31 research outputs found

    Linear and nonlinear adaptive filtering and their applications to speech intelligibility enhancement

    Get PDF

    The nonredundant contourlet transform (NRCT): a multiresolution and multidirection image representation with perfect reconstruction property

    Get PDF
    Multiresolution and multidirection image representation has recently been an attractive research area, in which multiresolution corresponds to varying scale of structure in images, while multidirection deals with the oriented nature of image structure. Numerous new systems, such as the contourlet transform, have been developed. The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images; however, it has the drawback of a 4/3 redundancy in its oversampling ratio. In order to eliminate the redundancy, this thesis proposes a progressive version of the contourlet transform which can be calculated with critical sampling. The new proposed image representation is called the nonredundant contourlet transform (NRCT), which is constructed with an efficient framework of filter banks. In addition to critical sampling, the proposed NRCT possesses many valuable properties including perfect reconstruction, sparse expression, multiresolution, and multidirection. Numerical experiments demonstrate that the novel NRCT has better peak signal-to-noise performance than the traditional contourlet transform. Moreover, for low ratios of retained coefficients, the NRCT outperforms the wavelet transform which is a standard method for the critically sampled representation of images. -- After examining the computational complexity of the nonredundant contourlet transform, this thesis applies the NRCT to fingerprint image compression, since fingerprint images are examples of images with oriented structures. Based on an appropriately designed filter bank structure, the NRCT is easily compatible with the wavelet transform. Hence a new transform is created called the semi-NRCT, which takes the advantages of the directional selectivity of the NRCT and the lower complexity of the wavelet transform. Finally, this thesis proposes a new fingerprint image compression scheme based on the semi-NRCT. The semi-NRCT-based fingerprint image compression is compared with other transform-based compressions, for example the wavelet-based and the contourlet-based algorithms, and is shown to perform favorably

    Journal of Telecommunications and Information Technology, 2001, nr 3

    Get PDF
    kwartalni

    An Introduction to Neural Data Compression

    Full text link
    Neural compression is the application of neural networks and other machine learning methods to data compression. Recent advances in statistical machine learning have opened up new possibilities for data compression, allowing compression algorithms to be learned end-to-end from data using powerful generative models such as normalizing flows, variational autoencoders, diffusion probabilistic models, and generative adversarial networks. The present article aims to introduce this field of research to a broader machine learning audience by reviewing the necessary background in information theory (e.g., entropy coding, rate-distortion theory) and computer vision (e.g., image quality assessment, perceptual metrics), and providing a curated guide through the essential ideas and methods in the literature thus far

    Project Cyclops: a Design Study of a System for Detecting Extraterrestrial Intelligent Life

    Get PDF
    The requirements in hardware, manpower, time and funding to conduct a realistic effort aimed at detecting the existence of extraterrestrial intelligent life are examined. The methods used are limited to present or near term future state-of-the-art techniques. Subjects discussed include: (1) possible methods of contact, (2) communication by electromagnetic waves, (3) antenna array and system facilities, (4) antenna elements, (5) signal processing, (6) search strategy, and (7) radio and radar astronomy

    6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities

    Full text link
    Mobile communications have been undergoing a generational change every ten years or so. However, the time difference between the so-called "G's" is also decreasing. While fifth-generation (5G) systems are becoming a commercial reality, there is already significant interest in systems beyond 5G, which we refer to as the sixth-generation (6G) of wireless systems. In contrast to the already published papers on the topic, we take a top-down approach to 6G. We present a holistic discussion of 6G systems beginning with lifestyle and societal changes driving the need for next generation networks. This is followed by a discussion into the technical requirements needed to enable 6G applications, based on which we dissect key challenges, as well as possibilities for practically realizable system solutions across all layers of the Open Systems Interconnection stack. Since many of the 6G applications will need access to an order-of-magnitude more spectrum, utilization of frequencies between 100 GHz and 1 THz becomes of paramount importance. As such, the 6G eco-system will feature a diverse range of frequency bands, ranging from below 6 GHz up to 1 THz. We comprehensively characterize the limitations that must be overcome to realize working systems in these bands; and provide a unique perspective on the physical, as well as higher layer challenges relating to the design of next generation core networks, new modulation and coding methods, novel multiple access techniques, antenna arrays, wave propagation, radio-frequency transceiver design, as well as real-time signal processing. We rigorously discuss the fundamental changes required in the core networks of the future that serves as a major source of latency for time-sensitive applications. While evaluating the strengths and weaknesses of key 6G technologies, we differentiate what may be achievable over the next decade, relative to what is possible.Comment: Accepted for Publication into the Proceedings of the IEEE; 32 pages, 10 figures, 5 table

    Wavelets and Subband Coding

    Get PDF
    First published in 1995, Wavelets and Subband Coding offered a unified view of the exciting field of wavelets and their discrete-time cousins, filter banks, or subband coding. The book developed the theory in both continuous and discrete time, and presented important applications. During the past decade, it filled a useful need in explaining a new view of signal processing based on flexible time-frequency analysis and its applications. Since 2007, the authors now retain the copyright and allow open access to the book

    Low-Power and Programmable Analog Circuitry for Wireless Sensors

    Get PDF
    Embedding networks of secure, wirelessly-connected sensors and actuators will help us to conscientiously manage our local and extended environments. One major challenge for this vision is to create networks of wireless sensor devices that provide maximal knowledge of their environment while using only the energy that is available within that environment. In this work, it is argued that the energy constraints in wireless sensor design are best addressed by incorporating analog signal processors. The low power-consumption of an analog signal processor allows persistent monitoring of multiple sensors while the device\u27s analog-to-digital converter, microcontroller, and transceiver are all in sleep mode. This dissertation describes the development of analog signal processing integrated circuits for wireless sensor networks. Specific technology problems that are addressed include reconfigurable processing architectures for low-power sensing applications, as well as the development of reprogrammable biasing for analog circuits
    corecore