n− d+ 1, d], we can formally define its extended weight enumerator Mn,d. The two-
variable zeta polynomial of an MDS code does not even depend on the parameters of the
code, just on the fact that it is MDS.

Proposition 3.2. A code is MDS if and only if PC(T,U) = 1.

Proof. There are several proofs possible. We will expand the generating function in
Definition 3.1 and show directly that we get the weight enumerator Mn,d of the [n, n −
d+1, d] MDS code over Fq. By splitting the fraction and using the power series of 1/(1−T )
and 1/(1− TU), we get that

1

(1− T )(1− TU)
=

1

U − 1

∞∑
l=0

(U l+1 − 1)T l.

For the second part, we use the binomial expansion twice to get

(Y (1− T ) +XT )n =

n∑
j=0

n∑
w=j

(
n

w

)(
w

j

)
(−1)j+wXn−wY wTn−j .

We multiply the two power series, and find the coefficient of Tn−d. We omit the 1/(U−1)
factor, which is already in the right place. Because we only need the terms with l+n−j =
n− d, we substitute l = j − d. We have to sum from n− j = 0 to n− j = n− d, hence
from j = d to j = n. This gives

n∑
j=d

(U j−d+1 − 1)

n∑
w=j

(
n

w

)(
w

j

)
(−1)j+wXn−wY w

=

n∑
w=d

w∑
j=d

(U j−d+1 − 1)

(
n

w

)(
w

j

)
(−1)j+wXn−wY w

=

n∑
w=d

(
n

w

)w−d∑
j=0

(−1)j
(
w

j

)
(Uw−d+1−j − 1)Xn−wY w

= Mn,d −Xn

as was to be shown.
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Theorem 3.3. The zeta polynomial gives us a way to write the extended weight enumer-
ator with respect to a basis of MDS weight enumerators:

WC(X,Y, U) = P0(U)Mn,d + P1(U)Mn,d+1 + . . .+ Pr(U)Mn,d+r.

Proof. This follows directly from Definition 3.1 and Proposition 3.2.

We treat some more properties of the two-variable zeta polynomial. The proofs are similar
to the case of the one-variable zeta polynomial as treated in [39].

Proposition 3.4. The degree of PC(T,U) in T is n− d− d⊥ + 2.

Proof. Assume that Pr(U) is not zero and apply Theorem 3.3 to the dual code C⊥.
This expression starts with the dual of Mn,d⊥+r. Since the dual of an MDS code is again
an MDS code by Theorem 1.12, it is equal to Mn,n−d+2+r. Therefore, n+ 2− d− r = d⊥

and hence r = n− d− d⊥ + 2.

A way to interpret this degree n − d − d⊥ + 2 is to view it as a measure for how “far
away” a code is from being MDS.

Proposition 3.5. For the two-variable zeta polynomial of a code C and dual C⊥ we
have

PC⊥(T,U) = PC

(
1

TU
,U

)
Un−k+1−dTn−d−d

⊥+2.

Proof. Apply the MacWilliams identity for the extended weight enumerator in Theorem
2.19 to the expression in Theorem 3.3. This gives that WC⊥(X,Y, U) is equal to

= U−kWC(X + (U − 1)Y,X − Y )

= U−k(P0(U)Mn,d(X + (U − 1)Y,X − Y ) + . . .

+Pr(U)Mn,d+r(X + (U − 1)Y,X − Y ))

= U−k
(
Pr(U)Un−d−r+1Mn,n−d+2−r + . . .+ P0(U)Un−d−1Mn,n−d+2

)
and the Proposition follows.

3.2 The generalized zeta function

In Definition 3.1 of the zeta function, the coefficient of Tn−d in the power series is exactly
the first generalized weight enumerator W (1)

C (X,Y ). This motivates the definition of a
generalized zeta function of a linear code.

Duursma [39] uses normalized binomial moments to define the two-variable zeta polyno-
mial. These binomial moments are quite similar to the B(r)

t we encountered in Section
2.1, because Duursma’s kS is equal to l(J) for S = [n]\J . To avoid confusion, the capital
B is only used in the meaning of Section 2.1. We can generalize the normalized binomial
moments in the following way:
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Definition 3.6. The generalized binomial moments of a linear code are given by

b
(r)
i =


B

(r)
n−dr−i/

(
n

dr+i

)
, for 0 ≤ i ≤ n− d⊥ − dr,

0, for i < 0,[
k−n+i+dr

r

]
q
, for i > n− d⊥ − dr.

This definition is well defined by Proposition 2.9.

Definition 3.7. The generalized zeta function of a linear code is the generating function
for the generalized binomial moments:

Z
(r)
C (T ) =

∞∑
i=0

b
(r)
i T i.

Theorem 3.8. The generalized zeta function is a rational function given by

Z
(r)
C (T ) =

P
(r)
C (T )

(1− T )(1− qT ) · · · (1− qrT )
,

where P (r)
C (T ) is a polynomial of degree n− d⊥ − dr + r + 1 with coefficients given by

P
(r)
i =

r+1∑
j=0

[
r + 1

j

]
q

(−1)jq(
j
2)b

(r)
i−j .

Proof. We will first show the formula for the P (r)
i , and then show that they are almost

all zero, hence P (r)
i is indeed a polynomial. We start with a combinatorial statement,

using Lemma 2.24.
r∏
j=0

(1− qjT ) = T r+1
r∏
j=0

(
1

T
− qj

)

=

r+1∑
j=0

[
r + 1

j

]
q

(−1)r+1−jq(
r+1−j

2 )T r+1−j

=

r+1∑
j=0

[
r + 1

j

]
q

(−1)jq(
j
2)T j .

From this, we can find how P
(r)
C (T ) looks like:

P
(r)
C (T ) = Z

(r)
C (T ) · (1− T )(1− qT ) · · · (1− qrT )

=

( ∞∑
i=0

b
(r)
i T i

)
·

r+1∑
j=0

[
r + 1

j

]
q

(−1)jq(
j
2)T j

 .

If we look at the coefficient of T i when we expand this function in the variable T , we get
exactly the formula for P (r)

i . For i < 0, this is clearly zero, because b(r)i = 0 for i < 0.
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Therefore, it is left to show that P (r)
i = 0 for i > n− d⊥ − dr + r + 1.

Assume that i > n−d⊥−dr+r+1. Then we can determine the value for P (r)
i because we

know the value of all b(r)i−j for 0 ≤ j ≤ r+1 by Proposition 2.9. We put s = k−n+ i+dr,
rewrite, use Lemma 2.24, put j = r + 1− j, and rewrite some more. This gives

P
(r)
i =

r+1∑
j=0

[
r + 1

j

]
q

(−1)jq(
j
2)b

(r)
i−j

=
r+1∑
j=0

[
r + 1

j

]
q

(−1)jq(
j
2)
[
k − n+ i− j + dr

r

]
q

=

r+1∑
j=0

[
r + 1

j

]
q

(−1)jq(
j
2)
[
s− j
r

]
q

=

r+1∑
j=0

[
r + 1

j

]
q

(−1)jq(
j
2)
r−1∏
i=0

(
qs−j − qi

qr − qi

)

=
1

〈r〉q

r+1∑
j=0

[
r + 1

j

]
q

(−1)jq(
j
2)
r−1∏
i=0

(qs−j − qi)

=
1

〈r〉q

r+1∑
j=0

[
r + 1

j

]
q

(−1)jq(
j
2)

r∑
i=0

[r
i

]
q

(−1)r−iq(
r−i
2 )qi(s−j)

=
1

〈r〉q

r∑
i=0

[r
i

]
q

(−1)r−iq(
r−i
2 )qis

r+1∑
j=0

[
r + 1

j

]
q

(−1)jq(
j
2)q−ij

=
1

〈r〉q

r∑
i=0

[r
i

]
q

(−1)r−iq(
r−i
2 )qis

r+1∑
j=0

[
r + 1

j

]
q

(−1)r+1−jq(
r+1−j

2 )q−i(r+1−j)

=
1

〈r〉q

r∑
i=0

[r
i

]
q

(−1)r−iq(
r−i
2 )qi(s+r+1)

r∏
j=0

(q−i − qj)

=
1

〈r〉q

r∑
i=0

[r
i

]
q

(−1)r−iq(
r−i
2 )qi(s+r+1)q−i(r+1)

r∏
j=0

(1− qj−i)

=
1

〈r〉q

r∑
i=0

[r
i

]
q

(−1)r−iq(
r−i
2 )qis

r∏
j=0

(1− qj−i).

Since both i and j sum over the same range, the factor 1 − qj−i becomes zero in every
term of the summation and thus this whole expression is equal to zero. This shows that
the generalized zeta function is indeed a rational function of the given form.

The next theorem shows that the generalized zeta function determines the generalized
weight enumerator of the code.

Theorem 3.9. If we expand the generating function Z(r)
C (T ) · (Y (1 − T ) + XT )n in T ,

it has expansion
. . .+W

(r)
C (x, y) Tn−dr + . . . .
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Proof. We want to determine the coefficient of Tn−dr in the generating function

(∑
i

b
(r)
i T i

)
·

 n∑
j=0

n∑
w=j

(
n

w

)(
w

j

)
(−1)j+wXn−wY wTn−j

 .

We need the terms with i + n − j = n − dr, so let i = j − dr. Then changing the order
of summation, setting n− j = t and factoring out binomials gives that

n∑
j=dr

b
(r)
j−dr

n∑
w=j

(
n

w

)(
w

j

)
(−1)j+wXn−wY w

=

n∑
w=dr

w∑
j=dr

b
(r)
j−dr

(
n

w

)(
w

j

)
(−1)j+wXn−wY w

=

n∑
w=dr

n−dr∑
t=n−w

b
(r)
n−t−dr

(
n

w

)(
w

n− t

)
(−1)n−t+wXn−wY w

=

n∑
w=dr

n−dr∑
t=n−w

B
(r)
t(
n
t

) (n
t

)(
t

n− w

)
(−1)n−t+wXn−wY w

=

n∑
w=dr

n∑
t=n−w

B
(r)
t

(
t

n− w

)
(−1)n+t+wXn−wY w

=

n∑
w=dr

A(r)
w Xn−wY w

= W
(r)
C (X,Y )

which was to be proved.

Corollary 3.10. For all MDS codes, we have P (r)
C = 1.

Proof. From Theorem 3.8 we know that the degree of P (r)(T ) is equal to n−d⊥−dr +

r+ 1, so for MDS codes this degree is 0. Therefore, we only have to show that P (r)
0 = 1.

We use the formula in Theorem 3.8 for this:

P
(r)
0 =

r+1∑
j=0

[
r + 1

j

]
q

(−1)jq(
j
2)b

(r)
−j .

Since b(r)i = 0 for i < 0, the only nonzero term in the above summation is at j = 0,
so P (r)

0 = b
(r)
0 . In Theorem 2.27 we found that B(r)

t =
(
n
t

) [
k−t
r

]
q
for MDS codes. This
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means that

P
(r)
0 = b

(r)
0

= B
(r)
n−dr/

(
n

dr

)
=

(
n

t

)[
k − n+ dr

r

]
q

/

(
n

dr

)
=

[r
r

]
q

= 1

as was to be shown.

Because of the previous corollary, we can interpret the generalized zeta polynomial as
a way to write a weight enumerator with respect to a “basis” of weight enumerators of
MDS codes. This follows directly from the previous theory.

Theorem 3.11. Denote by M (r)
n,dr

the generalized weight enumerator of an MDS code of
length n and minimum distance d = dr − r + 1. Then the weight enumerator of a code
with generalized zeta polynomial P (r)(T ) is given by

W
(r)
C (X,Y ) = P

(r)
0 M

(r)
n,dr−r+1 + P

(r)
1 M

(r)
n,dr−r+2 + . . .+ P

(r)

n−d⊥−dr+r+1
M

(r)

n,n−d⊥+2
.
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4
Introduction to arrangements

An arrangement of hyperplanes is simply an n-tuple of hyperplanes in some affine or
projective space. If an arrangement is defined over the real affine space, an interesting
question is in how many regions the real affine space is divided by the arrangement. The
answer to this question is given by the characteristic polynomial, that we will encounter
in Chapter 10. If an arrangement is defined over a projective space, it becomes the dual
notion of a projective system. Important for our purposes are arrangements and projective
systems defined over finite fields, because of their close relation to weight enumeration
of linear codes.
In this chapter, we will only give the basic definitions of arrangements and projective
systems. For a more extensive introduction, see for example Stanley [88] or Orlik and
Terao [76]. The connection with weight enumeration is a summary of the work from
Katsman, Tsfasman and Vlǎdut [60, 92, 93].

4.1 Projective systems and hyperplane arrangements

Let F be a field. A projective system P = (P1, . . . , Pn) in Pr(F), the projective space over
F of dimension r, is an n-tuple of points Pj in this projective space, such that not all
these points lie in a hyperplane.

Let Pj be given by the homogeneous coordinates (p0j : p1j : . . . : prj) and let GP be the
(r+1)×n matrix with (p0j , p1j , . . . , prj)

T as j-th column. Then GP has rank r+1, since
not all points lie in a hyperplane. If F is a finite field, then GP is the generator matrix
of a nondegenerate code over F of length n and dimension r + 1.
Conversely, let G be a generator matrix of a nondegenerate linear [n, k] code C over Fq,
so G has no zero columns. Take the columns of G as homogeneous coordinates of points
in Pk−1(Fq). This gives the projective system PG over Fq of G. Note that for all extension
codes of C, the associated projective system consists of the points of PG embedded in
Pk−1(Fqm).

An n-tuple (H1, . . . ,Hn) of hyperplanes in Fk is called an arrangement in Fk. We usually
denote an arrangement by A. The arrangement is called simple if all the n hyperplanes
are mutually distinct. The arrangement is called central if all the hyperplanes are linear
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subspaces. A central arrangement is called essential if the intersection of all its hyper-
planes is equal to {0}.

Let G = (gij) be a generator matrix of a nondegenerate linear [n, k] code C, so G has no
zero columns. Let Hj be the linear hyperplane in Fkq with equation

g1jX1 + · · ·+ gkjXk = 0.

The arrangement (H1, . . . ,Hn) associated with G will be denoted by AG. The arrange-
ment associated with an extension code of C consists of the hyperplanes of AG embedded
in Fkqm .

In case of a central arrangement one considers the hyperplanes in Pk−1(F). Note that
projective systems and essential arrangements are dual notions and that there is a one-
to-one correspondence between equivalence classes of nondegenerate [n, k] codes over Fq,
equivalence classes of projective systems over Fq of n points in Pk−1(Fq), and equivalence
classes of essential arrangements of n hyperplanes in Pk−1(Fq).

4.2 Geometric interpretation of weight enumeration

We can write a codeword c ∈ C as c = xG, with x ∈ Fkq . The i-th coordinate of c is zero
if and only if the standard inner product of x and the i-th column of G is zero. In terms
of projective systems: Pi is in the hyperplane perpendicular to x. See Figure 4.1.�

�
�
�

0

1× k k × n 1× n
message m generator matrix G codeword c

Figure 4.1: The geometric determination of the weight of a codeword

Proposition 4.1. Let C be a linear nondegenerate [n, k] code over Fq with generator
matrix G. Let PG be the projective system of G. The code has minimum distance d if and
only if n− d is the maximal number of points of PG in a hyperplane of Pk−1(Fq).

Proof. See Katsman, Tsfasman and Vlǎdut [60, 92, 93].

We can translate Proposition 4.1 for an arrangement.

Proposition 4.2. Let C be a nondegenerate code over Fq with generator matrix G and
let c be a codeword c = xG for some x ∈ Fkq . Then n − wt(c) is equal to the number of
hyperplanes in AG through x.

Remark 4.3. Recall that in Definitions 2.5 and 2.13 we introduced C(J) and BJ(U) for
the determination of the weight enumerator. Let AG = (H1, . . . ,Hn) be the arrangement
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associated to the nondegenerate code C. The encoding map x 7→ xG = c from vectors
x ∈ Fkq to codewords gives the following isomorphism of vectorspaces:⋂

j∈J
Hj
∼= C(J).

Furthermore, BJ(q) is equal to the number of nonzero codewords c ∈ C that are zero at
all j in J and this is equal to the number of nonzero elements of the intersection

⋂
j∈J Hj .

A similar remark holds for words in an extension code C ⊗ Fqm .

We can generalize this geometric interpretation of weight enumeration from words to
subcodes of C. Let Π be a subspace of codimension r in Pk−1(Fq) and let M be an r× k
matrix whose nullspace is Π. Then MG is an r × n matrix of full rank whose rows are
a basis of a subcode D ⊆ C. This gives a one-to-one correspondence between subspaces
of codimension r of Pk−1(Fq) and subcodes of C of dimension r. See Figure 4.2. This
correspondence is independent of the choice of M , G, and the basis of D; see [93] for
details. �

�
�
�

����
r × k k × n r × n

nullspace = Π generator matrix G generates D

Figure 4.2: The geometric determination of the weight of a subcode

Theorem 4.4. Let D ⊆ C be a subcode of dimension r and Π ⊆ Pk−1(Fq) the corre-
sponding subspace of codimension r. Then a coordinate i ∈ [n] is in [n] \ supp(D) if and
only if the point Pi ∈ PG is in Π.

Proof. The i-th coordinate of D is zero for all words in D if and only if all elements
in the basis of D have a zero in the i-th coordinate. This happens if and only if the i-th
column of G is in the nullspace of M , or, equivalently, if the point Pi ∈ PG is in Π.

Corollary 4.5. Let D ⊆ C be a subcode of dimension r and Π ⊆ Pk−1(Fq) the corre-
sponding subspace of codimension r. Then the weight of D is equal to n minus the number
of points Pi ∈ PG that are in Π.

A code C is called projective if d(C⊥) ≥ 3. Let G be a generator matrix of C. Then C is
projective if and only if C is nondegenerate and any two columns of G are independent.
Therefore, C is projective if and only if C is nondegenerate and the hyperplanes of AG
are mutually distinct.
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5
Weight enumeration of codes from

finite spaces

In the previous chapter, we have described a geometric method to determine the extended
and generalized weight distribution of a code. We will apply this theory to projective
systems coming from projective and affine spaces: the corresponding codes are the q-ary
Simplex code and the q-ary first order Reed-Muller code. As a result of the calculations,
we will not only determine the generalized and equivalent weight enumerators of these
codes, but we also completely determine the set of supports of subcodes and words in an
extension code.
This chapter is a copy of [53].

5.1 Codes from a finite projective space

Consider the projective system P that consists of all the points in Ps−1(Fq) without
multiplicities. The corresponding code is the Simplex code:

Definition 5.1. The q-ary Simplex code Sq(s) is a linear [(qs − 1)/(q − 1), s] code over
Fq. The columns of the generator matrix of the code are all possible nonzero vectors in
Fsq, up to multiplication by a scalar.

The correspondence between P and the Simplex code is independent of the choice of a
generator matrix. We use this correspondence to determine the extended weight enumer-
ator of the Simplex code. We do this via the generalized weight enumerators.

Theorem 5.2. The generalized weight enumerators of the Simplex code Sq(s) are, for
0 ≤ r ≤ s, given by

WSq(s)(X,Y ) =
[s
r

]
q
X(qs−r−1)/(q−1)Y (qs−qs−r)/(q−1).

Proof. We use Corollary 4.5 to determine the weights of all subcodes of Sq(s). Fix a
dimension r. Let D ⊆ Sq(s) be some subcode of dimension r that corresponds to the
subspace Π ⊆ Ps−1(Fq) of codimension r. The weight ofD is equal to nminus the number
of points in P that are in Π. Because all points of Ps−1(Fq) are in P, the weight is the
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same for all D and it is equal to n minus the total number of points in Π. This means
the weight of D is equal to

qs − 1

q − 1
− qs−r − 1

q − 1
=
qs − qs−r

q − 1

and the theorem follows.

From the previous calculation and Theorem 4.4 the next statement follows.

Corollary 5.3. Let D be some subcode of dimension r of the Simplex code Sq(s). Then
the points in P indexed by [n] \ supp(D) are all the points in the corresponding subspace
Π of codimension r in Ps−1(Fq).
We can now write down the extended weight enumerator of the Simplex code:

Theorem 5.4. The extended weight enumerator of the Simplex code Sq(s) is equal to

WSq(s)(X,Y, U) =

s∑
r=0

r−1∏
j=0

(U − qj)

[s
r

]
q
X(qs−r−1)/(q−1)Y (qs−qs−r)/(q−1).

Proof. We use the correspondence between the generalized and extended weight enu-
merator in Theorem 2.23:

WSq(s)(X,Y, U) =

s∑
r=0

r−1∏
j=0

(U − qj)

WSq(s)(X,Y )

=

s∑
r=0

r−1∏
j=0

(U − qj)

[s
r

]
q
X(qs−r−1)/(q−1)Y (qs−qs−r)/(q−1).

In combination with the isomorphism of Proposition 2.20 and Lemma 2.21, we get the
following consequence.

Corollary 5.5. The points in P indexed by the complement of the support of a word of
weight (qs−qs−r)/(q−1) in the extension code Sq(s)⊗Fqm for r ≤ m are all the points in
a subspace of Ps−1(Fq) of codimension r and every subspace of Ps−1(Fq) of codimension
r occurs in this manner.

Example 5.6. We consider the Simplex code S2(3). It is a binary [7, 3] code. Its extended
weight enumerator has coefficients

A0(U) = 1,

A1(U) = 0,

A2(U) = 0,

A3(U) = 0,

A4(U) = 7(U − 1),

A5(U) = 0,

A6(U) = 7(U − 1)(U − 2),

A7(U) = (U − 1)(U − 2)(U − 4).
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Note that for any code we have A0(U) = 1 for the zero word, and all other polynomials
are divisible by (U − 1) because over the “field of size one” we only have the zero word.
In the binary case U = 2, the polynomials for A6(U) and A7(U) vanish and the code has
only one nonzero weight. For U = 22 = 4, A7(U) still vanishes, it is a two-weight code.
For U = 23 and higher extensions we get all three possible nonzero weights.

5.2 Codes from a finite affine space

It may sound a bit strange to talk about the projective system coming from an affine
space. To solve this, remember that we can construct the finite affine space As−1(Fq) by
deleting a hyperplane from Ps−1(Fq). Therefore, let the projective system P consists of
all points in Ps−1(Fq) minus the points in a hyperplane H of Ps−1(Fq). Without loss of
generality, we can choose H to be the hyperplane X1 = 0. The corresponding code is
(monomial equivalent to) the first order q-ary Reed-Muller code, and we can define it in
the following way:

Definition 5.7. The first order q-ary Reed-Muller codeRMq(1, s−1) is a linear [qs−1, s]
code over Fq. The generator matrix consists of the all-one row, and the other positions
in the columns of the generator matrix are all possible vectors in Fs−1

q .

Note that the linear dependence between the columns of the generator matrix is now
equal to the dependence between the corresponding affine points: this property is very
useful if we want to talk about the matroid associated to the code, see [73].

We will use the projective system described above to determine the extended weight
enumerator of the first order Reed-Muller code. We do this via the generalized weight
enumerators.

Theorem 5.8. The generalized weight enumerators of the first order Reed-Muller code
RMq(1, s− 1) are, for 0 < r < s, given by

W
(r)
RMq(1,s−1)(X,Y ) =

[
s− 1

r − 1

]
q

Y n + qr
[
s− 1

r

]
q

Xqs−1−r
Y q

s−1−qs−1−r
.

The extremal cases are, as always, given by

W
(0)
RMq(1,s−1)(X,Y ) = Xn,

W
(s)
RMq(1,s−1)(X,Y ) = Y n.

Proof. We use Corollary 4.5 to determine the weights of all subcodes of RMq(1, s−1).
Fix a dimension r, with 0 ≤ r ≤ s. Let D ⊆ RMq(1, s−1) be some subcode of dimension
r that corresponds to the subspace Π ⊆ Ps−1(Fq) of codimension r. The weight of D is
equal to n minus the number of points in P that are in Π. There are two possibilities:

1. Π ⊆ H;

2. Π 6⊆ H.
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In the first case, we cannot have r = 0, since then Π is the whole of Ps−1(Fq) and this
cannot be contained in the hyperplane H. So, let r > 0. Now none of the points of P
are in Π, since no points of H are in P. Therefore, supp(D) = [n] and wt(D) = n.
The number of such codes is equal to the number of subspaces of codimension r − 1 in
H ∼= PG(s− 2, q), and this is

[
s−1
r−1

]
q
. Hence for 0 < r ≤ s we get the following term for

the generalized weight enumerator: [
s− 1

r − 1

]
q

Y n.

In the second case, we do not have to consider r = s, since then Π is the empty set and
this was already included in the previous case. So, let r < s. Now Π and H intersect in
a subspace of codimension r in H. The points of P that are in Π, are all those points of
Π that are not in Π ∩H. By the construction of the affine space As−1(Fq), the points of
Π\ (Π∩H) form a subspace of As−1(Fq) of codimension r. The number of points in such
a subspace is qs−1−r, so wt(D) = n− qs−1−r = qs−1− qs−1−r. The number of such codes
is equal to the number of subspaces of codimension r in As−1(Fq), and this is qr

[
s−1
r

]
q
.

Therefore, this case gives the following term for the generalized weight enumerator, for
0 ≤ r < s:

qr
[
s− 1

r

]
q

Xqs−1−r
Y q

s−1−qs−1−r
.

Summing up this two cases leads to the given formulas.

From the previous calculation and Theorem 4.4 the next statement follows.

Corollary 5.9. Let D be some subcode of dimension r of the first order Reed-Muller
code RMq(1, s−1). Then either supp(D) = [n] or the points in P indexed by [n]\supp(D)
are all the points in the corresponding subspace Π of codimension r in As−1(Fq) and every
subspace of As−1(Fq) of codimension r occurs in this manner.

We can now write down the extended weight enumerator of the first order Reed-Muller
code:

Theorem 5.10. The extended weight enumerator of the first order Reed-Muller code
RMq(1, s− 1) is equal to

WRMq(1,s−1)(X,Y, U) =

s∑
r=1

r−1∏
j=0

(U − qj)

[s− 1

r − 1

]
q

Y n

+

s−1∑
r=0

r−1∏
j=0

(U − qj)

 qr
[
s− 1

r

]
q

Xqs−1−r
Y q

s−1−qs−1−r
.

Proof. We use the correspondence between the generalized and extended weight enu-
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merator in Theorem 2.23:

WRMq(1,s−1)(X,Y, U) =

s∑
r=0

r−1∏
j=0

(U − qj)

WSq(s)(X,Y )

= Xn +

s−1∑
r=1

r−1∏
j=0

(U − qj)

([s− 1

r − 1

]
q

Y n

+qr
[
s− 1

r

]
q

Xqs−1−r
Y q

s−1−qs−1−r

)
+ Y n

=

s∑
r=1

r−1∏
j=0

(U − qj)

[s− 1

r − 1

]
q

Y n

+

s−1∑
r=0

r−1∏
j=0

(U − qj)

 qr
[
s− 1

r

]
q

Xqs−1−r
Y q

s−1−qs−1−r
.

In combination with the isomorphism of Proposition 2.20 and Lemma 2.21, we get the
following consequence.

Corollary 5.11. The points in P indexed by the complement of the support of a word
of weight qs−1− qs−1−r in the extension code RMq(1, s− 1)⊗Fqm for r ≤ m are all the
points in a subspace of As−1(Fq) of codimension r.

Example 5.12. We consider the Reed-Muller code RM2(1, 3). It is a binary [8, 4] code.
Its extended weight enumerator has coefficients

A0(U) = 1,

A1(U) = 0,

A2(U) = 0,

A3(U) = 0,

A4(U) = 14(U − 1),

A5(U) = 0,

A6(U) = 28(U − 1)(U − 2),

A7(U) = 8(U − 1)(U − 2)(U − 4),

A8(U) = (U − 1)(U3 − 7U2 + 21U − 21).

As noticed in Example 5.6, for any code we have A0(U) = 1 for the zero word, and all
other polynomials are divisible by (U − 1) because over the “field of size one” we only
have the zero word. In the binary case U = 2, the polynomials for A6(U) and A7(U)
vanish and we get a two-weight code. For U = 22 = 4, A7(U) still vanishes. For U = 23

and higher extensions we get all four possible nonzero weights.
This example and the previous Example 5.6 also illustrate that the binary Simplex code
S2(s) is equivalent to the binary Reed-Muller code RM2(1, s) shortened at the first
coordinate.
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5.3 Application and links to other problems

We found direct formulas for the extended weight enumerator of the q-ary Simplex code
and the q-ary first order Reed-Muller code. Following from this calculations, we found the
geometrical structure of the supports of the subcodes and of words in extension codes.
This triggers a lot of links with other problems in discrete mathematics and coding theory.
The following list is by no means exhaustive, but it hopefully serves as encouragement
and inspiration for further research.

Mphako [73] calculated the Tutte polynomial of the matroids coming from finite projec-
tive and affine spaces. She does this by using the equivalence between the Tutte poly-
nomial and the coboundary polynomial, that we will treat in Chapter 10. The formulas
found by Mphako indeed coincide with the extended weight enumerators we found in this
chapter.

We calculated the extended weight enumerator for the first order (q-ary) Reed-Muller
code. The weight enumeration of higher order Reed-Muller codes is an open problem.
The generalized Hamming weights of q-ary Reed-Muller codes were found by Heijnen
and Pellikaan [46].

It is known that the binary r-th order Reed-Muller codes RM2(r,m) arise from the
design of points and subspaces of codimension r in the affine space Am(F2), see [5]. The
q-ary analogue of this statement is treated in [6]. In Corollary 5.11 we saw that the com-
plements of supports of the words in the extension code RMq(1, s−1)⊗Fqm contain the
design of points and subspaces of codimension r in As−1(Fq) for r ≤ m. This suggests
some kind of link between extension codes of the first order Reed-Muller code and the
higher order Reed-Muller codes. If we can make this link explicit, it might lead to more
insights to the weight enumeration of higher order Reed-Muller codes.

We encountered two types of two-weight codes in this paper: the first order Reed-Muller
code, and the extension of the Simplex code Sq(s) ⊗ Fq2 . How do these codes fit into
the classification of two-weight codes from Calderbank and Kantor [28]? Is the quadratic
extension code of the simplex code unique?

For every design, one can talk about its p-rank. Tonchev [91] generalized this concept to
the dimension of a design, and formulated an analogue of the Hamada conjecture. Using
the results in this chapter, Jungnickel and Tonchev [50] worked on the characterization
of the classical geometric designs. This led to a new invariant for incidence structures
[51].
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The coset leader weight

enumerator

The probability of error in error-detection can be expressed in terms of the weight enu-
merator of a code [63], and for error-correction the coset leader weight enumerator is
used [70]. The coset leader weight enumerator is also used in steganography to compute
the average of changed symbols [74, 75]. The computation of the weight enumerator of a
code is NP-hard [12, 100]. The complexity of computing the coset leader weight enumer-
ator of a code is considered extremely difficult [47]. The size of lists of nearest codewords
is considered in the list decoding of Reed-Solomon codes [59, 90]. This motivates the
definition of the list weight enumerator and its extension.
This chapter reports on ongoing research that was first presented in [56].

6.1 Coset leader and list weight enumerator

Definition 6.1. Let C be a [n, k] linear code over Fq and let y ∈ Fnq . The weight of the
coset y + C is defined by

wt(y + C) = min{wt(y + c) : c ∈ C}.

A coset leader is a choice of an element y ∈ Fnq of minimal weight in its coset, that is
wt(y) = wt(y + C). Let αi be the number of cosets of C that are of weight i. Let λi be
the number of y in Fnq that are of minimal weight i in their coset. Then αC(X,Y ), the
coset leader weight enumerator of C and λC(X,Y ), the list weight enumerator of C, are
polynomials defined by

αC(X,Y ) =

n∑
i=0

αiX
n−iY i and λC(X,Y ) =

n∑
i=0

λiX
n−iY i.

See [47, 70]. The covering radius ρ(C) of C is the maximal i such that αi(C) 6= 0.
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We have αi = λi =
(
n
i

)
(q − 1)i for all i ≤ (d− 1)/2, where d is the minimum distance of

C. The coset leader weight enumerator gives a formula for the probability of error, that
is the probability that the output of the decoder is the wrong codeword. In this decoding
scheme the decoder uses the chosen coset leader as the error vector. See [70, Chap.1 §5].
The list weight enumerator is of interest in case the decoder has as output the list of all
nearest codewords [59, 90].

Consider the functions αi(U) and λi(U) such that αi(qm) and λi(qm) are equal to the
number of cosets of weight i and the number of elements in Fnqm of minimal weight i in
its coset, respectively with respect to the extended code C ⊗ Fqm .

Definition 6.2. The extended coset leader weight enumerator and the extended list
weight enumerator are defined by

αC(X,Y, U) =

n∑
i=0

αi(U)Xn−iY i and λC(X,Y, U) =

n∑
i=0

λi(U)Xn−iY i.

In [47, Theorem 2.1] it is shown that the function αi(U) is determined by finitely many
data for all extensions of Fq. This shows by Lagrange interpolation, that the αi(U) are
polynomials in the variable U . In fact, let C be a linear [n, k] code over Fq. Then there
are well defined nonnegative integers Fij such that

αC(X,Y, U) = 1 +

n−k∑
i=1

n−k∑
j=1

Fij(U − 1)(U − q) · · · (U − qj−1)Xn−iY i.

This is similar to the expression of the extended weight enumerator in terms of the
generalized weight enumerator in Proposition 2.22. See also [47, 62].

Remark 6.3. Although the extended weight enumerator of a code contains a lot of
information of a code, it does not determine the coset leader weight enumerator or even
the covering radius of a code. See [22]. For instance all [n, k, n− k+ 1] codes over Fq are
MDS and have the same generalized and extended weight enumerator by Theorem 2.27
but the covering radius varies for fixed n, k and q.

As noted in Section 1.5, there is a one-to-one correspondence between cosets and syn-
dromes. It is a well known fact that a coset leader corresponds to a minimal way to write
its syndrome as a linear combination of the columns of a parity check matrix. This idea
is formalized as follows.

Definition 6.4. Let H be a parity check matrix of a linear [n, k] code C over Fq and
let y be a vector in Fnq . Let s = HyT be the syndrome of this word with respect to H.
The weight of s with respect to H, also called the syndrome weight of s, is defined by

wtH(s) = wt(y + C).

Note that αi is the number of syndromes in Fn−kq with respect to H that are of weight
i. See [47, Definition 2.1].
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The geometric interpretation of the weight of a coset and the syndrome weight is as
follows. Let hj be the j-th column of H and let J ⊆ [n]. Let VJ be the vector subspace
of Fn−kq that is generated by the vectors hTj with j ∈ J . Then we define

Vt =
⋃
|J|=t

VJ .

Proposition 6.5. Let s in Fn−kq be a syndrome with respect to H. Then

wtH(s) = t if and only if s ∈ Vt \ Vt−1.

Corollary 6.6. Let C be a linear [n, k] code with parity check matrix H. Then αi is
the number of vectors that are in the span of i columns of H but not in the span of i− 1
columns of H.

Let J consist of t elements. If VJ has dimension t′, then there is a J ′ ⊆ J consisting of
t′ elements such that the hi with i ∈ J ′ are independent. As a result, VJ = VJ′ . Now VJ
is a subspace of the column space of H, which has dimension n − k. Hence there is an
I ⊆ [n] consisting of n− k elements such that J ′ ⊆ I and hi, i ∈ I are independent. So

VJ =
⋂

i∈(I\J′)

VI\{i}

is an intersection of the n− k − t′ hyperplanes VI\{i}.

6.2 Examples

Example 6.7. Let C = Fnq . Then λC(X,Y, U) = αC(X,Y, U) = Xn.

Example 6.8. Let C = {0}. Then λi(U) = αi(U) =
(
n
i

)
(U−1)iXn−iY i and λC(X,Y, U) =

αC(X,Y, U) = (X + (U − 1)Y )n.

Example 6.9. Let C be the dual of the [n, 1, n] repetition code. Then λC(X,Y, U) =
Xn + n(U − 1)Xn−1Y and αC(X,Y, U) = Xn + (U − 1)Xn−1Y .

Example 6.10. Let C be the [n, 1, n] repetition code. Then this code has not such an
easy description of λC(X,Y, U) and αC(X,Y, U) as the previous example. Apart from
the known expressions for λi(U) and αi(U) for i ≤ (n− 1)/2 that hold for every code we
have that λn−1(U) = nαn−1(U) and αn−1(U) = (U − 1)(U − 2) · · · (U − n+ 1).

Example 6.11. Let C be the binary Hamming code of length 7. This is the dual of
the binary Simplex code S2(3), see Example 5.6. Its parity check matrix consists of all
possible nonzero vectors in F3

2, and the corresponding arrangement is shown in Figure
6.1.
We can determine the extended coset leader weight enumerator by Corollary 6.6. As
always, we have α0(U) = 1, this is the code itself. There are seven projective points in
the arrangement, so α1(U) = 7(U − 1). On each of the seven lines there are (U + 1)
points, of which we counted already three per line, so α2(U) = 7(U − 1)(U − 2). Since
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Figure 6.1: The hyperplane arrangement of the parity check matrix of the binary [7, 4]
Hamming code.

α0(U) +α1(U) +α2(U) +α3(U) = U3, the total number of cosets, we find that α3(U) =
(U − 1)(U − 2)(U − 4).
We see that ρ(C) = 1, ρ(C ⊗ F4) = 2 and ρ(C ⊗ F2m) = 3 for m ≥ 3. The list weight
enumerator is equal to

λC(X,Y, U) = X7 +

7(U − 1)X6Y +

21(U − 1)(U − 2)X5Y 2 +

28(U − 1)(U − 2)(U − 4)X4Y 3.

6.3 Connections and duality properties

Research Problem 5.1 in [70, Chapter 5] asks whether the coset leader weight enumerator
of C determines the coset leader weight enumerator of C⊥, as is the case for the ordinary
weight enumerator by the MacWilliams relations. This problem has a negative answer by
[8]. The authors give three binary [15,3,7] codes that have the same coset leader weight
enumerator, but the dual codes have mutually distinct coset leader weight enumerators.
In fact a much smaller counterexample is possible, as we shall now show.

Example 6.12. The two codes of length 3 with parity check matrices H1 = (110) and
H2 = (111) both have the same extended coset leader weight enumerator X3 + (U −
1)X2Y . But their dual codes have distinct extended coset leader weight enumerator,
since

αC⊥1 (X,Y, U) = X3 + 2(U − 1)X2Y + (U − 1)XY 2,

αC⊥2 (X,Y, U) = X3 + 3(U − 1)X2Y + (U − 1)(U − 2)XY 2.

Note that the code C⊥1 is degenerate. A nondegenerate counterexample is obtained as
follows.
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Example 6.13. Let C3 and C4 be the two [6, 3] codes over F2 with generator matrices 1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 0 0 1

 ,

 1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 0 0

 .

The next table shows the coefficients of the extended coset leader weight enumerator and
the extended list weight enumerator of the codes and their duals. The values for i = 0
are left out: they are all equal to 1.

i C3 C4

1 5(U − 1) 5(U − 1)
αC,i 2 2(U − 1)(3U − 5) 2(U − 1)(3U − 5)

3 (U − 1)(U − 2)(U − 3) (U − 1)(U − 2)(U − 3)
1 4(U − 1) 5(U − 1)

αC⊥,i 2 3(U − 1)(2U − 3) 2(U − 1)(3U − 5)
3 (U − 1)(U − 2)(U − 3) (U − 1)(U − 2)(U − 3)
1 6(U − 1) 6(U − 1)

λC,i 2 2(U − 1)(7U − 12) 2(U − 1)(7U − 11)
3 12(U − 1)(U − 2)(U − 3) 13(U − 1)(U − 2)(U − 3)
1 6(U − 1) 6(U − 1)

λC⊥,i 2 13(U − 1)2 2(U − 1)(7U − 11)
3 12(U − 1)(U − 2)(U − 3) 13(U − 1)(U − 2)(U − 3)

We see that the extended coset leader weight enumerator of the two codes are equal,
but none of the other polynomials, so they are not defined by the extended coset leader
weight enumerator. It is an open question if the list weight enumerator determines any
of the polynomials αC(X,Y, U), λC⊥(X,Y, U) and WC(X,Y, U).

The Newton radius measures up to which weight all cosets have a unique coset leader.
It was introduced by Helleseth and Kløve in [48]. The Newton radius also indicates up
to which term the coset leader weight enumerator and list weight enumerator coincide.
Therefore, studying the Newton radius might give us more information on the open
questions above.
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7
Introduction to matroids

Matroids were introduced by Whitney [107] and independently by Van der Waerden
[97], axiomatizing and generalizing the concepts of “independence” in linear algebra and
“cycle-free” in graph theory. Matroid theory makes it possible to study these concept in
a more abstract way. Many topics in discrete mathematics have strong connections with
matroid theory: for example graph theory, linear algebra, coding theory and projective
geometry. Also, matroids have important applications in combinatorial optimization.
If we want to study links between various fields of discrete mathematics – like in this
thesis – matroids are almost unavoidable. This chapter gives a short introduction of
the necessary definitions. A characteristic of matroids is, that there are many ways to
define them: for an overview of definitions, see Brylawsky’s appendix in [105]. For more
background reading on matroid theory, see Kung [66], Welsh [103], White [105, 106] or
the latest edition of Oxley [77].

7.1 Matroids

Definition 7.1. A matroid M is a pair (E, I) consisting of a finite set E and a collection
I of subsets of E called the independent sets, such that the following three conditions
hold.

(I.1) ∅ ∈ I.

(I.2) If J ⊆ I and I ∈ I, then J ∈ I.

(I.3) If I, J ∈ I and |I| < |J |, then there exists a j ∈ (J \ I) such that I ∪ {j} ∈ I.

A subset of E that is not independent is called dependent . A dependent subset of E for
which deleting any element always gives an independent set, is a minimal dependent set
or a circuit . An independent subset of E for which adding an extra element of E always
gives a dependent set, is a maximal independent set or a basis. It follows from condition
(I.3) that every basis has the same number of elements. This is called the rank of the
matroid. We define the rank of a subset of E to be the size of the largest independent
set contained in it. A subset of E for which adding an extra element of E always gives a
set of higher rank, is a closed set or flat . (In fact, we can show that by adding an extra
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element to a subset, the rank will increase by at most one.) The closure of a subset of E
is the intersection of all flats containing it. We summarize all this in the next definition.

Definition 7.2. For a matroid (E, I) its dependent sets, circuits, bases, rank function
and flats are defined by

D = {D ⊆ E : D 6∈ I},
C = {C ⊆ E : C 6∈ I,∀c ∈ C : C \ {c} ∈ I},

r(J) = max{|J ′| : J ′ ⊆ J, J ′ ∈ I},
B = {B ⊆ E : r(B) = |B| = r(E)},
F = {F ⊆ E : ∀e ∈ E \ F : r(F ∪ {e}) > r(F )},
J = ∩{F ∈ F : J ⊆ F}.

All the properties defined above can each be used to determine a matroid completely. For
an overview of equivalent (also called cryptomorphic) definitions of matroids, see [105,
Appendix].

A well known and, in most cases, easy to handle matroid is the uniform matroid.

Definition 7.3. Let n and k be nonnegative integers such that k ≤ n. Let In,k = {I ⊆
[n] : |I| ≤ k}. Then Un,k = ([n], In,k) is a matroid that is called the uniform matroid of
rank k on n elements. A subset B of [n] is a basis of Un,k if and only if |B| = k. The
rank of a subset J is equal to its size if |J | < k and otherwise equal to k. The dependent
sets are the subsets of [n] of size at least k+ 1. The matroid Un,n has no dependent sets
and is called free.

Let e, f ∈ E be elements of M . If {e} is a dependent set, then e is called a loop. If e
and f are two distinct elements that are not loops and r({e, f}) = 1, then e and f are
called parallel . A matroid is called simple if it has no loops and no parallel elements. For
every matroid, we can delete loops and associate every parallel class to one element, to
get another matroid. This matroid is the simplification M of the matroid.

Definition 7.4. LetM1 = (E1, I1) andM2 = (E2, I2) be matroids. A map ϕ : E1 → E2

is called a morphism of matroids if ϕ(I) is dependent in M2 for all I that are dependent
in M1. The map is called an isomorphism of matroids if it is a morphism of matroids
and there exists a map ψ : E2 → E1 such that it is a morphism of matroids and it is the
inverse of ϕ. The matroids are called isomorphic if there is an isomorphism of matroids
between them.

7.2 Duality

Because a matroid is completely determined by its set of bases, we can define the dual
of a matroid in the following way:

Definition 7.5. Let M = (E,B) be a matroid defined by its set of bases. Then its dual
is the matroid M∗ = (E,B∗) with the same underlying set and set of bases

B∗ = {E \B : B ∈ B}.
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We can express the rank function of the dual matroid in terms of the rank function of
the matroid itself.

Proposition 7.6. Let (E, I) be a matroid with rank function r. Then the dual matroid
has rank function r∗ given by

r∗(J) = |J | − r(E) + r(E \ J).

Proof. The proof is based on the observation that r(J) = maxB∈B |B ∩ J | and B \ J =
B ∩ (E \ J).

r∗(J) = max
B∈B∗

|B ∩ J |

= max
B∈B
|(E \B) ∩ J |

= max
B∈B
|J \B|

= |J | −min
B∈B
|J ∩B|

= |J | − (|B| −max
B∈B
|B \ J |)

= |J | − r(E) + max
B∈B
|B ∩ (E \ J)|

= |J | − r(E) + r(E \ J).

The following property links circuits to flats of rank r∗(E)− 1 in the dual matroid.

Proposition 7.7. LetM be a matroid and let C be a circuit ofM . Then the complement
of C in E is a flat of M∗ of rank r∗(M∗)− 1.

Proof. First, we consider what happens if we add an element c ∈ C to E \ C.

r∗((E \ C) ∪ {c}) = |(E \ C) ∪ {c}| − r(E) + r(C \ {c})
= |(E \ C)|+ 1− r(E) + r(C)

= r∗(E \ C) + 1.

So E \C is a flat of M∗. Now we determine the rank of E \C. By definition, C \{c} is an
independent set, so it is a subset of a basis B ofM . The complement B∗ = E\B is a basis
of M∗ and therefore has rank r∗(M∗). Because B∗ is contained in (E \C)∪{c}, we have
r∗((E \C)∪ {c}) = r∗(B∗) = r(M∗). This means E \C is a flat of rank r∗(M∗)− 1.

A circuit ofM∗ is called a cocircuit ofM . The flats of size r(M)−1 are sometimes called
hyperplanes, but we will not use this terminology to avoid confusion with hyperplane
arrangements.

7.3 Matroids, arrangements and codes

Let G be a k × n matrix with entries in a field F. Let E be the set [n] indexing the
columns of G and IG be the collection of all subsets I of E such that the submatrix GI
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consisting of the columns of G at the positions of I are independent. ThenMG = (E, IG)
is a matroid. Suppose that F is a finite field and G1 and G2 are generator matrices of
a code C, then (E, IG1

) = (E, IG2
). So, the matroid MC = (E, IC) of a code C is well

defined by (E, IG) for some generator matrix G of C. The function r(J) as defined in
Lemma 2.6 is exactly the rank function of the matroid MC . Also, the matroids (MC)∗

and MC⊥ are isomorphic.

If C is degenerate, then there is a position i such that ci = 0 for every codeword c ∈ C.
All such positions correspond one-to-one with loops of MC . If C is nondegenerate, then
MC has no loops, and the positions i and j with i 6= j are parallel in MC if and only if
the i-th column of G is a scalar multiple of the j-th column. The code C is projective if
and only if the arrangement AG is simple if and only if the matroid MC is simple. An
[n, k] code C is MDS if and only if the matroid MC is the uniform matroid Un,k.

Let J be a subset of [n] and let C(J) as in Definition 2.5. Then the closure J is equal to
the complement in [n] of the support of C(J) and thus C(J) = C(J).

A matroidM is called realizable or representable over the field F if there exists a matrix G
with entries in F such thatM is isomorphic withMG. Linear codes correspond to matroids
that are representable over finite fields. But this is not a one-to-one correspondence:
codes that are not equivalent can correspond to the same matroid. See Theorem 2.27:
MDS codes with the same parameters need not to be equivalent as codes, but they
do correspond to the same uniform matroid. Also, a matroid can be representable over
several finite fields of different characteristic: these representations clearly do not give
equivalent codes.
Deciding whether a matroid is representable, and over which field, is an important topic in
matroid theory. For more on representable matroids see Tutte [96] and Whittle [108, 109].

7.4 Internal and external activity

Let M = (E,B) be a matroid. Let B ∈ B be a basis and e an element in E \ B. Then
B∪{e} is a dependent set, so it contains a circuit. It is not difficult to show (but it needs
a little more theory then explained in this chapter) that this circuit is unique: we call it
the fundamental circuit of e with respect to B. It is clear that e has to be contained in
its fundamental circuit. Dually, let e ∈ B. Then (E \B) ∪ {e} is a dependent set in M∗
and it contains a unique cocircuit. This cocircuit is called the fundamental cocircuit of
e with respect to B. Fundamental circuits and cocircuits play an important role in the
investigation of representable matroids.

Definition 7.8. Let M = (E, I) be a matroid and let ω be a linear order on E. Then
the tuple (E,ω, I) is called an ordered matroid .

Choosing an ordering for a matroid can be compared to choosing a basis for a linear
vector space (or, choosing a generator matrix for a linear code): it makes proving some
theorems much easier, but you have to take care that the result is independent of the
choice of the basis. In general, we will not assume any ordering on a matroid, unless it is
specified otherwise.
Let M be an ordered matroid and let B be a basis of M . An element e ∈ E \B is called
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externally B-active if it is the smallest element of its fundamental circuit with respect
to B for the given ordering. An element e ∈ B is internally B-active if it is the smallest
element of its fundamental cocircuit with respect to B. The set of internally B-active
elements in M is equal to the set of externally E \B-active elements in M∗.

Definition 7.9. Let M = (E, I) be an ordered matroid. The external activity ε(B) of
a basis B is the number of externally B-active elements. The internal activity ι(B) of a
basis B is the number of internally B-active elements.

In this thesis we will use ordered matroid only if we want to say something about internal
and external activity. See Etienne and Las Vergnas [40] for more information about the
topic. We will use Definition 7.9 in Chapter 12 to define the spectrum polynomial.



56 Introduction to matroids



8
The Tutte polynomial

One of the most studied polynomials in matroid theory is the Tutte polynomial. It has
its origin in graph theory, see [94, 95]. Its importance comes from the fact that the Tutte
polynomial obeys a formula for deletion and contraction. Moreover, all matroid invariants
that obey the same rule are evaluations of the Tutte polynomial. We refer to Brylawsky
and Oxley [27] for an exhaustive treatment of this matter.
It was shown by Greene [43] that the weight enumerator of a linear code is one of the
many matroid invariants that is determined by the Tutte polynomial. In this chapter
we generalize the result of Greene to the extended and generalized weight enumerators.
The result of Greene goes one way: the weight enumerator of a code is determined by
the Tutte polynomial of the associated matroid, but not the other way around. For the
extended weight enumerator and the set of generalized weight enumerators, this is a two-
way equivalence: the extended weight enumerator determines the Tutte polynomial, and
vice versa.
Just as Greene used his connection between the Tutte polynomial and the weight enu-
merator to give a proof of the MacWilliams identity, we will use the connection between
the extended weight enumerator and the Tutte polynomial to prove the MacWilliams
identity for the extended weight enumerator (see Theorem 2.19). Because of the two-
way equivalence between the extended weight enumerator and the Tutte polynomial, the
proof reduces to rewriting.
The results in this chapter originate from [52]. Closely related results on codes, matroids
and MacWilliams type identities can be found in the work of Barg [9] and Britz et al.
[18, 19, 17, 21, 23].

8.1 Weight enumerators and the Tutte polynomial

Definition 8.1. For a matroid M = (E, I) with rank function r the Whitney rank
generating function is defined by

RM (X,Y ) =
∑
J⊆E

Xr(E)−r(J)Y |J|−r(J)
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and the Tutte polynomial is defined by

tM (X,Y ) =
∑
J⊆E

(X − 1)r(E)−r(J)(Y − 1)|J|−r(J).

In other words,
tM (X,Y ) = RM (X − 1, Y − 1).

Remark 8.2. Both polynomials had been studied for decades before they were discovered
to be so closely related. For a nice historical overview, see Section 3.1 of [83]. The Tutte
polynomial was originally defined on graphs. In matroid terms, this definition reads

tM (X,Y ) =
∑
B∈B

Xι(B)Y ε(B)

where ι(B) and ε(B) are the internal and external activity of the basis B as in Definition
7.9. This formula explains why the coefficients of the Tutte polynomial, just as the
coefficients of the rank generating function, are always positive.

As we have seen, we can interpret a linear [n, k] code C over Fq as a matroid via the
columns of a generator matrix.

Proposition 8.3. Let C be an [n, k] code over Fq. Then the Tutte polynomial tC(X,Y )
associated with the matroid MC of the code C is

tC(X,Y ) =

n∑
t=0

∑
|J|=t

(X − 1)l(J)(Y − 1)l(J)−(k−t).

Proof. This follows from l(J) = k − r(J) by Lemma 2.6 and r(M) = k.

This formula and Proposition 2.18 suggest the next connection between the weight enu-
merator and the Tutte polynomial. Greene [43] was the first to notice this connection.

Theorem 8.4. Let C be an [n, k] code over Fq. Then the following holds for the Tutte
polynomial and the extended weight enumerator:

WC(X,Y, U) = (X − Y )kY n−k tC

(
X + (U − 1)Y

X − Y
,
X

Y

)
.

Proof. By using Proposition 8.3 about the Tutte polynomial, rewriting, and Proposition
2.18 we get

(X − Y )kY n−k tC

(
X + (U − 1)Y

X − Y
,
X

Y

)
= (X − Y )kY n−k

n∑
t=0

∑
|J|=t

(
UY

X − Y

)l(J)(
X − Y
Y

)l(J)−(k−t)

= (X − Y )kY n−k
n∑
t=0

∑
|J|=t

U l(J)Y k−t(X − Y )−(k−t)

=

n∑
t=0

∑
|J|=t

U l(J)(X − Y )tY n−t

= WC(X,Y, U).
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We use the extended weight enumerator here, because extending a code does not change
the generator matrix and therefore leaves the matroidMC invariant. The converse of this
theorem is also true: the Tutte polynomial is completely defined by the extended weight
enumerator.

Theorem 8.5. Let C be an [n, k] code over Fq. Then the following holds for the extended
weight enumerator and the Tutte polynomial:

tC(X,Y ) = Y n(Y − 1)−kWC(1, Y −1, (X − 1)(Y − 1)).

Proof. The proof of this theorem is analogous to the proof of the previous theorem.

Y n(Y − 1)−kWC(1, Y −1, (X − 1)(Y − 1))

= Y n(Y − 1)−k
n∑
t=0

∑
|J|=t

((X − 1)(Y − 1))
l(J)

(1− Y −1)tY −(n−t)

=

n∑
t=0

∑
|J|=t

(X − 1)l(J)(Y − 1)l(J)Y −t(Y − 1)tY −(n−t)Y n(Y − 1)−k

=

n∑
t=0

∑
|J|=t

(X − 1)l(J)(Y − 1)l(J)−(k−t)

= tC(X,Y ).

We see that the Tutte polynomial depends on two variables, while the extended weight
enumerator depends on three variables. This is no problem, because the weight enumer-
ator is given in its homogeneous form here: we can view the extended weight enumerator
as a polynomial in two variables via WC(Z,U) = WC(1, Z, U).
Greene [43] already showed that the Tutte polynomial determines the weight enumera-
tor, but not the other way round. By using the extended weight enumerator, we get a
two-way equivalence and the proof reduces to rewriting.

We can also give expressions for the generalized weight enumerator in terms of the Tutte
polynomial, and the other way round. The first formula was found by Britz [21] and
independently by Jurrius [52].

Theorem 8.6. For the generalized weight enumerator of an [n, k] code C and the asso-
ciated Tutte polynomial we have that W (r)

C (X,Y ) is equal to

1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r
j)(X − Y )kY n−k tC

(
X + (qj − 1)Y

X − Y
,
X

Y

)
.

And, conversely,

tC(X,Y ) = Y n(Y − 1)−k
k∑
r=0

r−1∏
j=0

((X − 1)(Y − 1)− qj)

W
(r)
C (1, Y −1).



60 The Tutte polynomial

Proof. For the first formula, use Theorems 2.25 and 8.4. Use Theorems 2.23 and 8.5
for the second formula.

8.2 MacWilliams type property for duality

For both codes and matroids we defined the dual structure. These objects obviously
completely define there dual. But how about the various polynomials associated to a
code and a matroid? Does a polynomial associated to a code/matroid determine the
same polynomial associated to the dual code/matroid? We already saw that there is
in fact such a relation for the weight enumerator and the extended weight enumerator,
namely the MacWilliams identities in Theorem 1.8 and Theorem 2.19. To prove these
theorems, we may use the relation between the extended weight enumerator and the
Tutte polynomial, because of the following simple and very useful relation between the
Tutte polynomial of a matroid and its dual.

Theorem 8.7. Let tM (X,Y ) be the Tutte polynomial of a matroid M , and let M∗ be the
dual matroid. Then

tM (X,Y ) = tM∗(Y,X).

Proof. Let M be a matroid on the set E. Then M∗ is a matroid on the same set. By
the definition of the dual matroid, we have r∗(E) + r(E) = |E|. In Proposition 7.6 we
proved r∗(J) = |J | − r(E) + r(E \ J). Substituting these relations into the definition of
the Tutte polynomial for the dual code, gives

tM∗(X,Y ) =
∑
J⊆E

(X − 1)r
∗(E)−r∗(J)(Y − 1)|J|−r

∗(J)

=
∑
J⊆E

(X − 1)r
∗(E)−|J|−r(E\J)+r(E)(Y − 1)r(E)−r(E\J)

=
∑
J⊆E

(X − 1)|E\J|−r(E\J)(Y − 1)r(E)−r(E\J)

= tM (Y,X)

In the last step, we use that the summation over all J ⊆ E is the same as a summation
over all E \ J ⊆ E. This proves the theorem.

We will now prove Theorem 2.19:

WC⊥(X,Y, U) = U−kWC(X + (U − 1)Y,X − Y,U).

Proof (Theorem 2.19). Let G be the matroid associated to the code. Using the pre-
vious theorem and the relation between the weight enumerator and the Tutte polynomial
from Theorem 8.4, we find

U−kWC(X + (U − 1)Y,X − Y,U)

= U−k(UY )k(X − Y )n−k tC

(
X

Y
,
X + (U − 1)Y

X − Y

)
= Y k(X − Y )n−k tC⊥

(
X + (U − 1)Y

X − Y
,
X

Y

)
= WC⊥(X,Y, U).
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Note in the last step that dimC⊥ = n− k, and n− (n− k) = k.

We can use the relations in Theorems 2.23 and 2.25 to prove the MacWilliams identities
for the generalized weight enumerator.

Theorem 8.8. Let C be a code and let C⊥ be its dual. Then the generalized weight
enumerators of C completely determine the generalized weight enumerators of C⊥ and
vice versa, via the following formula:

W
(r)

C⊥
(X,Y ) =

r∑
j=0

j∑
l=0

(−1)r−j
q(
r−j
2 )−j(r−j)−l(j−l)−jk

〈r − j〉q〈j − l〉q
W

(l)
C (X + (qj − 1)Y,X − Y ).

Proof. We write the generalized weight enumerator in terms of the extended weight
enumerator, use the MacWilliams identities for the extended weight enumerator, and
convert back to the generalized weight enumerator.

W
(r)

C⊥
(X,Y ) =

1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j
2 )WC⊥(X,Y, qi)

=

r∑
j=0

(−1)r−j
q(
r−j
2 )−j(r−j)

〈j〉q〈r − j〉q
q−jkWc(X + (qj − 1)Y,X − Y, qj)

=

r∑
j=0

(−1)r−j
q(
r−j
2 )−j(r−j)−jk

〈j〉q〈r − j〉q

×
j∑
l=0

〈j〉q
ql(j−l)〈j − l〉q

W
(l)
C (X + (qj − 1)Y,X − Y )

=

r∑
j=0

j∑
l=0

(−1)r−j
q(
r−j
2 )−j(r−j)−l(j−l)−jk

〈r − j〉q〈j − l〉q

×W (l)
C (X + (qj − 1)Y,X − Y ).

This theorem was proved by Kløve [62]. This proof uses only half of the relations be-
tween the generalized weight enumerator and the extended weight enumerator: using
both makes the proof much shorter.
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9
Introduction to geometric lattices

In matroid theory, an interesting structure associated to a matroid is its lattice of flats:
it is at the basis of many enumeration problems in matroid theory. This lattice is a
geometric lattice. There are, roughly speaking, two ways to define a geometric lattice:
as the lattice of flats of a matroid, or via the combinatorics of posets, lattices and the
Möbius function. Since we already introduced matroids, the first approach is fairly short:
see Section 9.7.
It requires some work to define a geometric lattice via lattices. However, the theory of
lattices is very useful when studying hyperplane arrangements, as we will see in the
next chapter. Therefore, we consider in this chapter the theory of posets, lattices and
the Möbius function. Geometric lattices are defined and their connection with matroids
are given. We will give several examples of the theory. For more background on the
combinatorics in this chapter, see Aigner [1], Rota [81], or Stanley [87]. The connection
with hyperplane arrangements can be found in Cartier [29], Orlik and Terao [76], or
Stanley [88].

9.1 Posets

Definition 9.1. Let P be a set and ≤ a relation on P such that for all x, y, z ∈ P :

(PO.1) x ≤ x (reflexive).

(PO.2) If x ≤ y and y ≤ x, then x = y (anti-symmetric).

(PO.3) If x ≤ y and y ≤ z, then x ≤ z (transitive).

The pair (P,≤), or just P , is called a poset with partial order ≤ on the set P .

The elements x and y in P are called comparable if x ≤ y or y ≤ x. If x ≤ y and x 6= y,
we say x < y. We use the following notation for some parts of a poset we often refer to.

Px = {y ∈ P : x ≤ y}
P x = {y ∈ P : y ≤ x}

[x, y] = {z ∈ P : x ≤ z ≤ y}
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We call [x, y] the interval between x and y. Note that [x, y] = Px ∩ P y.

Let P be a poset. If P has an element 0P such that 0P is the unique minimal element of
P , then 0P is called the minimum of P . Similarly 1P is called the maximum of P if 1P
is the unique maximal element of L. If x, y ∈ P and x ≤ y, then the interval [x, y] has
minimum x and maximum y. Suppose that P has 0P and 1P as minimum and maximum,
also denoted by 0 and 1, respectively. Then 0 ≤ x ≤ 1 for all x ∈ P .
Let x, y ∈ P . We call y a cover of x if x < y and there is no z such that x < z < y. We
denote this by xl y. The elements x and y have a least upper bound if there is a z ∈ P
such that x ≤ z and y ≤ z, and if x ≤ w and y ≤ w, then z ≤ w for all w ∈ P . If x and
y have a least upper bound, then such an element is unique and it is called the join of x
and y and is denoted by x ∨ y. Similarly the greatest lower bound of x and y is defined.
If it exists, then it is unique and it is called the meet of x and y and denoted by x ∧ y.
We summarize this in the following definition.

Definition 9.2. For every poset P and elements x, y ∈ P , we can define the following.

0P The minimum of P .

1P The maximum of P .

xl y y is a cover of x.

x ∨ y The least upper bound, or join, of x and y.

x ∧ y The greatest lower bound, or meet, of x and y.

A poset L is called a lattice if x ∨ y and x ∧ y exist for all x, y ∈ L.

Remark 9.3. Let (P,≤) be a finite poset with maximum 1 such that x∧ y exists for all
x, y ∈ P . The collection {z : x ≤ z, y ≤ z} is finite and not empty, since it contains 1.
The meet of all the elements in this collection is well defined and is given by

x ∨ y =
∧
{z : x ≤ z, y ≤ z}.

Hence P is a lattice. Similarly, P is a lattice if P is a finite poset with minimum 0 such
that x ∨ y exists for all x, y ∈ P , since x ∧ y =

∨
{z : z ≤ x, z ≤ y}.

9.2 Chains and the Möbius function

A chain is a (subset of a) poset in which any two elements are comparable. We call a chain
finite (or infinite) when the cardinality of the chain is finite (or infinite). Let r ≥ 0 be an
integer and let x, y ∈ P . If a chain is finite, we can write it as x = x0 < x1 < · · · < xr = y
and we say this is a chain from x to y of length r. We denote by cr(x, y) the number of
chains of length r from x to y. The number cr(x, y) is finite if the poset P is finite. The
poset is called locally finite if cr(x, y) is finite for all x, y ∈ P and every integer r ≥ 0. A
poset P is locally finite if and only if [x, y] is finite for all x ≤ y in P . Note that a poset
can be locally finite and still have infinite chains.

Proposition 9.4. Let P be a locally finite poset and let x ≤ y in P . Then
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(N.1) c0(x, y) = 0 if x and y are not comparable.

(N.2) c0(x, x) = 1 and cr(x, x) = 0 for all r > 0, and c0(x, y) = 0 if x < y.

(N.3) cr+1(x, y) =
∑
x≤z<y cr(x, z) =

∑
x<z≤y cr(z, y).

Proof. Statements (N.1) and (N.2) are trivial. Let z < y and let x = x0 < x1 < · · · <
xr = z be a chain of length r from x to z. Then x = x0 < x1 < · · · < xr < xr+1 = y
is a chain of length r + 1 from x to y and every chain of length r + 1 from x to y is
obtained uniquely in this way. Hence cr+1(x, y) =

∑
x≤z<y cr(x, z). The last equality is

proved similarly.

The chain x = y0 < y1 < · · · < ys = y from x to y is called an extension of the chain
x = x0 < x1 < · · · < xr = y if {x0, x1, . . . , xr} is a subset of {y0, y1, . . . , ys}. A chain
from x to y is called maximal if there is no extension to a longer chain from x to y. In a
maximal chain, we have that x = x0 l x1 l · · ·l xr = y.

Definition 9.5. The Möbius function of a locally finite poset P , denoted by µP or µ,
is defined by

µ(x, y) =

∞∑
r=0

(−1)rcr(x, y).

We write µ(x) = µ(0, x) and µ(P ) = µ(0, 1) if P is finite.

Proposition 9.6. Let P be a locally finite poset. Then for all x, y ∈ P :
(M.1) µ(x, y) = 0 if x and y are not comparable.

(M.2) µ(x, x) = 1.

(M.3) If x < y, then
∑
x≤z≤y µ(x, z) =

∑
x≤z≤y µ(z, y) = 0.

(M.4) If x < y, then µ(x, y) = −
∑
x≤z<y µ(x, z) = −

∑
x<z≤y µ(z, y).

Proof. (M.1) and (M.2) follow from (N.1) and (N.2), respectively, of Proposition 9.4.
(M.3) is clearly equivalent to (M.4). If x < y, then c0(x, y) = 0. So

µ(x, y) =

∞∑
r=1

(−1)rcr(x, y)

=

∞∑
r=0

(−1)r+1cr+1(x, y)

= −
∞∑
r=0

(−1)r
∑

x≤z<y

cr(x, z)

= −
∑

x≤z<y

∞∑
r=0

(−1)rcr(x, z)

= −
∑

x≤z<y

µ(x, z).

The first and last equality use the definition of µ. The second equality starts counting
at r = 0 instead of r = 1, the third uses (N.3) of Proposition 9.4 and in the fourth the
order of summation is interchanged.
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Figure 9.1: The Hasse diagram of a poset. The elements are the subsets of {a, b, c, d}
of size at least 2 and the partial order is given by inverse inclusion.

Remark 9.7. (M.2) and (M.4) of Proposition 9.6 can be used as an alternative way to
compute µ(x, y) by induction.

9.3 More on posets and lattices

Definition 9.8. A poset can be visualized by a Hasse diagram. The Hasse diagram of a
poset P is a directed graph that has the elements of P as vertices, and there is a directed
edge from y to x if and only if y is a cover of x.

See Figure 9.1 for an example of a poset with a minimum but without a maximum. If
we “turn upside down” the Hasse diagram of a poset, we get the inverse poset.

Definition 9.9. Let P be a poset. The inverse poset i(P ) of P contains the same
elements as P , but the order is reversed: x ≥i y in the inverse poset if and only if x ≤ y
in the original poset.

If P is a finite poset, then the Möbius function µP (y, x) is well-defined and µi(P )(x, y) =
µP (y, x). If the poset has a minimum and maximum, then the inverse poset has a maxi-
mum and minimum: 0P = 1i(P ) and 1P = 0i(P ). The Hasse diagram of i(P ) is obtained
by reversing all arrows in the Hasse diagram of P . Sometimes the inverse poset is called
the dual poset. We will not use this terminology, because it does not coincide with the
notion of “dual” that we use for codes and matroids.

Definition 9.10. Let (P1,≤1) and (P2,≤2) be posets. A map ϕ : P1 → P2 is called
monotone if ϕ(x) ≤2 ϕ(y) for all x ≤1 y in P1. The map ϕ is called strictly monotone
if ϕ(x) <2 ϕ(y) for all x <1 y in P1. The map is called an isomorphism of posets if
it is strictly monotone and there exists a strictly monotone map ψ : P2 → P1 that is
the inverse of ϕ. The posets are called isomorphic if there is an isomorphism of posets
between them.

If ϕ : P1 → P2 is an isomorphism between locally finite posets with a minimum, then
µP2

(ϕ(x), ϕ(y)) = µP1
(x, y) for all x, y in P1. If (L1,≤1) and (L2,≤2) are isomorphic

posets and L1 is a lattice, then L2 is also a lattice.
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9.4 Applications and examples

In this section we will see some examples to motivate the study of posets, lattices and
the Möbius function.

Definition 9.11. Let P be a locally finite poset with a minimum element. Let A be an
abelian group and f : P → A a map from P to A. The sum function f̂ of f is defined by

f̂(x) =
∑
y≤x

f(y).

Define similarly the sum function f̌ of f by f̌(x) =
∑
x≤y f(y) if P is a locally finite

poset with a maximum element.

Note that the sum function is well-defined, because in a locally finite poset all intervals
are finite, and in particular [0, x] and [x, 1], if the poset has a minimum and maximum
element, respectively.

Theorem 9.12 (Möbius inversion formula). Let P be a locally finite poset with a mini-
mum element. Then

f(x) =
∑
y≤x

µ(y, x)f̂(y).

Similarly, f(x) =
∑
x≤y µ(x, y)f̌(y) if P is a locally finite poset with a maximum element.

Proof. Let x be an element of P . Then∑
y≤x

µ(y, x)f̂(y) =
∑
y≤x

∑
z≤y

µ(y, x)f(z)

=
∑
z≤x

f(z)
∑

z≤y≤x

µ(y, x)

= f(x)µ(x, x) +
∑
z<x

f(z)
∑

z≤y≤x

µ(y, x)

= f(x).

The first equality uses the definition of f̂(y). In the second equality the order of summa-
tion is interchanged. In the third equality the first summation is split in the parts z = x
and z < x, respectively. Finally µ(x, x) = 1 and the second summation is zero for all
z < x, by Proposition 9.6. The proof of the second equality is similar.

Example 9.13. Let L be the collection of all finite subsets of a given set X . Let ≤ be
defined by the inclusion, that means I ≤ J if and only if I ⊆ J . Then 0L = ∅, and L has
a maximum if and only if X is finite in which case 1L = X . For X = {a, b, c, d} the Hasse
diagram of the lattice is given in Figure 9.2.
Let I, J ∈ L and I ≤ J . Then |I| ≤ |J | <∞. Let m = |J | − |I|. Then

cr(I, J) =
∑

m1<m2<...<mr−1<m

(
m2

m1

)(
m3

m2

)
· · ·
(

m

mr−1

)
.

Hence L is locally finite. L is finite if and only if X is finite. Furthermore, I ∨ J = I ∪ J
and I ∧ J = I ∩ J , so L is a lattice. Using Remark 9.7 we see that µ(I, J) = (−1)|J|−|I|

if I ≤ J . This is much easier than computing µ(I, J) by means of Definition 9.5.
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Example 9.14. Let X = [n] and let k be an integer between 0 and n. Let Lk = {X}
and Li be the collection of all subsets of X of size i for all i < k. Let the partial order be
given by the inclusion. Then L is a poset and µ(I, J) = (−1)|J|−|I| if I ≤ J and |J | < k
as in Example 9.13, and µ(I,X ) = −

∑
I≤J<X (−1)|J|−|I| for all I < X by Proposition

9.6.

Example 9.15. Now suppose again that X = [n]. Let L be the poset of subsets of X .
Let A1, . . . , An be a collection of subsets of a finite set A. Define for a subset J of X

AJ =
⋂
j∈J

Aj and f(J) =

∣∣∣∣∣AJ \
(⋃
I<J

AI

)∣∣∣∣∣ .
Then AJ is the disjoint union of the subsets AI \ (

⋃
K<I AK) for all I ≤ J . Hence the

sum function is equal to

f̂(J) =
∑
I≤J

f(I) =
∑
I≤J

∣∣∣∣∣AI \
( ⋃
K<I

AK

)∣∣∣∣∣ = |AJ |.

Möbius inversion gives that∣∣∣∣∣AJ \
(⋃
I<J

AI

)∣∣∣∣∣ =
∑
I≤J

(−1)|J|−|I||AI |,

which is called the principle of inclusion/exclusion.

Example 9.16. A variant of the principle of inclusion/exclusion is given as follows.
Let H1, . . . ,Hn be a collection of subsets of a finite set H. Let L be the poset of all
intersections of theHj with the reverse inclusion as partial order. ThenH is the minimum
of L and H1 ∩ · · · ∩Hn is the maximum of L. Let x ∈ L. Define

f(x) =

∣∣∣∣∣x \
(⋃
x<y

y

)∣∣∣∣∣ .
Then

f̌(x) =
∑
x≤y

f(y) =
∑
x≤y

∣∣∣∣∣y \
(⋃
y<z

z

)∣∣∣∣∣ = |x|.

Hence ∣∣∣∣∣x \
(⋃
x<y

y

)∣∣∣∣∣ =
∑
x≤y

µ(x, y)|y|.

9.5 Geometric lattices

Definition 9.17. A poset P satisfies the Jordan-Dedekind property if all maximal chains
between the same elements have the same finite length. If moreover all maximal chains
with endpoint x have the same length, this length is called the rank of x. We denote it
by rP (x) or simply r(x).
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The following proposition follows directly from the definition:

Proposition 9.18. Let P be a poset with minimum 0. Then P satisfies the Jordan-
Dedekind property if and only if it admits a rank function r : P → N0 that satisfies the
following:

• r(0) = 0;

• xl y ⇒ r(y) = r(x) + 1.

We will define some more properties posets and lattices can have.

Definition 9.19. Let P be a poset with minimum 0. An atom is an element a ∈ P that
covers 0. The poset is said to be atomic if every element except 0 is the join of atoms.

Definition 9.20. Let L be a lattice. It is called semimodular if for all x, y ∈ L

x ∧ y l x⇒ y l x ∨ y.

The notion of semimodularity is often encountered in the context of a function. For
lattices, we can prove that the same holds.

Lemma 9.21. A semimodular lattice satisfies the Jordan-Dedekind property.

Theorem 9.22. Let L be a lattice with minimum 0. The lattice is semimodular if and
only if it has a rank function r such that for all x, y ∈ L

r(x ∧ y) + r(x ∨ y) ≤ r(x) + r(y).

We can now define the notion of a geometric lattice.

Definition 9.23. A lattice is called geometric if it is

(GL.1) atomic;

(GL.2) semimodular;

(GL.3) without infinite chains.

Let L be a geometric lattice. We call the set Lj = {x ∈ L : r(x) = j} the j-th level of L.
The Hasse diagram of L is a graph that has the elements of L as vertices. If x, y ∈ L and
xly, then x and y are connected by an edge. So, only elements between two consecutive
levels Lj and Lj+1 are connected by an edge. See Figure 9.2 for an example. The Hasse
diagram of P considered as a poset as in Definition 9.8 is the directed graph with an
arrow from y to x if x, y ∈ L and xl y.

9.6 Some examples of geometric lattices

Example 9.24. Let L be the collection of all finite subsets of a given set X as in Example
9.13. For X = {a, b, c, d} the Hasse diagram is drawn in Figure 9.2. The atoms are the
singleton sets, i.e., the subsets consisting of exactly one element of X . Every x ∈ L is
the finite union of its singleton subsets, so L is atomic and r(x) = |x|. Now y covers x
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{a, b, c, d}

{a, b, c}

{a, b}

{a}

∅

{b}

{a, c}

{c}

{b, c}

{a, b, d}

{a, d}

{d}

{b, d}

{a, c, d}

{c, d}

{b, c, d}

Figure 9.2: The Hasse diagram of the geometric lattice of all subsets of {a, b, c, d}

if and only if there is an element Q not in x such that y = x ∪ {Q}. If x 6= y and x
and y both cover z, then there is an element P not in z such that x = z ∪ {P}, and
there is an element Q not in z such that y = z ∪ {Q}. Now P 6= Q, since x 6= y. Hence
x ∨ y = z ∪ {P,Q} covers x and y. Hence L is semimodular. Furthermore, L is locally
finite, and L is a geometric lattice if and only if X is finite.

Example 9.25. Let F be a field and let V = (v1, . . . ,vn) be an n-tuple of nonzero vectors
in Fk. Let L = L(V) be the collection of all linear subspaces of Fk that are generated by
subsets of V, with inclusion as partial order. Therefore, L is finite and a fortiori locally
finite. By definition {0} is the linear subspace space generated by the empty set. Then
0L = {0} and 1L is the subspace generated by all v1, . . . ,vn. Furthermore L is a lattice
with x ∨ y = x+ y and

x ∧ y =
∨
{z : z ≤ x, z ≤ y}

by Remark 9.3. Let aj be the linear subspace generated by vj . Then a1, . . . , an are the
atoms of L. Let x be the subspace generated by {vj : j ∈ J}. Then x =

∨
j∈J aj . If x

has dimension r, then there exists a subset I of J such that |I| = r and x =
∨
i ∈ Iai.

Hence L is atomic and r(x) = dim(x). Now x ∧ y ⊆ x ∩ y, so

r(x ∨ y) + r(x ∧ y) ≤ dim(x+ y) + dim(x ∩ y) = r(x) + r(y).

Hence the semimodular inequality holds and L is a geometric lattice.

Example 9.26. Let F be a field and let A = (H1, . . . ,Hn) be an arrangement over F of
hyperplanes in the vector space V = Fk. Let L = L(A) be the collection of all nonempty
intersections of elements of A. By definition Fk is the empty intersection. Define the
partial order ≤ by

x ≤ y if and only if y ⊆ x.

Then V is the minimum element and {0} is the maximum element. Furthermore

x ∨ y = x ∩ y if x ∩ y 6= ∅, and x ∧ y =
⋂
{z : x ∪ y ⊆ z}.
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Suppose that A is a central arrangement. Then x∩y is nonempty for all x, y ∈ L, so x∨y
and x ∧ y exist for all x, y ∈ L and L is a lattice. Let vj = (v1j , . . . , vkj) be a nonzero
vector such that

∑k
i=1 vijXi = 0 is a homogeneous equation of Hj . Let V = (v1, . . . ,vn).

Consider the map ϕ : L(V)→ L(A) defined by

ϕ(x) =
⋂
j∈J

Hj if x is the subspace generated by {vj : j ∈ J}.

Now x ⊂ y if and only if ϕ(y) ⊂ ϕ(x) for all x, y ∈ L(V). Therefore, ϕ is a strictly
monotone map. Furthermore ϕ is a bijection and its inverse map is also strictly monotone.
Hence L(V) and L(A) are isomorphic lattices. Therefore L(A) is also a geometric lattice.

9.7 Geometric lattices and matroids

The notion of a geometric lattice is cryptomorphic to the concept of a matroid: that is,
almost equivalent. See [13, 27, 29, 32, 77, 88] for proofs of the statements in this section.
First, we see that we can associate a matroid with every geometric lattice.

Proposition 9.27. Let L be a finite geometric lattice and let M(L) be the set of all
atoms of L. Let I(L) be the collection of all subsets I = {a1, . . . , ar} of atoms of M(L)
such that r(a1 ∨ . . . ∨ ar) = r. Then (M(L), I(L)) is a matroid.

On the other hand, we can associate a lattice to every matroid.

Proposition 9.28. Let M be a matroid and let L(M) be the set of all flats of M . Then
L(M) with the inclusion as partial order is a lattice with

F1 ∧ F2 = F1 ∩ F2, F1 ∨ F2 = F1 ∪ F2.

We call L(M) the lattice of flats of M .

This lattice is actually a geometric lattice, but the correspondence between matroids and
geometric lattices is in general not one-to-one.

Proposition 9.29. Let M be a matroid. Then L(M) with the inclusion as partial order
is a geometric lattice and L(M) is isomorphic with L(M).

The inverse of the first statement also holds, leading to the next theorem.

Theorem 9.30. A lattice is geometric if and only if it is the lattice of flats of a matroid.

If we start with a geometric lattice L, thenM(L) is a simple matroid and thus L(M(L)) =
L. If we start with a matroid M , we find that M(L(M)) = M . We conclude that there
is a one-to-one correspondence between simple matroids and geometric lattices.

Example 9.31. The geometric lattice of the matroid Un,k, see Definition 7.3, is isomor-
phic with the lattice consisting of [n] and all its subsets of size at most k − 1. We will
refer to this geometric lattice as the uniform lattice. See Figure 9.2 for the geometric
lattice of the free matroid of size 4.
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Let G be a generator matrix of a code C. The simplified matrix G is the matrix obtained
from G by deleting all zero columns from G and all columns that are a scalar multiple
of a previous column. The simplified code C of C is the code with generator matrix G.
Every simplified code is projective. Note that this definition of C does not depend on
the choice of the generator matrix G of C. Therefore the matroids MG and MG are
isomorphic.
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Characteristic polynomials and

their generalizations

In this chapter we treat the characteristic polynomial of a geometric lattice. This is gen-
eralized in two variable polynomials in two ways: the coboundary polynomial and the
Möbius polynomial.
The coboundary polynomial was originally studied by Crapo [31] in connection with
graph coloring. For simple matroids and codes the coboundary polynomial is equivalent
to the Tutte polynomial and the extended weight enumerator.
The Möbius polynomial (also known as “Whitney polynomial”) was originally defined by
Zaslavsky for hyperplanes [110] and signed graphs [111]. An important property is that it
determines the Whitney numbers. We will show that the Möbius function also contains
information on the number of minimal subcodes and codewords.
For both polynomials, we show how to calculate them in the specific case of an arrange-
ment and code. The coboundary and Möbius polynomial do, in general, not determine
each other. This will be shown by examples of three dimensional codes. More relations
between the two polynomials can be found in the next chapter.

10.1 The characteristic and coboundary polynomial

Definition 10.1. Let L be a finite geometric lattice. The characteristic polynomial of
L is defined by

χL(U) =
∑
x∈L

µL(x)Ur(L)−r(x).

The two-variable characteristic polynomial or coboundary polynomial is defined by

χL(S,U) =
∑
x∈L

∑
x≤y∈L

µ(x, y)Sa(x)Ur(L)−r(y)

where a(x) is the number of atoms a in L such that a ≤ x.

Note that µ(L) = µ(0, 1) = χL(0) and χL(0, U) = χL(U), because for S = 0 the only
nonzero term has a(x) = 0, so x = 0L. Also, the number a(x) is equal to |x| in M(L).
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Remark 10.2. Let n be the number of atoms of L. Then the following relation holds for
the coboundary polynomial in terms of characteristic polynomials:

χL(S,U) =

n∑
i=0

Siχi(U) with χi(U) =
∑
x∈L
a(x)=i

χLx(U).

The polynomial χi(U) is called the i-defect polynomial. See [31, 27].

Example 10.3. Let L be the lattice of all subsets of a given finite set of r elements as in
Examples 9.13 and 9.24. Then r(x) = a(x) and µ(x, y) = (−1)a(y)−a(x) if x ≤ y. Hence

χL(U) =

r∑
j=0

(
r

j

)
(−1)jUr−j = (U − 1)r and χi(U) =

(
r

i

)
(U − 1)r−i.

Therefore χL(S,U) = (S + U − 1)r.

An important property of the coboundary polynomial is that is it is determined by the
rank generating function.

Theorem 10.4. The coboundary polynomial χL(S,U) of a finite geometric lattice L is
related to the Whitney rank generating function of M(L) by the formula

χL(S,U) = (S − 1)r(L)RM(L)

(
U

S − 1
, S − 1

)
.

Proof. In [30, p. 605], Crapo proved that the coboundary polynomial is equal to

χL(S,U) =
∑

x⊆M(L)

(S − 1)|x|Ur(L)−r(x).

The proof uses a generalization to matroids of the Möbius inversion formula in Theo-
rem 9.12. Crapo used this result in [31, Theorem II] to prove the relation to the rank
generating function. In our notation, the proof is as follows.

χL(S,U) =
(S − 1)r(L)−r(x)

(S − 1)r(L)−r(x)

∑
x⊆M(L)

(S − 1)|x|Ur(L)−r(x)

= (S − 1)r(L)
∑

x⊆M(L)

(S − 1)|x|−r(x)

(
U

S − 1

)r(L)−r(x)

= (S − 1)r(L)RM(L)

(
U

S − 1
, S − 1

)
We use that r(M) = r(M(L)).

Corollary 10.5. We have the following relations between tM(L)(X,Y ) and χL(S,U):

χL(S,U) = (S − 1)r(L)tM(L)

(
S + U − 1

S − 1
, S

)
and, vice versa,

tM(L)(X,Y ) = (Y − 1)−r(L)χL(Y, (X − 1)(Y − 1)).

Therefore the polynomials χL(S,U) and tM(L)(X,Y ) completely determine each other.
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Starting with an arbitrary matroid M one has the associated geometric lattice L(M),
but M(L(M)) is isomorphic with M if and only if M is simple by Proposition 9.29.
Therefore, tM (X,Y ) and χL(M)(S,U) completely determine each other if M is simple,
but tM (X,Y ) is a stronger invariant than χL(M)(S,U) if M is not simple. We will see
a counterexample in Example 10.34. The relation between tM(L)(X,Y ) and χL(S,U)
shows great similarity with the formula in Theorem 8.5. Combining the relations gives
the next theorem.

Theorem 10.6. For projective codes, the coboundary polynomial of the geometric lat-
tice associated to the code is the reciprocal inhomogeneous form of the extended weight
enumerator of the code:

χL(MC)(S,U) = SnWC(1, S−1, U).

This means χi(U) = An−i(U).

Example 10.7. Consider the uniform lattice Un,k. Determining its coboundary polyno-
mial is now quite easy: use Theorem 10.6 and the extended weight enumerator of an
MDS code we found in Theorem 2.27.

10.2 The Möbius polynomial and Whitney numbers

Definition 10.8. Let P be a poset that satisfies the Jordan-Dedekind property. Then
P has a rank function by Proposition 9.18. The Möbius polynomial of P is defined by

µP (S,U) =
∑
x∈P

∑
x≤y∈P

µ(x, y)Sr(x)Ur(P )−r(y).

Note that for a geometric lattice L we have µL(0, U) = χL(0, U) = χL(U).

Remark 10.9. Let r be the rank of the geometric lattice L. Then the following relation
holds for the Möbius polynomial in terms of characteristic polynomials:

µL(S,U) =

r∑
i=0

Siµi(U) with µi(U) =
∑
x∈Li

χLx(U).

Example 10.10. In Examples 9.24 and 10.3 we considered the lattice L of all subsets of
a given finite set of r elements. Since r(x) = a(x) for all x ∈ L, the Möbius polynomial
of L is equal to the coboundary polynomial of L, so µL(S,U) = (S + U − 1)r.

Remark 10.11. Let L be a geometric lattice. Then

r(L)∑
i=0

µi(U) = µL(1, U)

=
∑
y∈L

∑
0≤x≤y

µ(x, y)Ur(L)−r(y)

= Ur(L)



76 Characteristic polynomials and their generalizations

since
∑

0≤x≤y µ(x, y) = 0 for all 0 < y in L by Proposition 9.6. Similarly
∑n
i=0 χi(U) =

χL(1, U) = Ur(L). Also
∑n
w=0Aw(U) = Uk for the extended weights of a code of dimen-

sion k by Propositions 2.14 and 2.16 for t = 0.

Example 10.12. Let L be the uniform lattice Un,k. Then µi(U) and χi(U) are both
equal to

(
n
i

)
(U − 1)n−i for all i < k as in Example 10.3, and χi(U) = 0 for all k ≤ i < n,

since a(1L) = n, r(1L) = k and a(x) = r(x) for all x in Li and i < k. Remark 10.11
implies

µk(U) = Uk −
∑
i<k

(
n

i

)
(U − 1)n−i and χn(U) = Uk −

∑
i<k

(
n

i

)
(U − 1)n−i.

An important reason to study the Möbius polynomial is because it determines the Whit-
ney numbers. See [44], [27, §6.6.D], [77, Chapter 15], and [87, §3.11].

Definition 10.13. Let L be a finite geometric lattice. The Whitney numbers wi and Wi

of the first and second kind, respectively, are defined by

wi =
∑
x∈Li

µ(x) and Wi = |Li|.

The doubly indexed Whitney numbers wij and Wij of the first and second kind , respec-
tively, are defined by

wij =
∑
x∈Li

∑
y∈Lj

µ(x, y) and Wij = |{(x, y) : x ∈ Li, y ∈ Lj , x ≤ y}|.

In particular, wj = w0j and Wj = W0j .

Remark 10.14. We have that

χL(U) =

r(L)∑
i=0

wiU
r(L)−i and µL(S,U) =

r(L)∑
i=0

r(L)∑
j=0

wijS
iUr(L)−j .

Hence the (doubly indexed) Whitney numbers of the first kind are determined by µL(S,U).
The leading coefficient of

µi(U) =
∑
x∈Li

∑
x≤y

µ(x, y)Ur(Lx)−rLx (y)

is equal to
∑
x∈Li µ(x, x) = |Li| = Wi. Hence the Whitney numbers of the second kind

Wi are also determined by µL(S,U). We will see in Example 10.35 that the Whitney
numbers are not determined by χL(S,U). Finally, let r = r(L). Then

µr−1(U) = (U − 1) ·Wr−1.

There are a lot of open conjectures about the sequences of Whitney numbers. A sequence
of real numbers (v0, v, . . . , vr) is called unimodal if

vi ≥ min{vi−1, vi+1} for all 0 < i < r.
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The sequence is called logarithmically concave or log-concave if

v2
i ≥ vi−1vi+1 for all 0 < i < r.

The Whitney numbers of the first kind are alternating in sign. That is:

w+
i := (−1)iwi > 0 for all i.

It was conjectured by Rota [82] that the Whitney numbers w+
i are unimodal. See [102,

Problem 12]. Welsh [103] conjectured that the Whitney numbers w+
i are log-concave by

generalizing a conjecture of Read [80] on graphs. It was shown that the following weaker
version of the unimodal property is true for a matroid M of rank r:

w+
i < w+

j for all 0 ≤ i ≤ r/2 and i < j ≤ r − i.

See [2, Corollary 8.4.2]. For a recent overview of all conjectures, see [77, §15.2].

10.3 Minimal codewords and subcodes

Definition 10.15. A minimal codeword of a code C is a codeword whose support does
not properly contain the support of another codeword.

The zero word is a minimal codeword. Note that a nonzero scalar multiple of a minimal
codeword is again a minimal codeword. Nonzero minimal codewords play a role in min-
imum distance decoding [4, 9, 10], in secret sharing schemes, and in access structures
[72, 89]. We can generalize this notion to subcodes instead of words.

Definition 10.16. A minimal subcode of dimension r of a code C is an r-dimensional
subcode whose support is not properly contained in the support of another r-dimensional
subcode.

A minimal codeword generates a minimal subcode of dimension one, and all the elements
of a minimal subcode of dimension one are minimal codewords. A codeword of minimal
weight is a nonzero minimal codeword, but the converse is not always the case.

In Example 10.35 we will see two codes that have the same Tutte polynomial, but a
different number of minimal codewords. Hence the number of minimal codewords and
subcodes is not determined by the Tutte polynomial. However, the number of minimal
codewords and the number of minimal subcodes of a given dimension are given by the
Möbius polynomial.

Theorem 10.17. Let C be a code of dimension k and let 0 ≤ r ≤ k. Then the number
of minimal subcodes of dimension r is equal to Wk−r, the (r − k)-th Whitney number of
the second kind, and it is determined by the Möbius polynomial.

Proof. LetD be a subcode of C of dimension r and let J be the complement in [n] of the
support of D. If d ∈ D and dj 6= 0, then j ∈ supp(D) and j 6∈ J . Hence D ⊆ C(J). Now
suppose moreover that D is a minimal subcode of C. Without loss of generality we may
assume that D is systematic at the first r positions, i.e., that D has a generator matrix of
the form (Ir|A). Denote the i-th row of this matrix by di. Let c ∈ C(J). If c−

∑r
i=1 cidi
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is not the zero word, then the subcode D′ of C generated by c,d2, . . . ,dr has dimension
r and its support is contained in supp(D) \ {1} and 1 ∈ supp(D). This contradicts the
minimality of D. Hence c−

∑r
i=1 cidi = 0 and c ∈ D. Therefore, D = C(J).

To find a minimal subcode of dimension r, we fix l(J) = r and minimize the support of
C(J) with respect to inclusion. Because J is contained in the complement in [n] of the
support of C(J), this is equivalent to maximizing J with respect to inclusion. In matroid
terms this means we are maximizing J for r(J) = k − l(J) = k − r. This means J = J
is a flat of rank k − r. The flats of a matroid are the elements in the geometric lattice
L = L(M). The number of (k−r)-dimensional elements in L(M) is equal to |Lk−r|, which
is equal to the Whitney number of the second kind Wk−r and thus equal to the leading
coefficient of µk−r(U) by Remark 10.14. Hence the Möbius polynomial determines all the
numbers of minimal subcodes of dimension r for 0 ≤ r ≤ k.

Note that the flats of dimension k− r in a matroid are exactly the hyperplanes (i.e., flats
of rank r(M) − 1) in the (r − 1)-th truncated matroid τ r−1(M) (see also Chapter 13).
This gives another proof of the result of Britz [21, Theorem 3] that the minimal supports
of dimension r are the cocircuits of the (r−1)-th truncated matroid. For r = 1, this gives
the well-known equivalence between nonzero minimal codewords and cocircuits. See [77,
Proposition 9.2.4] and [96, 1.21].

The number of minimal subcodes of dimension r does not change after extending the code
under a finite field extension, since this number is determined by the Möbius polynomial
of the lattice of the code, and this lattice does not change under a finite field extension.

10.4 The characteristic polynomial of an arrangement

Let X be an affine variety in Ak defined over Fq, that is, the zeroset of a collection of
polynomials in Fq[X1, . . . , Xk]. Then X (Fqm) is the set of all points X with coordinates
in Fqm , also called the set of Fqm-rational points of X . Note the similarity with extension
codes.

A central arrangement A gives rise to a geometric lattice L(A) and characteristic polyno-
mial χL(A) that will be denoted by χA. Zaslavsky [110] showed that ifA is an arrangement
over the real numbers, then |χA(−1)| counts the number of connected components of the
complement of the arrangement. Something similar can be said about arrangements over
finite fields.

Proposition 10.18. Let q be a prime power, and let A = (H1, . . . ,Hn) be a simple and
central arrangement in Fkq . Then

χA(qm) = |Fkqm \ (H1 ∪ . . . ∪Hn)|.

Proof. Let A = Fkqm and Aj = Hj(Fqm). Let L be the poset of all intersections of the
Aj with the reverse inclusion as partial order. The principle of inclusion/exclusion as
formulated in Example 9.16 gives that

|Fkqm \ (H1 ∪ · · · ∪Hn)| =
∑
x∈L

µ(x)|x| =
∑
x∈L

µ(x)qm dim(x).
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The expression on the right hand side is equal to χA(qm), since L is isomorphic with the
geometric lattice L(A) of the arrangement A = (H1, . . . ,Hn) with rank function r = rL,
so dim(x) = r(L) − r(x). See also [7, Theorem 2.2], [15, Proposition 3.2], [32, Sect. 16]
and [76, Theorem 2.69].

Definition 10.19. Let A = (H1, . . . ,Hn) be a central simple arrangement over the field
F in Fk and let J ⊆ [n]. Define HJ = ∩j∈JHj . Consider the decreasing sequence

Nk ⊂ Nk−1 ⊂ · · · ⊂ N1 ⊂ N0

of algebraic subsets of the affine space Ak, defined by

Ni =
⋃
J⊆[n]
r(HJ )=i

HJ .

DefineMi = Ni \ Ni+1.

Note that N0 = Ak, N1 = ∪nj=1Hj , Nk = {0} and Nk+1 = ∅. Furthermore, Ni is a union
of linear subspaces of Ak all of dimension k − i. Remember from Remark 4.3 that HJ

is isomorphic with C(J) in case A is the arrangement of the generator matrix G of the
code C.

Proposition 10.20. Let A = (H1, . . . ,Hn) be a central simple arrangement over the
field F in Fk. Let z(x) = {j ∈ [n] : x ∈ Hj} and r(x) = r(Hz(x)) the rank of x for
x ∈ Ak. Then

Ni = {x ∈ Ak : r(x) ≥ i} and Mi = {x ∈ Ak : r(x) = i}.

Proof. Let x ∈ Ak and c = xG. Let x ∈ Ni. Then there exists a J ⊆ [n] such that
r(HJ) = i and x ∈ HJ . So, cj = 0 for all j ∈ J and J ⊆ z(x). Hence Hz(x) ⊆ HJ and
therefore r(x) = r(Hz(x)) ≥ r(HJ) = i. The converse implication is proved similarly. The
statement aboutMi is a direct consequence of the one about Ni.

Proposition 10.21. Let A be a central simple arrangement over Fq and let L = L(A)
be the geometric lattice of A. Then

µi(q
m) = |Mi(Fqm)|.

Proof. Remember from Remark 10.9 that µi(U) =
∑
r(x)=i χLx(U). Let L = L(A)

and x ∈ L. Then x is an intersection of hyperplanes of A, i.e., x = ∪i∈IHi. Let l be
the dimension of x. We define the arrangement Ax to be the arrangement in Flq of all
hyperplanes x∪Hj in x such that x∪Hj 6= ∅ and x∪HJ 6= x, for a chosen isomorphism
of x with Flq. Then L(Ax) = Lx.
Let ∪Ax be the union of the hyperplanes of Ax. Then |(x \ (∪Ax))(Fqm)| = χLx(qm) by
Proposition 10.18. NowMi is the disjoint union of complements of the arrangements of
Ax for all x ∈ L such that r(x) = i by Proposition 10.20. Hence

|Mi(Fqm)| =
∑
x∈L
r(x)=i

|(x \ (∪Ax))(Fqm)|

=
∑
x∈L
r(x)=i

χLx(qm).



80 Characteristic polynomials and their generalizations

See also [7, Theorem 6.3].

10.5 The characteristic polynomial of a code

Proposition 10.22. Let C be a nondegenerate linear code over Fq. Then

An(U) = χC(U).

Proof. The short proof is given by χC(U) = χC(0, U) = χ0(U) = An(U). The geometric
interpretation is as follows.
The elements in Fkqm \ (H1 ∪ · · · ∪Hn) correspond one-to-one to codewords of weight n
in C ⊗ Fqm by Proposition 4.2 and because the arrangements corresponding to C and
to C ⊗ Fqm are the same. Therefore, An(qm) = χC(qm) for all positive integers m by
Proposition 10.18. Hence An(U) = χC(U).

Definition 10.23. Let G be a generator matrix of an [n, k] code C over Fq. Define

Yi = {x ∈ Ak : wt(xG) ≤ n− i} and Xi = {x ∈ Ak : wt(xG) = n− i}.

The Yi form a decreasing sequence

Yn ⊆ Yn−1 ⊆ . . . ⊆ Y1 ⊆ Y0

of algebraic subsets of Ak, and Xi = Yi \ Yi+1. Suppose that G has no zero column and
let AG be the arrangement of G. Then

Xi = {x ∈ Ak : x is in exactly i hyperplanes of AG}.

Proposition 10.24. Let C be a projective code of length n. Then

χi(q
m) = |Xi(Fqm)| = An−i(q

m).

Proof. Every x ∈ Fkqm corresponds one-to-one to a codeword in C ⊗ Fqm via the map
x 7→ xG. Therefore, |Xi(Fqm)| = An−i(q

m). Also, An−i(qm) = χi(q
m) for all i, by

Theorem 10.6. See also [3, Theorem 3.3].

Note that the statement |Xi(Fqm)| = An−i(q
m) and its proof are the the affine versions

of Proposition 4.2 and its proof.

Remark 10.25. Another way to define Xi is the collection of all points P ∈ Ak such that
P is on exactly i distinct hyperplanes of the arrangement AG. Denote the arrangement of
hyperplanes in Pk−1 also by AG and let P be the point in Pk−1 corresponding to P ∈ Ak.
Define

X i = {P ∈ Pk−1 : P is on exactly i hyperplanes of AG}.

For all i < n the polynomial χi(U) is divisible by U − 1. Define χi(U) = χi(U)/(U − 1).
Then χi(qm) = |X i(Fqm)| for all i < n by Proposition 10.24.
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Theorem 10.26. Let G be a generator matrix of a nondegenerate code C. Let AG be the
associated central arrangement. Let d⊥ = d(C⊥). Then Ni ⊆ Yi for all i and equality
holds for all i < d⊥. Also, Mi = Xi for all i < d⊥ − 1. If furthermore C is projective,
then

µi(U) = χi(U) = An−i(U) for all i < d⊥ − 1.

Proof. A more general version of this statement will be proven in Theorem 11.4, using
matroids. Here we give the proof for codes and arrangements.
Let x ∈ Ni. Then x ∈ HJ for some J ⊆ [n] such that r(HJ) = i. This means |J | ≥ i and
wt(xG) ≤ n− i by Proposition 4.2. Hence x ∈ Yi and therefore Ni ⊆ Yi.
Let i < d⊥ and x ∈ Yi. Then wt(xG) ≤ n − i. Let J = supp(xG). Then |J | ≥ i. Take
a subset I of J such that |I| = i. Then x ∈ HI and r(I) = |I| = i by Lemma 2.7, since
i < d⊥. Hence x ∈ Ni and therefore Yi ⊆ Ni, Yi = Ni for all i < d⊥, andMi = Xi for
all i < d⊥ − 1.
The code is nondegenerate, so d⊥ ≥ 2. Suppose furthermore that C is projective. Then
µi(U) = χi(U) = An−i(U) for all i < d⊥ − 1, by Theorem 10.6 and Propositions 10.24
and 10.21.

Remember that the extended and generalized weight enumerators are determined by the
pair (n, k) for an [n, k] MDS code by Theorem 2.27. If C is an [n, k] code, then d⊥ is at
most k + 1 by the Singleton bound. Furthermore d⊥ = k + 1 if and only if C is MDS if
and only if C⊥ is MDS.

Definition 10.27. An [n, k, d] code is called almost MDS if d = n − k. The code C is
called near MDS if both C and C⊥ are almost MDS.

So d⊥ = k if and only if C⊥ is almost MDS. If C is almost MDS, then C⊥ is not
necessarily almost MDS. See [33] for more on near-MDS codes.

Proposition 10.28. Let C be an [n, k, d] code such that C⊥ is MDS or almost MDS and
k ≥ 3. Then both χC(S,U) and WC(X,Y, U) determine µC(S,U). In particular:

µi(U) = χi(U) = An−i(U) for all i < k − 1,

µk−1(U) =

n−1∑
i=k−1

χi(U) =

n−1∑
i=k−1

An−i(U),

and µk(U) = 1.

Proof. Let C be a code such that d(C⊥) ≥ k ≥ 3. Then C is projective and µi(U) =
χi(U) = An−i(U) for all i < k − 1 by Theorem 10.26. Furthermore, µk(U) = χn(U) =
A0(U) = 1.
Finally let L = L(C). Then

∑k
i=0 µi(U) = Uk,

∑n
i=0 χi(U) = Uk and

∑n
i=0Ai(U) = Uk

by Remark 10.11. Hence the formula for µk−1(U) holds. Therefore, µC(S,U) is deter-
mined both by WC(X,Y, U) and χC(S,U).

Projective codes of dimension 3 are examples of codes C such that C⊥ is almost MDS.
In the following we will give explicit formulas for µC(S,U) for such codes.
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Let C be a projective code of length n and dimension 3 over Fq with generator matrix
G. The arrangement AG = (H1, . . . ,Hn) of planes in F3

q is simple and essential, and
the corresponding arrangement of lines in P2(Fq) is also denoted by AG. We defined in
Remark 10.25 that

X i(Fqm) = {P ∈ P2(Fqm) : P is on exactly i lines of AG}

and χi(qm) = |X i(Fqm)| for all i < n.
Note that for projective codes of dimension 3 we have X i(Fqm) = X i(Fq) for all positive
integers m and 2 ≤ i < n. Abbreviate in this case χi(qm) = χi for 2 ≤ i < n.

Proposition 10.29. Let C be a projective code of length n and dimension 3 over Fq.
Then 

µ0(U) = (U − 1)
(
U2 − (n− 1)U +

∑n−1
i=2 (i− 1)χi − n+ 1

)
,

µ1(U) = (U − 1)
(
nU + n−

∑n−1
i=2 iχi

)
,

µ2(U) = (U − 1)
(∑n−1

i=2 χi

)
,

µ3(U) = 0.

Proof. A more general statement and proof is possible for [n, k] codes C such that
d⊥ ≥ k, using Proposition 10.28, the fact that Bt(U) = Uk−t − 1 for all t < d⊥ by
Lemma 2.7, and the expression of Bt(U) in terms of Aw(U) by Proposition 2.16. We will
give a second geometric proof for the special case of projective codes of dimension 3.
By Lagrange interpolation it is enough to show this proposition with U = qm for all m.
Note that µi(qm) is the number of elements ofMi(Fqm) by Proposition 10.21. Let P be
the corresponding point in P2(Fqm) for P ∈ F3

qm and P 6= 0. Abbreviate Mi(Fqm) by
Mi and defineMi = {P : P ∈Mi}. So, |Mi| = (qm − 1)|Mi| for all i < 3.
When P ∈ M2, we have P ∈ Hj ∩ Hk for some j 6= k. Hence P ∈ X i(Fq) for some
i ≥ 2, since the code is projective. This meansM2 is the disjoint union of the X i(Fq) for
2 ≤ i < n. Therefore, |M2| =

∑n−1
i=2 χi.

We have P ∈M1 if and only if P is on exactly one line Hj . There are n lines, and every
line has qm + 1 points that are defined over Fqm . If i ≥ 2, then every P ∈ X i(Fq) is on i
lines Hj . Hence |M1| = n(qm + 1)−

∑n−1
i=2 iχi.

Finally, P2(Fqm) is the disjoint union ofM0,M1 andM2. The numbers |M2| and |M1|
are already computed, and |P2(Fqm)| = q2m + qm + 1. From this we derive the number
of elements ofM0.

Note that µi(U) is divisible by U −1 for all 0 ≤ i < k. Define µi = µi(U)/(U −1). Define
similarly Aw = Aw(U)/(U − 1) for all 0 < w ≤ n.

10.6 Examples and counterexamples

Example 10.30. Consider the matrix G given by

G =

 1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

 .
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Let C be the code over Fq with generator matrix G. For q = 2, this is the simplex code
S2(2). The columns of G represent also the coefficients of the lines of AG. The projective
picture of AG is given in Figure 10.1.

H2

H4

H5

H6

H1

H4

H3

H6

H5

H7 H7

H1

H3

H2

Figure 10.1: The arrangement of G for q odd and q even

If q is odd, then there are 3 points on two lines and 6 points on three lines, so χ2 = 3
and χ3 = 6. The number of points that are on one line is equal to the number of
points on each of the seven lines, minus the points we already counted, with multiplicity:
7(U + 1)− 3 · 2− 6 · 3 = 7U − 17. There are no points on more than three lines, so χi = 0
for i > 3. We calculate χ0 via χ0 + χ1 + χ2 + χ3 = U2 + U + 1.
If q is even, we can do the same kind of calculation. The values of µi can be calculated
using Proposition 10.29, but they follow more directly from Proposition 10.28. The results
are in the next table:

i 0 1 2 3 4 5 6 7

χi U2 − 6U + 9 7U − 17 3 6 0 0 0
q odd Ai 0 0 0 6 3 7U − 17 U2 − 6U + 9

µi U2 − 6U + 9 7U − 17 9 1
χi U2 − 6U + 8 7U − 14 0 7 0 0 0

q even Ai 0 0 0 7 0 7U − 14 U2 − 6U + 8
µi U2 − 6U + 8 7U − 14 7 1

Note that there is a codeword of weight 7 in case q is even and q > 4 or q is odd and
q > 3, since A7 = (U − 2)(U − 4) or A7 = (U − 3)2, respectively.

Example 10.31. Let G be a 3 × n generator matrix of an MDS code. As mentioned in
Example 2.28, the lines of the arrangement AG are in general position. That means that
every two distinct lines meet in one point and every three mutually distinct lines have an
empty intersection, so χ2 =

(
n
2

)
and χi = 0 for all i > 2. By Proposition 10.29 we have

µ2 =
(
n
2

)
and µ1 = nU + 2n− n2 and µ0 = U2− (n− 1)U +

(
n−1

2

)
. By Proposition 10.21
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we find Ai = 0 for 0 < i < n − 2, An−2 = χ2 and An−1 = χ1 = µ1 and An = χ0 = µ0.
The values found for the extended weight enumerator are in agreement with Theorem
2.27.

Example 10.32. Let a and b be positive integers such that 2 < a < b and let n = a+ b.
Let G be a 3 × n generator matrix of a nondegenerate code. Suppose that there are
two points P and Q in the projective plane over Fq such that the a + b lines of the
projective arrangement of AG consists of a distinct lines incident with P , and b distinct
lines incident with Q and there is no line incident with P and Q. Then χ2 = An−2 = ab,
χa = Ab = 1 and χb = Aa = 1. Hence µ2(U) = ab+ 2. Furthermore

µ1 = An−1 = (a+ b)U − 2ab,

µ0 = An = U2 − (a+ b− 1)U + ab− 1

and Ai = 0 for all i /∈ {a, b, n− 2, n− 1, n}.

Example 10.33. Let a, b and c be positive integers such that 2 < a < b < c. Let
n = a + b + c. Let G be a 3 × n generator matrix of a nondegenerate code C(a, b, c).
Suppose that there are three points P , Q and R in the projective plane over Fq such that
the lines of the projective arrangement of AG consist of a distinct lines incident with P
and not with Q and R, b distinct lines incident with Q and not with P and R, and c
distinct lines incident with R and not with P and Q. The a lines through P intersect
the b lines through Q in ab points. Similar statements hold for the lines through P and
R intersecting in ac points, and the lines through Q and R intersecting in bc points.
Suppose that all these ab + bc + ac intersection points are mutually distinct, so every
intersection point lies on exactly two lines of the arrangement. If q is large enough, then
such a configuration exists.
The number of points on two lines of the arrangement is χ2 = ab + bc + ca. Since P is
the unique point on exactly a lines of the arrangement, we have χa = 1. Similarly χb =
χc = 1. Finally, χi = 0 for all 2 ≤ i < n and i /∈ {2, a, b, c}. Propositions 10.28 and 10.29
imply that An−a = An−b = An−c = 1 and An−2 = ab+ bc+ ca and µ2 = ab+ bc+ ca+ 3.
Furthermore

µ1 = χ1 = An−1 = nU − 2(ab+ bc+ ca),

µ0 = χ0 = An = U2 − (n− 1)U + ab+ bc+ ca− 2

and Ai(U) = 0 for all i 6∈ {0, n− c, n− b, n− a, n− 2, n− 1, n}.
Therefore, WC(a,b,c)(X,Y, U) = WC(a′,b′,c′)(X,Y, U) if and only if (a, b, c) = (a′, b′, c′),
and µC(a,b,c)(S,U) = µC(a′,b′,c′)(S,U) if and only if a + b + c = a′ + b′ + c′ and
ab+ bc+ ca = a′b′ + b′c′ + c′a′. In particular, let C1 = C(3, 9, 14) and C2 = C(5, 6, 15).
Then C1 and C2 are two projective codes with the same Möbius polynomial µC(S,U)
but distinct extended weight enumerators and coboundary polynomial χC(S,U).
Now d(C(a, b, c)) = n − c. Hence d(C1) = 12 and d(C2) = 11. Therefore, µC(S,U) does
not determine the minimum distance, although it gives the number of minimal codewords.
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Example 10.34. Consider the codes C3 and C4 over Fq with q > 2 and generator
matrices G3 and G4 given by

G3 =

 1 1 0 0 1 0 0
0 1 1 1 0 1 0
−1 0 1 1 0 0 1

 and G4 =

 1 1 0 0 1 0 0
0 1 1 1 0 1 0
0 1 1 a 0 0 1

 ,

where a ∈ Fq \ {0, 1}. It was shown by Brylawsky [27, Exercise 6.96] that the duals of
these codes have the same Tutte polynomial. Therefore, the codes C3 and C4 have the
same Tutte polynomial

tC(X,Y ) = 2X + 2Y + 3X2 + 5XY + 4Y 2 +X3 +X2Y + 2XY 2 + 3Y 3 + Y 4.

Hence C3 and C4 have the extended weight enumerator given by

X7 + (2U − 2)X4Y 3 + (3U − 3)X3Y 4 + (U2 − U)X2Y 5+

+ (5U2 − 15U + 10)XY 6 + (U3 − 6U2 + 11U − 6)Y 7.

The codes C3 and C4 are not projective and their simplifications C3 and C4, respectively,
have generator matrices given by

G3 =

 1 1 0 1 0 0
0 1 1 0 1 0
−1 0 1 0 0 1

 and G4 =

 1 1 0 0 0 0
0 1 1 1 1 0
0 1 1 a 0 1

 ,

where a ∈ Fq \{0, 1}. From the arrangements A(C3) and A(C4) in Figure 10.2 we deduce
the χi that are given in the following table.

code \ i 0 1 2 3 4 5

C3 U2 − 5U + 6 6U − 12 3 4 0 0
C4 U2 − 5U + 6 6U − 13 6 1 1 0

Therefore, tC3(X,Y ) = tC4(X,Y ), but χC3(S,U) 6= χC4(S,U) and tC3
(X,Y ) 6= tC4

(X,Y ).

Example 10.35. Let C5 = C⊥3 and C6 = C⊥4 . Their generator matrices are

G5 =


1 0 0 0 1 0 −1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 0 1 1

 and G6 =


1 0 0 0 1 0 0
0 1 0 0 1 1 1
0 0 1 0 0 1 1
0 0 0 1 0 1 a

 ,

where a ∈ Fq \ {0, 1}. Then C5 and C6 have the same Tutte polynomial tC⊥(X,Y ) =
tC(Y,X) as given by Example 10.34:

2X + 2Y + 4X2 + 5XY + 3Y 2 + 3X3 + 2X2Y +XY 2 + Y 3 + 3X4.

Hence C5 and C6 have the same extended weight enumerator given by

X7 + (U − 1)X5Y 2

+ (6U − 6)X4Y 3 + (2U2 − U − 1)X3Y 4 + (15U2 − 43U + 28)X2Y 5

+ (7U3 − 36U2 + 60U − 31)XY 6 + (U4 − 7U3 + 19U2 − 23U + 10)Y 7.
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Figure 10.2: The arrangements of G3 and G4

The geometric lattice L(C5) has atoms a, b, c, d, e, f, g corresponding to the first, second,
etc. column of G5. The second level of L(C5) consists of the following 17 elements:

abe, ac, ad, af, ag, bc, bd, bf, bg, cd, ce, cf, cg, de, df, dg, efg.

The third level consists of the following 12 elements:

abce, abde, abefg, acdg, acf, adf, bcdf, bcg, bdg, cde, cefg, defg.

Similarly, the geometric lattice L(C6) has atoms a, b, c, d, e, f, g corresponding to the first,
second, etc. column of G6. The second level of L(C6) consists of the following 17 elements:

abe, ac, ad, af, ag, bc, bd, bf, bg, cd, ce, cf, cg, de, dfg, ef, eg.

The third level consists of the following 13 elements:

abce, abde, abef, abeg, acd, acf, acg, adfg, bcdfg, cde, cef, ceg, defg.

Theorem 10.26 implies that µ0(U) and µ1(U) are the same for both codes and equal to

µ0(U) = χ0(U) = A7(U) = (U − 1)(U − 2)(U2 − 4U + 5)

µ1(U) = χ1(U) = A6(U) = (U − 1)(7U2 − 29U + 31).

The polynomials µ3(U) and µ2(U) are given in the following table using Remarks 10.14
and 10.11.

C5 C6

µ2(U) 17U2 − 49U + 32 17U2 − 50U + 33
µ3(U) 12U − 12 13U − 13

This example shows that for projective codes the Möbius polynomial µC(S,U) is not
determined by the coboundary polynomial χC(S,U).



11
Relations between the Möbius and

coboundary polynomials

When studying polynomial invariants of matroids, much attention is given to the Tutte
polynomial, see Chapter 8. Many other polynomials associated to graphs, arrangements,
linear codes and matroids turn out to be an evaluation of the Tutte polynomial, or define
the Tutte polynomial. Sometimes the polynomials and the Tutte polynomial determine
each other.
In Chapter 10 we discussed two other polynomial invariants of matroids: the coboundary
polynomial and the Möbius polynomial. The former is, for simple matroids, equivalent
to the Tutte polynomial, see Corollary 10.5. The latter, however, is not, as we showed by
the examples in Section 10.6.
It follows that, in general, the coboundary polynomial and the Möbius polynomial do
not determine each other. Less is known about more specific cases. In this chapter we
will investigate if it is possible that the Möbius polynomial of a matroid, together with
the Möbius polynomial of the dual matroid, define the coboundary polynomial of the
matroid. In some cases, the answer is affirmative, and we will give two constructions to
determine the coboundary polynomial in these cases.
This chapter is a copy of [54].

11.1 Connections

For a matroid M with rank function r and dual matroid M∗, we will study the following
parameters:

• n, the number of elements of M and M∗;

• k, the rank of M ;

• d, the size of the smallest cocircuit in M (i.e., circuit in M∗);

• d∗, the size of the smallest circuit in M (i.e., cocircuit in M∗).
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Note that if a matroid is representable over a finite field, then there is a linear code associ-
ated to it with length n, dimension k, minimum distance d and dual minimum distance d∗.

Throughout this chapter, we will restrict ourselves to simple matroids. Also the dual of
a matroid is assumed to be simple. This implies d > 2 and d∗ > 2. In this case, there
is a two-way equivalence between matroids and geometric lattices: we will freely change
between these objects when necessary.

Some natural questions arise about the dependencies between the coboundary polyno-
mial and Möbius polynomial of a matroid and its dual. First of all, do the coboundary
and Möbius polynomial determine each other? The answer is “no”, even if both the ma-
troid and its dual are simple. We have seen counterexamples in Examples 10.33 and 10.35.

In Corollary 10.5 we saw that the coboundary polynomial is equivalent to the Tutte
polynomial. The Tutte polynomial of a matroid is determined by the Tutte polynomial of
the dual matroid, as we saw in Theorem 8.7. Therefore, the same holds for the coboundary
polynomials of a matroid and its dual.

Theorem 11.1. Let χM (S,U) be the coboundary polynomial of a simple matroid M with
simple dual M∗. Let χM∗(S,U) be the coboundary polynomial of M∗. Then

χM∗(S,U) = (S − 1)nU−kχM

(
S + U − 1

S − 1
, U

)
.

Proof. The rewriting is analogous to the proof of Theorem 2.19 in Section 8.2. We use
Corollary 10.5 and Theorem 8.7.

(S − 1)nU−kχM

(
S + U − 1

S − 1
, U

)
= (S − 1)nU−k

(
U

S − 1

)k
tM

(
S,
S + U − 1

S − 1

)
= (S − 1)n−ktM∗

(
S + U − 1

S − 1
, S

)
= χM∗(S,U).

Note that in the last step we use that the rank of M∗ is equal to n− k.

One might notice the resemblance between this theorem and the MacWilliams relations
for the extended weight enumerator in 2.19. This is because of the relation in Theorem
10.6.

The question comes up if such a duality relation also exists for the Möbius polynomial.
To answer this, we need some more theory.

Lemma 11.2. Let M be a matroid. Then for all elements x ∈M with r(x) < d∗ − 1, we
have |x| = r(x). Furthermore, if M is simple, we have a(x) = r(x) in the corresponding
geometric lattice.
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Proof. By definition, d∗ is the size of the smallest circuit in M and thus the size of the
smallest dependent set in M . It has rank d∗ − 1. This means all elements x ∈M of rank
r(x) < d∗ − 1 are independent and have |x| = r(x). For simple matroids, |x| = a(x) in
the corresponding geometric lattice.

Proposition 11.3. Given the Möbius polynomial µM (S,U) of a matroid. Then we can
determine the parameter d∗ of the matroid M .

Proof. The coefficient of the term SiUk−j in the Möbius polynomial is given by∑
x∈L
r(x)=i

∑
y∈L
r(y)=j

µ(x, y).

These numbers are the doubly-indexed Whitney numbers of the first kind, see Section
10.2. In the case j = i, we just count the number of elements in L of rank i, i.e., the
number of flats of rank i inM . These are the Whitney numbers of the second kind. From
Lemma 11.2 it now follows that for i < d∗−1 all elements of rank i are flats, so there are(
n
i

)
of them. For i ≥ d∗− 1, the number of flats is strictly smaller then

(
n
i

)
. Therefore we

can determine d∗ from the Möbius polynomial of M .

In the previously mentioned Example 10.33, we have two matroids with the same Möbius
polynomial but with different d. By Proposition 11.3, this means that their duals cannot
have the same Möbius polynomial. This gives a negative answer to the question in [58,
§10.5] if the Möbius polynomial of a matroid and its dual are determined by each other.

To summarize, together with Theorem 11.1 we know the following about the coboundary
and Möbius polynomials of a matroid and its dual:

• The coboundary polynomial χM (S,U) of a matroid and the coboundary polynomial
χM∗(S,U) of the dual matroid completely determine each other.

• The Möbius polynomial µM (S,U) of a matroid does not determine the Möbius
polynomial µM∗(S,U) of the dual matroid.

• The coboundary polynomial χM (S,U) does not determine the Möbius polynomial
µM (S,U). The same holds in the dual case.

• The Möbius polynomial µM (S,U) does not determine the coboundary polynomial
χM (S,U).

The last three statements also hold in caseM and/orM∗ are not simple. In this chapter,
we will address another question between dependencies:

Given the Möbius polynomials µM (S,U) and µM∗(S,U) of a matroid and its
dual. Do they determine χM (S,U)?

We will see that, in some cases, the answer is “yes”. Proposition 11.3 tells us that the
Möbius polynomial gives us information about the dual of the matroid. This is the reason
to ask if the Möbius polynomial of the matroid, together with the Möbius polynomial of
its dual, determine the coboundary polynomial.
For completeness, note that µM (S,U) and µM∗(S,U) define not only d∗ and d, respec-
tively, but also n and k: the degree of µM (S,U) in S is r(M) = k, and the degree of
µM∗(S,U) in S is r∗(M∗) = n− k.
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Theorem 11.4. Let M be a matroid, and let the Möbius polynomial µM (S,U) be given.
Then part of the coboundary polynomial χM (S,U) is determined from this:

χi(U) =

 µi(U), for i < d∗ − 1,
0, for n− d < i < n,
1, for i = n.

Proof. The first equality follows from Proposition 11.3, the definition of the Möbius
and coboundary polynomial, and Lemma 11.2. We proved this statement for codes and
arrangements in Theorem 10.26. If d is the smallest size of a cocircuit in M , then n−d is
the biggest size of a hyperplane inM and thus the biggest size of a flat with rank smaller
then k in M . This implies the second equality. The third equality is obvious from the
definition of the coboundary polynomial.

Using this theorem, we can determine the value of χi(U) for (d∗−1)+(d−1)+1 = d∗+d−1
values of i. This leaves n+ 1− (d∗ + d− 1) = n− d− d∗ + 2 of the χi(U) unknown. We
can say the same about the coefficients χ∗i (U) of the coboundary polynomial χM∗(S,U)
of the dual matroid. The idea is to use Theorem 11.1 to calculate the missing values of
χi(U) and χ∗i (U). We first rewrite Theorem 11.1 to a more convenient form.

Proposition 11.5. Let χi(U) be the coefficients of the coboundary polynomial of a sim-
ple matroid M with simple dual M∗. Let χ∗i (U) be the coefficients of the coboundary
polynomial of M∗. Then

Uv−k
n∑
i=v

(
i

v

)
χi(U) =

n∑
i=n−v

(
i

n− v

)
χ∗i (U), v = 0, . . . , n.

Proof. This is obtained by rewriting the formula in Theorem 11.1. This is analogous
to the rewriting of the MacWilliams relations from coding theory, see for example [70,
§5.2]. Replacing S by S + 1, binomial expanding and reversing the order of summation
gives:

n∑
i=0

χ∗i (U)Si = (S − 1)nU−k
n∑
i=0

χi(U)

(
S + U − 1

S − 1

)i
n∑
i=0

χ∗i (U)(S + 1)i = SnU−k
n∑
i=0

χi(U)

(
S + U

S

)i
n∑
i=0

χ∗i (U)

i∑
v=0

(
i

v

)
Sv = U−k

n∑
i=0

Sn−iχi(U)

i∑
v=0

(
i

v

)
Si−vUv

n∑
v=0

Sv
n∑
i=v

(
i

v

)
χ∗i (U) =

n∑
v=0

Sn−vUv−k
n∑
i=v

(
i

v

)
χi(U)

n∑
v=0

Sn−v
n∑

i=n−v

(
i

n− v

)
χ∗i (U) =

n∑
v=0

Sn−vUv−k
n∑
i=v

(
i

v

)
χi(U).

Comparing the coefficients of Sn−v leads to the given formula.
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In some cases, the relations from Theorem 11.4 and Propositions 11.5 are enough to com-
pletely determine the coboundary polynomial χM (S,U) from the polynomials µM (S,U)
and µM∗(S,U).

Theorem 11.6. LetM be a matroid with 2(d+d∗) ≥ n+3. Then the Möbius polynomials
µM (S,U) and µM∗(S,U) determine χM (S,U).

We give three ways to prove this theorem, exploiting various techniques in matroid theory.
The first two proofs show that the proposed construction, using the duality relations in
Proposition 11.5, indeed works. For the third proof, we use the theory of zeta polynomials.

11.2 Independence of duality relations

Proof (Theorem 11.6). We try to determine the coboundary polynomials of M and
M∗ simultaneously. First we use Theorem 11.4 for M and M∗. This gives us the value of
χi(U) for i < d∗ − 1 and i > n− d, and the value of χ∗i (U) for i < d− 1 and i > n− d∗.
So we are left with the unknowns

χd∗−1(U), χd∗(U), . . . , χn−d(U), χ∗d−1(U), χ∗d(U), . . . , χ∗n−d∗(U).

This are 2(n−d−d∗+2) variables. Proposition 11.5 gives us n+1 equations. In order for
this system to be solvable, we need at least as may equations as unknowns. This means

n+ 1 ≥ 2(n− d− d∗ + 2)

n+ 1 ≥ 2n+ 4− 2(d+ d∗)

2(d+ d∗) ≥ n+ 3.

We now need to show that, given 2(d + d∗) ≥ n + 3, we have enough independent
equations. Since all the coefficients of the equations are known, it is possible to do this
directly, but that gives lengthy calculations. We will give a more graphical approach.
First, we visualize how Proposition 11.5 looks like in matrix form. The grey areas of the
matrices are filled with nonzero entries, the white areas contain only zeros. The vectors
are filled with light grey, because it does not matter if the entries are zero or not.

=

χ χ∗

From the triangular shape of the matrices, it is clear that they both have full rank –
something we could have also concluded from the fact that the relation in Theorem 11.1
is a two way equivalence. We order the system now in a way that all unknowns are on
the left hand side. This means for the first matrix we “cut off” d∗ − 1 columns at the
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right of the matrix, and d− 1 at the left, since they correspond to values of i for which
χi(U) is known. For the second matrix, it is the other way around. Since we assumed
2(d+ d∗) ≥ n+ 3, we are cutting off at least half of the rows. The new system looks like
this:

− =

χ χ∗

The vector on the right hand side is known and depends on d, d∗ and the two Möbius
polynomials. The matrices both have full rank n−d−d∗+2, as is clear from their shape.
We can write this as one system by “glueing together” the matrices on the left hand side.

=

We need to show that this matrix has full rank. Have a look at the bottom d rows of
this matrix. The complete left side is zero, so we ignore that for a moment. The right
side has all entries nonzero, and from Proposition 11.5 we know the entries are binomial
coefficients: 

(
d−1
d−1

) (
d
d−1

)
· · ·

(
n−d∗
d−1

)
...

...
...(

d−1
1

) (
d
1

)
· · ·

(
n−d∗

1

)(
d−1

0

) (
d
0

)
· · ·

(
n−d∗

0

)

 .

By the inductive relations between binomial coefficients, we can perform row operations
on this matrix to obtain 

0 0 · · ·
(
n−d−d∗+1

d−1

)
...

...
...

0
(

1
1

)
· · ·

(
n−d−d∗+1

1

)(
0
0

) (
1
0

)
· · ·

(
n−d−d∗+1

0

)

 .
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Flipping the matrix upside down, we have obtained the following picture:

=

In this picture, we show the case for d < n−d−d∗+2. If we had d ≥ n−d−d∗+2, we would
have obtained a matrix that was of full rank and we were done. If d∗ ≥ n−d−d∗+ 2, we
can changeM andM∗ and we are also done. So from now on, assume d, d∗ < n−d−d∗+2.
Call the left and the right half of the matrix L and R. Suppose a linear combination of the
columns of the matrix is zero. Since all columns inside L and inside R are independent,
this means we can make a linear combination l of columns of L and a linear combination
r of columns of R that are both nonzero and a nonzero multiple of each other.
By the shape of L and R, the first d∗ and the last d entries of l and r have to be zero.
We will show that the remaining n− d− d∗ + 1 entries of l and r cannot be multiples of
each other.
Crucial in the proof is that all rows of L are multiplied with a different power of U ,
whereas R is completely filled with integers. Therefore, any linear combination of columns
of R will have the same powers of U involved in every nonzero entry, even if we take the
coefficients of the linear combination to be polynomials in U and U−1. On the other
hand, the entries of l will all have different powers of U involved. The only possibility to
cancel this out, is if we can have only one nonzero entry in l and r, at the same place.
We focus now on the matrix L. It has maximal (column) rank n − d − d∗ + 2. From
Proposition 11.5 we know the entries are binomial coefficients, with every row multiplied
with another (possibly negative) power of U . The first d∗ rows form a matrix with
rank d∗, from the same reasoning we used for the last d rows of R. So if we make a
linear combination of the columns of L where the first d∗ entries are zero, there are
n − d − d∗ + 2 − d∗ = n − d − 2d∗ + 2 free variables involved. Note we assumed d∗ <
n− d− d∗ + 2, so this number is positive. We can use those free variables to make more
entries of l zero: add one of the middle n− d− d∗ + 1 rows of L as an extra constraint,
and choose one of the free variables in a way that the corresponding entry in l becomes
zero. We are left with

n− d− d∗ + 1− (n− d− 2d∗ + 2) = d∗ − 1 ≥ 2

entries of l that are not zero. They also cannot be zero “by accident” since the middle
n − d − d∗ + 1 rows of L form a matrix of full rank. So l cannot have only one nonzero
entry, as was to be shown.
To summarize, we have shown that we can use Theorem 11.4 and some of the equations in
Proposition 11.5 to find χM (S,U) from µM (S,U) and µM∗(S,U) if 2(d+d∗) ≥ n+3.
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11.3 Divisibility arguments

In the previous section, we directly showed that the construction to determine χM (S,U),
given µM (S,U) and µM∗(S,U) and using Theorem 11.4 and Proposition 11.5, indeed
works. In this paragraph, we will give a direct proof that if two matroids have the same
Möbius polynomials, and their duals too, then the matroids have the same coboundary
polynomial. Although the proof itself is not constructive, it is a much shorter proof for
Theorem 11.6 and it also shows why the proposed construction works. The proofs in this
section are similar to the proof of the Mallows-Sloane bound given in [38] and are thanks
to an anonymous referee for [54].

Proof (Theorem 11.6). Let two matroids M1 and M2 have coboundary polynomials
χM1

and χM2
(we omit the (S,U) part for clarity). Let the Möbius polynomials of the

matroids coincide, just as the matroid polynomials of their duals: so, let µM1
= µM2

and
µM∗1 = µM∗2 . We will show that if 2(d+ d∗) ≥ n+ 3, then χM1 = χM2 .
Using Theorem 11.4, we see that the coefficients of χM1 and χM2 coincide for i < d∗ − 1
and i > n− d. It follows that

Sd
∗−1 | χM1 − χM2 and degS(χM1 − χM2) ≤ n− d.

Combining this with Theorem 11.1, we find that

(S + U − 1)d
∗−1 | χM∗1 − χM∗2 and (S − 1)d | χM∗1 − χM∗2 .

If we apply Theorem 11.4 to the dual matroids, we find that

Sd−1 | χM∗1 − χM∗2 and degS(χM∗1 − χM∗2 ) ≤ n− d∗.

Combining all the divisibilities, we have

(S + U − 1)d
∗−1(S − 1)dSd−1 | χM∗1 − χM∗2 ,

where the degree of χM∗1 −χM∗2 in S is at most n−d∗. For (d∗−1)+d+(d−1) > n−d∗,
i.e., for 2(d+ d∗) ≥ n+ 3, this implies χM∗1 = χM∗2 and thus χM1 = χM2 .

This proof is a matroid generalization of the following result for codes, that we include
here to illustrate the application of Theorem 11.6 for codes.

Theorem 11.7. Let C1 and C2 be two codes with the same length and let d and d∗ be
two integers such that 0 < d, d∗ < n. Suppose C1 and C2 have the same number of words
of weight w for w < d and w > n− d∗ + 1, and suppose the dual codes C⊥1 and C⊥2 have
the same number of words for w < d∗ and w > n− d+ 1. If 2(d+ d∗) ≥ n+ 3, then C1

and C2 have the same weight distribution.

Proof. Write the weight enumerator of a code as

WC =

n∑
w=0

AwX
n−wY w.

Also here we omit the (X,Y ) part for clarity. Because the weight distributions of the two
codes coincide for w < d and n− w < d∗ − 1, we have

Xd∗−1Y d | WC1
−WC2

.



11.4 Zeta polynomials 95

Applying the MacWilliams relations gives

(X + (q − 1)Y )d
∗−1 | WC∗1

−WC∗2
and (X − Y )d | WC∗1

−WC∗2
.

Because the weight distributions of the dual codes coincide for w < d∗ and n−w < d−1,
we have

Xd−1Y d
∗
| WC∗1

−WC∗2
.

Combining the divisibilities, we find that

(X + (q − 1)Y )d
∗−1(X − Y )dXd−1Y d

∗
| WC∗1

−WC∗2
.

The total degree of all terms in WC∗1
−WC∗2

is n. So, for (d∗ − 1) + d+ (d+ 1) + d∗ > n,
i.e., for 2(d+ d∗) ≥ n+ 3, this implies WC∗1

= WC∗2
and thus WC1

= WC2
.

Note that in this theorem d and d∗ do not necessarily have to be the minimum distance
and dual minimum distance of the code. As long as the total length of the four intervals
on which the weights agree is big enough, the theorem holds.

11.4 Zeta polynomials

In Chapter 3 we discussed the zeta polynomial of a code. We will extend this theory to
matroids, and use it to give another construction to prove Theorem 11.6. Just as with
the other polynomials, we often refer to the zeta polynomial in the following form:

PC(T,U) =

r∑
i=0

Pi(U)T i.

Duursma [39] extended the definition of the zeta polynomial to matroids. We choose a
similar approach and use that we can talk about the extended weight enumerator of a
matroid, via its equivalence with the Tutte polynomial (see Theorems 8.4 and 8.5).

Theorem 11.8. Let M be a matroid with coboundary polynomial χM (S,U). The two-
variable zeta polynomial PM (T,U) of this matroid is the unique polynomial in Q[T,U ]
of degree at most n− d in T such that if we expand the generating function

PM (T,U)

(1− T )(1− TU)
(1 + (S − 1)U)n

as a power series in the variable T , we get

. . .+ . . . Tn−d−1 +
χM (S,U)− Sn

U − 1
Tn−d + . . . Tn−d+1 + . . . .

Proof. Apply X = 1 and Y = S−1 in the definition of the zeta function and multiply
the whole equation with Sn.

Z(T,U) · (Y (1− T ) +XT )n = . . .+
WC(X,Y, U)−Xn

U − 1
Tn−d + . . .

Z(T,U) · Sn · (S−1(1− T ) + T )n = . . .+
WC(1, S−1, U)− 1

U − 1
SnTn−d

Z(T,U) · (1 + (S − 1)T )n = . . .+
χM (S,U)− Sn

U − 1
Tn−d + . . .
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Propositions 3.2, 3.4, and 3.5 and Theorem 3.3 have a direct analogue for matroids. Let
Xn,d be the coboundary polynomial of the uniform matroid on n elements with rank
n− d+ 1.

Proposition 11.9. A matroid is uniform if and only if PM (T,U) = 1.

Theorem 11.10. The zeta polynomial gives us a way to write the coboundary polynomial
with respect to a basis of coboundary polynomials of uniform matroids:

χM (S,U) = P0(U)Xn,d + P1(U)Xn,d+1 + . . .+ Pr(U)Xn,d+r.

Proposition 11.11. The degree of PM (T,U) in T is n− d− d∗ + 2.

Proposition 11.12. For the two-variable zeta polynomial of a matroid M and dual M∗
we have

PM∗(T,U) = PM

(
1

TU
,U

)
Un−k+1−dTn−d−d

∗+2.

We are now ready to give an alternative proof of Theorem 11.6 using the two-variable
zeta polynomial.

Proof (Theorem 11.6). Our goal is to determine all the coefficients Pj(U) of the two-
variable zeta polynomial, and thus the coboundary polynomial χM (S,U). Denote the
coefficient of Sj in Xn,d by Xn,d,j . We know the exact value of these coefficients, just like
we know the extended weight enumerator of MDS codes, see Theorem 2.27. So, we can
split up Theorem 11.10 in n+ 1 equations:

χj(U) =

n−d−d∗+2∑
i=0

Pi(U)Xn,d+i,j , j = 0, . . . , n.

Not all of these equations are helpful in determining the Pi(U). For j < d∗ − 1 and
j > n − d the χj(U) are known by Theorem 11.4. In the case n − d < j < n we have
χj(U) = 0 and also Xn,d+i,j = 0 for all i, so the corresponding equations just state 0 = 0.
For d∗− 1 ≤ j ≤ n− d we don’t know χj(U), so these equations are also not helpful. We
are left with the equations for j < d∗− 1 and j = n, so d∗ equations in the n− d− d∗+ 3
unknown Pi(U).
We can do the same for the dual matroid, leading to d equations in the n − d − d∗ + 3
unknown P ∗i (U). From Proposition 11.12 it follows that

P ∗i (U) = U i−k−1+d∗Pn−d−d∗+2−i(U),

so we can replace the P ∗i (U) one-to-one by the appropriate Pi(U). So all together, we
have d+d∗ equations in n−d−d∗+3 unknown Pi(U). To get at least as many equations
as unknowns, we need

d+ d∗ ≥ n− d− d∗ + 3

2(d+ d∗) ≥ n+ 3.

This is the same bound we already obtained in Theorem 11.6.
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11.5 Open questions

We have seen two methods to determine the coboundary polynomial χM (S,U) of a ma-
troid from the Möbius polynomials µM (S,U) and µM∗(S,U) of a matroid and its dual.
Both methods rely on duality relations for, respectively, the coboundary and Tutte poly-
nomial.

Theorem 11.6 is valid for matroids that are “close” to the uniform matroid. Stated in
terms of codes, this means codes with a minimum distance and dual minimum distance
that is high, so the code is “close to MDS”. Examples of such codes are MDS codes itself
(but this is a trivial example, since there is only one uniform matroid given length and
rank) and near-MDS codes, these are codes with d = n − k and d⊥ = k (see Definition
10.27). Also almost-MDS codes with k ≤ n/2 are in this category. See Boer [33] for more
on almost-MDS codes and Faldum and Willems [41] for more on codes that are close to
MDS. Other specific codes that have 2(d + d∗) ≥ n + 3 are the q-ary Hamming codes
(and their duals, the simplex codes) and the first order q-ary Reed-Muller codes. These
codes were treated in Chapter 5.

A logical question is now: how sharp is the bound in Theorem 11.6? To look for an ex-
ample to show the bound is tight, we need two matroids with the same parameters and
2(d + d∗) < n + 3 that have equal Möbius polynomials µM (S,U) and µM∗(S,U) but
different coboundary polynomial χM (S,U). The smallest case is d = d∗ = 3 (because
otherwise the matroid is not simple) and thus n = 10.
An exhaustive computer search on 260 random matrices with the desired parameters and
k = 5 did not lead to such an example, so there is room for improvement on the bound
in Theorem 11.6.

In Proposition 6.3 of [24] the issue is addressed how many Tutte polynomials there are,
given the size and rank of a matroid. This is done by looking at the affine space generated
by the coefficients of the Tutte polynomial, and determining its dimension. See also [25].
It would be interesting to see if we can do the same thing for the Möbius polynomial,
given n, k, d and d∗. If we determine the dimension of the affine space generated by the
coefficients of the Möbius polynomial of a matroid and its dual, we can compare it to
the dimension for the Tutte polynomial. This could give us more information about the
relations between the Möbius and coboundary polynomials in general.
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The spectrum polynomial

The spectrum polynomial of a matroidM without loops was introduced by Kook, Reiner
and Stanton to show that the spectra of the combinatorial Laplace operators on the
independent complex IN(M) are nonnegative and integral [65]. The spectrum polynomial
contains the same information as these spectra, hence the name spectrum polynomial. The
main results concerning the spectrum polynomial are the recurrence relations by Kook
[64] and the generalization of Denham [34] to an invariant that specializes to both the
Tutte polynomial and to the spectrum polynomial. Since it is a matroid invariant, it is
tempting to compare the spectrum polynomial to the Tutte polynomial. Kook et al. [65]
showed that the Tutte polynomial does not determine the spectrum polynomial. The
opposite problem is still open.
In this chapter we calculate the spectrum polynomial of the uniform matroidM of rank k
on n elements. We give two different methods, using equivalent definitions of the spectrum
polynomial.

12.1 Calculations using combinatorics

The spectrum polynomial has the following combinatorial definition.

Definition 12.1. Let M = (E, I) be a matroid and L(M) the associated geometric
lattice. Then the spectrum polynomial of M is defined by

SpecM (S,U) =
∑

x,y∈L(M)

|χ̃(IN(x))| |µL(M)(x, y)|Ur(y)S|x|,

where |x| is the number of elements of M that are in the flat x and χ̃(IN(x)) is the
reduced Euler characteristic of the independence complex of x.

The value of |x| is equal to a(x) for all flats x if M is a simple matroid. The following
formula holds by [14, p. 238]:

|χ̃(IN(M))| = RM (−1, 0) =
∑
I∈I

(−1)r(M)−|I|.

We will start by calculating the Möbius function of the uniform lattice.
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Lemma 12.2. The Möbius function of the uniform lattice Un,k is given by

µ(x, y) =


0, if x 6≤ y,
(−1)|y|−|x|, if y 6= 1̂,∑k−|x|
i=1 (−1)i

(
n−|x|
i−1

)
, if y = 1̂.

Proof. We know µ(x, x) = 1 and µ(x, y) = 0 if x and y are not comparable. If x ≤ y,
we get an alternating sum of binomial coefficients. For y 6= 1̂ the corresponding lattice is
the full powerset, so µ(x, y) = (−1)|y|−|x|, see for example [29].

Theorem 12.3. The spectrum polynomial of the uniform matroid Un,k is equal to

SpecUn,k(S,U) =

k−1∑
r=0

(
n

r

)
Ur +

(
n− 1

k − 1

)
Uk +

(
n− 1

k

)
SnUk.

Proof. The Möbius function of the uniform lattice was calculated in Lemma 12.2. We
continue with the calculation of the Euler characteristic χ(IN(x)). We first look at the
case x 6= 1̂. Then all subsets of x are independent: summing over their rank, the Euler
characteristic becomes

|x|∑
i=0

(−1)|x|−i
(
|x|
i

)
.

This expression is zero, except for x = 0̂, the empty set: then χ = 1. If x = 1̂ the Euler
characteristic is equal to

k∑
i=0

(−1)k−i
(
n

i

)
.

We have enough information now to calculate the spectrum polynomial. We only have
to look at three cases, since for the others the Euler characteristic is zero:

1. y 6= 1̂ and x = 0̂,

2. y = 1̂ and x = 0̂,

3. y = x = 1̂.

For the first one, the value in the inner summation of the spectrum polynomial is 1, so
we just have to count the number of elements on each level of L. The second and third
case are just filling in the right values in the Möbius function and Euler characteristic.
So, we have

1.
(
n
r

)
Ur for all r < k,

2. Uk ·
∣∣∣∑k

i=0(−1)k−i
(
n
i

)∣∣∣ · 1 · Sn,
3. Uk · 1 ·

∣∣∣∑k
i=1(−1)i

(
n
i−1

)∣∣∣ · S0.
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The summation in the second case can be rewritten as

k∑
i=0

(−1)k−i
(
n

i

)
= (−1)k

k∑
i=0

(−1)i
(
n

i

)
= (−1)2k

(
n− 1

k

)
,

so the absolute value of this is
(
n−1
k

)
. The summation in the third case can be rewritten

similarly:
k∑
i=1

(−1)i
(

n

i− 1

)
= (−1)

k−1∑
i=0

(−1)i
(
n

i

)
= (−1)k

(
n− 1

k − 1

)
,

which has absolute value
(
n−1
k−1

)
. Note that these two binomials add up to

(
n
k

)
, the number

of bases of M . Filling in the calculated expressions for the Euler characteristic and the
Möbius function, we find that the spectrum polynomial of the uniform matroid Un,k is
equal to the given formula.

12.2 Calculations using ordered matroids

Another way of defining the spectrum polynomial is based on the next theorem, see [65,
Theorem 1].

Theorem 12.4. Let M = (E,ω, I) be an ordered matroid. Then we can decompose each
independent set I into two disjoint sets I = I1∪I2 such that I1 is a base of internal activity
0 for the flat |I1| and I2 is a base of external activity 0 for the contracted matroid I\I1.

Proof. The desired decomposition can be obtained by the following algorithm:

1. Start with I1 = I and let V = I1.

2. Pick the smallest element e ∈ I1 with respect to ω.

3. Find the fundamental cocircuit of e with respect to I1 in V , i.e. the unique cocircuit
in V − I1 + e.

4. If e is the smallest element in this cocircuit (i.e. internally active in I1), remove it
from I1 and redefine V = I1.

5. Take the next e ∈ I1 with respect to ω and return to Step 3. If there are no elements
left in V , we are done.

See [65] for a proof that this construction indeed gives the decomposition from the the-
orem.

Definition 12.5. Let M = (E,ω, I) be an ordered matroid. Then the spectrum polyno-
mial of M is defined by

SpecM (S,U) =
∑
I∈I

S|I1|Ur(I).

We can now give a proof of Theorem 12.3 that uses an ordering of the matroid.
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Proof (Theorem 12.3). We use the algorithm in the proof of Theorem 12.4. For an
independent set I ∈ I with |I| < k, this algorithm gives I1 = ∅, as we show by induc-
tion. For I = ∅ we obviously get I1 = ∅. Now assume I1 = ∅ for all I with |I| < r and
0 < r < k, and pick an independent set I with |I| = r. The closure of this set is the
set itself, so we start with V = I1 = I. Let e be the smallest element in I. (Actually,
the following works for any element in I.) Then V − I1 + e = {e}, so the fundamental
cocircuit of e consists of just the element e. Therefore, e is the smallest element in its
fundamental cocircuit and we remove it from I1. Now |I1| = r − 1 and according to the
induction hypothesis this reduces further to I1 = ∅.
The number of independent sets of size r is equal to

(
n
r

)
, so we get terms

(
n
r

)
Ur for

0 ≤ r < k.

Now we look at the bases of Un,k and see how the algorithm applies. Since B = E we
start with V = E and I1 = B. For any element e ∈ B, its fundamental cocircuit is the
whole of E − B + e because a set of smaller size is independent in U∗n,k. Let e be the
smallest element of E. We distinguish between e ∈ B and e /∈ B.
In the first case, when e is internally active, we remove e from I1 to get |I1| = k− 1 and
by the above we end up with I1 = ∅. The number of bases which contain e is equal to(
n−1
k−1

)
, so we get the term

(
n−1
k−1

)
Uk.

If e /∈ B there are no internally active elements in B, since all fundamental cocircuits
contain e. There are

(
n−1
k

)
bases which do not contain e, so we get the term

(
n−1
k

)
SnUk.

Altogether we get the result we already know: the spectrum polynomial of the uniform
matroid Un,k is equal to

SpecUn,k(S,U) =

k−1∑
r=0

(
n

r

)
Ur +

(
n− 1

k − 1

)
Uk +

(
n− 1

k

)
SnUk.
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Truncation formulas

The mathematical meaning of truncation is just as it is in every day life: cutting some-
thing off. In the situation of this chapter, we will be “cutting off” matroids and geometric
lattices by ‘removing’ their hyperplanes and bases, respectively. An overview of more
possible constructions on matroids and geometric lattices can be found in [26].
Britz [21] showed that the rank generating function of a truncated matroid is defined by
the rank generating function of the matroid itself. It is a natural question to ask if there
are similar truncation formulas for other polynomials. We will give truncation formulas
for the coboundary, Möbius and spectrum polynomial. The outline of the combinatorial
proof for these formulas is the same for all three polynomials.
This chapter is a copy of [57].

13.1 Truncation of matroids and geometric lattices

We can define the truncation of a matroid in several equivalent ways, just as we can define
a matroid in terms of its independent sets, bases, rank function, flats, circuits, etcetera.
We will give some equivalent definitions that are most suitable for our purposes. For a
more extensive list, see [26].

Definition 13.1. The truncation of a matroid M of rank r(M) = r ≥ 1 is denoted by
τ(M). It has the same set of elements asM and it has the following equivalent definitions:

• The independent sets of τ(M) are all the independent sets of M , except those of
rank r.

• The rank function of τ(M) is given by rτ(M)(A) = min{rM (A), r − 1}.

• The bases of τ(M) are the independent sets of rank r − 1 in M .

The truncation of a matroid is again a matroid.

Example 13.2. Consider the uniform matroid M = Un,r on n elements of rank r ≥ 1.
Then τ(M) = Un,r−1.

For a geometric lattice, the definition is more straightforward.
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Definition 13.3. The truncation of a geometric lattice L of rank r(L) = r ≥ 1 with
partial ordering ≤ has as elements all the elements of L except those of rank r− 1, with
the same partial ordering ≤. It is denoted by τ(L).

The truncation of a geometric lattice is again a geometric lattice. Note that the trun-
cations of a matroid and a geometric lattice each have rank r − 1. For a matroid M ,
we denote by L(M) its associated geometric lattice of flats. Conversely, for a geometric
lattice L, we denote by M(L) its associated matroid. Then τ(M(L)) = M(τ(L)) and
τ(L(M)) = L(τ(M)).

Instead of removing all elements of rank r − 1 from a geometric lattice, one might ask
what happens if we remove all elements of rank 1, the atoms, from the geometric lattice.
Unfortunately, the resulting structure is no longer a geometric lattice. We therefore loosen
our definitions to get a class of objects that is closed under this “truncation from below”.
If we start with a geometric lattice and drop the requirements that it is atomic and that
its rank function is semimodular, we get a poset with rank function, see Proposition 9.18.

Definition 13.4. The upper truncation of a poset with rank function P of rank r(P ) =
r ≥ 1 with partial ordering ≤ has as elements all the elements of P except those of rank
r − 1, with the same partial ordering ≤. It is denoted by τ+(P ). The lower truncation
of P has as elements all the elements of P except those of rank 1, with the same partial
ordering ≤. It is denoted by τ−(P ).

Again, truncating lowers the rank by 1, so τ+(P ) and τ−(P ) both have rank r − 1.

Lower truncation can be described in terms of upper truncation and inversion (see Defi-
nition 9.9): the lower truncation of a poset can be obtained by first inverting the poset,
then taking upper truncation, and then inverting back again. On the other hand, we
can obtain upper truncation by first inverting, then taking lower truncation, and then
inverting back again.

Let L be a geometric lattice of rank r, and P (L) its associated poset with rank function.
Then P (τ(L)) = τ+(P (L)). But it is not true that τ−(P (L)) is the poset of some sort
of truncation of the geometric lattice L, since it is not always the case that the rank
function on τ−(P (L)) is semimodular.

Example 13.5. Consider M = U4,4, the uniform matroid on 4 elements of rank 4. Let L
be the lattice of flats ofM , and P the associated poset of L with rank function. Consider
x = {1, 2} and y = {3, 4} in τ−(P ). The meet and join of x and y in τ−(P ) are given
by x ∧ y = ∅ and x ∨ y = {1, 2, 3, 4}, respectively. Then rτ−(P )(x) = rτ−(P )(y) = 1 and
rτ−(P )(x ∧ y) = 0 and rτ−(P )(x ∨ y) = 3. Hence τ−(P ) is not a geometric lattice.

There is a natural way to extend the lattice τ−(L) to a geometric lattice, called Dilworth
completion. See [26, §7.7], [35], [67], and [104, §12]. The result of this completion is referred
to as the Dilworth truncation of a lattice. It can be viewed as the smallest geometric lattice
that contains τ−(L). Since our techniques for finding truncation formulas do not apply
to the Dilworth truncation, we will not go into the details of its definition.
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13.2 Representation of a truncated matroid

It was shown by Mason [71, §2.4] that if a matroid is representable over a field, then
its Dilworth truncation is representable over an extension of that field. For ordinary
truncation this question is addressed in [26, Prop. 7.4.10]: if M is a matroid that is
representable over the field F, then τ(M) is a representable matroid over a transcendental
extension of F. We will give a stronger version of this result.

Example 13.6. Consider the simplex code C of dimension 3 over the finite field with q
elements. This code has length n = q2 + q+ 1 and minimum distance q2. The associated
matroid M = MC is by definition representable. The truncation τ(M) is the uniform
matroid Un,2. Now Un,2 is representable over Fq if and only if n is at most q+1. Therefore
τ(M) is representable over any extension of Fq3 but it is not representable over Fq itself.

Theorem 13.7. Let M be a matroid of rank k on n elements that is representable over
a field F.

1. If F is infinite, then τ(M) is representable over F.

2. If F is finite consisting of q elements and m ≥ dlogq(
(
n
k−1

)
)e + 1, then τ(M) is

representable over Fqm .

Proof. Suppose that M is a matroid of rank k on the set E = {1, . . . , n} and M is
represented by a k × n matrix G of rank k over F. A subset I of E is an independent
set of M if and only if the columns of G enumerated by I are independent. Let C be the
subspace of Fn generated by the rows of G. Then C has dimension k, since G has rank
k. The idea of the proof is to show that a “generic” subspace of C of dimension k − 1
represents τ(M). In order to have enough space one has to extend the field F in case it
is finite, since a finite union of hyperplanes in Fn might be equal to Fn. The details are
similar as given in the proof of Proposition 5.1 of [79].
The space C is the null space of a (n−k)×n matrix H of rank n−k over F. Let |I| = k.
Then I is a basis of M if and only if the columns of H enumerated by J = E \ I are
independent. Let t = n − k and let H(j1, . . . , jt) be the t × t matrix obtained from H
by taking the columns numbered by j1, . . . , jt ∈ J , where 1 ≤ j1 < . . . < jt ≤ n. Let
∆(j1, . . . , jt) be the determinant of H(j1, . . . , jt).
Now let I be a basis of τ(M) and let J = E \ I. Then |I| = k − 1 and there exists an i
in J such that I ∪ {i} is a basis of M . Hence the columns of H enumerated by J \ {i}
are independent. Let J = {j1, . . . , jt+1} for some 1 ≤ j1 < . . . < jt+1 ≤ n. Consider the
linear function given by

fI(X1, . . . , Xn) =

t+1∑
s=1

(−1)s∆(j1, . . . , ĵs, . . . , jt+1)Xjs ,

where (j1, . . . , ĵs, . . . , jt+1) is the t-tuple obtained from (j1, . . . , js, . . . , jt+1) by deleting
the s-th element. There exists an s such that js = i and the corresponding determinant
∆(j1, . . . , ĵs, . . . , jt+1) is not zero. Hence the above equation is not identically zero and
defines a hyperplane HI in Fn with equation fI(X1, . . . , Xn) = 0 for every basis I of
τ(M). Consider the product

f(X1, . . . , Xn) =
∏

I basis of M
fI(X1, . . . , Xn).
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So, f(X1, . . . , Xn) is a nonzero polynomial. If F is infinite, then this polynomial is not
everywhere zero on Fn by [69, V §4 Corollary 3]. Therefore there exists an element x ∈ Fn
such that f(x1, . . . , xn) is not zero.
If F is finite, then F = Fq and we assumed m ≥ dlogq(

(
n
k−1

)
)e+ 1. So qm >

(
n
k−1

)
. Hence

(qm)n >

(
n

k − 1

)
(qm)n−1.

The number of basis of τ(M) is at most
(
n
k−1

)
. Therefore, Fnqm has more elements than the

union of all hyperplanes HI with I a basis of τ(M). So there exists an element x ∈ Fnqm
that does not lie in this union.
In both cases an n-tuple x is found, possibly over an extension of F such that fI(x1, . . . , xn)
is not zero for every basis I of τ(M). Let H̃ be the (t+ 1)×n matrix obtained by adding
to H the row x. Then for every basis I of τ(M) the columns of H̃ enumerated by the
complement of I are independent, because the determinant of the corresponding square
matrix of size t+ 1 is equal to fI(x) 6= 0.
The conclusion is that the null space of H̃ is a subspace of C of dimension k − 1 that
represents τ(M).

13.3 Truncation and the coboundary polynomial

For polynomials associated with matroids and geometric lattices, one might ask if we
can find the polynomial of their truncation from the polynomial of the original structure.
The answer is positive for the characteristic polynomial, see [26, p. 149]. For the rank
generating function RM (X,Y ) of a matroid we have the following theorem, proved by
Britz [21, Prop. 15].

Theorem 13.8 (Truncation formula). Let M be a matroid. Then

X ·Rτ(M)(X,Y ) = RM (X,Y ) + (XY − 1) ·RM (0, Y ).

In this section, we will consider the same question for the coboundary polynomial.

Theorem 13.9. Let L be a geometric lattice of rank r ≥ 3. Then

U · χτ(L)(S,U) = χL(S,U) + (U − 1) · χL(S, 0).

Proof. The identity is a direct consequence of Theorem 13.8 using the relation between
the rank generating and coboundary polynomial from Theorem 10.4.

Since the coboundary polynomial is equivalent to the rank generating function, it is clear
that a truncation formula for the coboundary polynomial should exist. However, the
definition of the coboundary polynomial makes it possible to find a more general idea
behind this truncation formula, that can also be applied to other polynomial invariants
that are not equivalent to (or determined by) the rank generating function.

Theorem 13.10. Let f(S,U) be a polynomial invariant of a matroid, geometric lattice,
or poset with rank function that has rank r and can be written as

f(S,U) =

r∑
i=0

fj(S)Ur−j .
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Let f ′ be the corresponding polynomial invariant of the truncation of the matroid, geo-
metric lattice, or poset with rank function. So, we can write

f ′(S,U) =

r−1∑
i=0

f ′j(S)Ur−1−j .

If the coefficients fj(S) and f ′(S) are related via{
f ′j(S) = fj(S), for j ≤ r − 2,
f ′j(S) = fj(S) + fj+1(S), for j = r − 1.

then the following truncation formula holds:

U · f ′(S,U) = f(S,U) + (U − 1) · f(S, 0).

Proof. The proof is given by rewriting.

U · f ′(S,U) =

r−1∑
i=0

f ′j(S)Ur−j

=

r−2∑
i=0

fj(S)Ur−j + U · (fr−1(S) + fr(S))

=

r−1∑
i=0

fj(S)Ur−j + U · fr(S)

=

r∑
i=0

fj(S)Ur−j − fr(S) + U · fr(S)

= f(S,U) + (U − 1) · f(S, 0).

We can use this formula to give a different proof of Theorem 13.9.

Proof (Theorem 13.9). We can not directly apply Theorem 13.10 to the coboundary
polynomial: we will use the following reduced form, where we delete the highest degree
terms in S. Let m be the number of atoms of L and let

χL(S,U) = χL(S,U)− Sm =

r∑
j=0

χj(S)Ur−j ,

where
χj(S) =

∑
aL(x)=i
i<m

∑
x≤y

rL(y)=j

µL(x, y)Si.

Let the reduced coboundary polynomial of the truncated geometric lattice be given by

χ′(S,U) =

r−1∑
i=0

χ′j(S)Ur−1−j .
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We need to show the relations of Theorem 13.10. Note that if rL(x) ≤ r−2, then rL(x) =
rτ(L)(x) and aL(x) = aτ(L)(x). Also, if r(x), r(y) ≤ r − 2, then µL(x, y) = µτ(L)(x, y).
Therefore, χ′j(S) = χj(S) for j ≤ r − 2.
It is left to show that χr−1(S) + χr(S) = χ′r−1(S), that is,∑

aL(x)=i
i<m

∑
x≤y

rL(y)=r−1

µL(x, y)Si +
∑

aL(x)=i
i<m

µL(x, 1L)Si =
∑

aτ(L)(x)=i
i<m

µτ(L)(x, yτ(L))S
i.

Since aL(x) < m, we have rL(x) < r in every summation. We split into two parts. If
rL(x) = r− 1 = rτ(L)(x), then aτ(L)(x) = m, so the right hand side of the summation is
0. The left hand side of the summation is then equal to∑

aL(x)=i
i<m

Si (1− 1) = 0,

so this cancels out. Now suppose rL(x) = rτ(L)(x) ≤ r − 2. We can drop the first
summation and the factor Si, because they are the same on both sides. So, we need to
show that ∑

x≤y
rL(y)=r−1

µL(x, y) + µL(x, 1L) = µτ(L)(x, yτ(L)).

We will use the induction formula for the Möbius function: for x < y, it holds that∑
x≤z≤y

µL(x, z) =
∑

x≤z≤y

µL(z, y) = 0.

If we use this on the left hand side, we get∑
x≤y

rL(y)=r−1

µL(x, y) + µL(x, 1L) =
∑
x≤y

rL(y)=r−1

µL(x, y)−
∑

x≤z<1L

µL(x, z)

= −
∑
x≤z

rL(z)≤r−2

µL(x, z).

The right hand side is equal to

µτ(L)(x, 1τ(L)) = −
∑

x≤z<1τ(L)

µτ(L)(x, z)

= −
∑
x≤z

rτ(L)(z)≤r−2

µτ(L)(x, z)

= −
∑
x≤z

rL(z)≤r−2

µL(x, z)

We conclude that χr−1(S) + χr(S) = χ′r−1(S), so the reduced coboundary polynomial
satisfies the conditions in Theorem 13.10 and therefore has a truncation formula. Since
the term Sm that we omitted does not change under truncation, we get the truncation
formula as is Theorem 13.9.
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Example 13.11. The uniform matroid Un,r has rank generating function

RUn,r (X,Y ) =

r−1∑
i=0

(
n

i

)
Xr−i +

n∑
i=r

(
n

i

)
Y i−r,

as follows directly from the definitions. Since the coboundary polynomial is defined by
the rank generating function (see Theorem 10.4), we can find the coboundary polynomial
of the uniform geometric lattice:

χUn,r (S,U) =

r−1∑
i=0

(
n

i

)
(S − 1)iUr−i +

n∑
i=r

(
n

i

)
(S − 1)i.

In this form many terms cancel each other. For example, U7,3 has coboundary polynomial

χU7,3(S,U) = S7 + 21S2(U − 1) + 7S(U2 − 6U + 5) + (U3 − 7U2 + 21U − 15).

In the form as above, it is straightforward to verify the truncation formula for the
coboundary polynomial for arbitrary uniform geometric lattices. In case of the lattice
U7,3, its truncation U7,2 has coboundary polynomial

χU7,2(S,U) = S7 + 7S(U − 1) + (U2 − 7U + 6).

13.4 Truncation and the Möbius polynomial

The combinatorial proof for the truncation formula in Theorem 13.9 is also applicable
to other polynomials. In this section we treat the Möbius polynomial. We loosen to the
case of posets with rank functions, so we can also address the lower truncation.

Theorem 13.12. Let P be a poset with rank function of rank r. Then

U · µτ+(P )(S,U) = µP (S,U) + (U − 1) · µP (S, 0) + Sr−1U − SrU.

Proof. Just as in the case of the coboundary polynomial, we will use a reduced form
of the polynomial to work with. Let

µP (S,U) = µP (S,U)− Sr =

r∑
j=0

µj(S)Ur−j ,

where
µj(S) =

∑
rP (x)=i
i<r

∑
x≤y

rP (y)=j

µP (x, y)Si.

Note that the sets {x ∈ L : aL(x) < m} and {x ∈ L : rL(x) < r} are the same, so
the proof that the reduced Möbius polynomial obeys the constrains in Theorem 13.10
is exactly the same as in the case of the reduced coboundary polynomial. Hence the
reduced Möbius polynomial has a truncation formula as in Theorem 13.10. To switch
to the non-reduced Möbius polynomial, −USr−1 gets added at the left hand side of the
formula, and −Sr− (U −1)Sr at the right hand side. This gives the term +Sr−1U −SrU
in the formula.
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Example 13.13. We consider again the uniform geometric lattice L = Un,r. For all
elements x ∈ Un,r with rL(x) < r(L), we have that aL(x) = rL(x). Therefore the
coboundary polynomial and the Möbius polynomial differ only in the leading term: for
the coboundary polynomial this is Sn, while for the Möbius polynomial it is Sr(L). For
example, the Möbius polynomial of the geometric lattice U7,3 is equal to

µU7,3(S,U) = S3 + 21S2(U − 1) + 7S(U2 − 6U + 5) + (U3 − 7U2 + 21U − 15).

The Möbius polynomial of its truncation U7,2 is equal to

µU7,2(S,U) = S2 + 7S(U − 1) + (U2 − 7U + 6).

Comparing with Example 13.11, we see why the term Sr−1U − SrU is needed in the
truncation formula of the Möbius polynomial.
We would like to mention that it is possible to give a general formula for the Möbius
polynomial of a uniform geometric lattice, see Example 10.12. Checking the truncation
formula directly in the case of a general uniform geometric lattice is therefore possible,
but we leave the rather lengthy calculation to the reader.

For posets, we can find a similar truncation formula for the lower truncation.

Theorem 13.14. Let P be a poset with rank function of rank r. Then

S · µτ−(P )(S,U) = µP (S,U) + (S − 1) · µP (0, U) + SUr−1 − SUr.

Proof. We prove this formula by using the inverse poset, see Definition 9.9. The Möbius
polynomial of the inverse poset i(P ) is found by interchanging the variables in the Möbius
polynomial of the original poset P :

µi(P )(S,U) =
∑

x∈i(P )

∑
y∈i(P )

µi(P )(x, y)Sri(P )(x)Ur(i(P ))−ri(P )(y)

=
∑
x∈P

∑
y∈P

µP (y, x)Sr−rP (x)Ur−(r−rP (y))

=
∑
x∈P

∑
y∈P

µP (x, y)UrP (x)Sr−rP (y)

= µP (U, S).

This makes it possible to derive the formula for lower truncation directly from the formula
for upper truncation. We start with the formula for upper truncation in Theorem 13.12:

U · µτ+(P )(S,U) = µP (S,U) + (U − 1) · µP (S, 0) + Sr−1U − SrU.

For the inverse of P , the same formula holds:

U · µτ+(i(P ))(S,U) = µi(P )(S,U) + (U − 1) · µi(P )(S, 0) + Sr−1U − SrU.

Now we use that τ+(i(P )) = i(τ−(P )) and µi(P )(S,U) = µP (U, S):

U · µτ−(P )(U, S) = µP (U, S) + (U − 1) · µP (0, S) + Sr−1U − SrU.

Interchanging S and U gives the formula for lower truncation.
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13.5 Truncation and the spectrum polynomial

We discussed the spectrum polynomial in Chapter 12. By a slight change of variables,
we get a polynomial on which we can apply the same technique as before to prove a
truncation formula.

Definition 13.15. Let M be a matroid and L = L(M) its associated geometric lattice.
Let

νM (x, y) = (−1)rM (x)µL(x, y) |χ̃(IN(x))|

and define the reciprocal alternating spectrum polynomial of M by

RaspM (S,U) =
∑
x∈L

∑
x≤y∈L

νM (x, y)S|x|Ur(L)−rL(y).

Note the similarity to the definition of the coboundary polynomial. The polynomial
RaspM (S,U) is equivalent to the spectrum polynomial.

Theorem 13.16. The polynomial RaspM (S,U) is the reciprocal alternating polynomial
of SpecM (S,U) in U :

RaspM (S,U) = Ur(M) SpecM (S,− 1

U
).

Proof. Let L = L(M). Using the fact that |µ(x, y)| = (−1)r(y)−r(x)µ(x, y) and rewriting
gives:

Ur(M) SpecM (S,− 1

U
)

= Ur(M)
∑
x∈L

∑
x≤y∈L

|µL(x, y)| |χ̃(IN(x))|S|x|(−U−1)r(y)

= Ur(M)
∑
x∈L

∑
x≤y∈L

(−1)r(y)−r(x)µL(x, y) |χ̃(IN(x))|S|x|(−U−1)r(y)

= Ur(M)
∑
x∈L

∑
x≤y∈L

(−1)r(x)µL(x, y) |χ̃(IN(x))|S|x|(U−1)r(y)

=
∑
x∈L

∑
x≤y∈L

νM (x, y)S|x|Ur(M)−r(y)

= RaspM (S,U).

We omit the subscripts L and M by the rank function to emphasize the cryptomorphism
between L(M) and M .

We need the following computational lemmas about RaspM and νM .

Lemma 13.17. Let BM be the collection of all bases of a matroid M . Then

RaspM (1, 0) = (−1)r(M)|BM |.
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Proof. Let I be the set of independent sets of M , and let L = L(M).

RaspM (1, 0) =
∑
x∈L

νM (x, 1L)

=
∑
x∈L

(−1)r(x)µL(x, 1L)
∑
I⊆x
I∈I

(−1)r(x)−|I|

=
∑
I∈I

(−1)−|I|
∑

Ī≤x≤1L

µL(x, 1L)

=
∑
B∈B

(−1)−r(M)

= (−1)−r(M)|BM |.

Lemma 13.18. Let M be a matroid and x < y elements of L = L(M). Then νM (x, y)
has the following induction formula:∑

x≤z≤y

νM (x, z) =
∑

x≤z≤y

νM (z, y) = 0.

Proof. For x < y we have

νM (x, y) = (−1)rM (x)|χ̃(IN(x))|µL(x, y)

= (−1)rM (x)|χ̃(IN(x))|
∑

x≤z<y

−µL(x, z)

= −
∑

x≤z<y

νM (x, z).

This implies the given induction fomula.

We can now prove a truncation formula for the polynomial RaspM (S,U).

Theorem 13.19. Let M be a matroid of rank r on a set of m elements. Then

U · Raspτ(M)(S,U) = RaspM (S,U) + (U − 1) · RaspM (S, 0)− SmU · RaspM (1, 0).

Proof. Just as in the previous cases, we will use a reduced form of the polynomial to
work with. Let

RaspM (S,U) = RaspM (S,U)− νM (1M , 1M )Sm =

r∑
j=0

Raspj(S)Ur−j ,

where
Raspj(S) =

∑
|x|=i
i<m

∑
x≤y

rM (y)=j

νM (x, y)Si.
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Note that the sets {x ∈ M : |x| < m} and {x ∈ M : rM (x) < r} are the same
and that Lemma 13.18 gives the same induction formula for ν(x, y) as we have for
µ(x, y) so again we can copy the previous proofs to show that the reduced Rasp poly-
nomial obeys the constrains in Theorem 13.10. Hence the reduced Rasp polynomial has
a truncation formula as in Theorem 13.10. To switch to the non-reduced Rasp polyno-
mial, −ντ(M)(1τ(M), 1τ(M))S

mU gets added at the left hand side of the formula, and
−νM (1M , 1M )Sm − (U − 1)νM (1M , 1M ) at the right hand side. In total, we have to add
−SmU times the following:

νM (1M , 1M )− ντ(M)(1τ(M), 1τ(M))

= (−1)r · 1 ·
∑
I∈IM

(−1)r−|I| − (−1)r−1 · 1 ·
∑

I∈Iτ(M)

(−1)r−1−|I|

= (−1)r

 ∑
I∈IM\BM

(−1)r−|I| +
∑
I∈BM

(−1)r−r +
∑

I∈IM\BM

(−1)r−1−|I|


= (−1)r

∑
I∈BM

1

= (−1)r|BM |.

Combining with Lemma 13.17, the theorem follows.

The truncation formula for RaspM (S,U) also makes it possible to determine the spec-
trum polynomial of a truncated matroid from the spectrum polynomial of the matroid
itself. However, if we try to apply Theorem 13.16 directly to the truncation formula for
RaspM (S,U), we run into trouble with the terms that have U = 0. To avoid this, no-
tice that the term RaspM (S, 0) actually means “write RaspM (S,U) as a polynomial
in U and take the coefficient of U0”. In terms of the spectrum polynomial, this is
“write SpecM (S,U) as a polynomial in U , take the coefficient of Ur(M) and multiply
by (−1)r(M)”. This motivates the following definition.

Definition 13.20. The polynomials Si(S) are the coefficients of the spectrum polyno-
mial, written as a polynomial in U :

SpecM (S,U) =

r(M)∑
i=0

Si(S)U i.

From this definition, it follows that we can write

RaspM (S,U) =

r(M)∑
i=0

(−1)iSi(S)Ur(M)−i.

We use this to prove the truncation formula for the spectrum polynomial.

Theorem 13.21. Let M be a matroid of rank r on a set of m elements. Then

Specτ(M)(S,U) = SpecM (S,U)− Ur−1(U + 1) · Sr(S) + SmUr−1 · Sr(1).
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Proof. The truncation formula for RaspM (S,U) can be written as

U · Raspτ(M)(S,U) = RaspM (S,U) + (−1)r(U − 1) · Sr(S)− (−1)rSmU · Sr(1).

Using the equivalence in Theorem 13.16, we get

U ·Ur−1·Specτ(M)(−
1

U
, S) = Ur ·SpecM (− 1

U
, S)+(−1)r(U−1)·Sr(S)−(−1)rSmU ·Sr(1).

Applying the transformation U → − 1
U and multiplying by (−U)r gives the desired

truncation formula for the spectrum polynomial.

Example 13.22. In Chapter 12, we calculated the spectrum polynomial of the uniform
matroid. It is not difficult to see that this polynomial obeys the truncation formula for
the spectrum polynomial. For example, we have

RaspU3,7
(S,U) = U3 − 7U2 + 21U − 15− 20S7

SpecU3,7
(S,U) = 20U3S7 + 15U3 + 21U2 + 7U + 1

and for the truncation

RaspU2,7
(S,U) = U2 − 7U + 6 + 15S7

SpecU2,7
(S,U) = 15U2S7 + 6U2 + 7U + 1.

13.6 Applications and generalizations

There are several constructions on matroids closely related to the ordinary truncation,
for example the previously mentioned Dilworth truncation, the principal truncation,
and weak and strong maps, see [26, 35, 67, 68]. It would be interesting to see whether
truncation-like formulas also exist for these constructions.

We showed that the truncation of a matroid M that is representable over a finite field
is representable over a finite extension of the same finite field. We gave an upper bound
for the extension degree that is needed. However, in practice it is possible that τ(M) is
already representable over a much smaller extension field. We might be able to achieve
better bounds if we use the extended weight enumerator. If M is representable over a
finite field, then all codes associated to it have the same extended weight enumerator,
which we denote by WM (X,Y, U). Using the relations with the rank generating function
and the coboundary polynomial, we find that

U ·Wτ(M)(X,Y, U) = WM (X,Y, U) + (U − 1) ·WM (X,Y, 0).

Thus we can determine the extended weight enumerator of the truncated matroid. If the
truncated matroid is representable over a field of size q, the polynomial Wτ(M)(X,Y, q)
should have only nonnegative coefficients. It is often not difficult to see for which values
of q this happens, as we illustrate by an example.
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Example 13.23. Let M be the matroid represented over Fq with q > 2 by 1 0 0 1 1 0 0
0 1 0 0 1 1 1
0 0 1 0 1 1 α

 .

The extended weight enumerator of this matroid is given by

X7 + 2(U − 1)X4Y 3 + 3(U − 1)X3Y 4 + U(U − 1)X2Y 5 + (U − 1)(U − 2)(U − 3)Y 7.

The extended weight enumerator of the truncated matroid is thus

Wτ(M)(X,Y, U) = X7 + (U − 1)X2Y 5 + 5(U − 1)XY 6 + (U − 1)(U − 5)Y 7.

We see that if U is at least 5, then all coefficients are positive. Hence τ(M) is representable
over F5, for example by (

1 0 1 1 1 1 1
0 1 1 0 2 3 4

)
.

If we represent M over F3, then the bound in Theorem 13.7 gives that τ(M) is repre-
sentable over the field of size 34 = 81. If we start with a field of larger size, the bound
becomes even bigger.

The truncation formula for the Möbius polynomial gives relations between the Whitney
numbers of a poset with rank function P and the Whitney numbers of its truncations
τ−(P ) and τ+(P ). This gives an approach to a proof by induction of the several unimodal
conjectures considering Whitney numbers, see Section 10.2.
We saw that the lower truncation of a geometric lattice does not need to be a geometric
lattice. Also, the unimodal conjectures are not true for posets with rank function in gen-
eral. So the challenge is to find a class of objects that is “in between” posets with rank
function and geometric lattices: this class needs to be closed under lower truncation,
while still the unimodal property holds. Also, for the induction to work, the smallest
cases in this class need to be proved unimodal.

The spectrum polynomial is in general not determined by the rank generating function
of a matroid. In order to find counterexamples for the implication in the other direction,
we see from the truncation formulas for the coboundary and Rasp polynomial that it is
sufficient to find a counterexample with respect to the one variable polynomials in S,
setting T = 0.
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14
Overview of polynomial relations

In this thesis we have established various links between polynomial invariants of codes,
arrangements and matroids. In this chapter, we give an overview of the relations between
these polynomials.

We started in Chapter 2 with the relation between the extended weight enumerator and
the set of generalized weight enumerators. One may wonder if the method of generalizing
and extending the weight enumerator can be continued, creating the generalized extended
weight enumerator, in order to get a stronger invariant. The answer is no: the generalized
extended weight enumerator can be defined, but does not contain more information than
the two underlying polynomials. The original weight enumerator WC(X,Y ) contains less
information and therefore does not determine WC(X,Y, U) or {W (r)

C (X,Y )}kr=0. See Si-
monis [85].

In Chapter 3 we studied two generalizations of the zeta polynomial. The relations are
summarized in Figure 14.1. The generalized polynomials on the right represent the gen-
eralized polynomials for all dimensions r = 0, . . . , k. The relations labeled with a D can
be found in Duursma [39]. We see there are no arrows from the weight enumerator to
the zeta polynomial: this is because the relation the other way around is not a linear
transformation, like for example between the sets Aw(U) and Bt(U). However, we can
link a normalized version of the weight enumerator to the zeta polynomial, see [37, 39].

PC(T,U)
66

D.

vv
Df.3.1

��

oo D. // P (r)
C (T )

Th.3.9
�� D. ''

{Bt(U)}nt=0

Th.2.15 // WC(X,Y, U)
Pr.2.16
oo

Th.2.25 // W (r)
C (X,Y )

Th.2.23
oo

Pr.2.10 // {B(r)
t }nt=0

Th.2.11
oo

Th.3.8

gg

Figure 14.1: Relations between the weight enumerator and zeta polynomial

In Chapter 6 we investigated relations between the extended weight enumerator, the
extended coset leader weight enumerator, the extended list weight enumerator and the
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same polynomials of the dual code. In Figure 14.2 we see an overview. The arrows ending
in × mean that the polynomial at the start does not define the polynomial at the end
point. If an arrow is labeled by a question mark, it means it is unknown if the polynomial
at the start defines the polynomial at the end point. The figure is symmetric in the vertical
axis because of duality.

αC(X,Y, U)?
Ex.6.13?

Ex.6.13ww
Ex.6.13

��

αC⊥(X,Y, U)

Ex.6.13

((
Ex.6.13

��

WC(X,Y, U)
pp

Th.2.19
..

Rem.6.3

S

Rem.6.3

+

WC⊥(X,Y, U)

Rem.6.3

,

Rem.6.3R
λC(X,Y, U) oo

? //
?

gg
?

OO

λC⊥(X,Y, U)

?

66?

OO

Figure 14.2: Relations between the extended weight enumerator and the extended list-
and coset weight enumerator

We have established relations between the generalized weight enumerators for 0 ≤ r ≤ k,
the extended weight enumerator and the Tutte polynomial in Chapter 8. We summarize
this in Figure 14.3. We see that the Tutte polynomial, the extended weight enumerator
and the collection of generalized weight enumerators all contain the same amount of
information about a code, because they completely define each other.

WC(X,Y, U)

Th.2.25
yy

Th.8.5

��
{W (r)

C (X,Y )}kr=0

Th.2.23
44

oo Th.8.6 // tC(X,Y )

Th.8.4

OO

Figure 14.3: Relations between the weight enumerator and Tutte polynomial

The polynomials tC(X,Y ), RMC
(X,Y ) and χC(S,U) determine each other on the class

of projective codes by Theorem 10.4. This is summarized in Figure 14.4. The dotted
arrows only apply if the matroid is simple or, equivalently, if the code is projective.

The polynomials χC(S,U) and µC(S,U) do not determine each other in general by
Examples 10.33 and 10.35. However, in Chapter 11 we saw that sometimes the pair
µM (S,U) and µM∗(S,U) does define χM (S,U).
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WC(X,Y, U)
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Th.8.5 // tC(X,Y )

��

Th.8.4
oo
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Figure 14.4: Relations between the weight enumerator, characteristic and Tutte poly-
nomial
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Notations

Part I: Codes

Aw number of codewords of weight w

AC⊗Fqm ,w number of codewords in C ⊗ Fqm of weight w

A
(r)
w number of subcodes of dimension r and weight w

Aw(U) coefficient of Xn−wY w in the extended weight enumerator

b
(r)
i generalized binomial moment

B
(r)
J number of r-dimensional subspaces of C(J)

BJ(U) U l(J) − 1

B
(r)
t sum of all B(r)

J with |J | = t

Bt(U) sum of all BJ(U) with |J | = t

c codeword

C linear code

C⊥ dual code of C

C ⊗ Fqm extension code of C over Fqm

C(J) all codewords of C with cj = 0 for all j ∈ J

Cm linear subspace of all m× n matrices whose rows are words of C

d minimum distance of a code

d⊥ minimum distance of the dual code

d(C,x) distance between the vector x and the code C

dr r-th generalized Hamming weight of a code

d(x,y) Hamming distance between the vectors x and y

Fq finite field with q elements

G generator matrix of a code

GJ submatrix of G formed by the columns of G indexed by J



130 Notations

H parity check matrix of a code

J subset of [n][
k
r

]
q

Gaussian binomial

l(J) dimension of C(J)

Mn,d weight enumerator of MDS code of length n and minimum distance d

M
(r)
n,dr

generalized weight enumerator of an MDS code of length n and gener-
alized Hamming weight dr

[m, r]q number of m× r matrices of rank r over Fq
[n] set of integers {1, 2, . . . , n}

[n, k] parameters of a (linear) code: length n and dimension k

PC(T,U) two-variable zeta polynomial of the code C

P
(r)
C (T ) r-th generalized zeta polynomial of the code C

Pi(U) coefficient of T i in the two-variable zeta polynomial

P
(r)
i coefficient of T i in the generalized zeta polynomial

ρ(C) covering radius of the code C

r(J) rank of GJ

〈r〉q number of bases of Frq
s syndrome of a vector

supp(x) support of a vector x

supp(D) support of a subcode D

t size of the set J

w weight of a codeword

WC(X,Y ) weight enumerator of the code C

W
(r)
C (X,Y ) r-th generalized weight enumerator of the code C

WC(X,Y, U) extended weight enumerator of the code C

wt(x) weight of a vector x

wt(D) weight of a subcode D

x + C coset of x with respect to C

x,y vectors in Fnq
ZC(T,U) two-variable zeta function of the code C

Z
(r)
C (T ) generalized zeta function of the code C
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Part II: Codes and arrangements

A arrangement of hyperplanes

AG arrangement of hyperplanes associated to a (generator) matrix G

αC(X,Y ) coset leader weight enumerator of the code C

αC(X,Y, U) extended coset leader weight enumerator of the code C

αi number of cosets of weight i

αi(U) coefficient of Xn−iY i in the extended coset leader weight enumerator

F field, not necessarily finite

GP matrix associated to the projective system P

hj j-th column of a parity check matrix H

Hj hyperplane in an arrangement

λC(X,Y ) list weight enumerator of the code C

λC(X,Y, U) extended list weight enumerator of the code C

λi number of vectors in Fnq that are of minimal weight i in their coset

λi(U) coefficient of Xn−iY i in the extended list weight enumerator

P projective system

PG projective system associated to a (generator) matrix G

Pj point in a projective system

Π subspace of Pk−1(Fq)

Pr(F) projective space of dimension r over the field F

RMq(1, s− 1) first order q-ary Reed-Muller code of dimension s

Sq(s) q-ary Simplex code of dimension s

VJ subspace of Fn−kq generated by the vectors hTj with j ∈ J

Vt union of all VJ with |J | = t

wtH(s) syndrome weight of s with respect to H

wt(y + C) weight of the coset y + C

Part III: Codes, arrangements and matroids

0P minimum of the poset P

1P maximum of the poset P

≤ partial order

Aw(U) Aw(U)/(U − 1)

a(x) number of atoms a of a geometric lattice such that a ≤ x
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B collection of bases of a matorid

B basis of a matroid

B∗ collection of bases of the dual matroid

C collection of circuits of a matorid

C circuit of a matroid

χA(U) characteristic polynomial of the arrangement A

χ̃(IN(x)) reduced Euler characteristic of the independence complex of x

χi(U) coefficient of Si in the coboundary polynomial

χi(U) χi(U)/(U − 1)

χ∗i (U) coefficient of Si in the coboundary polynomial of the dual matroid

χL(S,U) coboundary polynomial of the geometric lattice L

χL(U) characteristic polynomial of the geometric lattice L

χM (S,U) coboundary polynomial of the simple matroid M

cr(x, y) number of chains of length r from x to y in a poset

C simplification of the code C

D collection of dependent sets of a matorid

D dependent set of a matroid

d size of the smallest cocircuit in a matroid

d∗ size of the smallest circuit of a matroid

E finite set, ground set of a matroid

e, f elements of a matroid

ε(B) external activity of the basis B

F collection of flats of a matorid

F flat of a matroid

f : P → A map from the poset P to the abelian group A

f̌ sum function of f

f̂ sum function of f

G simplification of the (generator) matrix G

HJ intersection of all hyperplanes Hj with j ∈ J

I collection of independent sets of a matroid

I independent set of a matorid

IC collection of independent sets associated to the code C
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IG collection of independent sets associated to the (generator) matrix G

I(L) collection of independent sets associated to the geometric lattice L

ι(B) internal activity of the basis B

i(P ) inverse poset of the poset P

J closure of the subset J in a matroid

k rank of a matroid

L lattice

L(A) geometric lattice associated to the arrangement A

Lj j-th level of the geometric lattice L

L(M) lattice of flats of the matroid M

M matroid

M∗ dual of the matroid M

MC matroid associated to the code C

MG matroid associated to the (generator) matrix G

Mi Ni \ Ni+1

M(L) matroid associated to the geometric lattice L

M simplification of the matroid M

µ(x) µ(0, x)

µi(U) coefficient of Si in the Möbius polynomial

µi(U) µi(U)/(U − 1)

µM (S,U) Möbius polynomial of the simple matroid M

µ(P ) µ(0, 1) in a finite poset P

µP (S,U) Möbius polynomial of the poset P with rank function

µP (x, y) Möbius function of the poset P

n number of elements of a matroid

Ni union of all HJ with J ⊆ [n] and r(HJ) = i

νM (x, y) (−1)rM (x)µL(x, y) |χ̃(IN(x))|, with x, y ∈ L(M)

ω linear ordering on the ground set of a matroid

P poset

Pi(U) coefficient of T i in the two-variable zeta polynomial

P ∗i (U) coefficient of T i in the two-variable zeta polynomial of the dual matroid

PM (T,U) two-variable zeta polynomial of the matroid M
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P x all elements y in a poset with y ≤ x

Px all elements y in a poset with x ≤ y

RaspM (S,U) reciprocal alternating spectrum polynomial

r(M) rank of the matroid M

r(J) rank of the subset J of a matroid

r∗(J) rank of the subset J in the dual matroid

RM (X,Y ) Whitney rank generating function of the matroid M

r(x) rank of the element x of a poset

SpecM (S,U) spectrum polynomial of the matroid M

τ+(P ) upper truncation of the poset with rank function P

τ−(P ) lower truncation of the poset with rank function P

τ(L) truncation of the geometric lattice L

τ(M) truncation of the matroid M

tC(X,Y ) Tutte polynomial of the matroid associated to the code C

tM (X,Y ) Tutte polynomial of the matroid M

Un,k uniform matroid on n elements of rank k

wi Whitney number of the first kind

Wi Whitney number of the second kind

wij doubly indexed Whitney number of the first kind

Wij doubly indexed Whitney number of the second kind

X affine variety

X (Fqm) set of Fqm-rational points of the affine variety X

Xi set of all x ∈ Ak such that wt(xG) = n− i

x, y, z elements of a poset or lattice

xl y y is a cover of x

[x, y] interval between x and y

x ∨ y join of x and y

x ∧ y meet of x and y

Yi set of all x ∈ Ak such that wt(xG) ≤ n− i
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of a poset, 66

independent set, 51
interval, 64
inverse

poset, 66
isomorphism

of matroids, 52
of posets, 66

join, 64
Jordan-Dedekind property, 68

lattice, 64
geometric, 69
of flats, 71
uniform, 71

level, 69

Möbius inversion formula, 67
MacWilliams identity, 5

of extended weight enumerator, 16
matrix

generator, 3
parity check, 4
simplified, 72

matroid, 51
dual, 52
element, 52

loop, 52
parallel, 52

free, 52
ordered, 54
realizable, 54
representable, 54
simple, 52
uniform, 52

maximum of a poset, 64
MDS, 6

almost, 81
near, 81

meet, 64
minimum of a poset, 64
morphism

of a matroid, 52

Newton radius, 47

partial order, 63

polynmial
i-defect, 74

polynomial
characteristic, 73
coboundary, 73
generalized zeta, 26
Möbius, 75
spectrum, 99
Tutte, 58
two-variable zeta, 23, 95

poset, 63
locally finite, 64

principle of inclusion/exclusion, 68
projective system, 33

rank
of a matroid, 51
of a subset, 51

Rasp, 111
rational points, 78
reduced Euler characteristic, 99
reflexive, 63

semimodular, 69
sequence

log-concave, 77
unimodal, 76

simplification, 52
Singleton bound, 6

generalized, 10
spectrum polynomial, 101
subcode, 9

minimal, 77
support

of a codeword, 4
of a subcode, 9

syndrome, 7

transitive, 63
truncation

Dilworth, 104
lower, 104
of a geometric lattice, 104
of a matroid, 103
upper, 104

weight
of a codeword, 4
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of a subcode, 9
syndrome, 44

weight distribution, 4
generalized, 10

weight enumerator, 4
coset leader, 43
extended, 14
extended coset leader, 44
extended list, 44
generalized, 10
list, 43
of an MDS code, 19
of Reed-Muller code, 39, 40
of Simpex code, 37, 38

Whitney number, 76
doubly indexed, 76
first kind, 76
second kind, 76



138 Index



Samenvatting in het Nederlands

Deze samenvatting is bedoeld voor iedereen die denkt niets van dit proefschrift te zullen
begrijpen, maar wel graag wil weten waar het over gaat. Er is geen wiskundige voorkennis
nodig om de volgende pagina’s te lezen. Als je die wel hebt, lees dan ook de samenvatting
voorin dit proefschrift en probeer daarna de hoofdstukken die beginnen met “Introduction
to. . . ” te lezen.

Talen om de wereld om je heen te beschrijven

Om de wereld om ons heen te beschrijven, gebruiken mensen taal. Er zijn een heleboel
talen op de wereld om de wereld mee te beschrijven, maar ze zijn niet allemaal hetzelfde.
Zo heeft het Nederlands een heleboel woorden om verschillende soorten regen te beschrij-
ven, omdat het zo vaak regent in Nederland. Kijk je naar een meer Mediterrane taal zoals
Italiaans, dan zal je veel minder verschillende woorden voor “regen” tegenkomen, vanwege
het droge klimaat. Niet alle Nederlandse woorden voor verschillende soorten regen kan je
dus letterlijk naar het Italiaans vertalen. Als je een verhaal schrijft over regen, dan is het
Nederlands dus een goede keus. Maar als je een verhaal over sneeuw gaat schrijven, kan
je beter de taal van de Eskimo’s nemen: volgens de legende hebben die meer dan veertig
verschillende woorden voor verschillende varianten van sneeuw.

In de wiskunde is hetzelfde aan de hand. Als je bepaalde eigenschappen van wiskundige
objecten bestudeert, dan zoek je naar de beste manier om “tegen de zaak aan te kijken”.
Met andere woorden, je zoekt het beste model voor het probleem. Het is erg handig om
verschillende manieren te hebben om tegen hetzelfde wiskundige object aan te kijken.
Door je probleem te “vertalen” naar een ander model, heb je opeens een stuk meer ken-
nis ter beschikking om het probleem op te lossen. Vraagstukken die ingewikkeld lijken,
hebben misschien wel een eenvoudige oplossing als je ze naar een ander wiskundig model
vertaalt.

Om te kunnen wisselen tussen verschillende talen, heb je goede woordenboeken nodig. Dit
proefschrift is een soort wiskundig woordenboek. Het beschrijft hoe je kan vertalen tussen
drie wiskundige objecten: codes, arrangementen, en matroïden. In het bijzonder behan-
delt dit “woordenboek” hoe je bepaalde informatie over de drie objecten die gevangen
is in polynomen kan vertalen. Ook worden stellingen over een van de drie objecten be-
wezen met behulp van vertalingen tussen de verschillende objecten en polynomen. In deze
samenvatting vind je een uitleg over de drie objecten en de polynomen die erbij horen.
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Polynomen

In dit proefschrift bestuderen we eigenschappen van wiskundige objecten die we kunnen
weergeven als een rij getallen. We kijken hoe dit werkt met behulp van een voorbeeld.
Stel, een leraar geeft een proefwerk, waarbij de leerlingen een cijfer tussen de 1 en de 10
kunnen scoren. Om bij te houden hoeveel leerlingen welk cijfer hebben gehaald, schrijft
de leraar de volgende rijt op:

(1, 0, 0, 3, 3, 7, 8, 5, 2, 1).

De getallen staan voor aantallen leerlingen. De plaats in de rij waarop een getal staat,
geeft het cijfer aan. Er is dus één leerling met een 1, geen leerlingen met een 2 of 3, drie
leerlingen met een 4, etcetera. Uit deze rij kan je snel informatie halen. Zo zie je dat
er 30 leerlingen in de klas zitten. Om te kijken hoeveel leerlingen een voldoende hebben
gehaald, tellen we de cijfers vanaf plaats 6 bij elkaar op: dit zijn 23 leerlingen.
In deze rij van tien cijfers kunnen we nog wel makkelijk zien waar de zesde plaats is.
Maar als we lange rijtjes bekijken, wordt dat lastiger. We kunnen de rij getallen daarom
als volgt opschrijven:

X + 3X4 + 3X5 + 7X6 + 8X7 + 5X8 + 2X9 +X10.

Deze manier van schrijven noemen we een polynoom. In dit polynoom is X de vari-
abele, die schrijven we meestal met een hoofdletter. De getallen rechts van de X zijn
de exponenten, de getallen links de coëfficiënten. In ons voorbeeld worden de cijfers dus
weergegeven door de exponenten. Het aantal leerlingen dat een bepaald cijfer haalt, vind
je in de bijbehorende coëfficiënt. We gaan nu bekijken wat de polynomen zijn die horen
bij codes, arrangementen en matroïden.

Foutverbeterende codes

Je kent vast wel de stukken tekst die op internet rondzwerven waarbij van alle woorden
de letters door elkaar zijn gehusseld, behalve de eerste en de laatste letter. Het blijkt
vaak dat je, met een beetje moeite, die tekst nog gewoon kan lezen. Dat komt doordat
onze taal redundante informatie bevat. Dit betekent dat onze woorden veel korter ge-
weest zouden zijn, als we simpelweg alle mogelijke rijtjes van letters een betekenis hadden
gegeven. Dat heeft natuurlijk allerlei praktische nadelen, bijvoorbeeld de uitspraak. Een

r1 m3 r2

m1

r3

m2
m4

Figuur 1: Schematische weergave van de Hamming code
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belangrijk voordeel van van woorden met redundante informatie is het volgende: als je
een typefout maakt, of even je spellingsregels bent vergeten, dan kan je dat gemakke-
lijk corrigeren. Je lees dan een rij letters die geen bestaand woord is, maar wel op een
bestaand woord lijkt. Dus corrigeer je naar het bestaande woord.

Computers werken, net als andere digitale apparaten zoals je mobiele telefoon of cd-
speler, met nullen en enen. Toen computers net waren uitgevonden en nog met pons-
kaarten werkten, werden alle opdrachten voor de computer vertaald naar nullen en enen.
Alle rijtjes van nullen en enen betekenden iets anders. Maar naar mate computers vaker
gebruikt werden, merkten de mensen die ermee werkten dat dit nogal eens voor fouten
zorgde. Als de computer ergens een 0 in een 1 veranderde, of andersom, liep direct het
hele programma vast. Naar verluidt was ene Richard Hamming zo gefrustreerd over deze
fouten, dat hij de code bedacht die later naar hem vernoemd is.
Het idee van Hamming was dat een computer een leesfout moest kunnen corrigeren, net
als dat wij spelfouten in woorden kunnen corrigeren. Dat deed hij door redundante infor-
matie toe te voegen aan de commando’s voor de computer. De commando’s die Hamming
aan de computer gaf, bestonden uit vier bits: het waren rijen van vier getallen die elk 0
of 1 zijn, bijvoorbeeld 1101. De bits noemen we m1, m2, m3, en m4. Hamming zette de
bits in drie cirkels, zoals je ziet in Figuur 1. Vervolgens berekende hij drie bits redun-
dante informatie: r1, r2 en r3. Hij deed dat op zo’n manier, dat in elke cirkel een even
aantal (dus 0, 2 of 4) enen kwam te staan. Deze bits plakte hij achter het oorspronkelijke
commando.

In plaats van de gebruikelijke 4 bits, bestonden de commando’s die Hamming aan de
computer gaf nu uit 7 bits. Maar niet elke rij van 7 enen of nullen kan voorkomen. Er
kan bijvoorbeeld nooit maar één 1 voorkomen in de rij. (Zie je waarom?) De toegestane
rijtjes noemen we codewoorden. Het aantal bits in een codewoord noemen we de lengte
van de code en de bits noemen we ook wel coördinaten.

Stel, het bericht dat we door willen sturen heeft m1 = 1, m2 = 1, m3 = 0 en m4 = 1.
De redundante bits zijn dan r1 = 0, r2 = 0 en r3 = 1. Het codewoord dat bij dit bericht
hoort, is dus 1101001. Stel nu dat er iets mis gaat bij het inlezen van dit codewoord:
de tweede coördinaat verandert in een 0, dus de computer leest 1001001. Om te kijken
welk bericht hierbij hoort, maakt de computer gebruik van het cirkeldiagram uit Figuur
1 en vult het ontvangen woord hier in. Je zit dit in Figuur 2. De computer controleert
of in iedere cirkel een even aantal enen staat. Dat is niet het geval in de bovenste cirkel
en in de linker cirkel. In de rechter cirkel staat wel het juiste aantal enen. De computer
concludeert nu dat de fout is gemaakt in de coördinaat die zowel in de linker cirkel als
in de bovenste cirkel staat: dat is de coördinaat m2. Op die manier kan de computer de
ontvangen rij corrigeren naar het codewoord 1101001.

Hoe “goed” een code is, hangt af van hoeveel fouten verbeterd kunnen worden en hoeveel
redundante informatie je daarvoor nodig hebt. Van meer redundantie wordt je computer
trager, dus je wil er niet teveel van hebben. Maar je wil ook het risico op fouten beperken.
Informatie die kan helpen deze afweging te maken, is het gewicht van de codewoorden in
de code. Het gewicht van een codewoord is het aantal coördinaten dat niet nul is. Het
gewicht van het codewoord 1101001 is dus vier. Hoeveel codewoorden er zijn met welk
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0 0 0

0

1

0
1

Figuur 2: Een ontvangen bericht in de Hamming code

gewicht, kunnen we opschrijven in een polynoom dat het gewichtsverdelingspolynoom heet
(in het Engels: weight enumerator). Het gewichtsverdelingspolynoom van de Hamming
code is

1 + 7X3 + 7X4 +X7.

Dit betekent dat er één woord is van gewicht nul (namelijk 0000000), één woord van
gewicht zeven (namelijk 1111111), zeven woorden van gewicht drie, en zeven woorden
van gewicht vier. Probeer maar eens of je alle zestien woorden van de Hamming code op
kan schrijven! (Tip: gebruik het schema uit Figuur 1. Hoeveel mogelijkheden zijn er voor
m1, m2, m3 en m4?)

Arrangementen van lijnen in een vlak

Een arrangement is eigenlijk heel simpel een verzameling van lijnen in een vlak. Niet
zoveel aan, zou je zeggen. Maar je kan er aardig wat aan rekenen. Iets dat voor de
hand ligt is het volgende: stel dat we een bepaalde hoeveelheid lijnen in het vlak hebben
getekend. (We gaan er meestal vanuit dat ons papier oneindig groot is en dat de lijnen
oneindig lang doorlopen.) In hoeveel verschillende gebieden heb je het vlak dan verdeeld?
Als je één lijn in het vlak tekent, dan deelt deze lijn het vlak in twee stukken. Als je er een
tweede lijn bij tekent, dan zul je meestal vier stukken krijgen. Tenzij de lijnen toevallig
precies evenwijdig lopen: dan hebben we het vlak in drie stukken gedeeld. Bij drie lijnen
in een driehoek deel je het vlak in zeven stukken. Als de drie lijnen toevallig alledrie door
hetzelfde punt gaan, dan verdelen we het vlak in zes “taartpunten”. Ook als twee van
de drie lijnen evenwijdig lopen, krijgen we zes stukken. Als alle drie de lijnen evenwijdig
zijn, hebben we maar vier stukken. Je ziet: alleen het aantal lijnen geeft niet genoeg
informatie over het aantal stukken waarin ze het vlak verdelen. Je moet ook iets weten
over parallelle lijnen en over punten waar meer dan twee lijnen samenkomen.

Nu is het in de vlakke meetkunde zoals we die gewend zijn, een vrij unieke gebeurtenis als
twee lijnen evenwijdig lopen of als drie lijnen door één punt gaan. Als je twee willekeurige
lijnen tekent, zullen ze elkaar vrijwel altijd snijden. Maar in de wiskunde die we in dit
proefschrift gebruiken, is de meetkunde eindig en projectief. Deze twee woorden hebben
enige uitleg nodig. Met eindig bedoelen we niet het eindig zijn zoals een bladzijde in
dit proefschrift. We spreken af dat maar eindig veel lijnen en eindig veel punten bij onze
meetkunde horen. Dan heeft elke lijn maar eindig veel punten en gaan er maar eindig veel
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Figuur 3: Een projectief vlak van 13 punten en 13 lijnen

lijnen door elk punt – in tegenstelling tot de gewone vlakke meetkunde met oneindig veel
punten op een lijn en oneindig veel lijnen door een punt. Dat een meetkunde projectief
is, betekent het volgende:

• Door ieder tweetal punten gaat precies één lijn.

• Ieder tweetal lijnen snijdt elkaar in precies één punt.

• (Er is ook nog een eis die bepaalde extreme situaties uitsluit, die zullen we hier niet
behandelen.)

De eerste eis zal je niet zoveel verbazen: dat is in de gewone vlakke meetkunde ook het
geval. Maar de tweede eis heeft een belangrijk gevolg: parallelle lijnen bestaan niet in de
projectieve meetkunde!
Omdat zo’n eindige projectieve meetkunde nogal abstract klinkt, staat in Figuur 3 een
voorbeeld. Er zijn projectieve vlakken met verschillende aantallen punten en lijnen: we
speren af dat dit eindige projectieve vlak uit 13 punten en 13 lijnen bestaat. Iedere lijn
bevat 4 punten en door ieder punt gaan 4 lijnen – dat kan niet anders als je 13 punten en
13 lijnen hebt, maar het gaat wat ver om hier uit te leggen waarom. In de figuur lopen de
lijnen niet helemaal recht en lopen soms over elkaar heen terwijl ze geen snijpunt hebben,
maar dat komt omdat het papier waarop ze gedrukt zijn, niet een eindig projectief vlak is.

We gaan nu kijken naar een arrangement in dit projectieve vlak. Je ziet het in Figuur
4. Het arrangement bestaat uit zes lijnen. Zoals gezegd, komen er geen parallelle lijnen
voor. Maar je ziet dat er best veel punten zijn waar meer dan twee lijnen doorheen gaan:
doordat er maar eindig veel lijnen zijn, zullen veel vaker drie of meer lijnen door hetzelfde
punt gaan.

Wat gaan we nu tellen aan een arrangement? Het aantal gebieden waarin het vlak verdeeld
wordt, heeft niet echt een betekenis in het projectieve vlak. We tellen daarom hoeveel
punten er zijn waar een bepaald aantal lijnen doorheen gaat. Die informatie vatten we
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Figuur 4: Een arrangement van zes lijnen in het projectieve vlak van Figuur 3

samen in het coboundary polynoom (er is niet echt een mooie Nederlandse vertaling voor
coboundary). Voor het arrangement uit Figuur 4 is het coboundary polynoom gelijk aan

5X + 6X2 +X3 +X4.

Dit betekent dat er vijf punten zijn die op één lijn liggen, zes punten die op twee lijnen
liggen, één punt dat op drie lijnen ligt, en één punt dat op vier lijnen ligt. Er zijn geen
punten die op nul, vijf of zes lijnen liggen.

We weten nu genoeg over arrangementen om de vertaling naar codes en gewichten te
maken. De woorden van een code vetalen we naar de punten in het eindige projectieve
vlak. De lijnen van het arrangement stellen de verschillende coördinaten van de codewoor-
den voor. Wanneer een lijn van het arrangement door een punt heen gaat, dan betekent
dit dat het bijbehorende codewoord een 0 heeft in de coördinaat die bij de lijn hoort.
Het arrangement in Figuur 4 vertalen we dus naar een code met 13 codewoorden en
lengte 6. Het gewicht van de codewoorden kunnen we aflezen uit het aantal lijnen dat
door het bijbehorende punt gaat: het punt waar vier lijnen doorheen gaan, correspondeert
bijvoorbeeld met een codewoord dat vier nullen heeft. Dit codewoord heeft dus gewicht
twee, omdat de code lengte zes heeft.

Doordat we codes naar arrangementen kunnen vertalen en andersom, kunnen we ook de
bijbehorende polynomen vertalen. Als je het gewichtsverdelingspolynoom weet en je zet
de coëfficiënten in de omgekeerde volgorde, dan vind je het coboundary polynoom. Heel
eenvoudig eigenlijk! Zo vinden we dat het gewichtsverdelingspolynoom dat hoort bij het
arrangement uit Figuur 4 gelijk is aan

X2 +X3 + 6X4 + 5X5.

Andersom kan je ook de volgorde van de coëfficiënten van het coboundary polynoom
omkeren om het gewichtsverdelingspolynoom te krijgen.
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Matroïden

Stel, we hebben een arrangement, zoals in de vorige sectie beschreven. Wanneer we maar
naar een aantal lijnen uit het arrangement kijken, noemen we dit een deelverzameling.
We spreken af dat een deelverzameling alle lijnen van het arrangement mag bevatten, of
helemaal geen. We gaan nu aan elke deelverzameling een getal toekennen: de rang. In
het geval van het arrangement uit Figuur 4 is de rang minimaal 0 en maximaal 3. De
rang is 0 als de deelverzameling uit nul lijnen bestaat, 1 als de deelverzameling uit één
lijn bestaat, en 2 als de deelverzameling uit twee lijnen bestaat. Bij een deelverzameling
van drie of meer lijnen, moeten we een beetje opletten: als alle lijnen door hetzelfde punt
gaan, is de rang 2; als dat niet het geval is, is de rang 3.
Het zal je niet verbazen dat we deze informatie ook weer kunnen samenvatten in een
polynoom: het Whitney rang-polynoom, genoemd naar de wiskundige Whitney die het
als eerste opschreef. Dit polynoom heeft niet één, maar twee variabelen. De exponent
van X geeft de grootte van de deelverzameling aan, de exponent van Y de rang van
die deelverzameling. De coëfficiënt geeft aan hoeveel deelverzamelingen er zijn van een
bepaalde grootte en rang. Voor het voorbeeld uit Figuur 4 is het Whitney rang-polynoom
gelijk aan

1 + 6XY + 15X2Y 2 + 5X3Y 2 +X4Y 2 + 15X3Y 3 + 14X4Y 3 + 6X5Y 3 +X6Y 3.

Hier betekent 5X3Y 2 dat er vijf deelverzamelingen zijn die uit drie lijnen bestaan die
door hetzelfde punt gaan. Als we alle coëfficiënten bij elkaar optellen, zie je dat er in to-
taal 64 deelverzamelingen zijn. De coëfficiënten van het Whitney-polynoom vertellen iets
over wanneer meerdere lijnen door hetzelfde punt gaan. Door een slimme combinatie van
deze coëfficiënten te nemen, kunnen we dan ook zowel het gewichtsverdelingspolynoom
als het coboundary polynoom bepalen.

De rang van de deelverzamelingen van een arrangement voldoet aan een aantal eisen. De
eerste twee kan je zelf controleren voor ons voorbeeld.

• De rang van een deelverzameling is altijd minstens 0 en maximaal het aantal lijnen
in de deelverzameling.

• Als je een lijn toevoegt aan een deelverzameling, dan blijft de rang van de deelverza-
meling gelijk of gaat met één omhoog.

• (Er is ook nog een eis over wat er gebeurt met de rang als je twee deelverzamelingen
samenvoegt, maar die is te ingewikkeld om hier uit te leggen.)

Het blijkt dat deze eisen niet alleen gelden voor de rang van deelverzamelingen van ar-
rangementen. Je kan ook deelverzamelingen nemen van andere wiskundige structuren en
daar een rang voor definiëren. Je kan zelfs helemaal niet vastleggen waarvan je deelverza-
melingen neemt. Je zou bij wijze van spreken vijftien verschillende soorten fruit kunnen
nemen en alle deelverzamelingen een rang geven die aan de eisen voldoet. Het wiskundige
object dat hoort bij een aantal “dingen” en een rang voor elke deelverzameling die aan
bovenstaande eisen voldoet, heet eenmatroïde. De “dingen” heten elementen, bijvoorbeeld
de lijnen van een arrangement. Voor iedere matroïde kan je het Whitney rang-polynoom
opschrijven.
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Alle arrangementen en codes zijn te vertalen naar matroïden, maar niet alle matroïden
zijn ook een arrangement of een code. Er zijn veel meer matroïden dan dat er codes en
arrangementen zijn. De matroïde is dan ook de meest “algemene” en abstracte structuur
die in dit proefschrift aan de orde komt. Toch blijkt het handig te zijn om juist een
algemenere structuur te onderzoeken. De dingen die je kan laten zien over matroïden,
kan je toepassen naar een heleboel verschillende voorbeelden. Net zoals dat onderzoek
naar zoogdieren toepassingen heeft voor koeien, paarden, walvissen en mensen.

Tenslotte

Ik hoop dat het lezen van deze samenvatting het een beetje duidelijker maakt waar ik me
de afgelopen vier jaar mee bezig heb gehouden. Ik hoop in elk geval mijn enthousiasme
voor mijn onderzoek over te brengen.

Tijdens het schrijven heb ik mij enkele wiskundige vrijheden veroorloofd, met name bij
de definitie van het Whitney rang-polynoom (zie Definition 8.1 in dit proefschrift) en
de gewichtsverdeling van het arrangement uit Figuur 4 (zie Example 10.34 in dit proef-
schrift). Ook heb ik voor het gemak alleen arrangementen van lijnen in het vlak behan-
deld, in plaats van arrangementen van hypervlakken in ruimtes van willekeurige dimensie.
De wiskundigen die toch deze samenvatting zijn gaan lezen, zijn bij deze uitgedaagd deze
vrijheden te corrigeren.
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STELLING EN 

behorend bij het proefschrift 

Codes, arrangements, matroids, 
and their polynomial links 

van 

Relinde Jurrius 

1. The two-variable zeta polynomial gives us a way to write the extended weight enumerator 
with respect to a basis of MDS weight enumerators (Theorem 3.3 of this thesis). Similar 
statements hold for the generalized weight enumerator (Theorem 3.11) and the cobound­
ary polynomial (Theorem 11.10). One might ask if we can extend these results to the 
Mobius and spectrum polynomial. Answering this question does not lead to interesting 
new mathematical insights. 

2. To investigate relations between the Tutte polynomial and the spectrum polynomial, it is 
a good idea to focus on simple matroids and study the relation between the coboundary 
polynomial and the reciprocal alternating spectrum polynomial (compare Definitions 10.l 
and 13.15). 

3. Mathematical beauty, as every kind of beauty, is in the eye of the beholder. But the 
lengthy calculation in the proof of Theorem 3.8 will be considered ugly by a majority of 
mathematicians. 

4. Ending every paper with more than one question in the "Further questions" section makes 
the number of questions grow exponentially. 

5. The Dutch "BasisKwalificatie Onderwijs" (an obligatory teaching certificate for academic 
staff) is a good step in improving the level and image of teaching at universities. A next 
step could be to allow PhD students to get this certificate. 

6. When Sherlock Holmes was stuck on a case, he played his violin to take off his mind. This 
does not only help when you are stuck at solving a crime, but also when you are stuck in 
a mathematical proof. 

7. As a woman in mathematics you have the advantage of using your appearance to get atten­
tion for your research. The difficulty of balancing this advantage against the disadvantage 
of attracting attention that does not focus on your research, is often underestimated. 

8. 32.32.32.361 is a valid Dutch bank account number, because 121 is divisible by ll. 

9. Pink is an excellent color for stuff that doesn 't necessarily have to be pretty, but does 
want to be seen. Examples include ski clothing, a suitcase, an evening dress for carnival, 
and an iPad cover. 

10. Every girl needs a role-model. 
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