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SUMMARY

In many practical applications, target-speech intelligibility ‘enhancement from
a contaminated signal is needed. For different kinds of statistic properties
of the interference noise, the complexity of the processing is significantly
different. In this dissertation, we will investigate the situation where the
noise itself is interference-speech as well.

For this purpose, we developed new linear and nonlinear adaptive filtering
techniques and robust pitch contour estimation algorithms, and applied them to
the co-channel speech separation.

These new adaptive filtering algorithms and the pitch contour estimation
algorithm can have many other applications apart from speech intelligibility
enhancement.

A. Adaptive filtering techniques

In many situations signals being filtered are associated with time-varying
linear and nonlinear systems, thus are nonstationary. In such cases, filtering
signals only in the time-domain or in a transform-domain (rather than in a
time-transform domain) seems not adequate. On the other hand, the signals to
be filtered may need a large filter order in the time-domain. This can cause
an undesired long time-delay in the filter output.

Motivated by this, we have investigated the LMS type filters in more detail.
LMS filters are attractive due to their robustness and simplicity. New
time-transform domain linear and nonlinear (second-order Volterra) LMS type
adaptive filters have been developed under Gaussian (time-domain) data
assumption.

In particular, we have considered the algorithms under a semi-ideal transform
condition. A semi-ideal transform is defined as one-dimensional orthogonal
transform which projects signals onto the orthogonal and non-overlapping
sub-spaces called "bins". Under this assumption, the filter coefficients are
decorrelated along the bin direction, i.e. linear filter coefficients are
mutually independent over bins, and quadratic filter coefficients are mutually
independent over bin-pairs.

A special selection of the window functions in the Discrete Short Time Fourier
Transform (DSTFT) or in the Discrete Wavelet Transform (DWT) leads to a
semi-ideal transform. Although most transforms are not semi-ideal, the
time-transform bin domain LMS algorithm under a semi-ideal transform
assumption can be used as a good approximation when the transform is nearly
semi-ideal.

* The formula relations and similarities among the linear and nonlinear
algorithms in the time-transform bin domain and in the transform-domain are
described. It is concluded that the T-TB domain NonLinear Normalized Least
Mean Square ADaptive Filtering (NL NLMS ADF) algorithm is a generalized form,
which involves all the other algorithms.
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In addition, we have investigated the RLS type of linear and nonlinear
algorithms. RLS filters in general have fast convergence, perform exact Least
Square (LS) calculations, and are free from the Gaussian (time-domain) input
data limitation.

Two new RLS adaptive filtering algorithms with an adaptive-sliding-window (one
linear and one nonlinear time-domain filter), have been developed. They can
provide versatile-tracking capabilities for adaptive filtering = of
nonstationary signals, especially those having non-constant changing speed of
time-varying statistics.

B. Robust pitch contour estimation

We have built a general framework of pitch contour estimation from noise
contaminated speech by a coarse-step of pitch candidate selection combined
with a detailed-step of pitch contour estimation associated with stochastic
models of pitch contours. This two-step algorithm is designed to use the
existing pitch information both in the intra- and the inter-speech frames. It
also make use of the general a-priori knowledge about speech pitch contours.

A new pseudo-perceptual pitch candidate estimation algorithm exploits pitch
information from the local signal “carriers” and from the local signal
"envelopes”. The candidate estimation is then based on the coincidence of
pitch correlated information over all frequency bins.

A new Hidden Markov Model (HMM)-based pitch contour estimation algorithm
exploits the correlations of pitch periods in a number of successive frames
(pitch contours). A stochastic model describes the pitch dynamics by using the
autocorrelations of the pitch and its first and higher order derivatives. Due
to the training process, the model contains some general a-priori knowledge of
pitch contours, which can later serve for pitch contour estimation, where only
extremely noisy speech is available.

C. Speech intelligibility enhancement by separation

The target-speech intelligibility enhancement from the co-channel speech has
been investigated in this thesis. Co-channel speech signal is defined here as
an additively combined signal from a target and an interference speech in a
single channel.

New algorithms for a speech separation system have been developed for the
co-channel speech signal over a range of Target-Interference Energy Ratio
(TIR) between -12dB to +12dB. This system consists of a pitch estimation part
and a speech separation part.

In the speech separation part, the above-mentioned T-TB domain linear and
nonlinear adaptive filtering techniques are applied to the time-frequency bin
domain as linear and nonlinear adaptive noise cancelers.

In the pitch estimation part, the above-mentioned two-step combined algorithm
is applied for the simultaneous multi-pitch contour estimation.
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The speech separation algorithms have been tested on summed stationary
synthetic speech signals, summed nonstationary synthetic speech sentences of
constant pitches and natural pitches at TIR between OdB and -12dB. Good speech
intelligibility enhancement is obtained by computer simulations. Compared with
the linear version, the nonlinear one has brought further improvement in
attenuating most of the remaining interference sound with slightly increased
distortion.
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Chapter 1

CHAPTER 1

INTRODUCTION

A human listener is generally only interested in a single source of sound (one
speaker) at a time. All other air pressure variations reaching her/his ear are
not of any importance in that case and can thus be considered as noise. The
human listener turns out to be very capable of selecting the desired sound
from the background (or foreground) noise. Those of us who visit cocktail
parties or pop concerts know all about it.

Non-human listeners (i.e. machines) however, are not yet as good in this -
respect, despite of the amount of research invested to solve this problem. It
is still more or less a mystery how the human brain processes the information
picked up by the ear. What physically happens in the hearing organ is fairly
well known. What happens after that the hearing nerve has picked up the

information is more unclear.

The investigation, described in this dissertation, aims at the speech
separation problem where one speaker has to be selected from a signal being
the sum of two speakers. We follow a method which combines the advantages of
the signal processing approach and the perceptual modeling approach. To
develop a new speech scparation method we have to develop new adaptive
filtering and speech fundamental frequency (pitch) estimation techniques which
are suitable for this specific application. These described techniques are on
their own applicable to more fields than- just speech separation.

Sound production model

Speech can be modeled by a time-varying filter representing the "vocal-tract
and an excitation representing the vocal-cord vibrations. The simplest model
is to consider the voiced excitations as quasi-periodic impulses, the unvoiced
excitations as white-noise sequences, and the vocal-tract function as an all
pole filter containing at least six poles, as shown schematically in Fig.1.1.
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Fig.1.1 Speech production model

The reciprocal of the time interval between two vocal-cord impulses of voiced
excitations is defined as the speech fundamental frequency, or the pitch. This
speech fundamental frequency changes continuously and slowly with time. The
time evolution curve of the speech fundamental frequency is called the pitch
contour. The resonant peaks in the speech spectrum are called formants. They
also change continuously with time, leading to the formant-trajectories.

For an intelligible voiced-speech, its fundamental frequency (pitch) and the
first three formants are found to be the most important features which
determine the speech with sufficient precision.
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Co-channel speech separation

Because the co-channel speech is defined as additively combined speech from
multi-sources in a single channel, it implies that a monaural speech signal is
handled. The reason of selecting co-channel speech for the separation task is
due to many existing problems. For example, speech from a telephone line, from
a mobile telephone receiver, from a video conference, in a recorded tape, and
the input speech signals for a computer automatic speech/ speaker recognition
system, are almost always monaural. In such a case, our human auditory system
is able to perform monaural sound analysis for tracing the target-speech.
Thus, monaural processing can be regarded as the basic processing performed by
the human auditory system. We believe that this can be an initial and
fundamental investigation step towards a successful sound separation technique
performed by a technical system (a machine).

For the above adaptive speech separation purpose, we will investigate new
time-transform domain filtering techniques. The main reason is twofold. From
the signal processing point of view, a nonstationary speech signal can be
better processed in the (two-dimensional) time-transform domain because of the
possibility of using temporal-localized signal-components, rather than in any
one-dimensional transform. From the speech perception point of view,
time-transform domain processing is closer to the human auditory global sound
analysis and perception. _

Due to the relatively slow time-varying characteristics of speech signals, LMS
type of algorithms are -good candidates because their convergence speed is
expected to be suitable for such a signal. In the meantime, it is a simple
algorithm with low computational costs. ’

In order to separate summed speech from a single receiver, it is important to
estimate the pitch contour of each speaker so that the signal’s
quasi-periodicity can be exploited by the separation process. Because the
summed speech is the only available information, we have to estimate the pitch
contours from this speech signal. In order to determine the pitch periods of a
sequence of speech frames, a robust multi-pitch contour estimation algorithm
has been investigated. The investigation sets a general framework of pitch
estimation and yields an algorithm based on a coarse candidate estimation step
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followed by a detailed contour estimation step.
This dissertation simultaneously follows two outlines

1) The first outline of the presented research is the development of new
algorithms for an adaptive speech separation system.

This speech separation system consists of two parts: the actual speech
separation part and a pitch estimation part. In the actual speech
separation part, the pitch information is considered to be known. Thus the
problem is limited to the adaptive summed-speech separation from a single
receiver (or adaptive co-channel speech separation). The task of the pitch
estimation part is to estimate pitch contours of all speakers from the
summed-signal and provide it to the speech separation part.

As has been mentioned, the techniques of time-transform domain adaptive
filtering and robust speech pitch estimation are applicable to more fields
than just co-channel speech separation, hence lead to:

2) A second outline, which can be followed along the investigation of adaptive
filtering techniques, and the exploration of the stochastic model theory to
pitch  contour estimation, with a specific application to the adaptive
co-channel speech separation. '

The remaining chapters of this thesis will be organized as follows:

In chapter 2, we will investigate linear and nonlinear adaptive filters for
nonstationary  signal processing. This includes the investigation of new
time-transform domain LMS adaptive filters. It also includes new RLS types of
algorithms with an adaptive size of the data window. Some general applications
and simulations will also be described.

In chapter 3, we will concentrate on developing a new robust algorithm for
simultaneous multi-pitch  contour estimation. After reviewing the human
auditory pitch perception models and the previous research on this field, we
will propose a general structure by using a pitch candidate estimator plus a
pitch contour estimator based on a stochastic model. Further details will be
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described, including the development of a new pseudo perceptual pitch
candidate estimation algorithm and exploitation of Hidden Markov Model
techniques for the maximum likelihood pitch contour estimation. Simulations,
results and further discussions will be included.

Chapter 4 is devoted to develop algorithms associated with a new adaptive
speech separation system. We will first describe the basic ideas, the
fundamentals and the basic system structure. We then describe how to apply the
adaptive filtering techniques developed in chapter 2 to the adaptive speech
separation. The simulations will be described in detail, including speech
separation on summed stationary speech signals, summed speech sentences with
constant and natural pitches. Some of the results are included. Some remarks
and future work will also be given.

In chapter 5, some conclusions will be drawn, and future work will be
discussed.
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CHAPTER 2

ADAPTIVE FILTERING OF NONSTATIONARY SIGNALS

In this chapter, linear and nonlinear (Volterra) adaptive filters of LMS
and RLS types are investigated.

For the linear LMS filters, we generalize the transform-domain linear
Normalized LMS (NLMS) adaptive filtering algorithm to the time-transform
domain. One of the main reasons to introduce this new time-transform bin
domain NLMS adaptive filtering algorithm is that it is a powerful tool for
processing of nonstationary signals, for which separate time-domain or
transform- (including frequency-) domain processing is not adequate anymore.
This new algorithm can be used to dynamically filter nonstationary signals
having large eigenvalue spread. In particular, we are interested in the
algorithm under a semi-ideal transform assumption. In such a case, the filter
coefficients become a set of independent sub-vectors. For other properly
selected non semi-ideal orthogonal transforms, this algorithm is expected to
produce a good approximation. v
The filter can also be used for reducing the filter input-output time-delay
when (stationary) signals to be processed are associated with a long impulse
response length.

For the nonlinear LMS filters, we generalize our transform-domain nonlinear
NLMS algorithm into the time-transform domain, leading to a new time-transform
bin domain nonlinear NLMS adaptive filter. Again, the coefficients of the
linear filter part are mutually decorrelated over bins, and the coefficients
of the quadratic filter part are mutually decorrelated over bin-pairs under a
semi-ideal transform assumption. Often, much reduction of the quadratic filter
coefficient number can be obtained in relation to the base vector
characteristics in each specific domain.

The formula relations and the similarities among the algorithms of the
transform-domain and the T-TB domain linear and NL filters are given. It can
be concluded that a T-TB domain nonlinear normalized LMS adaptive filtering
algorithm is a the generalized form.
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Due to the Gaussian input restrictions and the relatively slow convergence
of the LMS type of algorithms, the RLS type of algorithms are also
investigated. Two new RLS algorithms associated with linear and nonlinear
adaptive filters having an adaptive sliding-window-length are derived. They
are designed to provide versatile tracking capabilities to the nonstationary
signals with non-constant changing speed in their time-varying statistics.

These new filtering algorithms can have wide applications, not only in
speech enhancement, but also in adaptive system identification, adaptive noise
cancellation and adaptive filtering for various areas. Several examples are
given.

2.1. INTRODUCTION

There has been increasing interest in adaptive filtering techniques in the
recent decades[16,24,26,45,58,59,87]. Adaptive - filters have wide application
areas such as radar, sonar, underwater acoustics, seismic, audio and video
signals, medical diagnoses, and many more, with various possible demands such
as signal detection, estimation, filtering, system identification, noise
reduction, echo cancellation, etc. Often, nonstationary signals (which have
time-varying statistics) are handled, rather than stationary signals. Hence,
this requires these filters be adaptive in order to search dynamically the
time-varying optimal solution spaces.

the Least Mean Square (LMS) type of linear adaptive filtering algorithms
are most popular, because of their simplicity and robustness. Although the
time-domain filters are limited by relatively slow and non-uniform speed of
convergence, improvement has been made by performing filters in other
transform-domains, where signals can be decorrelated and whitened so that the
convergence speed could possibly be improved[9,67,87]. '

However, when signals are nonstationary, a one-dimensional filter in the
time-domain or in the transform-domain appears inadequate. Hence, it is

necessary to investigate filters in a time-transform domain.

On the other hand, there has also been increasing interest in nonlinear
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(NL) adaptive filtering techniques. Partially because for many NL problems, it
is insufficient to use a linear approximation. Among various NL filters, much
attention has been paid to the Volterra type of NL (filters
[13,16,44,45,54,59,92). One of the attractive and particular important
characteristics of Volterra filters is that the filter output depends linearly
on the filter transfer function H(z) (i.e. the Volterra kernel), despite the
nonlinear relations between the filter input and output signals. However,
their complexity often prevents many practical application and consequently
very limited investigation has been done up to now.

Another type of adaptive filtering technique, known as the Recursive Least
Square (RLS) type has also drawn much attention [24,26,27,43,58,65,75,94].
These algorithms have faster convergence than those of the LMS type. They
perform exact Least Square (LS) calculation at each time instant, and are not
restricted to Gaussian input data as in the LMS type of nonlinear filter.

Sometimes, fast convergence is of paramount important during the real time
processing of nonstationary signals. A relatively slow convergence filter
could then always remain in the adaptation phase which is far from reaching
the ideal solution. We therefore should also pay attention to RLS filters.

As the expense of convergence improvement, more calculations are usually
needed for the RLS type than for the LMS type. The selection of these types of
algorithm depends on the tradeoffs between the convergence speed and the
cbmputational cost.

Motivated by the above, we will first investigate in section 2.2 the linear
LMS adaptive filtering algorithm in the time-transform domain. A new
time-transform bin domain LMS adaptive filtering algorithm is developed which
is suitable for processing nonstationary signals associated with a linear
model (here a signal sub-space is called a transform bin).

Next, we investigate the nonlinear (Volterra type) LMS type of algorithm in
section 2.3. A general form of LMS algorithm in the transform-domain is given.
Following this line, a new nonlinear LMS algorithm in the time-transform
domain is then derived.

In order to provide more versatile functions for the RLS type of
algorithms, we will derive two new’ RLS algorithms (linear and NL,
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respectively) with adaptive-sliding-window in order to cope with the filtering

of nonstationary signals with non-constant changing statistics.

Finally, we will give several examples of possible applications such as
adaptive noise  cancellation, adaptive system identification and  speech
enhancement. Some simulation results from demonstrations are also included.

2.2. LINEAR LEAST MEAN SQUARE ADAPTIVE FILTERING
2.2.1. Review of the linear LMS adaptive filter

LMS adaptive filtering algorithms are widely used, because of the
robustness and the simplicity.

Time-domain gradient LMS adaptive filtering

For a given input data sequence {xn}, the time-domain gradient LMS adaptive
filtering algorithm [103,104], as shown in Fig.2.0, can be expressed in vector
forms as follows:

AT
y=x b 22.1)
€= dn- y, ' (2.2.2)
3 (e2) :
}_1n+l = t_ln - M ah— = l_ln + Zuc“)_(“ (2.2.3)
where X =[x X .X (N_l)]T is the data vector, h=[h(n) h](n)...hN_l(n)]T

is the time-domain filter weight vector, 90 is the filter output, d is the
desired response signal which depends on the applications, and W 1is the
step-size controlling the convergence rate and the steady-state performance of
the filter.

A sufficient condition for convergence is

O<p<iA <1/uR ) ' (2.2.4)

where kmax is the maximum eigenvalue of the data autocorrelation matrix
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Fig.2.0 Block diagram of a LMS adaptive filter

The LMS algorithm generally suffers from a slow convergence speed

When the eigenvalue spread kmaxllmi" of the matrix Rxx is large, this
time-domain LMS algorithm shows a slow convergence speed. This can be improved
by wusing an adaptive filter in the transform-domain[67], provided that an
orthogonal transform is properly chosen such that the specrum of the
transformed data is flattened (i.e. the eigenvalue spread is reduced).

Gradient Normalized LMS algorithm in the transform-domain[67]

After taking a block of N-data and performing an orthogonal transform W, a
transform-domain adaptive filter can be applied. The filter coefficients are
updated as soon as each new block of transformed data is available.

Suppose an orthogonal transform W is chosen. W is a unitary matrix with
rank N such that W'W=WW'=L. Thus, the data vectors in the time- and the
transform-domain X and Zn, respectively, are related by the following formula

Z =Wx (2.2.5)

where zn=[znl...an]“’. Let A’ be an N*N diagonal matrix with the (i,i)"
element equal to the power estimate of z . The transform-domain gradient
NLMS ADF algorithm can then be expressed as

y =Z H (2.2.6)

~n -n

10
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e=d-y 2.7

n o n

H(n+1) = H(n) + ZulenA'ZZn (2.2.8)

where the matrix A2=diag[E|znl|?..E|an|2], H is the filter weight vector in
the transform-domain, e is a constant 0<ulsl associated with the filter
step-size at bin 'i, i=1.N. The filter weight vectors between the time- and
the transform-domain are related by E_-lopl=Wl_1°pl.

The convergence speed in the transform-domain depends on the ratio of the
maximum and minimum eigenvalue O»mx/?»min) of the matrix (A'ZRZZ). This
eigenvalue spread is shown at least smaller than or equal to that in the
time-domain[67]. Thus, the convergence speed in the transform-domain can be
faster than that in the time-domain. A properly chosen W, Ilike the
Karhunen-Loeve transform discussed below, has the effect of pre-whitening the
data, compressing the eigenvalue spread, and thus resulting in faster
convergence of the filter weight vector.

* The "ideal" transform-domain: The KLT domain

An ideal transform W is the Karhunen-Loeve Transform (KLT) [1,67]. The
orthogonal matrix W associated with KLT is formed by eigenvectors of Ru,
which depends on the given data. In KLT, the autocorrelation matrix Rzz
becomes diagonal, thus the eigenvalue spread in the matrix (A’ZRu)=I becomes
one. Consequently, the fastest convergence spéed can be obtained using the
KLT. However it is computational costly because W is data-dependent.

As a result, due to the uncorrelated data in the transform-domain, solving
a vector of coefficients h in the time-domain is simplified to the calculation
of N scalar-coefficients of H in the transform-domain. '

2.2.2. The time-transform bin domain /inear NLMS ADF algorithm
- A new algorithm in the time-transform domain
A new generalized time-transform domain linear LMS filtering algorithm,

called the Time-Transform Bin (T-TB) domain linear Normalized LMS (NLMS) ADF

11
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algorithm, is developed in this section.

For stationary signals, a T-TB domain filter yields a mathematically
equivalent solution to that of the transform-domain and of the time-domain in
steady-state, but it can reduce the filter output time-delay for signals
having a long impulse response length.

For nonstationary signals, especially signals having large eigenvalue spread,
it provides an adequate and simple time-transform domain filtering approach.

2.2.2.1. The necessity of algorithm generalization

In some situations, a long filter tap-delay order is needed in the
time-domain. Consequently, to obtain an equivalent filter order in the
transform-domain, it is necessary to transform a long window of data before
implementing a transform-domain filtering algorithm. This is often not
suitable for a number of reasons:

* For a nonstationary signal, it is obvious that a long window is not
suitable.

* If the signal is stationary, it can be associated with a long impulse
response length. In such a case, the input-output of the ADF has long
time-delay.

From the review in section 2.2.1, it is seen that the transform-
/frequency-domain adaptive filtering is basically a one-dimensional filtering
technique, even though the filter coefficients are adapted in each frame in
order to follow the possible appearance of signal nonstationarity. A more
suitable approach for filtering nonstationary signals is in the time-transform
domain.

In the following, a new Time-Transform Bin (T-TB) domain linear NLMS ADF
Algorithm is being derived (here a signal sub-space is called a (transform)
bin). In this algorithm, the length of the data sequence to be transformed can
be selected shorter than the length of the system impulse response, possibly
with overlap between the successive blocks where needed. By increasing the
order of the adaptive filter at each bin, the previously transformed blocks of
shifted data are used, so that the influence of the long length of the system

12
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impulse response can be taken into account.

2.2.2.2. Problem description in the T-TB domain

* The problem in the time-domain

Given a data sequence (xn}, consider the following estimation problem
NM
$ = 3 hx (2.2.9)

n i n-i+l

i=

The Least Mean Square (LMS) estimation under consideration is to find, for

each time instant n, an optimal solution of L=(MN) filter coefficients h such
~1

that the cost function Jn below is minimized

J_ = El(e)"] = El(d-y )’] (2.2.10)
Formula (2.2.9) can be re-written in a vector form
9 =xTh (2.2.11)

where vectors X and l_ln are expressed by embedding the sub-vectors

sequentially
« (n)
X = [x.x X .X X X ]T = @2(n)
“n T TaeN+1 ! T NTTRa2Ns1 T e MA)NT n-MN+ - "
«,,(n)
h, @
- B I N )]
l_1n— [hl(n)..hN(n)5hNH(n)..th(n)5..;h(M_l)N(n)..hMN(n)] =| =2 (2.2.12)
By,

Formula (2.2.11) can be expressed equivalently in the trace of matrix-product
A .
y = tr(th:) (2.2.13)

where the matrices Xn and hn are arranged by dividing the vectors x and h
from (2.2.12) into M frames, each frame having N-samples, and then
successively embedding these frames into rows, respectively, as follows

13
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T T
X . F h .. h '-11
1 "2 IN 112 IN
X X wT hT
Xn= 21 T227 2N |=) <2 |, hn= 21 2277 2N =] T2 (2.2.14)
X X ... X T
M1 M2 MN Ty hMl th hMN @;

where the j'h row, (j=1..M), of Xn and hn is associated with vectors <_cJT(n) and

I_zJT(n) respectively in  (2.2.12), q:j(n): [ ]T and

X X X
n-G-1)N n-G-DN-1" N+

= T .
’},-(") = [h(j—l)NH hG_])Nq_ ...th] . (2.2.14) can be expressed -equivalently
by column vectors as follows
X“ =[x, x, .x . h =[l_1l }_12‘..}_1N] (2.2.14%)

* Solving the problem in the time-transform bin domain

Suppose that the filter order needed in the time-domain is L=MN. The first
step is to divide the data into M successive frames, each of length N (overiap
can be taken where necessity). Then each frame of data is transformed by
one-dimensional orthogonal transform W as follows:

Z, X.

! il
=W | %2 =1.M (2.2.15)
sz xjN

The relation between the M frames of data before and after the transform can
be expressed in a matrix notation as follows

Z =X w' (2.2.16)

where the matrix Z“ is obtained by row-embedding the M frames of the
transformed-data as follows,

z z wiw &
11 12 IN
Z= Zn *n Zon | = (Z,(m) Z,®) .. Z ™) (2.2.17)
ZMI ZM2 ZMN

The filter coefficients in the T-TB domain are defined by the matrix Hn,

14
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H H
11 12 1N
H= [P B Byl o B . B o)) 2.2.18)
HMl HMZ HMN

where Zi and I:Ii, i=1..N, are the column vectors in matrices Z“ and Hn,
respectively. The following matrix relation between the time-domain and the
T-TB domain filters holds

H =h W' (2.2.19)

For simplicity, [Zl 22 ZN] and [Hl I-_I2 I_{N] will be used to represent
[Zl(n) Z2(n) 4 N(n)] and [}_ll(n) Hz(n) HN(n)}, respectively, in the
following. :

By noticing that W'W=WW'=I, the filter output in (2.2.13) can be expressed
equivalently in the T-TB domain as follows

A T '
y, = w(ZH ) S (2.2.13)

(22.13) and (22.13") are equal due to the equality ZH'=(XWHhW"'=
XW'Wh'=Xh". Thus, an equivalent problem in the T-TB domain is to determine the
matrix H such that the Least Mean Square (LMS) error in formula (2.2.10) is

minimized.

Define the column-scanned vectors Zn, Xn and Hn of the matices Z, X , H and
hn, respectively as follows

Z, g, h,
Zn = Zz R X}n =% l:'[“ = Hz ﬁ“ = t-12 (2.2.20)
Z’N )~(N (:IN bN

(2.2.13’) can then be expressed equivalently

N
y,=w@H) =2/ R - X Z}H,

(2.2.21)
j=1

Define also a matrix W2=W®IM, where ® is the Kronecker product, then (2.2.16)

and (2.2.19) can be expressed equivalently by the column-scanned vectors
below

2,. = W2 X“ (2.2.16")
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A =w2 H" (2.2.19%)

In general, one has to solve the (MN) equations jointly to obtain Hn. By
taking the following partial derivatives and setting them to zero, the (MN)
equations associated with Hn can be obtained as follows
.. OEd _-y)’ N
V(EE) = — --2EZd-X2ZH)=0 j=L.N (2.2.22)
! " 8H. T R
=]
By defining I_’Zd(n)=E(Zjdn) and Rzz (n)=E(ZjZiT), the above formula can be

j j
expressed equivalently as follows

N
P,,-Z R, H=0 ij =1..N (2.2.22)

ioi=1 i

for simplicity, l-)z,d(n) and Rz_z,(n) are denoted by I-)Z_d and Rz_z"
respectively, here a:xd in the folltj)v:/ing. The above formula cajn be exprcsjscld
equivalently in the column-scanned vector form as follows
P, (n)- R (n) ﬂn= 0 (2.2.23)
Zd zz
Thus, the optimal Wiener filter solution, which is independent of time instant
n when the signal is stationary, is as follows

A -R!P, (2.2.24)
ert 77 z4
provided that R;_) is nonsingular, otherwise a pseudo inversion R:_. has to be
27 77

used instead.

Remarks:

1) The column and the row vectors of Z and H

Each row-vector in Z and H represents a specific frame of the N
transformed-data and the associated filter coefficients respectively.

While each column-vector in Z and H corresponds to the transformed
data-components and the associated filter coefficients of a specific bin
from M different frames, respectively.

Because of the possible decorrelation along the bin direction, the
characteristics of a T-TB domain filter can be better explained by the
column-vectors of H, as will see later.
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2) Selection of a specific time-transform bin domain

Before using a filter in the T-TB domain, we have to select a specific
one-dimensional orthogonal transform W. Similar to the principle in the
transform-domain, W has to be selected in such a way that the
transformed-signals can be (nearly) decorrelated along the bin direction.

In the transform-domain, the KLT (which is data-dependent) is an ideal
transform because of its complete decorrelation of the signals. In Time-KLT
domain, this no longer holds. Because the base vectors change according to
each frame of data, there is no guarantee of orthogonality among the base
vectors in different frames. Consequently, the KLT 1is not a right choice
for a T-TB domain, even if its calculation burden could be considered a
negligible factor.

Because some kind of running time-transform processing will be performed,
it is difficult to fully decompose the signal effectively in both time and
transform directions. However, it might be possible to decompose signals in
one direction. This leads to a so-called "semi-ideal" (one-dimensional)
transform  (defined later) in contrast to an ‘"ideal" (two-dimensional)
transform which fully decorrelates signals in both directions. For this
purpose, an orthogonal one- dimensional transform, which can split signals
into uncorrelated and orthogonal time-related components, is being
searched. The base vectors of this transform must be orthogonal and
data-independent. These vectors span a complete space of the signals under
consideration. ‘ '

In the following, the T-TB domain (filtering algorithm under a "semi-ideal”
transform assumption will be first considered. Then, the approximate solution
under non semi-ideal transforms will be discussed. Finally, we will describe
several transforms which, for special cases, are associated with a
"semi-ideal" transform.

2.22.3. A T-TB domain linear LMS Adaptive filtering algorithm under a
"semi-ideal" transform condition

- Definition of a "semi-ideal" transform
A "semi-ideal” transform is a one-dimensional orthogonal transform which
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satisfies the following conditions:

* The transform matrix W is independent of the data;

* The space spanned by the orthogonal base vectors of W forms a complete
signal space. Thus, each signal component is an orthogonal projection of
the signal onto a specific base vector.

The name “semi-ideal" is used as opposed to an "ideal" (two-dimensional)
transform, which fully decorrelates the signal both in time and in transform
directions.

- An optimum filter solution under a semi-ideal transform
Consider the signals after a semi-ideal transform W. Under the semi-ideal
definition, signals are split into non-overlapping and orthogonal bins, and
the components at different transform bins become uncorrelated to each
other, i.e.

RZZ= 0 if i#j, i,j=1..N (2.2.25)
i
Thus, matrix R becomes block-diagonal
7z
R, = diag|R R _..R 1 (2.2.26)
7z I e

- R H=0 j=L.N (2.2.27)

This is equivalent to N-independent filters for N different bins, each
having its own optimal coefficient vector of M-elements,

P j=LN (2.2.28)

H (opy) - RZ'; p
i J

Generally speaking, the M-coefficients within a vector are correlated due to
signal correlations along the time direction in a “semi-ideal" transform
associated T-TB domain.

- Filter coefficient update formulas

Before presenting the detailed update formulas of this algorithm, two

18
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different approaches of updating the filter coefficients will be considered.

In the first approach, the filter output error 1is calculated in the
time-domain, and the individual error associated with each bin is not
available.

Another alternative approach is either the desired signal or the (filter
output error is transformed so that the the error associated with each
individual bin can be obtained.

1)Updating filter coefficients using the filter output error in the
time-domain
- the limitation of using the gradient estimate

One approach is to calculate the filter output error in the time-domain as
follows

e =d -y (2.2.29)

n n n

The advantage is that the desired response signals (dn} do not need to be
transformed. Hence, the algorithm has less computational cost. In this
case, the filter coefficients update formula becomes

2
H( - b, V(B

H(n+1)

H(n) + 2 pEC, Z(n) j=1.N (2.2.30)

Let c,; Tepresent the error resulted by the signals in the ™ bin, it is
obvious that the equality E(ean)=E(anZj) holds, because of the bin
mutual independency property under a semi-ideal transform. Thus, the above
formula is equal to the formula for each independent bin as follows

H(+D) = H(n) + 2 pE(e, Z () j=1.N (2.2.31)

However, it should be mentioned that if the gradient-type estimate is
used, extra errors can be introduced. This will be explained below.

In a Widrow-Hoff gradient LMS algorithm, the expectation E(.) in VjE(ei)
is replaced by a single sample value as _Vj(ei) to simplify the
calculation. Consequently, the filter coefficient update formula becomes
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H(n+1) = H®) + 2ue Z(n) j=1.N (2.2.32)

This formula implies that updating coefficients at bin j is influenced by
N

the summed error value e= z e. rather than the error enJ of the j"h
i=1 !

bin. Under a semi-ideal transform assumption, all bins are linearly
independent, hence it is obvious that cn‘j rather than e should be used
for updating I:Ij(n+1).

The error that may be introduced by replacing € with e can be
explained by a simple analysis as follows. Suppose that an=0 is reached
at bin j, so that I:Ij(n+1)=l:lj(n) holds. This implies that the update will
be stopped and an optimal solution is obtained. Unfortunately, according

to (2.2.32) the filter coefficients may still need updating at (n+1)
N

because en=Z €. is probably not =zero. Consequently, the convergence
i=1
speed is slowed down by this error bias. Thus, there is a limitation using

the Widrow-Hoff gradient LMS algorithm in a T-TB domain when the filter
output error is calculated in the time-domain.

Actually, a similar  situation also happens in the transform-domain
gradient LMS algorithm when the error is calculated in the time-domain.

Summarizing, we apply the following iteration formulas in the
corresponding algorithm

y, = _;.l Hi(m) Z(n) 2221)
§ s
e =d -y (time-domain error) (2.2.29)
H(n+1) = H(n) + 2uE@Z(n)  (exact LMS) (2.2.30)
or: l:lj(n+1) = l:lj(n) + Zujenzj(n) (gradient estimate) (2.2.32)

2)Updating filter coefficients using the filter output error of individual
bin
To overcome the extra errors introduced by the gradient estimate in the
above approach, either the exact-LMS update should be used as in formula
(2.2.30), or one of the following alternative approaches can be selected:
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(a)Calculating the error of each bin using the transformed desired-
response signals

In this method, the orthogonal transform W is also performed on the

desired response signals {dn} to obtain {DnJ}, such that the filter

output error can be calculated in the same processing domain. The

disadvantage is more calculation due to this extra transform.

Now the error can be calculated in each bin individually

T .
E, =D, -H Z®n j=1.N (2.2.33)

n

where En‘j and Dn‘j represent the output error and the desired response
signal associated with the jlh bin in the T-TB domain, respectively. The
filter weight vector of each bin can then be updated as follows

l:]j(n+1) = I_{j(n)+ ZqunJZj(n) j=1.N (Gradient estimate) (2.2.34)

when  necessary, {EN_} can be inverse-transformed later into the
time-domain error {e }.
n

(b)Calculating the error in the time-domain and followed by a transform

Another possibility is that the error 1is still calculated in the
time-domain  using e“=dn-§n, afterwards the error sequence {cn} is
transformed by the same W to obtain the individual bin error {EnJ}. In
this case, the filter coefficients can be updated as follows

I:Ij(n+1) = I:lj(n) + 2qunJZj(n) (Gradient estimate) (2.2.35)

Remarks

If one of the above approaches is used, one should be aware of the
wraparound-error which might appear. This wraparound-error is caused by
performing a circular convolution/correlation instead of the required
linear one, when the data before the transform is not properly arranged.
In order to obtain the correct results as in the linear convolution, we
can use either the overlap-add or the overlap-save approaches[70,87], by
adding zeros (or old-data of the previous frame) after (or in front of)
the data sequence prior to the transform, and after taking the
inverse-transform, discarding the incorrect part of the data.

21



Chapter 2

2.2.24. A T-TB domain linear Normalized LMS adaptive filtering algorithm

In this section, the normalized algorithm corresponding to that in the
latter section 2.2.3.3 is being derived.

Similar to the situation in the transform-domain, one can use a Normalized
LMS (NLMS) algorithm in a T-TB domain in order to obtain fast convergence
speed. This can be obtained by taking the filter step-size as follows,

W = KO, / ME(|z"j|2) 0 <Ho <1 j=1.N (2.2.36)

where qu is a constant controlling the convergence speed and filter
steady-state performance in bin j. The normalized update formula corresponding
to (2.2.30) can be obtained as follows

H(n+1) = H(n) + 2 po, AEle Z(m) . j=L.N (2.2.37)
where Aj is a M*M diagonal matrix defined as follows

Af = ME(|znj|2)IM (2.2.38)
Formula (2.2.37) can also be written in matrix form as follows

A =H +2u A'zE(cn 2) ' (2.2.39)
where the matrices A’ and i are defined as follows
| A’ = diaglA? ... AZ] = diaglE(|z |%).E(]z  |")I®MI) (2.2.40)

W = diag[uo, .. p0 J®I 0<uo <1 j=L.N (2.2.41)

where ® is the Kronecker product, and the constant value may be selected
differently uOi;ﬁqu, i#j. This implies that the convergence speed of different
bin can be controlled separately by a different step-size constant if
necessary.

The above algorithm is summarized in Table 2.1.
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Iteration at time instant n:

;AT 2 2.1
yn_ n n (T2.1.1)
e =d -y (T2.1.2)
n n n

2 s 2 2

A —dlag[E(Iznll )..E(IanI )]@(MIM) (T2.1.3)
w =diag(p0 ...p0 JeI_ 0<p0 =<1 j=1..N  (T2.1.4)
B =B + 2 p A’E(e 2 ) (exact LMS) (T2.1.5)
n+1 n n n

ﬁml:ﬁn + 2 u A'zenﬁn (gradient estimate) (T2.1.6)

Table 2.1 A T-TB domain linear NLMS adaptive filtering algorithm

2.2.2.5. Further discussion

In the above, a T-TB domain linear NLMS ADEF algorithm is developed under a
semi-ideal transform assumption. The signal components are decorrelated along
the transform-bin direction. Consequently, the algorithm reduces to a set of
N-independent sub-algorithms associated with N-independent bins, each having
its own adaptive step-size normalized by the signal energy in the associated
bin.

As mentioned in the previous overview, in the transform-domain only the KLT
can reach this aim. In a T-TB domain, however, the KLT is not a semi-ideal

transform.

In the sequel, these import aspects will be discussed:

a) The existence of "semi-ideal” transforms, with some examples.

b) The use of the algorithm under a "semi-ideal” transform assumption as an
approximation to other non-semi-ideal transform condition.

¢) The necessity of signal windowing and overlapping.

d) The properties of a T-TB domain algorithm.

e) The advantages of a T-TB domain algorithm.

f) The degeneration of the algorithm under specific conditions.
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a) The existence of a semi-ideal transform
-Examples: DSTFT-based/DWT-based time-frequency domain

Up to the latter section it is not yet clear whether a semi-ideal
transform can actually be found. However in the following we may expect to
find them for some restricted cases, which may yield a proper generalization
later on.

In the following we will consider two different transforms, the Discrete
Short Time Fourier Transform (DSTFT) and the Discrete Wavelet Transform
(DWT). 1In fact, each of the transforms contains a set of transforms
depending on the selection of a specific window/wavelet function. These two
transforms represent two different types of signal frequency decompositions.
Such transforms are especially suitable for nonstationary signal analysis in
the time-frequency domain. We then will notice that there is a special case
in each of the transforms which is associated with a semi-ideal transform.

* DSTFT-based frequency decomposition

DSTFT-type frequency decomposition[36,81] is associated with a base
function made up by translating and modulating a single window function.
Each specific frequency channel is related to the corresponding translated
" and modulated window function.

In particular, there is an ideal choice of frequency decompositions by

the DSTFT which is associated with a “"semi-ideal” orthogonal transform.
In this specific DSTFT, the signal space is decomposed into non-overlapping
and mutually orthogonal frequency channels, with uniform frequency response
and identical bandwidth. It is associated with the following orthonormal
base functions

ij(l) = w(t+k)exp(i2mjt) (2.2.42)
where w(t) is the sinc window function,
w(t) = sinc(t) = sin(mt)/(nt) (2.2.43)

The signal f(t) can be expanded in this orthonormal basis as
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f(v) =j>;k a, w0 (2.2.44)
where the DSTFT coefficients a, are obtained by the following inner
product

*
a, =<fO.w, 0> = % fm w, ,© (2.2.45)

where k is the time index at window center, j is the bin index, * is the
complex conjugation, and the realm of time index t in the summation is
determined by the length of the symmetric window function w(t) in (2.2.42).
In this case, for each fixed j, {wj ,k] spans the j"1 channel.

However, there is no general technique to obtain such decompositions with
windows that have both desirable localization properties and good numerical
algorithms associated with them. Hence it represents an ideal case which is
physically unrealizable.

In most cases, a desirable window w(t) is selected before a DSTFT. The
corresponding base functions W, are then not orthonormal and have overlap
between the neighboring channels. However, there usually exists a dual
window Ww(t) corresponding to the selected window w(t). Using the

k
and later expanded and recovered in the other set. In order to use the

bi-orthogonal basis w, and ij a signal can be projected onto one set
algorithm wunder a semi-ideal transform assumption as an approximation,
careful selection of this window function is needed.

* Discrete wavelet transform-based frequency decompositions

DWT-type frequency decompositions are associated with base functions made
up by translation and dilation of a wavelet function[14,15,83].

There is an ideal case in which a DWT is associated with a so-called
"semi-ideal” transform. In this case, an ideal wavelet basis function is
selected which can decompose the signal into non-overlapping orthonormal
frequency channels. The bandwidths of these channels are related to each
other by a scaling factor, and the frequency response within each channel is
uniform. All the channels are symmetric with respect to the frequency
origin, so that all signal components in the frequency channels are
real-values, provided that the time-domain signal is real. The wavelet
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expansion of signal f(t) can be expressed as

f(t) =,-2kaj WV, 0 (2.2.46)
where {ij(o} is the set of wavelet base functions

v, 0 = 2%y @itk) (2.2.47)
y(t) is the wavelet and ¢ is a sinc function, related as follows

V(1 = 262)-¢(1 (2.2.48)
(1) = sinc(t) = sin(mt)/(mt) (2.2.49)

Using the orthonormal property, the DWT coefficients a, can be obtained by
the following inner product

8, =<0, 0> = X f(t)\y’:k(t) (2.2.50)

where the indices have the same meaning as in formula (2.2.45).

Compared the DWT with the DSTFT, the base function Wy of the DSTFT is a
translated and modulated window w, while the wavelet base function L% of
the DWT is a translated and dilated version of the wavelet y.

In the sequel, it describes how this DWT transform decomposes the signal
into non-overlapping orthonormal channels.

Let VJ, denote the signal space with its bandwidth limited to [0,2't) and
for a fixed j, let {¢J,J‘] be the orthogonal (sinc) base functiong for' Vj.
Let Wj denote the signal space with a bandwidth in the range [2'm, 2",
and let {\yjk) be the orthogonal (wavelet) base functions of Wj for a given
J. Thus, Wj is the orthogonal complement of Vj in Vj”, such that Vj+l=
V,-+W,-’ (VJ, v WJ,):VM and (Vj N Wj)={0}.

A signal in Vj can then be decomposed into a function in the low
frequency band part VJ__l and a function in the high frequency band part
WJ__]. Further, the sigqal in Vj_l can recursively be decomposed into
functions in V“ and in W,'.z’ and so on. Thus, a signal in space VJ_ can be
described at arbitrary accuracy by its projections onto a group of

non-overlap orthogonal filter bands { Wj_l | 1=1,2.N }, where N is chosen
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such that the signal energy in Vj_N is small enough to be neglected.

It is obvious that this ideal DWT is not physically realizable because of
the non-causal sinc function.

The advantages of DWT over DSTFT are that:

* DWT has log-scale uniform frequency bandwidths rather than the uniform
frequency bandwidths of the DSTFT. This is closer to human sound and
vision perception.

* DWT has different a window size at different channels: a wide time-window
is used in a lower frequency band; and a narrow time-window in a higher
frequency band. This is better than using a fixed-size time-window in the
DSTFT. _

* DWT is associated with real-valued signals, while DSTFT is associated with
complex-valued signals, when the time-domain signals are real.

From the above, it is shown that by selecting an ideal window function in
DSTFT, or by selecting an ideal wavelet function in DWT, The DSTFT or the
DWT is associated with a semi-ideal transform for a specific Time-frequency

bin domain.

b)An approximate solution by using the algorithm under a semi-ideal transform
assumption for a non-semi-ideal transform case

We know that it is possible to select a proper orthogonal (or a nearly
orthogonal)  transform such that the transformed-signals are almost
decorrelated. In such a situation, signal components in this T-TB domain may
only be correlated among a few neighboring channels. It can then be expected
that the T-TB domain NLMS ADF algorithm under a semi-ideal transform
assumption can give a good approximate solution for a non-semi-ideal
transformed data. '

¢) Necessity of overlapping and windowing
- Generalization in data arrangement

Previously, we have discussed the situation where the data samples under
consideration are correlated over an MN time interval. We divided these data
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into M frames of length N, each frame transformed by W, and then these
frames of data were processed in a T-TB domain.

In general, we might want to have some overlap between the successive
frames (e.g. to prevent wrap-around error), and to use some kind of window
function for time-localization instead of wusing a rectangular window by
simply cutting data into blocks (which introduces the Gibbs effect). In such
a case, the data matrix Xn in formula (2.2.14) should be re-arranged as

T
@
X . |
1 2 IN T
X, X X «
X = 21 22 N | = | ™2 (2.2.51)
n . . . «
T
1782 SN
S «
where o = [x X o x ] = [w x w_X
- it 2 N 17 n=(-1)(N-L) 2" n--1)N-L)-1

men-(j-l)(N-L)-NH]' j=1..§, S=MN/(N-L), L is the selected overlappipg with

0<L<(N-1), and o, is a symmetric time-window of length N.

d)The properties of a T-TB domain /inecar NLMS adaptive filtering algorithm
* Signal decorrelation in one direction

Under a semi-ideal transform assumption, signals are fully decorrelated
along the bin direction. Consequently, instead of finding an LMS solution
r_;n in the time-domain which is a MN-element vector problem, finding an LMS
solution Hn in a T-TB domain is associated with N-independent M-element
sub-vector problems.

In a non semi-ideal transform case, properly selected orthogonal transform
reduces the signal correlation degree in a T-TB domain as compared to the
time-domain, In this case, an algorithm under a semi-ideal transform
assumption can be used as a good approximate solution to the non-semi-ideal
transformed data.

* Convergence speed

If the time-domain signal has large eigenvalue spread, the eigenvalue

spread lm“/Xmin of the matrix (A'2R“) in a T-TB domain is compressed,
7z
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provided an orthogonal transform is properly selected. Thus, faster
convergence speed can be expected.

e¢)Main advantages of a T-TB domain /inear NLMS adaptive filtering algorithm

* An adequate approach for filtering nonstationary-signal

For nonstationary signals, separate time-domain or transform-domain
filtering is inadequate. A T-TB domain algorithm using the time-transform
domain filtering technique is thus more suitable for dynamically
processing nonstationary signals having large eigenvalue spread.

* Reduce the input-output time-delay

The filter can also be used for reducing the input-output delay-time when
(stationary/nonstationary) signals to be filtered are associated with a
long impulse response length.

f)Algorithm degeneration to the transform-domain

As mentioned before, the algorithm is a generalization of the existing
transform-domain algorithm.

If we choose the filter order along the time direction M=1, a T-TB NLMS ADF
algorithm degenerates into the corresponding transform-domain algorithm.

2.2.2.6. Summary

In section 2.2, a new T-TB domain linear NLMS adaptive filtering algorithm
has been developed. In Particular, an algorithm under a semi-ideal orthogonal
transform assumption has been developed. The advantage under this assumption
is that it yields N-independent sub-algorithms. Two transforms, DSTFT and DWT,
are discussed as examples. Under an ideal base function, each of them is
associated with a semi-ideal transform, although these are physically
un-realizable. However by applying the algorithm under a semi-ideal transform
assumption to a properly selected non-semi-ideal associated T-TB domain, a
good approximate solution can be expected.
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2.3. NONLINEAR LEAST MEAN SQUARE ADAPTIVE FILTERING

A new Time-Transform Bin (T-TB) domain Nonlinear (second-order Volterra type)
NLMS Adaptive Filtering (ADF) algorithm is developed in this section under
Gaussian (time-domain) data assumption.

The algorithm is particularly suitable for filtering nonstationary signals
associated with time-varying NL models, and for filtering signals which are
associated with a long impulse response length.

The relations and the similarities among the algorithms in the T-TB domain and
in the transform-domain linear and nonlinear NLMS ADF filters are described.
It is concluded that the T-TB domain NL NLMS ADF algorithm is a generalized
form, which involves all the other algorithms.

Some advantages of this algorithm are discussed, such as the complete
decorrelation for the linear filter coefficients among the bins and for the NL
filter  coefficients among the bin-pairs under the semi-ideal transform
assumption, and the reduction of the quadratic filter coefficient number, etc.

2.3.1. Introduction

In this section, Volterra-type NonLinear (NL) adaptive filtering algorithms
will be investigated. As mentioned before, a lot of practical problems are NL,
for which a linear approximation 1is not sufficient. Hence, particular
attention is paid to the investigation of a Volterra type of NL FIR filters in
this section. This is because many NL systems can be well approximated by a
Volterra series expansion of truncated order. Besides, Volterra filters have
the attractive characteristic that its output depends linearly on the filter
transfer function, despite of its NL input-output relations. Furthermore an
FIR-type NL filter is numerically stable, in contrast to the IIR-type NL
filter which usually suffers from numerical instability.

A parallel set of the NL LMS type of algorithms (parallel to the linear
versions) in some new domains will be investigated in section 2.3. Signals
under consideration now are associated with a NL model. We might have

30



Adaptive Filtering of Nonstationary Signals

nonstationary signals with large eigenvalue-spread, or (stationary/
nonstationary) signals associated with a long impulse response length. We then
may expect to use a corresponding algorithm which can be performed in a
transform-domain to improve the relatively slow and non-uniformly convergence
speed in the time-domain. We may also need an adequate time-transform domain
algorithm where the signal components evolve with time, in order to handle the
nonstationary signals in a better way.

In many situations, we are dealing with signals having a Gaussian
probability density function (pdf). This leads to the particularly attractive
property that the linear and the quadratic filter coefficients are decoupled.
In the following we will restrict ourself to the Gaussian (time-domain) input
data.

The current section will be organized as follows. First the time-domain LMS
NL Volterra filters will be reviewed in section 2.3.2. A new general form of a
NL NLMS ADF filtering algorithm in the transform-domain will be given in
section 2.3.3. Some properties are also investigated. Then, we will derive a
new generalized nonlinear algorithm in the Time-Transform Bin (T-TB) domain,
with further discussion on the properties of the NL filter part in section
2.34. The formula relations among the T-TB domain NL and linear, the
transform-domain NL and linear ADF algorithms will be given in section 2.3.5.
In section 2.3.6, an example is given to show how to use this algorithm. A
short summary of the conclusion is given in section 2.3.7.

2.3.2. Review of the time-domain LMS nonlinear second-order Volterra filter

Consider the following NL estimation problem using the truncated
second-order discrete Volterra kernel

N N

¢ =h + 3 h'Yn) x + Y h® @mx X (2.3.1)
n 0 m n-m_+1 m_.m n-m_ +1 n-m_+1

m =1 1 17" m omo=1"1"2 1 2
1 172
or equivalently in vector and matrix notation

¢ =h +x" h'D 4 x" n¥Px (2.3.2)

n 0 “n -n -n n -n ) .

where vectors X [1;” and matrix h:z) are defined as follows
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= T (1 T
X —[xn LN xn_N”] 5 l}n =[hl(n) hz(n)..AhN(n)] 2.3.3)
1 IN
hr(lZ)— . th ) (2.3.4)
th """ NN /n

The Least Mean Square (LMS) estimation under consideration is to find, at each
time instant n, an optimal solution of the filter coefficients, such that the
following cost function J is minimized

n

J_ = El()’] = E[(d-y )’] 23.5)

A
Where d" is the desired response signal, and Y is the filter output. Under
zero-mean Gaussian input assumption, the time-domain NL LMS ADF
algorithm[16,92] can be expressed as follows

N

v = % ax (2.3.6)
i=1

A(2) N i 2) W @

yn i§1 jg’lhi.j ( n-i+1 n-j+1- Rxx(l-‘])) (237)

e =d-y =d-y.y® (2.3.8)

" (n+1) = h'Pm) + 2 2.3.9

i B By & e (2.3.9)

h® (n+1) = h®m) + u e x . x . (2.3.10)

i.j i) 2 n n-i+l nojl

where i and u, are chosen such that
O<p <IA , 0<p <l /(2xjm) (2.3.11)

where me is the maximum eigenvalue of R“. In the steady-state, the linear
and quadratic filter weights converge to the following optimal solution

R =R'P (2.3.12)
- opt xx -dx

" =12R'R R (2.3.13)
opt xx  dxx  xx
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where R“=E()_(n)_ch), l_’dx=E(dn)_(") and R du=E(dn)_(n>_(nT). The convergence speed of
the linear filter weights depends on the eigenvalue spread (lmu/lmin) of the
data autocorrelation matrix Ru, while the convergence speed of the quadratic
filter weights depends on the squared-ratio (?Lmaxﬁkminf of this eigenvalue
spread.

2.3.3. The transform-domain nonlinear NLMS ADF algorithm

As mentioned previously, the convergence speed of this time-domain NL LMS
ADF algorithm is relatively slow when the signal spectrum is not flat. In
particular, the convergence speed of the NL filter part depends on the
squared-ratio of the maximum and the minimum eigenvalues. Consequently, slow
filter convergence speed is mainly caused by the NL part. Hence, it is
important to improve the convergence speed of a NL filter.

A natural consideration is to introduce a general form of a
transform-domain algorithm. In the following, a new general form of the
transform-domain (second-order Volterra) NL NLMS ADF algorithm[33] will be
given, which can be considered as an extension of the corresponding linear
onef26,45,67]. This general form also involves other specific domains such as
a frequency-domain NL algorithm[54].

Description of the problem by a transform-domain nonlinear filter

Suppose the filter in the time-domain is of order N. We can obtain the data
in the transform-domain by using an orthogonal transform W

Z =Wx (2.3.14)
where W is an unitary matrix of rank N, WTW=WWT=I, Zn=[znl...an]T, and
)_(n=[xn...xn_(N_l)
time-domain, respectively. It will be proved below, that a NL LMS ADF
algorithm in the transform-domain has the same steady-state function as that

]T are the data vectors in the transform-domain and the

in the time-domain
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>

=h + x4 xThPx = b+ x] WW RO+ xT WIW ROWW x
=h +(Wx ) (Wh ) +(Wx Y(WhPWH(Wx ) = h+Z'H "+ZTH Pz (2.3.15)

where vector }_1'()” and matrix hf) are the linear and quadratic filter weights

in the time-domain, P_l;” and H:z) are their transform-domain counterparts. h,
is needed for the unbiased filter output. In (2.3.15), the following relations
between the filters in the time-domain and the transform-domain are used

H,(,]) _ wbr(ll)’ H£2) = Whiz)WT (2.3.16)

By sctting E(fln)=0 in (2.3.15), the constant term h0 can be obtained as
h,= - r(HR (m) = - E(Z:H:”Zn) (2.3.17)

Substituting (2.3.17) into (2.3.15) yields
y = g: HY 4 tr(H:Z)(an:-Ru(n))T) (2.3.18)

n
where the vector H'” and the symmetric matrix H® are associated with the
kel n
linear and the quadratic filter weights in the transform-domain respectively.

An optimal nonlinear filter solution
It is important to notice that if input variables {xn } are Gaussian
iid’s (independent identical distributions), each variable in {sz }

(being a linear combination of {xn } after an orthogonal transform W) is also
Gaussian.

By taking the partial derivatives of E(e:) with respect to P_l(l) and H?
and setting them to zero, the following is obtained

v “)E(ez) = 2E(Z d -h- Z'H'"- Z'H?Z)) =0 (2.3.19)
H n -n n “-n-n -n n -n

2y _ TR (D_ 5Ty (2) Ty _
VHmE(en) = 2E(Zn(dn-h0 znl:l" ZnH“ zn)Zn) 0 (2.3.20)
Noticing that h = -E(Z'H?Z ), that all the odd-order moments of z = become
g 0 -n n -n ng

zero under zero-mean Gaussian assumption, that the fourth-order moment of a
Gaussian random variable z can be expressed as
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E(zizjzkzl) = E(zizj)E(zkzl) + E(zizk)E(zjzl) + E(zizl)E(zjzk)
= Rz(i-j)Rz(k-l) + Rz(i-k)Rz(j-l) + Rz(i—l)Rz(j-k) (2.3.21)

and that H:z) is a symmetric matrix, the following relations can be obtained
from (2.3.19) and (2.3.20) respectively

P -R HY = (2.3.22)

-zd 2z -~ n

R, - 2Ru}lff>lzzz =0 (2.3.23)

where Rzz(n)—E(ZnZn), Rdu(n)—E(annZn) and lfzd(n)—E(an“) are used, and for

simplicity Ru, Rdzz and l_’zd (will) denote Ru(n), Rdu(n) and l_’w(n)

respectively here and elsewhere without mentioning.

It is important to notice from (2.3.22) and (2.3.23), that the linear and the
quadratic filter parts are decoupled, because the random variables z i are
Gaussian. Thus, we can expect that the linear part will behave exactly the
same as in the Transform-domain linear LMS filter.

Supposing Rzz is non-singular, the following quadratic filter optimal solution
can be obtained,

H“’ 12 R R R’ : (2.3.24)

where the matrices RZz and R are independent of time. If R is singular, a
pseudo inversion R is used in (2.3.24). The optimal soluuon of the linear
filter part Hi: = R P remains the same as that of the transform-domain
linear filter in section 22.2.

Transform-domain rnonlinear LMS ADF algorithm

By using the negative gradient for the filter coefficient update, the
following filter weight update formulas can be obtained

H:”(n+1)=H:”(n)-u1i VHmE(ei)=H§”(n)+ 2 ul Eez ) i=l.N (2.3.25)

H(iz}(n+l)=H:2;(n)-p.2_J_VH(2) E(e)= Hfzj?(n) +2u2 B 2 2 )
’, », 1 i_j n 8 ) 1 n na n

35



Chapter 2

M2, = h2, H?J? - H?:. j=1.i, i=1.N (2.3.26)
where uli and u2i‘j arc the adaptive step-size associated with the linear and
quadratic filters, respectively. They control the convergence speed and the
steady-state  performance of the linear and the quadratic filter part
respectively.

The filter output error can be calculated by using the outputs of the linear
A A
filter part y:” and the quadratic filter part yiz), separately

N

-3 w4, =807 2 oz
i=1 ! i =0

A2y g e .

yn - |j(n) (Zn.izn‘j ) Rzz(l-‘])) (23.28)
iLj=1

(i%j2N)
e=d-§ =d-y -y (2.3.29)

where the operator ° depends on the selected transform-domain,
RZ7(i-j)=E(znisz). The filter output in the m™ bin at time instant n can

be expressed as

Yoo = H Mz (2.3.30)
9:2:‘ =X H?;(“) (z,z - R () (2.3.31)
i° j=m o B =%

Transform-domain nonlinear LMS algorithm in the normalized form

It is necessary to normalize the algorithm. In principle, a transform can

decorrelate the filter coefficients, and the normalization can speed up the
filter convergence.
After transform, signals are decorrelated when their autocorrelation matrix
becomes (nearly) diagonal. Normalization then plays a role of whitening
signals such that, in an ideal case, all eigenvalues become equal. An uniform
speed of convergence, thus, a fast speed of convergence can be obtained in
this case.

The NLMS algorithm can be obtained by dividingi the filter step-size by the
power estimate of the relevant signal component as follows
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ui =10/ (Elzm_|2) (2.3.32)
n2, = u20,/ E(lz |E(lz %) (2.333)
where ulOi and u20i‘j are constant,
0<plOS 1, 0 <p20 =420 <12 ij=l..N (2.3.34)

The corresponding update formulas of the linear and quadratic coefficients can
be expressed in vector and matrix form as follows

Y = H,(,” +2ul A'ZE(en Z) (2.3.35)
H? - H'(‘z) + 2 A'2E(en Z znT)A'2 (2.3.36)

where the matrices p1, u2 and A? are defined as follows

A’ = diag[Elz 1% .. Elz |*]

pl = diag[plo1 |.L102 ulON]
"1201,1 uz01,2 u201,N

w2 = | M20,, W20,, .. n20, H20, =120, (2.3.37)
W20, K20, H20,

In an ideal case (KLT-domain), the matrix A’ becomes
A? = diaglh A, . A ] ' (2.3.38)

where Ki, i=1..N, is the eigenvalue of the matrix Rzz. (2.3.35) and (2.3.36)
can be written in the scalar-form because both the coefficients in the vector
I:I(l) and in the symmetric matrix H® become uncorrelated.

H:”(n+1)= Hf”(n) +2 10 Ele z i)/)\i i=1..N (2.3.39)
HiJ(n+1)= Hid(n) + pzoiJ E(e z isz,)/(kikj) j=1.i,i=1.N (2.3.40)

In all these cases, the corresponding gradient estimate form can be obtained
by replacing E(*) by a single sample variable (*).

The filter convergence speed in the transform-domain depends on the
maximum- and minimum- eigenvalue ratio (kmax/Xm_n) and the squared-ratio of
1
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the matrix (A'ZR”) for the linear and the quadratic filter, respectively. For
an ideal transfonﬁ, O‘max””m'.n)=l’ all the coefficients in the linear and the
quadratic filter part converge with uniform speed, and this convergence speed
is independent of the data.

In general, by properly selecting an unitary transform W, the -eigenvalue
spread in (A'ZRZZ) may be reduced, and a faster convergence speed can be
expected in the transform-domain.

Advantages of the transform-domain nonlinear NLMS ADF algorithm

A Karhunen-Loeve Transform (KLT) is an ideal orthogonal transform for the
transform-domain filter. All the other orthogonal transforms are sub-optimum
in the concept of decorrelating the signal. The degree of decorrelation
depends on the specific transform and the specific signal under consideration.
After a properly selected orthogonal transform, signals can be nearly
decorrelated. In this case, the algorithm under an ideal transform assumption
can be used as a good approximation to the non-ideal transformed data.

a) Fast convergence speed

* Linear and quadratic weights converge with uniform speed because of the
spectral whitening
In the KLT-domain, all signal components are /inearly decorrelated (thus
for Gaussian z linearly independent). Thus, the corresponding signal
autocorrelation matrix RZZ becomes diagonal, and all the eigenvalues Xi of
the matrix (A'ZRZZ) are equal. Consequently, the fastest convergence speed
can be obtained, where the linear and the quadratic filter parts converge
with the same speed.

In general, when the signal eigenvalue spread is large in the time-domain,
one can process the signal in the transform-domain with advantage. By
properly selecting an orthogonal transform such that the transformed
signals are nearly decorrelated, and the eigenvalue spread in matrix
(A'ZRZZ) approaches to one, a faster filter convergence speed than in the
time-domain case can be expected.

b) Decorrelation of filter coefficients
Because of the decoupling, the linear and the quadratic filter part can be
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considered separately.

* Linear filter part
The linear filter part has the same property as that in the
transform-domain linear filter. }_1(1) in the transform-domain is N scalars
instead of a vector ]_1“) in the time-domain.

* Quadratic filter part
For the quadratic filter part, the transform-domain matrix H® s still

(2)

symmetric as h'“ in the time-domain. The difference is that, rather than

hm, coefficients in H® can be

jointly solving N(N+1)/2 coefficients in
solved independently because of the mutual (nonlinear) independence of all

bin-pairs.
¢) Possible reduction of the number of quadratic filter coefficients

Often, a better understanding of the physical meaning in a specific
transform-domain can prevent the excessive use of the quadratic filter
coefficients. Rather than blindly using all quadratic terms in the
time-domain, it is often possible to select only a part of the quadratic
coefficients Hfzj in the transform-domain, depending on a selected domain.
Several examples will be given below.

Quadratic coefficient constraint in a DFT-based frequency-domain

In the DFT-based frequency-domain, the base vectors {exp(-j2nfn)} satisfy
the following frequency relation,

exp(-j2n(f1+f2)n) = exp(-j21tf1n)exp(-j27tf2n) : (2.3.41)

which implies that the product of two data components from the different
bins i and j can contribute to the output estimate 9:2)(k) at bin k, if
k=i+j is satisfied. Hence, in the NL filter part, only the quadratic terms
Hfzj associated with Z 2. from bin i and j, which satisfy the frequency
constraint k=i+j, 1<K<N, i,j=1..N, need to be selected.

* Quadratic coefficient constraint in a WHT-domain

Walsh-Hadmamard Transform (WHT) is one of the most frequently used
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non-sinusoidal type orthogonal transform[1].

In the WHT-domain, there exists the sequency relation on the basis function
{ wal(,p) }

wal(i®j,t) = wal(i,t)wal(j,t) ‘ (2.3.42)
Consequently, only those quadratic terms Hfzj) associated with L from
bin i and j, which satisfy the sequency constraint (i®j)=k, 1<k<N,
1 (here @ represents
module 2 addition). Thus, much less quadratic terms are used in the
WHT-domain than that in the time-domain.

i,j=1..N, can possibly be selected for estimating §:2

Algorithms in several other transform-domain
* DFT-type frequency-band domain: a complex-valued algorithm

One can choose the orthogonal transform W to be the DFT (FFT). In this case
it is associated with complex-valued data. The corresponding formulas can be
obtained by minimizing the objective function E(ene;) with respect to the
weight vector l:l“) and matrix H®. The weight update formulas in (2.3.35)
and (2.3.36) become,

H"= HY+ 2 p1 A%E Z ) (2.3.43)
Hff’: H®+ 12 A'ZE(en z2 2% & (2.3.44)

where * stands for the complex-conjugation, and |zni|2 in matrix A? in
formula (2.3.37) represents (znizn*i). '

* DCT-type frequency band-domain: a real-valued algorithm

By choosing W to be the Discrete Cosine Transform (DCT) [1], a nearly
diagonal RZZ can be obtained. The DCT is considered as an orthogonal
transform especially suitable for speech and image signals. The base
functions of DCT are the orthonormal Chebyshev  polynomials
{N-m’ 2N-|rzcos(2m+1)kn}
2N
bandpass filtered and thus have real values. No complex arithmetic is
involved.

. Signals in the DCT-domain can be considered as
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2.3.4. The T-TB domain nonlinear NLMS ADF algorithm
- A new algorithm in the time-transform domain

A new Time-Transform Bin (T-TB) domain nonlinear (second-order Volterra)
NLMS ADF algorithm is derived, which is a NonLinear (NL) extension of the
previous T-TB domain Linear Normalized LMS ADF algorithm. In particular, we
consider the algorithm under a semi-ideal transform assumption, where signal
components are linearly decorrelated in the bin-direction. Due to the
decoupling of the linear and the NL filter part, the linear part has the same
properties as those in the corresponding linear algorithm in section 2.2.3.
Meanwhile, in the NL part, quadratic coefficients associated with different
bin-pairs are decorrelated. The necessary number of quadratic-terms can be
much reduced depending on each specifically chosen T-TB domain and on the
physical background of the problem. In a properly selected non-semi-ideal T-TB
domain, the algorithm under a semi-ideal transform assumption can be used as a
good approximation.

The T-TB domain NL filter is particularly suitable for nonstationary
signals associated with a NL model. It can also be used to reduce the
input-output  time-delay needed for NL filtering of signals which are
associated with long impulse response.

In this section, we will generalize the T-TB domain linear algorithm in
Section 2.2.3 into a nonlinear one.

Like the T-TB domain linear filtering algorithm, a T-TB domain NL algorithm
needs to be developed for coping with nonstationary signals and for reducing
the long time-delay in the filter input-output.

First, an optimal solution of the T-TB domain NL filter in the steady-state
condition will be given (section 2.3.4.2). Then the T-TB domain NL LMS and
Normalized LMS algorithm under a semi-ideal. transform assumption will be
derived (section 2.3.4.3). Some properties of the algorithm are also discussed
(section 2.3.4.4). Relations of the formulas among the linear and NL
algorithms in the T-TB domain and in the transform-domain will be given
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(section 2.3.4.5). A simple example is given to show how to use this algorithm
in practical situation (section 2.3.4.6). A short summary will be given
(section 2.3.4.7).

2.3.4.1. Nonlinear problem description in the T-TB domain
* Nonlinear problem description in the time-domain

Supposing the filter order needed in the time-domain is MN, the following
estimate can be performed in the time-domain

MN MN

_ (1) (2)

9{1_ ho + X hm (n)x"_m i F h) hm o (n)xn_m i (2.3.45)
m . =1 1 ml . m2=1 172 1 2

Or, equivalently using the convolution expression form,

’y‘n= h+ h'('”*x" # h:j’nzt(xnl®xn2) (2.3.45")
Where <« stands for linear convolution. Equivalently this can be expressed in
the Z-domain,

Q“(z) = H; + Hl(z)Xn(z) + Hz(z)(Xn(z)®Xn(z)) (2.3.45")

Define the time-domain data matrix Xn and its column-scanned vector 'Xn, the

autocorrelation matrix R, (n) of )'{n, and the quadratic data matrix X2 as
n
XX

follows
0 X2 X %
Xn= le X2 X?N = [)_(1 )_(2...)_(N], Xn= ’j(z (2.3.46)
M1 Xm2 7 Xmn XN
R, (m=ERX", x2 =RRXT (2.3.47)

XX
Define the matrix hln as the linear filter part, and the symmetric matrix h2n
as the quadratic filter part as follows

hll].,. hllN h2ll h212 h2lN
hi = h,, bl =[h (n) t_\z(n)..l_\N(n)]. h2 = h2,, h222 h22N (2.3.48)
thl... thN thl h2NZ h2NN

with h2ij(n), denoted by h2ij for simplicity, represents a sub-matrix of order
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M*M, ij=1..N, given below,

h2( P-1)M+1, (j-1)M+1 h2(i DM+, (-DM+2 T h2“ -1 ) M+1gM
h2 h2 " h2

h2ij= .(i~l)M+2 L (j-DM+1 (i-1)M+2, (j-1)M+2 ‘ (i -1)M+2jM (2.3.49)
hziM.(j-l)MH h2iM.(j-l)M+2 h2iM.jM

(2.3.45) can then be expressed in the matrix form as follows

y =h +uX D+ X2 X (2.3.50)
Here h0 is needed for the unbiased filter output. By setting E(f/n):O, ho can
be obtained as

h,= - E(X:hzn'Xn) = -tr(hZHRI_'(n)) (2.3.51)

x

Substituting (2.3.51) into (2.3.50) yields

y.= X b1 + u[th(XZn-R_H(n))T] = X"RT + tr[hzn(XZH-RH(n))T] 2.3.52)

XX XX

* Nonlinear problem description in the T-TB domain

In order to estimate ?n in the T-TB domain, similar as mentioned in section
2.2.3, the data sequence in the time-domain is first divided into M frames,
each having length N, (if necessary overlap is allowed). Then, the orthogonal
transform W is performed successively on M-frames of data as in (2.2.15). A
matrix Zn, as defined in (2.2.17), is used to represent the row-embedded
M-frames of transformed data. Thus, for the data matrices in the time-domain
and in the T-TB domain, the same relation Zn=X"WT as in (2.2.16) holds. Each
row-vector in X and Z corresponds to the j* frame of data before and after
the transform.

Let us define the column-scanned vector Zn of matrix ‘Zn like in (2.2.20).

Define the autocorrelation matrix R (n) of Zn, the quadratic data matrix Z2n,
77,
the T-TB domain linear filter part Hln, its column-scanned vector HT“, and the

T-TB domain quadratic filter part HZn respectively as follows

43



Chapter 2

R, (n) =E@22), 22 =227 (2.3.53)
727 n n n n n
HI .. HI Hi,
11 IN
Hi= | Pl o m ), At = Bl (2.3.54)
HL, .. H :
H1,
H2 H2 .. H2
11 12 IN
H2 = | M2, M2, HZ, (2.3.55)
H2 M2 .. H2

where H2ij(n), denoted by H2ij for simplicity, is a sub-matrix of order M*M,
1,j=1..N.

2(i-l)M+l L (-DM+1 H2< i-DM+1, (j-DM+2 7 HZ( i -1)M+1jM
H2 ) H2 . " H2 .
Hzf K SDM#2, (j-DM+1 (i-1)M+2, (j-1)M+2 _(.-1 )y M#2 jM (2.3.56)
2iM.(j-l)M+1 H2iM.(j-1)M+2 HZiM.jM

For the linear filter part, the following relation holds

Hl=h1 W’ (2.3.57)
or, equivalently, in column-scanned vector form

HT =W2 RT_ (2.3.57)
where W2=(W®IM) is defined. This is similar to formula (2.2.19) in section

2.2.3. The following relation of the quadratic filter parts in the time-domain
and the T-TB domain holds,

H2 = W2 h2 W2' (2.3.58)
An equivalent expression to (2.2.16) using column-scanned vector notation is
2n= w2 Xn (2.3.59)

Hence, the filter output can be calculated by using a T-TB domain NL filter as
follows
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y =h +u@HI) +2"H22 =h + 2" Al +2TH22 (2.3.60)

Using the relations (W2)(W2)'=(W2)"(W2)=I, WW'=W'W-=I, and the filter relations
in (2.3.57) and (2.3.58), it can be easily proved that a time-domain and a
T-TB domain NL filter produce an equivalent solution in the steady-state,
since

A

y

n

h, + 2: HTn + 2: HznZn

hy + (W2 X)T(W2 K1) + (W2 R )"(W2 h2 W2)(W2 X )

h, + RT w2'w2 5T+ RT(W2'w2) h2 (W2'W2) X

h, + XZ AT + XZ h2 X (2.3.61)

By setting E(§n)=0, ho value can be obtained
h, = -B(ZH22) = -u(H2 R _(n)) (2.3.62)
7z
Substituting h_ in (2.3.60), §_can be obtained as follows

y =2"Hl + tr[HZn(ZZn—RH(n))T] (2.3.63)
YA

2.3.4.2. The optimal solution in a T-TB domain

If X in the time-domain is Gaussian, z. in a T-TB domain (which is a
linear combination of X by an orthogonal ‘transform) is also Gaussian. Thus,
variables remain Gaussian in a T-TB domain. Consequently, the linear part and
the quadratic part of the NL filter in a T-TB domain are decoupled.

In order to obtain the optimal filter solution in the T-TB domain , a
similar method can be used as in the linear case, i.e., by taking partial
A
derivatives of E(e:)=E[(dn-yn)2] with respect to H1 and H2, and setting them
to zero.

1) For an easy derivation, the column-scanned vector Zn of Zn is used for

calculating V E(ez). By setting V E(e2)= 0, we obtain
HI " HI "

n n
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V_E@)) =2E2 - h- 2: Hi - 2: H22)) =0 (2.3.64)
H1

Notice that z is a Gaussian zero-mean variable, so that all the odd-order

moments become zero. This yields '

E(ann) - E[Zn(ZIHTn)] =0 (2.3.65)

defining P ()=E(Z d ) and R (m)=E(2 27), (23.65) is equivalent to
Zd ZzZ

P,(m-R,_(mH =0 (2.3.65)
Zd 7

Suppose R is non-singular, the optimal fiiter which is independent of n,
7z
can be obtained as below

HI =R

opt z

P, (2.3.66)
Zd

Ny —

Otherwise, a pseudo-inversion R:’ is to be used instead of R_b_l. This result
7z 7z
is similar to (2.2.24) in section 2.2.3, as expected.

By setting V E(ez) = 0, the equations associated with H2 can be obtained
H2 °

as follows
V EE€)=262@- h- 2/mT-2"H22)2N =0 ' (2.3.67)
Hz n n n n n n nn n

Applying (2.3.21) for the fourth-order moment (H2 is symmetric), and using
the property that all the odd-order moments of z . are zero, then yields

P _(m-2R _(nH2 R _(n)=0 (2.3.68)

e

dZZ Y4 7

where P _)_)(n)=E(dn2n2:). Supposing R, is non-singular, the optimal
477 zz
solution of the quadratic filter, which is independent of n, can be

obtained as follows

H2 =12R'P R (2.3.69)
opt 7z 427 7Z
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When R is singular, a pseudo-inversion R; is to be used instead.
7z 7z

Under a semi-ideal transform assumption (as defined in section 2.2.3),
calculations needed for (2.3.66) and (2.3.69) can be much reduced.
Consider the symmetric matrix R , containing N*N sub-matrices as below

77
T T T
Zl E(lel) E(lez) "‘E(len)
R, = B@2Y=E| & |27 2827 =| B&Z) BZZ) -EZ20| 030
7z ; ’ : : ;
Zy EZZ) E@ZZ) .E(ZZ)

After a semi-ideal transform, the signal components are fully linear
decorrelated over transform-bins. Hence, R_H becomes block-diagonal:

i 7z
E(lel) 0

= (2.3.71)

>

2z .
: T
E(Z,Z)

Consequently, the matrix inversion R_’l in (2.3.66) and (2.3.69) can be
7z
performed through N-independent inversions on sub-matrices. Each sub-matrix is

of (maximum) rank M, which is much lower than the rank of R .
7z

2.3.4.3. A T-TB domain nonlinear LMS/ NLMS ADF algorithm under a semi-ideal
transform assumption '

As mentioned before, under a semi-ideal transform assumption, all bins are
linearly independent. This implies that the linear filter coefficients
associated with different bins are mutually independent, the quadratic filter
coefficients  associated  with  different  bin-pairs are  also  mutually
independent. Thus, the following simplified algorithm is obtained under a
semi-ideal transform assumption.

* Nonlinear LMS adaptive filtering algorithm
The filter coefficients update formulas can be obtained as follows
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Hl(n+1) = HL(n) - p1V, E(e:)

EL(n) +2 p.liE(en Zi(n)) i=1.N (2.3.72)

_ 2
HZiJ_(n+l) = HZiJ_(n) - p.ZBJ VmiJE(en)

= H2, () + 2 u2, E(e, 2) Z((n)
H2 = H2, j=l.i i=L.N (2.3.73)

where ul_l is the adaptive step-size for the linear filter part at the i

bin , - and u2iJ is the adaptive step-size of the quadratic filter part
associated with the bin-pair (i,j).

The Normalized LMS adaptive filtering Algorithm

In order to obtain the normalized algorithm, the step-size associated with
the linear filter part at the i bin can be set as follows,

ul, = p10/ (ME(lz_ %) i=1.N (2.3.74)

The step-size associated with the quadratic filter part at the bin-pair
(i,j) can be set as

H2, = 120,/ (2M2E(|zni|2)E(le_|2)) j=1.i, i=1.N (2.3.75)
where p.lOi and uZOi‘j are constants satisfying
0 <ul0 <1, 0<u20, 20, <12 (2.3.76)

They control the convergence speed and the steady-state performance of the

linear filter part at the i® bin and of the quadratic filter part at the

bin-pair  (i,j), respectively. The filter  coefficient update formulas
(2.3.72) and (2.3.73) can then be re-written as

Hl(n+1) = HL(n) + 2 u10, A” E@ Z(n) i=1.N 23.77)
H2, (n+1) = H2, (n) + 20, A E(e, Z(n) Z[(m) A

H2 = H2, j=L.i i=1.N (2.3.78)
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with the matrix A? is defined as
2 _ 2 .
A = ME(lznjl ), i=L.N (2.3.79)

(2.3.77) and (2.3.78) can be written in the matrix forms respectively as
follows

HI =HI +2pul G E2) (2.3.80)
H2 = =H2 +p2 A'2E(en2n2:)A'2 (2.3.81)

where the matrices A2, pl and pl are defined by

Al = diag[E(Iz.n’l |2)...E(|zn,N|2)]®(MIM) = diaglA] A] ..Al] (2.3.82)

ul = diagu10, p10, ... p10 J&I (2.3.83)
u201‘1 u2012 ”201,N

u2 = | W20, B0, - w20, \er (2.3.84)
uéONJ “:201«,2 u26 -

and M2 is a symmetric matrix u20iJ=u20ji. In a simplest case, one can
select

p10=p10,  H20=p20, 1<ij<N (2.3.85)

which means that all the bins in the linear filter part are governed by the
same step-size constant, and that all the bin-pairs in the quadratic (filter
part are governed by another step-size constant.

The nonlinear normalized LMS ADF algorithm in the T-TB domain, under a
semi-ideal transform assumption, is summarized in Table 2.2.
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Iteration at time instant n:
y' Vetr(z m1") =27 #1 (T2.2.1)
n n n n n
fx‘“:tr[uz (z2 -R (n))T]:zTHZ 72 -E(Z2"H2 Z ) (T2.2.2)
n n n -Z’_Zt n n n n n n
IS 15 8 B
en—dn ¥ Y, (T2.2.3)
AT  =HI + 2 pul A" °E(e Z ) (T2.2.4)
n+l n n n
H2 =H2 + p2 A ‘E(e 2 2")A"° (T2.2.5)
n+1 n n n n
where: (T2.2.6)
A’=diag(E(lz_ 1|2)..4r~:(|zn le)]a(MIM) (T2.2.7)
;11:diag[pllol ;1102...;110N]®IM {12 .2 .8)
“201,1 “201,2 “201,1\1
u2= “202,1 “20242 “202,1\1 ®IM (T2.2.9)
“20N,1 uZON'2 p.ZON’N
O<p10i51 and 0<uZOi jsl/2 “201 j:uZOj § (T2.2.10)
a simplest selection: ulO:plOi, “20:“201 . i,Jj=1..N

Table 2.2 A nonlinear NLMS ADF algorithm in a T-TB domain
under the semi-ideal transform assumption

2.3.44. Some properties of the T-TB domain nonlinear NLMS adaptive filtering

algorithm

1) Decorrelation of the filter coefficients

* Linear filter part H1

Under a semi-ideal transform assumption, the linear filter part H1 is
decorrelated along the bin direction. Consequently, H1 in the T-TB domain
become N independent sub-vectors, each with M-elements.

* Quadratic filter part H2
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Under a semi-ideal transform assumption, all the quadratic filter
coefficients  associated  with  different bin-pair are decorrelated. H2
becomes N*N independent sub-matrices. Consequently, the quadratic filter
part H2 in the T-TB domain reduces to N(N+1)/2 independent sub-matrices of
size M*M. Among them, N sub-matrices are symmétric thus have M(M+1)/2
unknown elements, the remaining ones M*M elements. Hence, the time-domain
quadratic filter h2 (equivalent to a vector of MN(MN+1)/2 coefficients) is
partially decorrelated in the T-TB domain.

2) Possible reduction of the number of quadratic filter coefficients

Although the signal components are linearly decorrelated along the
transform-bin direction, there still exist NL correlations between various
bin-pairs. In general, all the different bin-pair combinations are
possible.

Fortunately, in most cases there are some constraints on the NL filter
coefficients according to the physical interpretations and the specific
domain selected. Much less bin-pairs can then be used in the T-TB domain.

* Quadratic filter coefficient constraint in the DSTFT-type T-FB domain

Consider the DSTFT-type Time-frequency Bin (T-FB) domain. For a specific
DSTFT transform satisfying the semi-ideal transform assumption, the base
function is {wjx(t)=w(t+k)cxp(i21tjt)}, where w(t)=sinc(t), and | denotes
the non-overlapping and orthogonal frequency bin, k is the time-index in
the center of the window function w. From this base function, the following
relation can be obtained

w . o = (—1w o y—1 w ) (2.3.86)
Itk vwwk) WY vk 0t

This implies that for an arbitrary bin j, only signal components from the
two separate bins j1 and jz’ j=(jl+j2), may have (quadratic) NL correlation
with the signal components of bin j. Hence, only the quadratic (filter

coefficients in the block-matrices HZjJ which satisfy the frequency
12

constraint j=(jl+j2), lSj],jZSN, can be selected. However, within each

bin-pair (thus, in each block-matrix), signal components in the different

bins are generally nonlinear-correlated along the time-direction.
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3) Convergence speed

It can be expected, for stationary signals, that the filter convergence
speed in a T-TB domain is a median value between that in the time-domain
and in the transform-domain. This is likely because, in contrast to fully
correlated data in the time-domain and fully decorrelated data in the
transform-domain (KLT-domain), the T-TB domain data under a semi-ideal
transform assumption is only decorrelated in one direction.

Analytically, the convergence speed of the NL NLMS ADF algorithm in a T-TB
domain depends on the maximum- and minimum-eigenvalue ratio (Xmax/)\.min) and

on the squared-ratio of (AQR_H) for linear and quadratic filter part,
7z
respectively. By selecting a semi-ideal transform W, the signal components

can be linearly decorrelated along the bin direction, resulting in a block

diagonal matrix R, as in formula (2.3.71). After normalization, the
7z
eigenvalue spread of (A'ZR_H) is partially reduced. Hence, from this comes
7z
to the same conclusion as above.

4) Algorithm degeneration to the transform-domain

If M=1 is selected, which means only one frame of transformed data is
considered, the algorithm degenerates to a corresponding transform-domain
filter. This is similar to the T-TB domain Linear ADF case.
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2.34.5. Relations and similarities among the linear and nonlinear filtering
algorithms in the T-TB domain and in the transform-domain

In the following we will summarize the relations among the above four
algorithms, i.e. the transform-domain linear NLMS ADF algorithm; the
transform-domain nonlinear NLMS ADF algorithm; the time-transform bin domain
linear NLMS ADF algorithm; and the time-transform bin domain nonlinear NLMS
ADF algorithm.

1) Formula relations between the linear and NL filtering algorithms
The linear filter is equivalent to the linear filter part of the nonlinear
second-order volterra filter under Gaussian assumption. This holds either
for the transform-domain, or for the T-TB domain. This implies that the
transform-domain (or the T-TB domain) linear filter is involved by the
transform-domain (or the T-TB domain) nonlinear filter.

2) Formula similarities between the transform-domain and the T-TB domaih
algorithms
If the transform-domain vectors Zn, l_{:"), and matrices H:Z), Ru(n), ul,
M2, A%, W are replaced by the following T-TB domain vectors Zn, HTn, and

matrices H2n, R, (n), u1®IM, u2®IM, A2®(MIM), W2=(W®IM), respectively, the
2z
formulas in the transform-domain algorithms directly correspond to the

formulas in the T-TB domain algorithms. This is associated with a
dimension-expansion in the transform-domain, along the time direction, to a
T-TB domain.

In (chapter 6) Appendix, the formulas of these different algorithms and their
corresponding relations will be synthesized. '

2.3.4.6. An Example

A simple example is given below to show how to use the T-TB domain NL NLMS
ADF algorithm, given sequence of data.

Given the observed signal sequence {yk} which is a desired signal corrupted
by additive noise, i.e, Y, =S, 0, as well as the noise correlated observation
{xk}. The signal S, has zero-mean and is uncorrelated with the noise n, and X,
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(nk and x ~are correlated). The data sequence {...xn SO SR xn_L...}
is Gaussian zero-mean. An unknown NL system associated X, and n_as its input
and output respectively. Thus, a NL NLMS ADF algorithm can be used as an NL
Adaptive Noise Canceler (ANC). This NL ANC uAses ¥, and X, as the primary and
the reference input, respectively, and has e=s as its output, as shown in

Fig.2.1.

primary A
input Y, € =5
reference NL
input )—(k' >-(k®)-(k ANC
Z_ "
Fig.2.1 An example of a NL Adaptive Noise Canceler
The NL ADF minimizes the following mean square error
3, = E(€) = El(y -n )] (2.3.87)
kK A S A -

Because S, is zero mean and uncorrelated with n and X it equals to minimize
J2k as below

JZk = E(nk-nk) (2.3.88)

Suppose that a T-TB domain gradient type NL NLMS adaptive filtering algorithm
will be used. The noise n_ can be modeled by a second-order NL Volterra filter
of size L=MN=6. The analysis frame length is chosen N=3, thus the time
directional order needed to compensate the system impulse response is M=2. An
orthogonal transform W3 is chosen as

W-|w w_w (2.3.89)

The data matrices before and after the transform, Xn and Zn, are arranged
respectively as follows
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] X, x M) x, ()

X - xn n-1 n-2
o | x,, ) x,, @) x, 0 X x K (23.90)

7 - z,,®mz,mz,m _ & Lt Ty '
n zZI(n) Zzz(n) Zza(n) z z Z ’ 2.3.91)

n-3 "n-4 n-§

The relation Zn=XnWT can be written as follows

wW.oOwW W
11 21 31
Z X
n n-l n2 n n-1  n2 wW_W W
= 12 22 32 =
n-3 n4 nS n3 b4 nS wW_W W
13 23 33
3 3 3
2 xn+l-iw1i Z xn+l-i 2i me-l-i 3i
= i=1 i=1 i=1
3 3 3
w X LI
_len-NH BT I ,len-Nﬂ =12 2 n-N+1-1 3 (2 3 92)
1= b= =

One iteration step of the gradient-type NL NLMS ADF algorithm now yields:

(1) Transform a new incoming data frame {x“(n) xn(n) x”(n)} as follows
(overlap=0)

1 X
gl = W3 X, (2.3.93)
13 13

n n

(2) Arrange the new transformed-data matrix Zn and the vector Zn

Delete the oldest data frame by shifting Zn_1 matrix (delete one bottom
row, and add a new row on the top). Column-scan the new matrix Zn to
obtain Zn.

(3) Calculate A2 zn
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2 z
Al 02 02 1.1
z
2l
25 2 z
A Z“— 02 A2 02 Z1,2 (2.3.94)
22 '
2 1.3
0, I, A,
2.3
n
, [2Elz 17 o
where A% = " .| =1 3
¢ 0 26|z |

(4) Calculate the linear filter output 9{‘}”
y\" = HIZ (2.3.95)

(5) Calculate the quadratic filter output y*

T ¥ T T
ZIZ] Z12'2 ZIZN E(lel) 0
T ) T T
9:2) = tr(H2 ( 2,2 4% 270 | E@ZZ), D)
i o : - " i
ZNZ] Zsz ZNZN n 0 E(ZNZN)
(2.3.96)
(8) Calculate the filter output error e (the estimated signal ’s\"=en)
e =y-y-y? (2.3.97)
(9) Update HT
Hl],) Hll,l ulox 0 )
", ", UL« TR IS
M 5
Hln.z = Hl:,z + 26:n 0 2 110 0 A? Zn
HL,, HI,, I . N N
B ulo. ™
Hlm Hlm 0 0 ! 4 10
H1 H1 s,
23 Z(n+1) 2N (n) : d
0< pleSI j=1.3 (2.3.98)
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(10) Update H2
H2 = H2 + 20 eﬂ(A‘22n)(A'22n)T

H21.1 H21.2 H21.3 H21_4 H21_5 H21'6‘
H22,1 sz.z H22.3 H22‘4 H22‘5 H22'6
e 3 H23'1 H23,2 H23_3 H23‘4 H23,s 1-123'6
" H24.1 H24.2 H24,3 H24.4 H24.5 H24,s
H25,1 H25'2 HZ” H25'4 H25'5 st,s
H26,l H26.2 st.s H26.4 H26,5 H26.6 (n)
0<u20<1/2 ( here using p120=p20i‘j 1 £, N) (2.3.99)

(11) Setting a new time instant
n:=n+N, repeat (1)-(10).

Further discussions:

(DIf the time-DCT bin domain is chosen, only the sub-matrices H21.1 and H21_2
(}{21‘2=H22'1), corresponding to the bin-pairs (1,1) and (1,2), can be
selected, because of the frequency constraint 1<(i+j)<3. Thus, step (10)
can be simplified.

()If the time-WHT bin domain is chosen, only sub-matrices the HZLZ, H21‘3
and H22‘3, corresponding to bin-pair (1,2), (1,3) and (2,3), need to be
selected as the quadratic terms due to the constraint 1<(i®j)=<3. Thus,
step (10) is simplified because only three sub-matrices in H2 are
concerned.

2.3.4.7. Summary

In this section, we have derived a new T-TB domain nonlinear (Volterra
type) NLMS ADF algorithm under a semi-ideal transform assumption. It actually
is a time-transform domain NL NLMS FIR filtering algorithm. The complexity of
this algorithm is between that of the corresponding algorithms in the time-
and in the transform-domain. Many attractive properties holds in the T-TB
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domain, such as:

* The linear and quadratic filters are decoupled, which is a consequence of

the time-domain Gaussian input data assumption and the linear transform
property of any orthogonal transform W.
Consequently, the linear filter part of this NL filter has the same
properties as those in the linear filter in section 2.2.3. In fact, the T-TB
domain [linear filtering algorithm is a subset (the linear part) of the
corresponding nonlinear filtering algorithm.

* The signal components are fully decorrelated along the bin-direction,
provided that a semi-ideal transform is selected. Consequently, The filter
coefficients become independent blocks of sub-vectors/ sub-matrices, which
are much easier to be solved.

* Quadratic filter coefficient number can be greatly reduced depending on a
specific chosen transform W.

* The convergence speed is in between that of the time-domain and that of the
transform-domain for stationary signals.

* The algorithm is suitable for filtering nonstationary signals and signals
associated with a long impulse response length.

* Signal overlapping and windowing can be used when needed (similar to section
2:2.3);

* The T-TB domain algorithm can degenerate to a transform-domain one.

* A T-TB domain nonlinear NLMS ADF algorithm is a generalized form
- It involves the T-TB domain linear NLMS adaptive filtering algorithm, and it
can degenerate to the transform-domain linear and NL NLMS ADF algorithms.

. By neglecting the quadratic filter part in the T-TB domain (or in the
transform-domain) NL algorithm, the algorithm degenerates to the T-TB domain
(or to the transform-domain) linear version.

. By finding the similarities between the corresponding variables (vectors,
matrices) and substituting them into the corresponding formulas in the T-TB
domain (or in the transform-domain) the transform-domain (or the T-TB
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domain) algorithm is then obtained (as described in section 2.3.4.5). It is
obvious that a T-TB domain nonlinear NLMS adaptive filtering algorithm is a
general form of the transform-domain linear and nonlinear NLMS algorithms.
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2.4. RECURSIVE LEAST SQUARE LINEAR ADAPTIVE FILTERING

A Recursive Least Squares (RLS) sliding-window covariance lattice filter
has been extended with the new function of adaptive window-length based on the
vector space geometric projection. Such an added new functionality improves
the filter performance of tracking nonstationary signals, especially when the
signal statistics have non-constant variation speed. )

2.4.1. Introduction

In section 2.2 and 2.3, we have investigated LMS type adaptive filters. For
the purpose of processing nonstationary signals and signals with a long
impulse response length, we have concentrated -mainly on developing new
time-transform domain algO{ithms.

However, in some situations, nonstationary signals to be filtered have fast
time-varying statistics. Thus, fast convergence is the main problem. A filter
with relatively slow convergence (e.g. an LMS type filter) could always remain
in the adaptation process, i.e. far from the ideal solution. In such a case,
"one should choose other alternatives, such as RLS type filters.

RLS filters have drawn much attention due to their fast convergence, the exact
Least Square (LS) error calculations, and not being hampered by Gaussian data
limitation (needed for the nonlinear LMS filters).

Selection of LMS or RLS type of filter: tradeoffs between convergence speed
and filter complexity

As has been mentioned before, the LMS type of filter enjoys simplicity and
robustness. The convergence speed of LMS filters can be improved by using a
normalized version of some properly selected transform domain. On the other
hand, RLS filters generally have faster convergence. They perform exact Least
Square (LS) calculations at each time instant, and are free from the
restriction to Gaussian input data. However more calculations are usually
needed for the RLS type of filter.

Hence, the selection of an LMS type or an RLS type of adaptive filter depends
on the application demands. Generally speaking, when a nonstationary signal
has slowly changing time-varying statistics, one should choose an LMS type
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filter; for fast changing nonstationary signals an RLS type filter should be
selected. The main tradeoff for selection is the convergence speed and the
algorithm’s complexity.

24.2. RLS sliding-window covariance lattice filter with an adaptive window
length

Among all kinds of linear RLS adaptive filters, the lattice filters are
particularly attractive[24]. One of their main advantages is the mutual
orthogonality of filter outputs at different orders. Thus, the filter is
decoupled among different orders. This implies that a globally optimal filter
can be implemented by choosing the local optimum for each order. A second main
advantage is the numerical . stability of this filter under finite length
calculations, and the low sensitivity of the filter parameters to small
disturbances such as caused by quantization. The difference among the various
kinds of lattice filter results from the use of different windowed data for
filter =~ parameter  estimation.  The  sliding-window  covariance lattice
filter[24,75] uses a constant-length data-window, which slides forward at each
time instant. However, when signal statistics are time-varying  with
non-constant changing speed, it is desirable that the window size can be
adjusted at the same time.

Motivated by this, we have developed a new adaptive sliding-window covariance
lattice filter algorithm, which is an extension of the previously existing
filter with constant size of the sliding window [24,75]. The basic idea is
that the window length can be decreased recursively if the time-varying speed
of the signal statistics is increased in a short time duration. While the data
window length can be recursively increased when signal approaches
stationarity, so that the error-variance can be reduced.

The key for the derivations is to find iterative relations among the variables
corresponding to the different window w(t) and w(t+1) in the successive time
instant, by using geometric projection update formulas. The corresponding
derivations are not presented here -the interested reader is referred to [29]
for further details.
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2.5. RECURSIVE LEAST SQUARE NONLINEAR ADAPTIVE FILTERING

A new RLS Volterra type of nonlinear adaptive filter  with
adaptive-sliding-window is developed in this section.

By introducing a finite data memory, and allowing recursive adaptation of the
window-length of this memory, the new RLS NL filtering algorithm provides
versatile capabilities for tracking nonstationary signals associated with a NL
time-varying model having non-constant rate of changing speed.

2.5.1. Introduction

There are many different types of NL filters. We will again concentrate on the
NL Volterra filter due to the same reason mentioned before.

For RLS NL filters, very little investigation has been done on adaptively
tracking the time-varying NL parameters. Recently, Mathews and Lee[58]
presented a fast RLS adaptive Volterra filtering algorithm, and Giannakis and
Dandawate proposed a RLS NL adaptive noise canceler[26,27]. In both
algorithms, prewindowed exponentially weighted data is used.

Often, the signal to be filtered is nonstationary and its time-varying
statistics has non-constant changing speed. Previous research on RLS NL
filters was mainly associated with prewindowed data. It becomes unsuitable to
memorize the infinite amount of past data in the nonstationary case. A
corresponding recursive algorithm associated with an adaptive finite window
length[32] is developed in this section.

The remaining part of section 2.5 will be organized as follows. First the
adaptive NL RLS algorithm with a Sliding Window (SW) of constant length will
be derived. Then the algorithm will be extended to an adaptive-window length.
The simulation results will demonstrate the performance of the filter, with
comparisons to that of the corresponding prewindowed one. Finally, some
concluding remarks will be given.
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2.5.2. RLS nonlinear ADF algorithin with an adaptive sliding-window
2.5.2.1. The algorithm for constant window length

Consider the general problem, where a NL filter needs to be explored. The
nonlinearity can often be represented by a Volterra series expansion. Using a
second-order Volterra kernel, the desired response dn can be approximately
represented by the output of a truncated N-order filter

N N
- (1) (2)
9n _h0+ )y hm (n)xn-m +1 + X hm m (n)xn-m +lxn-m +1 25.1)
m =11 1 mo.m,=1 U172 1 2

or equivalently, in vector form

¢ =hn'z (2.5.1)

n b ¢ e+
—(HD (1) (2) (2) T _ (1 KT _ T

where b =hP@n V@ M @aD@ = b® b z-x xex)"

® is the Kronecker product, and )_(n=[xn X X N+I]T' The Least Square (LS)
estimation under consideration is to find at each time instant n, a sliding
windowed, RLS solution of the optimal coefficient vector h, such that the

following cost function is minimized for a fixed Window Length WL=(L+1)

n

J =¥ @y _ (2.5.2)

o k=n-L
For a time-varying NL system, the WL is chosen such that signals inside the
window can be considered stationary. By taking partial derivative Vh(Jn) with

respect to i_ln and setting it to zero, it can be proved that the optimal
solution is

h =R'P (2.5.3)

T T
XX XXX
XBX)X] KOX,) (XX

n n )-(k
2 ykzk= Z yk
= =n-L )-(k®)-(k

(2.5.9)

If the signal is stationary, (2.5.3) is independent of time instant n,
otherwise it is an optimal solution with respect to the given data inside the
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window. A pseudo matrix inversion R: is used in (2.5.3) when Rl'll is singular
or ili-conditioned. (2.5.4) can be expressed in the recursive form as

R =R +2 7' -2 7' (2.5.5)

n+1 -n-L -n-L

Z 5
-n+l -n n+l -n+l yn—L -n-L

In order to derive an update formula for the l_1n+l using present data x = and

n+1

the iteration results obtained at time instant n, the following auxiliary
variables are introduced

_ T
R“ =R -2 Z 2.5.7)
?n = li)n ) yn-L Zn-L (2.5.8)

with these, (2.5.5) and (2.5.6) can be expressed as follows
Rn+| = Rn *+ Zn+1 anl (259)
-n+l = ?n i yn+l -n+l (2‘5'10)

next, by using the following matrix inversion lemma
(A + BCD)' = A" - ATBDA'B + C")'DA" (2.5.11)
and choosing the following associations to (2.5.11)
A=R,B=2 ,C=-1,D=2 (2.5.12)
we obtain
R 2L 2R
R'=R'+ -2~ ° (2.5.13)
1 - Zn-LRn Zn-L

h= R'P can then be expressed as
et B Bt B
h = (R"\ + “% “l L )(}_’“-yn_LZ“_L) (2.5.14)

1 - Zn-LRn zn~L

After simplification, this becomes

h=h -7 2.5.15)
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where the gain Kn and the backward filter residual T]: are given by

R 'z
R = - z; ‘“;1 - (2.5.16)
-n-L n -n-L
71: = Yar " Z:-L b, @515
Similarly, using (2.5.9) and making the following associations
A=R ,B=Z ,C=1,D=2"_ (2.5.18)

to (25.11), the update formulas for K ., R, h , and the forward
prediction error c:” can be obtained. Table 2.3 summarizes this RLS SW NL

filtering algorithm.

Algorithm 1: constant window length
Recursive step at time (n+l): (WL=L+1)
R—l
K = B Bk (T2.3.1)
B 1=2" W Z
-n-L n ~n-L
=-1 > T -1
R = (I + K 2Z ) R (T2.3.2)
n -n —n-L n
b T
n, =y, -%Z ,h (T2.3.3)
A =h -K 2° (T2.3.4)
-n -n -n n
Rz |
K = T (T2.3.5)
Bl 1527 ®Pag
-n+l n ~n+1 )
o (1T -K zT ) R°' (T2.3.6)
n+1 “n+1 —n+1 n
f T o
n+1- yn+1 - Z'n+1 13n (T2.3'7)
= h + f (T2.3.8)
“n+l -n “n+1 n+1
output : r_xml (WL=L+1)
T
(Where Zn+1_ )—(n+1 >-(n+1® )—(n+1
and )-(n+1 = [xn+1 xn "'Xn—N*Z'.I )

Table 2.3 RLS sliding-window nonlinear ADF algorithm
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Remarks

RI.

R2.

R3.

R4.

Generalize to the p‘h—order NL filter

To generalize an NL filter algorithm to a p‘h order Volterra kernel, one
only needs to rewrite the vector Z as follows

Z-X, X®X, .., X ®X ®..8X ®X |’ (2.5.19)

- .
4

The other formulas in the algorithm will remain the same.

Trade-off between tracking capabilities and calculation cost

The improved performance is obtained at the price of more calculations.
The amount of calculations is almost doubled compared to the prewindowed
method. However, it is still attractive for a NL system with low-order
kernel, with partial NL coefficients, and with non-constant rate of
changing time-varying speed.

Initial value
The initial condition for the algorithm is t_10=0, Ro= d I (8 is a small
positive constant)

The filtering domain and the related complexity

In the linear situation, because of the fast convergence speed of the RLS
algorithm, it is usually not necessary to filter signals in the
transform-domain. However, for a NL filter, the situation is slightly
different. One might be interested in using a NL filter in other domains,
such as in the frequency-domain[65]. Some benefit may then be obtained
from performing filtering in the transform-domain. For each selected
transform, as mentioned before, the number of NL coefficients may be
significantly  reduced, compared with the situation that all NL
coefficients in the time-domain filter are chosen.

For example, in the frequency-domain only the p'h- and lower-order NL

coefficients H” r(n). 1=2,3...p, satisfying the frequency constraint
1271

0< ijs(N-l), will be contained in the filter (where N is the total

frequency bin number, p is the order of Volterra kernel).
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Discussion of the Gaussian input case

If the input variable x has Gaussian distribution, all the odd moments of X
disappear. Due to the diagonal matrix Rn(2), the second-order Volterra
filtering algorithm can be simplified. Below, the formulas associated with the
Gaussian input case will be derived.

By taking partial derivatives to (2.5.2) with respect to h and setting them to
zero, the detailed equations can be re-written as follows

]
™

. [x h (1)
v h X x ®x)" |
0 kzn_L{X@( o, @) o}

-k -k k

o (9 X X h, (1)
=3 {; " S0 X xex)T | }
R RS- e ) B b8 b, (2)

/

P [R@ R®|[6,

P (2) R 3) R 4)]|h (2)

=0 (2.5.20)

Where R@)= X XX, R(=2 XBK)X, R (9= (X BX)X 8K,

=n-L k=n-L k=n-
P=% yX.P@=3 y(X6X).
k =n-L k=n-L

Equation (2.5.20) is equivalent to the following two vector equations

P(1)- R h(1)-R@h@) =0 2.5.21)

l_’n(2) - Rn(3)l_1n(2) - Rn(4)l_\n(2) =0 (2.5.22)

Hence, general, l_1n(1) and [1"(2) are coupled as indicated. However when )_(n is
zero-mean Gaussian, all the odd moments of X are zero, so the equations can
be simplified to

P (1) R (2) O ||h (1)

P(2) O R (4|h®

=0 (2.5.23)

ie.
I_’n(l)- Rn(2)l_1n(1) =0 (2.5.24)
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?“(2)- Rn(4)}_1“(2) =0 (2.5.25)
which implies that i_ln(l) and l_ln(Z) are now decoupled. The optimal
solutions are then given by

h (D =R@'PM, h @ =R@'PQ (2.5.26)

Due to the decoupling, the Rn matrix becomes diagonal, and the third order
terms of )_(n can be neglected. Consequently, some calculations in formulas
(T2.3.1) (T23.2) (T2.35) (T23.6) in Table 23 can be simplified
respectively as follows

R'(2) O X .
R 0 R'@]|[X, X )
: : (2.5.27)
SO X RI@X x, eX| OTRIGX, OX )
R'a o R| . SR O
6 =[I+ X' X ®X )]] " (2.5.28)
0 Rnl(4) 2 K(z) n-L n-L n-L O Rn1(4) .
R'@ o |fx
K, (D o K'®w ||, e,
(2.5.29).
@ e xR X 0, DTRIGK,, 8, )
R'@2 o0 K(1) , R
S =[12- X x| ex ])T]] " (2.5.30)
0O R, (4 K@| vt R4

2.5.2.2. Window-length adaptation

In order to improve the tracking capability, the algorithm must be able to
adapt its WL during iterations.

In this section, we will discuss algorithms for:
m Recursive window length decrement
m Recursive window length increment

- a forward increment
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- a backward increment
m The decision on when to change the window length

(a) Recursive window-length decrement

When the time-varying speed of signal statistics speeds-up, the corresponding
WL should be decreased such that less old data will become used.

In order to decide if the WL should be decreased, a detector will be applied
which calculates the short-time average residual of the filter and decides if
this WL decrement procedure will be called.

Description of the window-length decrement procedure

If WL decrement procedure is called at time-instant (n+1), it decreases the WL
recursively by moving the window forward by one (from time instant n to n+l)
and eliminating the oldest m (L>m=21) data samples from the previous window.
Noticing the following identities by their definition

Rn=Rn.Lrl' ?n=f-’n.L-l' i:;ru=l-:ln,L~l' gn= ~n,L-1 (2.5.31)
Rn+l,=Rn+l.L' [-’ml:?ml,L’ hn+1=bn+l,L’ I-(ml:I*(Ml,L 2239
and revising (2.5.5) and (2.5.6) to
T - T
n+l,L-m= Rn.L ¥ Zml Znﬂ -i§=:0 Zn L+i Zn L+ (2533)
m
li,ml,lfm = l--)n.L R/ -iE' yn-L+i' -;l-L-ri (2534)

n+l -n+l

the WL decrement procedure can be derived directly from the formulas
(2.5.13-2.5.17). Table 2.4 summarizes this procedure.
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Recursive step at time instant (n+1):
on entrance: WL=L+1
to decrease WL by m (msL)
1) call algorithm 1 (constant WL:time n+1)
2) - For i:=1 to m do :
-1
R .= L (T2.4.1)
ne 1-27 R’
“n+l-L n+l —-n+l-L
R ‘=R '+ R T R ' (T2.4.2)
n+1 n+1 “n+l —n+l-L n+1
b T
T,n*l yn+l—L_ gn+1—L t;1n+1 (T2'4.3)
~ ~ b
1:‘ln+1_ 1:1n+1— Kn+1nn+1 (T2'4'4)
h « h ! R!
“n+ !l “n+l n+1 n+1
L € L-1
L end; {for}
on return: WL ¢ WL-m
output: bn+l

Table 2.4 Recursive WL Decrement Procedure

(b) Recursive window-length increment

As the time-varying speed of the signal statistics slows down, taking more
data for estimation can reduce the error-variance.

A detector will be used to check whether this window-length increment
procedure will be called.

Description of the window-length increment procedure

If the WL increment procedure is called at time instant (n+1), it will
increase the WL by m recursively as follows.

Two different approaches, forward and backward WL increment, are included if
m>1 is selected. In principle, the WL will be increased by one at time instant
(n+1), because the algorithm remembers only the data within the present WL.
This is equivalent to one iteration step of the prewindowed algorithm with
A=1.0.

However, one may choose the WL increment m>1 at each time instant (n+1) by
combining it with the backward WL increment, at the price that more than the
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current WL of data should be stored in memory. Thus, the WL increment
procedure is performed by adding one present new data sample and (m-1)
successive old data samples preceding the previous window. Using the similar
method as in the WL decrement procedure, the WL increment procedure can be
easily derived from the formulas (2.5.13-17), by noticing the identity
relations in (2.5.31) and (2.5.32) and revising (2.5.5) and (2.5.6) to

_ T mel T
n+lLem Rn.L * Zml Zn+1 % i§l Zn-l..-i Zn-L~i (2.5.35)
m-1
-n+1.L+m= Ii,n,L & yn+l Znﬂ iEI yn-L—i Zn-L-i (2536)

Table 2.5 summarizes such a combined procedure with arbitrary ( L>m>1 ) WL
increment.

In Fig.2.2, a block diagram for the full RLS nonlinear adaptive filtering
algorithm with an adaptive sliding-window is given.
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recursive step at time instant (n+1):
on entrance: WL=L+1
to increase WL by m (mz1)
(1) Forward WL increment:
(increase WL by 1)
R_l “n+1
k = il - i — (T2.5.1)
nr 1+ Z R
“n+l n “n+1
Yo R R™! (T2.5.2)
n+ 1l n “n+l1l —n+l n
£ T
n+l yn4l‘ “n+l -n (T2.5.3)
=h + K £ (T2.5.4)
“—n+1 =i “n+1l n+1l
L « L+
if (m-1)=21 then do (2):
(2) Backward WL increment:
- for i:=1 to (m-1) do
R\
R = el (T2.5.5)
He 1+ R’
-n-L n+l =n-L
R’ =R -K z" R} (T2.5.6)
n+l n+ 1l “n+l —n-L n+1
53 25
en+l— yn—L_ Z'n—l.. “n+1 (T2. '7)
A =h +K B (T2.5.8)
“n+ 1 “n+l “n+l n+1
L e L+1
R'«R' , n « h
n+1 n+1 “n+1l ~n+1
L end; {for}
on return: WL ¢ WL+m
output: h

“n+l

Table 2.5 Recursive WL Increment Procedure
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input new data X ('I‘1 T2 T3: given thresholds)
X
Clculate: 2 = [ ~n ]
n X oX
i} -n
X =[x x X ]T
=n n n-1 n-L
1 S
Calculate: £ r lcn_il)
=1
K:= n Div M
If (n Mod M)=0 ?

—

+

1

Calculate:* short-time average residual energy

kM-1

)

l=(k~1)M

£

* short-time error-variance

M>S

2 1 ku-t ~ .2
o w, Lo (eyme)
={k-1)M
1 E le () >T 2 * WL Decrement
s 7 n-i 1 W:=-1
+
(52<T ) and (02>T ) and We-1 WL Increment .
k T2 k™73 W:=1

Constant WL procedure
W:=0

=
n:=n+1

Fig. 2.2 Block diagram of a RLS nonlinear adaptive filter

with an adaptive-sliding-

window
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2.5.3. Simulations and results

Simulations have demonstrated the tracking capability of the algorithm. In the
simulations, the available observation signals are Y, and X, where ¥y, =5,
The signal S, is uncorrelated with the noise n and X, while n and X are
mutually correlated. As an application of NL ADF, aANL Adaptive Noise Canceler

(ANC) with an adaptive WL is then used to estimate S,

The desired signal S, is produced by passing zero-mean unit-variance Gaussian
random noise through an AR(l) filter with pole at -0.5. The noise n is
produced by passing a zero-mean unit-variance exponential random process X
through a linear-quadratic filter. The output of the linear part is obtained
by passing X, through a MA(2) system with the time-varying -coefficients
(h:”,h;"), while the output of the quadratic filter is obtained by squaring
the linear filter output, as depicted in Fig.2.3.

zero-mean white opserved
Gaussian N(O0,1) s, signal
i B ©
Yy
zero-mean exponential T
random process N n,
> MA(2)
X, L=
()

Fig. 2.3 The observed signal model used in simulations

The parameters of. the time-varying NL filter, as listed in Table 2.6, are
changed by a step function at t=3000. The SNR = E(sf)/ E(nf) is set to -20dB.
The NL ANC structure is the same as has been shown in Fig.2.1, with Y, and X
as the primary and the reference input respectively.

The estimated filter parameters are compared with those obtained from the
corresponding prewindowed filter (with A=0.9975). Fig.2.4 shows the simulation
results of this example.
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b) e

2
h( )
1,2

VL-SW

(©) F? (d)

Fig. 2.4 Estimation of the parameters of a nonlinear
time-varying system (5 runs, SNR=-20dB)
* Upper part: prewindowed (PW) method A=0.9975
* Lower part: variable-window-length sliding window (VL-SW) method
* Straight line: ideal values (as listed in Table 2.6)
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1 1 2 2 2
h()h()h() h() h(l

0 = t= 3000|1.23|-0.45(1.5129|-0.5535|0.2025
3000< ts 6000|1.73| 0.05|2.9929| 0.0865]0.0025

Table 2.6 Time-varying nonlinear filter parameters

2.5.4. Concluding remarks

A new RLS NL ADF algorithm with an adaptive-sliding-window has been developed.
It uses a finite but adaptive size of the data window. The adaptation of the
WL is performed recursively in the algorithm.

Due to the adaptive window length, this algorithm can provide versatile
functions and faster convergence speed for tracking nonstationary signals and
NL systems. Especially, if the statistics of nonstationary signals or the
parameters of NL systems are time-varying with non-constant changing speed,
adjusting this window size during recursion when needed, is a very effective
method. However, this improved performance is obtained at the price of more
calculations.

2.6. APPLICATIONS

2.6.1. Nonlinear adaptive system identification

In many situations, we want to estimate an unknown system from the measurement
of its input and output signals. This problem is associated with the system
identification. When the linear/nonlinear system is time-varying, the task is
associated  with  adaptive  linear/nonlinear  system  identification  from
nonstationary measurements.

Adaptive system identification has wide applications. It is often combined
with the controlling of an industrial process. Fig.2.5 shows a schematic block
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diagram of a  typical identification-control  process using - such a
linear/nonlinear adaptive filter. Once the unknown system is estimated from
the measurements, this system can then be used to control some (un)desirable
behavior. For example, it can be used for the short-circuit protection of a
high-voltage line. The system is time-varying and is changing slowly due to
many factors, such as the number of users, the temperature, the time period
(busy or idle), etc.

observed observed
input output
e
X} rinknown N system v, } o) A .
— 5 + >
H (2)
NL _
= 3 NL system I
>~ parameter estimation v}
; / Y
NG T statistical -
ey 173’; em measure and decisionj:control
Y Y [T error |processing L—)
+

Fig.2.5 A schematic block diagram of
adaptive system identification and control

Previous work on adaptive system identification is mainly related to linear
system model, represented commonly by a rational function such as an AR
(AutoRegressive), MA (Moving Average) and ARMA process. Estimation of model
parameters is the main task of modern linear system identification. '
Unfortunately, many practical systems are NL, thus a linear system
approximation often can not be used. The previously given NL adaptive Volterra
filter with an adaptive-window can, in those cases, efficiently be applied to
adaptive NL system identification.

For NL adaptive system identification, the estimation of model parameters
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given measured input {xn} and output data {yn} is considered. The NL Volterra
system which represents the input-output relations can then be estimated by

N N
$ =h+ ¥ h'Ym)x + Y  h'?Y (m)x
n 0 m n-m_+1 m_ .m
ml=l 1 1 ml,m2=l 172

n-m +lxn-m +1 (261)
1 2

Under the Least Square (LS) criterion, the adaptive system identification is
equivalent to finding an LS solution of the time-varying coefficient vector l_1n
of this system, which minimizes the cost function Jn

—_— S A 2

J =X (y, -vy) (26.2)
k=n-L

Remarks: From the characteristics of a specific system, one may choose only a

part of the NL terms. As in most situations, selecting all the NL
terms is neither economical nor necessary.

2.6.2. Nonlinear adaptive noise cancellation

The NL ADF algorithm developed above can be used as NL. ANC. A similar example
as in chapter 2.3.4.6. has been used. Suppose that the observed signal,
Y, =S, 0, is the desired signal S, corrupted by noise n. Another observation
L given which is correlated with n. The signal S, is zero-mean and
uncorrelated with the noise n and X The noise n and X, are mutually
correlated, which can be modeled by an unknown NL system with X and n as

input and output respectively.

In this situation, we need to estimate signal (ls\k} from the noisy observation
{yk}, given the noise correlated observation {xk} as a reference signal.
Similar to linear ANC, a NL ANC can be used, with y and x_as its primary and
reference input, respectively. The NL ANC is designed to minimize the
following LS objective function

no=3,- hZ )’ (2.6.3)
k

= T o T .
where Zk—[)_(k )_(kt8>)_(k )_(k®)_(k®...®)_(k®)_(k] and )_(k—[xk X ...xk_NH] . Notice
that S, is zero-mean and uncorrelated with n and X, Hence it is equivalent

to minimize 12 below
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Try \2
2 = - h .6.
2 )k: (n - h'Z) (2.6.4)

where 9)( = ﬁk = I_\IZk is the filter output. The above LMS or RLS NL ADF
algorithm can be used directly for NL adaptive noise cancellation, as shown in
Fig.2.6.

primary ) ~ 2
input Yz St oy - _+ = B0
ref NL < i
erence , _ T
input Ek_[}—(k )—(k®)—(k] ANC 5
Z ¢

Fig.2.6 A block diagram of a nonlinear adaptive noise canceler

For the RLS algorithm above, an extra calculation should be added to calculate
A
the forward filter residual efm (which is the estimated desired signal sm)

f _ _ 7T
€ 1 yn+1 Zn+ll-1n+] (265)

Remarks
(1) Relations between the adaptive system identification and the ANC

We can regard the above NL adaptive noise cancellation as the problem of
identification of a NL system having X, as input and n_ as output. Thus,
the NL ANC is directly associated with an NL adaptive system
identification.

2.6.3. Speech-like noise reduction

In chapter 4, we will show another application of the NL ADF algorithm to
speech-noise reduction and speech intelligibility enhancement.
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CHAPTER 3

ROBUST PITCH ESTIMATION

The speech fundamental frequency (pitch) can be accurately estimated by
using pitch information existed within each speech frame and among the
successive speech frames.

In order to do so, a new two-step algorithm will be built. First, a
pseudo-perceptual pitch estimation algorithm has been developed as a coarse
pitch candidate estimator from each frame. It simplifies the perceptual method
from the signal processing point of view, while maintaining robustness.
Secondly, pitch contours are modeled by their stochastic characteristics using
Hidden Markov Models. The parameters of HMMs can be trained by using the data
from noise-free speech signals. A detailed-algorithm uses these models for
pitch contour estimation from candidates under a Maximum Likelihood (ML)
criterion. Some simulation results are included.

3.1 Introduction

Speech fundamental frequency (or pitch), which is defined as the reciprocal
of the interval between two vocal-cord impulses, is one of the most important
features of voiced speech signals. Pitch estimation is one of the most
important tasks in speech signal processing. In most cases, one is concerned
with a pitch contour (we call the dynamic pitch as a function of time the
"pitch contour”) rather than a single pitch period. An accurate representation
of voiced-information is often of paramount importance in many application
aspects such as speech synthesis, coding, compression, enhancement, speaker
identification, etc.

Pitch estimation from stationary frames of clean speech signals is a
relatively easy task. Many algorithms[10,11,55,61,81] have been successfully
developed to handle such a situation.

However, accurate pitch estimation remains a difficult problem in more

80



Robust Pitch Estimation

complicated situations. The difficulty arises when the speech signals are
contaminated by various kinds of background noise such as white noise,
interference speech and background music, etc, and during transition frames of
vowel-vowel/vowel-consonant in clean speech signals. In previous studies,
several robust pitch estimation algorithms have been proposed[39,89,101] for
solving this problem.

In order to find a robust solution, we will first review some previous
studies and search some common weak points which might be helpful for our
consideration. Then a new pitch estimation algorithm will be formed, following
the line of being consistent with the human auditory global processing, using
as much as possible the source information, and using a-priori general
knowledge of pitch contours.

This section will be organized as follows. First, we will describe the
problem addressed in this research, and review some of the pitch estimation
algorithms directed to robust pitch estimation. After analyzing the weak
points of the existing algorithms. and overviewing human pitch perception
outlines, a basic skeleton of a new pitch estimation algorithm, a two-step
algorithm consisting of coarse and detailed estimation, is then formed. Two
parts of the algorithm will be described in detail separately, together with
some brief introduction into the basic theory behind. The simulations are
described in detail and some preliminary results are included. Finally
discussion and conclusions will be given.

3.2 Pitch contour estimation from noisy speech signals

A large part of the speech signals is voiced, which is caused by the
periodic  excitations of the human vocal-cord. The frequencies of these
excitations change slowly and continuously in speech sentences, and typically
fall in the range between 50 and 400 Hz. Consequently, quasi-periodicity is an
important characteristic for voiced-speech signal analysis.

In many practical applications, reliable and accurate estimation of the
pitch periods from the continuous frames of a speech sentence (thus estimation
of a pitch contour) is needed. Often, the speech signal is contaminated by
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noise or is in some transition state. Hence a robust estimation algorithm is
needed. The pitch estimation problem addressed here is to find such a robust
algorithm. More specifically, it can be used to estimate one speaker’s pitch
contour from (white and colored) noise contaminatcd‘ speech, or to
simultaneously estimate multi-speakers’ pitch contours from speech corrupted
by another background interference speech.

As a direct link to our research in speech separation, we need an algorithm
which can simultaneously and accurately estimate the pitch contours of both
the target and the interference speech, from co-channel speech signals, with a
wide range of Target-Interference Energy Ratio.

3.3. Review of the previous studies on robust pitch estimation

Robust pitch estimation is still an active field due to the increasing
demands in speech processing.

Classical pitch estimation algorithms such as short-time AMDEF (Average
Magnitude  Difference  Function),  short-time  autocorrelation  of  linear
prediction residuals with center clipping, etc[39,81], can only handle
stationary and clean speech. Recently, a lot of algorithms with increased
complexity have been developed to cope with these difficult situations. Some
of these algorithms will be reviewed briefly. They are roughly categorized
into two parts: the signal processing-based approaches and the pitch
perception-based approaches. The reasons to review these algorithms are
twofold. One is to find some common weak points in order to build an improved
algorithm. The second is that some of these algorithms can be selected after
proper modification to provide weighted pitch candidates, which can also be
used in the first part, the coarse estimate part, of our new algorithm.

(1) Signal processing-based approaches

* Histogram formed by spectral peak submultiples

Parson[71] has proposed a simultaneous two-speakers’ pitch estimation
algorithm at TIR around OdB. The algorithm is based on the principle that
the spectrum of voiced-speech has peaks concentrated at the pitch harmonic
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frequencies. In this algorithm, all narrowband filtered spectral peaks are
assembled. A histogram collects all possible integer submultiples of these
peaks. The maximum peak value in the histogram is selected to be the pitch
of the first speaker. Then a second histogram is formed by using only those
peaks which are not in the harmonic frequencies of the first pitch period.
An improved approach can be obtained by using a sinusoidal model to
represent pitch harmonics[60].

* Cepstral-based pitch estimation (by linear and nonliner vocal-tract models)

According to the simplified speech model, a speech signal is produced by the
convolution of vocal-cord excitations (source) with the vocal-tract function
(system). The cepstral-based method performs homomorphic deconvolution of
these two elements. Because vocal-cord excitations change relatively faster
than the vocal-tract function, it is then separable in the cepstral domain
by using a lowpass and a highpass filter respectively. The output of the
highpass filter can be used for pitch estimation. A multiplicative cepstral
domain analysis for pitch estimation using a nonlinear vocal-tract model[41]
is reported to give improved performance in pitch extraction from noisy
speech.

* Pitch predictor

A first-order predictor, which is a function of both the predictor

coefficient b and the pitch period delay M, can be used[48,82]. Using a
N-1

Minimum Squared Error criterion E(M,b)= % [x(n)-bx(n-M)]Z, the iterations

n=0
can be done by an Estimation-Maximization approach (VMie [possible pitch

period realm], calculate the corresponding optimal bi and E(Mi,bi)‘ The
pitch period is chosen by ‘the argument maximum M=argmax E(Mi,bi) ).
3 M .

* Super resolution pitch determination

By defining two successive pitch periods of speech signals as the amplitude

modulated version of each other wusing the similarity model X (t,to)
- 0
=a(to)y( (t,t0)+c(t,to), pitch  period To is selected from the argument t
0
which is associated with the minimum normalized squared error J [62]
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* Maximum Likelihood (ML) pitch estimation

?iven noisy speech signal r=s+n, ML estimation of the pitch period [105]
P is equivalent to the selection of a P such that the energy of the
estimated signal Eg(P) is maximized. Or equivalently, it is equal to
minimize the noise variance G:(P). The assumptions that speech signals are
periodic with the relation = 4 ned P and the noise n is white and
Gaussian are needed.

(2) Pitch perception-based approaches
* Perceptual pitch estimator

The perceptual pitch estimator[89] combines a cochlear model with a bank
of autocorrelators. In this algorithm, a group of bandpass filters is used
to emulate the cochlear filters, each filter centered at its characteristic
frequency (uniform in a Bark scale), with a specific critical bandwidth, and
with the frequency response similar to the tuning curve of auditory nerve
fibers. The filter output is then halfwave rectified, and passed through a
multi-channel coupled-AGC to compress the dynamic range. The output of each
cochlear filter is then subjected to short-time windowed autocorrelations,
which can be expressed by a two-dimensional correlogram at each time
instant. A pitch detector synthesizes the coincidence appearance of those
correlation peaks across all channels.

A similar algorithm is proposed by Weintraub[101]. In the algorithm the
outputs of each cochlear filter are explained as neural firing events, and
the corresponding event function is then defined. The short-time
correlations are then calculated over these event functions.

These algorithms are reported to have high performance under various
kinds of noise and the ability to handle multi-pitch information.

* Pitch estimation by interspike.interval histograms

Goldstein[28] has developed a method where the pitch frequency is chosen
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from the harmonic values estimated from the Interspike Interval Histogram
(IIH) in the Maximum Likelihood (ML) sense. In this algorithm, the output of
each cochlear filter is regarded as neural firing. In each channel, the
intervals between two successive firings are collected by a histogram, which
can be depicted by a two-dimensional figure at each time, called neurogram.
The peaks in the histograms are then synthesized over all channels for the
pitch estimation.

In Allen’s paper[1] synthesis of IIH is performed by taking the pointwise
product of each channel with its neighbors, and summing up over all
channels. The results are then used for extracting pure tones (a tone is a
sinusoid with a single frequency) embedded in noise.

3.4. Overview of the pitch perception in human auditory models

Human auditory processing is still far more intelligent than any -other
artificial algorithm. Therefore, the more - knowledge of human pitch perception
we use, the more benefit we can obtain in developing a better algorithm.

Psycho-acoustic experiments indicate that the Basilar Membrane (BM) in the
auditory system performs some sort of running short-time spectral analysis on
the acoustic waveforms, by. decomposing a signal into isolated frequency
components, with further processing done essentially along the time axis.

There are several different models of auditory pitch perception. They all
have the same processing in the first step, as shown in the following
schematic figure in Fig. 3.1.

sound

|cochlear| |transduction| |hair cell]. pitch

filter model model perception

by

Fig.3.1 Auditory processing for pitch perception
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Due to monotonous frequency band tuning along the length of the BM in the
auditory system, the acoustic signal is split along the place dimension. To
mimic this, the incoming speech signals are first processed through a group of
specially designed bandpass filters, called “cochlear filters" (see section
1.2). The place abscissa in the BM can be regarded as ifrequcncy abscissa,
scaled in the critical bands. The cochlear filter outputs are then fed to a
transduction model emulated by multi-stage coupled Automatic Gain Control
(AGC), followed by a hair cell model performed by a halfwave rectifier.

Afterwards there will be different processing depends on the pitch
perception models. There are mainly two accepted theories.

In Licklider’s theory of pitch perception[51], the output of each cochlear
filter is passed through a neural autocorrelation mechanism which performs
some kind of envelope autocorrelation of neural firings along the time
direction. The analysis for pitch perception 1is performed in the
temporal-place domain. In the Ilatter section, the computational algorithms
developed by Lyon and Weintraub are based on this model.

Another theory of pitch perception is based on Goldstein’s model[28], which
supposes that pitch perception is based on the ensemble of zero-crossing
intervals of auditory neural firings. According to the theory, an array of
fibers are firing synchronously with the stimulus: At moderate stimulus level,
the neural firing-rate depends on the stimulus frequency. As the stimulus
intensity increases, more fibers nearby will fire synchronously with this
stimulus frequency. At high stimulus intensity, fibers are saturated so that
the firing-rate will no longer increase. Thus, the average firing-rate is a
function of the BM place, and the firing-pattern is a function of the stimulus
intensity[25]. The computational algorithms of Goldstein[28] and Allen[1] in
the above section use this model.

3.5. Skeleton of a robust pitch estimation algorithm
From the previous review, we see that most algorithms are only suitable for

speech corrupted with white/colored noise. In speech separation there are two
different situations, which lead to different demands for a pitch estimation
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algorithm.

In the first situation, the sound of one speaker is always dominant. What we
need to estimate is the pitch of the stronger speaker[37,66]. In such a case,
a single speaker’s pitch estimation algorithm from speech contaminated by
colored noise can be selected. Another situation is somewhat more complicated.
If speech of two speakers has nearly equal intensity (around 0 dB TIR), a
multi-pitch estimation algorithm should be selected.

Some common weak points of the previous techniques
There are several weak points in the previous discussed algorithms.

(DIn the signal processing-based approaches, there is little consideration on
how to use the human pitch- perception advantages. A total neglection of
this knowledge is not very wise, because no pitch estimation technique
developed up to now can reach the level of human pitch perceptual
robustness.

(2)Although the perceptual-based algorithms are reported with high robustness
against various kinds of noise, their high computational burden often
inhibits their applications.

(3)Most algorithms try to make a decision based on the estimation from each
isolated frame. Some try to improve the results afterwards by using a
simple smoothing algorithm or a Dynamic Programming (DP) method. However,
the pitch information contained in the isolated frames is neither
sufficient nor complete. Consequently, such an estimation can not be very
reliable and accurate. '

(4)Most  algorithms use only one processing approach, thus are limited to
specific * cases. According to observation from psychophysics, human
processing is flexible, running from simple to complex, depending on the
complexity of input signal.
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Possible improvement from the previous techniques

(1)There exists a gap between the signal processing-based and the
perceptual-based pitch estimation approaches. We believe that it is
necessary to take into consideration how to combine the human pitch
perception advantages with the signal processing techniques.

We believe that mimicking the human auditory behavior for the purpose of
pitch estimation is neither necessary nor possible. This is due to the fact
that we are still in a very early stage of understanding the processing in
the human auditory system, especially that in the human central nerve.
Besides, from the signal processing point of view, we do not mind what this
black-box system would Jook like. Rather, how the output pitch can be
"best” estimated from the given input signals is concerned. As long as an
algorithm provides good pitch estimation, it is acceptable.

The disadvantages of perceptual-based approach are that it must mimic all
the micromechanisms in the human auditory system, and that it depends fully
on the correctness of a given auditory model. This leads to high
computational cost.

Our algorithm tries to bridge such a gap and combines the advantages of
simplicity in signal processing approaches with the robustness of
perceptual pitch algorithms.

(2)We believe that it is very important to use information from both the inter
and intra analysis frames. Post-processing such as a smoothing or DP
algorithm can not recover the lost pitch information caused by an unproper
early decision based on each frame. Therefore, one should use such an
isolated frame-based estimation algorithm as a step of obtaining an initial
guess of pitch candidates. A decision should be postponed until all
possible pieces of information are used.

(3)We believe that the complexity of the processing must be adaptable to the

degree of input speech contamination. This fact, which is also indicated by
psycho-acoustic experiments, is easy to be understood. In the most

88



Robust Pitch Estimation

complicated situations, the human auditory system even uses a-priori
knowledge accumulated from the previous learning. In order to estimate
pitch from extremely noisy speech, we should use more complex processing
including a better initial guess of pitch candidates, and some previous
learned knowledge.

Skeleton of the algorithm:

Following the above line, a skeleton of our new robust pitch candidate
estimation algorithm can be formed.

First, the estimation can be performed in two-steps. A coarse pitch
candidate estimation algorithm 1is used as an initial guess to provide only
pitch candidates with probability/weight values. In general, this algorithm
should be selected in relation with the complexity of noisy input speech.
Hence, a group of different algorithms can be selected. In the second step,
given the candidates a detailed algorithm uses ‘dynamic pitch properties among
the frames, to estimate a "best" pitch contour under a pre-selected criterion.

In particular, special emphasis is put on the consistency with the auditory
system global processing throughout this whole processing. Such a processing
shares partly the same computations in the speech separation part as will see
in the next chapter. Consequently, as a by-product, this saves calculation
cost for the whole system.

3.6. A Pseudo Perceptual Pitch Candidate Estimation Algorithm
- A coarse estimation as an initial guess of candidates

In this section, a new coarse pitch candidate estimation algorithm will be
developed.

Analysis shows that not only the signal envelopes but also the signal
"carriers” can be wused independently for pitch estimation. Methods for
calculating pitch candidates from the “carriers" and the envelopes are then
both given, based on signal analysis. Simplifications in filter design and
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signal processing are obtained over the perceptual type of algorithms. The
same groups of bandpass filters are used for analyzing envelopes and
“carriers". It is consistent with the auditory global processing. Robustness
can be obtained by combining the two pieces of information to provide reliable
estimation. Finally, simulations are described and some results afe included.

From the previous analysis, it is seen that the perception type of pitch
estimation algorithms has good robustness but high computational cost. From
the signal processing point of view, we are only interested in the estimated
output and not in the detailed micromechanisms of the human auditory
processing. In order to estimate the "best” output, we are interested in
finding what pieces of information can be related to pitch, and under which
circumstances it can be extracted.

In the following, we will first analyze what information associated with
pitch is obtainable. An algorithm to estimate pitch candidates will then be
given[34].

3.6.1. Analysis of bandpass signals
Pitch estimation via signal envelopes and signal carriers

In order to be consistent with the auditory global processing, the speech
signal is analyzed in the time-frequency domain.
Using a sinusoidal model, the observed speech signal s(t) can be represented

as the components at pitch harmonic frequencies
K(w)

s(t) = X ak(t)cos(kwou (bk) (3.6.1)

k=1

where fo=u)o/21t is the fundamental (pitch) frequency, K(mo) is the number of
harmonics within the speech bandwidth, ak(t) and d)k(t) represent the K"
harmonic amplitude and the phase offset relative to the origin of a speech
frame.

In practical situation, the signal component (harmonic) obtained is
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multiplied by the frequency response of the bandpass filters as follows.
K(®,)

S =X bk(t)cos(kwot+ (Dk) 3.6.1°)
k=1

where bk(t)=W(kw0t-ml)ak(t), and W(m—o)l) is the frequency response of the ™
bandpass filter with center frequency fl=o)l/21c, and it is supposed that the
k" harmonic is within the frequency band of the i* bandpass filter.

In the following, we will show that both the signal envelope and the signal
“carrier" of bandpass filtered signals contain pitch information. In order to
simplify the analysis, we will set the phase value d)k to zero.

The information contained in the output of the K" wide-bandpass filtered
signal can be analyzed as follows:

(1)Only one harmonic is contained in a filter band

This situation can appear in both the narrowband and wideband filtered
signal.

Supposing the m™ harmonic is contained in the k" bandpass filter. In this
case, the filter output is expressed as below

sk(t) = bm(t)cos(mcoot) 3.6.2)

where the signal ‘“carrier" contains pitch information, while no pitch
information is contained in the envelope bm(t).

(2)Two harmonics are contained in a filter band

Suppose the m" and (m+1)lh harmonics are obtained in the bandwidth of the
K* bandpass filter, as follows

sk(t) = bm(t)cos(mwot) + bmﬂ(t)cos((m-rl)wot) 3.6.3)

After simple triangular transforms, we obtain

b (1)
5.(0=b_(0) [1+ ';* ;l) cos(a)ot)] cos(ma p)-b__ (tsin(e Dsin(me D) (3.6.4)
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where supposing |bm(t)|2|bm+l(t)| does not present any loss of generality.
When m(oo»(filtcr bandwidth), the first term in (3.6.4) is the amplitude
modulated signal, having envelope frequency f0=c00/27t and ‘“carrier”
frequency f =mw/2r. The second term is the double-sideband (DSB)
modulated signal. From the property of DSB, the envelope shows a
periodicity at time instant n/(2f), n=1,2... Because of the sudden 180°
phase change in the "carrier" signal when the message signal undergoes zero
values, the carrier signal is no longer periodic. By counting the
short-time average local maximum numbers of the “carrier" signal for
calculating “carrier” frequency, the average pseudo-carrier frequency will
be fd:(m+1)u)0/21t.

From the above, we can conclude that:

(1)The envelope of s (t) presents a correlation peak at time index l/f if
the [b =] <o|

(2)One of the "carrier" period multiples of sk(t) is at the time index

1f =m/f =(m+1)/f (3.6.5)

Hence, either the signal envelope or the “carrier" from the wide bandpass
filter can be used for pitch estimation.

(3)More than two harmonics are contained in a filter band

Suppose that the total number of harmonics within the filter bandwidth is
n. In this case, the filter output can be expressed

L1
s, (O = by bnm(t)cos((m+i)w0t) (3.6.6)
i=-L

where L=(n div 2), L1=L if n is odd, otherwise L1=L-1. Similarly, after
some triangular transformations we obtain

®
s, () =b (1) [1 + Z ﬁi;— cos(io t)]cos(mw t) -
- X b (sin(ietsin(ma ) (3.6.7)

which includes pitch information both in the signal envelope (if there
exists bm(t);tbn(t), m#n), and in the signal "carrier".
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Remarks:

1) Pitch information is obtainable from the signal envelope of wideband
filtered signals.
Pitch information is extractable from the signal envelope, if there exists
amplitude differences among the different bm(t). There is no special demand
for the shape of the frequency response of the bandpass filters, because it
is unlikely that all the frequency bands coincidently present no amplitude
modulation. The amplitude modulated information can be enhanced afterwards
if needed.

2) Pitch information is obtainable from the signal “carrier" of both the
narrowband and the wideband filtered signals
The pitch information is also extractable from the signal "carriers”. This
can be obtained from either the narrowband or the wideband filtered
signals. This gives an analytical explaination to the perceptual pitch
estimation algorithm of Goldstein[28] and Allen[1], and shows that the
restriction that only a narrow-bandpass filtered signal carries such
information[1], is not necessary.

3) If the amplitudes of all harmonics are in a same value within a band, it
can be shown that the signal envelope contains no pitch information, while
the signal “carrier” still contains pitch information.

4) In order to simplify the analysis, all phase values cbk, k=(m-L)...(m+L1),
have been set to zero. In the case of more than one harmonics in a band, it
represents a simple and a special case of zero phase-offset difference
among these harmonics.

3.6.2. Algorithm descriptions

From the previous analysis we conclude that both the signal envelope and
the signal “carrier" in each bin contain pitch information. Our algorithm is
formed by extracting pitch information existed in these signals. Much
attention will be paid to the consistency with the global approach of pitch
perception in the auditory system by temporal-place domain time-directional
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analysis. The analysis is performed along time-direction in the time-frequency
band domain. Hence, this pitch estimation algorithm[34] can be regarded as a
pseudo perceptual pitch estimator.

In the following, this algorithm will be described in detail, mainly
concentrating on the following aspects:
* Splitting signals into frequency bins;
* Pitch estimation from the signal envelopes and from the signal "carriers";
* The enhancement of pitch candidates.

* Splitting signals into frequency bins by a wide-bandpass filterbank

In the pitch estimation algorithm, the speech signal is first filtered by a
group of wide-bandpass filters with uniformly spaced center frequencies at
cok=21tk/N, k=1..N. The filter frequency response Hk(co) is a symmetric
function of . The output signal of the 'S bandpass filter is then in a
real value and can be expressed as the following convolution

Smsn) = s(n)* hk(n) (3.6.8)

where hk(n)=w(n)cos(u)kn) is the impulse response of k'h bandpass filter,
w(n) is a symmetric time-window of length L, (L is chosen comparable to the
range of the pitch period), and (N>L).

In order to implement these filters we use the Short Time Fourier Transform
(STFT), followed by shifting the output data into their bandpass version,
and then taking the real part.

Because STFT performs FFT on the windowed data s(t)*w(t), its advantages of
easy implementation, computational effectiveness in software, and fast speed
by the dedicated Digital Signal Processor (DSP) hardware, made it an
attractive tool for implementing the filterbank.

It should be mentioned that the same group of wide bandpass filters is
shared by both signal envelope- and signal "carrier"-based analysis.

* Estimate pitch from the signal envelopes

1) Calculate envelope time-autocorrelations at each frequency bin.
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First, the local maximum values and the associated time indices from the
bandpass signals are picked up. A linear interpolation is performed between
the successive local maxima. The d.c. element is then removed from the
interpolated  signals. The  short-time  envelope  autocorrelations  are
calculated within the lags of the possible pitch period. Finally, the
autocorrelation values are normalized by the signal energy at that bin.

2) Create a "correlogram”

The local autocorrelation peak values can be depicted in a figure of
frequency-autocorrelation lag dimension using a so called “correlogram”.
The darkness (intensity) of each point reflects the relative correlation
strength, The pitch period candidates are often associated with those lag
indices which coincide most with the autocorrelation peaks over all bins,
indicated by a dark line in a "correlogram”. It should be mentioned that
this “correlogram”, (the name was originally used in perceptual pitch
analysis[52]), represents only the signal envelope autocorrelations in this
case.

(3)Synthesize the coincidence appearance information

A Tcorrelogram” represents the envelope autocorrelations over a group of
bins at only a specific time instant t In order to select pitch
candidates, or, to see the time evolution process, a “correlogram” is often
synthesized into a one-dimensional expression. It can be created by
accumulating at each Jag the normalized autocorrelation values at those
bing which present local peaks. The first several time indices associated
with the prominent values are then selected as pitch candidates.

* Estimate the pitch via the signal "carriers”

1) Calculate short-time "carrier” period and its multiples
At each frequency bin, a short-time ‘“camrier” period value and its
multiples are calculated. The number of signal local maxima is counted over
a short-time duration, The average interval time between two successive
peaks is used as the ‘carrier" period T. The time indices of “carrier”
peried muliiples T, n=1,2.. are also calculated.
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2) Create "multiplogram”
A "multiplogram” depicts the appearance of the carrier period multiples of
all frequency bins at a specific time instant ty Because of the
coincidence appearance of the ‘“carrier" period multiples at the pitch
period over frequency bins, a vertical line is expected in the pitch period
index along the time direction in this figure.

3) Synthesize the coincidence appearance information
A one-dimensional function is calculated from a multiplogram at each time
instant t by accumulating the ( weighted ) repetition number of the
"carrier” period multiples over all bins.

Remarks:

Further improvement can be expected if the weighted repetition number is
used, such that the total repetition number in these time-indices will
count more heavily if the carrier period multiples appear successively in
several neighboring frequency bins.

* Enhance the pitch candidates

The pitch candidates obtained from above are then enhanced, which results in
a sharpened candidate pitch contour figure. This is done as follows: At each
frame, the one dimensional accumulated normalized autocorrelation peak
values from the envelopes are center clipped. Also, the one-dimensional
accumulated repetition number of the signal “carrier" period multiples are
center clipped and peak enhanced.

Remarks:

Some simplifications are obtained over the perceptual pitch estimator. For
instance, the design of bandpass filters is simplified, which results in
less calculations. Simple bandpass filters wusing Short Time Fourier
Transform (STFT) can replace the special cochlear filters in the perceptual
pitch estimator.
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3.6.3. Simulations and results

In the following, the simulations with this pseudo-perceptual pitch
candidate estimation algorithm will be described.

The simulations are performed on both stationary and nonstationary speech
signals corrupted by white Gaussian noise and with a speech of a background
interference  speaker, respectively. We choose such cases because pitch
estimation from noisy speech, and simultaneous multi-pitch estimation from
co-channel signals often appear from many practical demands.

In the simulations, the contaminated speech signals first were subjected to
a group of wide-bandpass filters, which are implemented by successively
applying STFT on overlapped frames of hamming windowed-data, succeeded by
frequency shifting from lowpass to bandpass, and then taking the real part of
the signals. The Hamming window function is of length L as given below

W(n) = 0.54 - 0.46 cos(2rn/(L-1)) 0<ns(L-1) (3.6.9)

With the selected sample frequency fs, the equivalent bandwidth of each
bandpass filter is 2B =4f /L.

Pitch candidate estimation from stationary synthetic noisy-speech signals

In the following examples, several simulation results on pitch estimation
from stationary speech signals corrupted by an interference speech or by
Gaussian white noise at different SNR are included. The speech signals are
synthetic with three formants and given pitch periods.

Fig.3.2. shows two examples of pitch candidate estimation from speech signals
corrupted by another interference speech in 0 dB SNR. Fig3.3 shows the
results of pitch candidate estimation from speech corrupted by white noise in
SNR=0dB, Fig.3.4 includes two examples of pitch candidate estimation from
speech signals corrupted by white noise in SNR=6 dB.

In these figures, the wvertical lines along the frequency axis in a
"correlogram” of (1) and a "multiplogram” of (2) indicate more coincident
appearances of the possible pitch period values. In (3) and (4), the values in
(1) and (2) are accumulated over frequency bins respectively to produce a
one-dimensional view.
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Pitch candidate estimation from summed synthetic speech sentences

Another  situation is to estimate simultaneously two-speakers’ pitch
candidates from summed synthetic speech sentences at low TIR. The pitch
candidates are estimated from the signal ‘“carriers” and the signal
"envelopes”, respectively. After that, the pitch candidates are peak enhanced,
center clipped and thinned. Fig.3.5 shows the enhanced pitch candidate figures
which are estimated from summed synthetic speech sentences of two speakers,
i.e., female-male and female-female, in 0 dB TIR.

We noticed that the pitch information obtained from the signal envelope and
from the signal "carrier" often complements each other. Consequently, better
pitch candidates are provided.

Also we noticed that when the ideal pitch contours of the two speakers
undergo many times of crossing, and are too close to each other, it is still
difficult to get sufficiently good candidate contours, as in the example of
summed female-female case.
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S]: "We do have a lot of good people in the office" by female
Sz. "You will now have fifteen seconds to do this” by male
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"We do have a lot of good people

W

S "Good morning, your passport please” by female

Fig.3.5(2) Pitch candidate estimation from a summed speech sentence (TIR=0dB)
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Remarks and discussion

The simulations proved that the pitch information is independently
obtainable from either the signal ‘“carriers” or from the signal envelopes.
Thus, both of them can be used for pitch candidate estimation. .

The simulations indicate that for extremely noisy speech, these two pieces

of information can complement each other, and their combination produces
better results. This phenomenon appeared in the simulations and can be
explained as follows.
In principle, the envelope-based analysis has higher resolution when the
bandwidth is wider, whereas the "carrier"-based analysis has higher resolution
when the bandwidth becomes narrower. However, this bandwidth is a relative
value associated with the speech fundamental-frequency  (pitch). The
fundamental-frequencies are time-varying within a sentence, and among
different  speakers. @ Thus, due to the wide dynamic range of
fundamental-frequencies, a filter bandwidth may be considered as wideband
during part of a sentence and as narrowband in another part of the same
sentence. Consequently, it appears that in some parts the results from the
envelope-based approach are weaker while those of "carrier"-based approach are
sharper, or the vice versa, and that in some other part both the
envelope-based and the "carrier"-based approach provide good resolution.

3.6.4. Concluding remarks

A new pitch candidate estimation algorithm has been proposed which is robust
against various distortions on speech signals such as white: noise and
interfeérence speech.

The following main features hold for this algorithm:

-The algorithm exploits the coincident appearance of pitch information
contained either in the signal envelopes or in the signal “carriers”. Their
association with the speech fundamental frequency (pitch) is indicated by
signal analysis.

This method implicates also the pitch perception theories of Licklider and
Goldstein.

-Our simulations also proved that the "carriers" of either the narrow- or the
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wide-bandpass  filtered signals can be wused independently for pitch
estimation.

-For extremely "noisy” synthetic speech (the presence of background speech or
other kinds of noise in high intensity), the pitch information obtained
respectively from the signal “carriers” and the signal envelopes can
complement each other. It is found that better estimation is obtained in such
noisy circumstances by combining these two pieces of information.

-The algorithm is consistent with the auditory global processing without
mimicking its behavior.

The preliminary simulations on noisy synthetic speech signals confirmed the
robustness of the algorithm. More simulations are needed on the natural speech
signals.
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3.7. Hidden Markov Model-based maximum likelihood pitch contour estimation
- A detailed pitch contour estimation algorithm based on stochastic model

In this section, a new HMM-based algorithm is developed for the Maximum
Likelihood (ML) estimation of pitch contours from candidates with a-priori
probabilities obtained from a coarse algorithm. The theory of HMM modeling of
pitch contours as well as a corresponding algorithm for training and ML pitch
contour estimation are described. In order to limit the memory use and to
solve the problem of missing candidates, we also describe a practical
algorithm with candidate prediction, pruning, and beam search. The system is
trained by a set of pitch contours from noise-free speech data.

3.7.1. Brief introduction of HMM theory

Hidden Markov Modeling (HMM) [40,49,73,76] is a probabilistic technique for
the study of observed items arranged in a discrete-time series. The items can
be countable or continuously distributed; they can be scalars or vectors. The
technique uses stochastic methods; a time series is generated and analyzed by
a parametric probability model.

An HMM has two components: a finite state Markov chain and a finite set of
output probability distributions. The Markov chain synthesizes a sequence of
states (a path) and the output distributions then turn this path into a time
series. Thus, an observed time series gives evidence about the hidden path and
the parameters of the generating model.

In an HMM, the output probabilities impose a "veil" between the state
sequence and the observed time series, as shown schematically in Fig.3.6. In
the effort to lift the veil, a substantial body of theory has been developed
over the past decades. The initial work dealt with the probability spaces and
addressed the problems of tractability of probability computation, the
recovery of the hidden states, iterative maximum-likelihood estimation of
model parameters from the observed time series and the proof of consistency of
the estimates[6,7,8].
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Figure 3.6 HMM: a veil between the observations and the model

An HMM is defined as a collection of states connected by transitions. Each
transition carries two probabilities: a transition probability which provides
the probability for taking this transition between states, and an output
probability density function (pdf) which defines the conditional probability
of emitting each output symbol from a finite alphabet when a transition is
taken.

In a first-order HMM, there are two assumptions. The first is the Markov
assumption:

p(xtd:xull X:=X;) = p(xu-l:xull X(=xx) G.7.D

which states that the probability that the Markov chain is in a particular
state at time instant (t+1) depends only on the state of the Markov chain at
time instant t, and is conditional independent of the past. In (3.7.1), X‘=xl
means that a state random variable Xl takes a specific value x at time
instant t, and X =x; means that the random variable of the state sequence
X;:(Xl...X‘) takes a specific value x:=(xl...x‘).
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The second assumption is output-independency:

-1 t-1 1+1 t+iy S —s =
p(Y|=y,| Y] =Y, Xl = ) = p(Yl_yll Xl—xl, Xl+1_xt+l) Q2

which states that a particular symbol will be emitted at time instant t
depending only on the transition taken at that time instant ( from state X to
xm), and it is conditionally independent of the past. In (3.7.2), Yt=y‘
represents that an output random variable Yl takes a specific observation
value y at time instant t, and Y;'1=y:'l represents that an output random
sequence (Yl...Yl_]) takes a specific observation sequence (yl...y‘_l).

There are three typical problems of interest associated with HMMs:

* The evaluation problem

Given a model and a sequence of observations, what is the probability the
model generating the observation sequence? Or more precisely, what is the
probability p(YT=yT) for a given model M? Using the assumptions of HMM, we
can manipulate it as

T
T_ T\ . _ . w .
p(Yl-yl)_ T%I ll;l]{p(XHl—XHl |Xt_x|) P(Yl_yl | Xl_xx’xul_xwl)} (3.7.3)
X
1

This probability can be calculated by using the Forward algorithm[40].

*

The decoding problem

Given a model and a sequence of observations, what is the most likely
state sequence in that model, producing the observations? The best we can do
is to produce the state sequence that has the highest probability of being

taken while generating the observation sequence i.e. choose a specific state
T':x:” such that p(XT”=
assumptions, this becomes

sequence X xT” |yT) is maximum. Using the HMM

max{p(XT”:xT”| yT)} = max {p(YT:yTI X?l:xT*l)p(XT*':xT’l)} 3.7.4)
. T+1 .
1

This can be calculated by using the Viterbi algorithm[40].
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* The learning problem

Given a model and a set of observations, how to determine the parameters
of the model such that it has a high probability of generating the
observation? By defining the probability yij(t)= p(Xl=i,XM=j|yT) as the
probability that the model is in state i at time t and in state j at time
(t+1), given a  specific  observation sequence yT,' the  transition

probabilities can then be calculated as

T T
a = p yij(t) 'y % yik(t) (3.7.5)

t=1 t=1 k
and the output (discrete) probabilities can be calculated as
T
b= X yM®O/Z vO (3.7.6)
Y (:yl=k 4 =1 "

or, the parameters I of the output (continuous) pdf can be calculated
as

I =

1
4 t

" M=

T
20, |x=i, X_=pf(y) / le(yllei’ ) 3.71.7)
1=
where aij is the transition probability from state i to j, bij(k) is the
discrete output probability that a symbol k is observed given the condition
that the model take a transition form state i to j at that time, f(yt) is a
function of Yp and fij is the estimated parameter. (e.g.: In Gaussian
output pdf case, two parameters need to be estimated: the mean value M and
the variance cf, The corresponding f(y) are then y and (y'{uij)z,
respectively).

The Ysj can be estimated by using the Baum-Welch (The Forward-Backward)
algorithm{40].

Because of the veil between the output sequences and the state sequences
produced by the hidden states in a given model, an HMM is a very powerful tool
for many practical applications. For example it can be used to describe nested
or implicative relations by stochastic models, provided that a large amount of
data is available from measurements.

In the following, we will describe a new application of HMMs to the pitch
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contour estimation. The remaining part of the section 3.7 is organized as
follows. First, the theory of pitch contour estimation via HMMs is described
after a short review of the basic theory. The algorithm will then be described
in detail. After that, some simulations and results will be given. Finally a
short discussion and concluding remarks are given.

3.7.2. Theory for HMM pitch contour estimation

In this section, we will concentrate on the following problem: given an
array of weighted candidates obtained from the results of a coarse algorithm,
how to estimate the "best” pitch contour.

A new approach of HMM pitch contour estimation[35] has been proposed. The
reason that an HMM is chosen is that, some previous knowledge and a proper
stochastic model should be used in order to handle complicated situations.
This algorithm is designed to solve a general class of pitch contour
estimation problems including speech signals corrupted by wvarious kinds of
noise.

HMM models are suitable to describe pitch contours

-First, a pitch contour changes continuously due to the real speech production
model. A Markov process is suitable to describe highly correlated,
continuously changing curves. '

-With HMMs, each output sequence can be produced by many different (hidden)
state sequences but with different output probabilities. Conséquently, by
avoiding to use a pitch sequence directly as a state sequence, it can provide
more robustness against noise disturbances.

Pitch contour estimation via HMMs

In the Hidden Markov Modeling of pitch contours, pitch sequences are
described by a family of models M = {mil i=1,2...}, each model is an HMM
process of a S-tuple, (S,Q,[1,A,B), representing respectively the sets of
states, symbols of quantization, initial and transition probabilities, and the
output parameter sets associated with- Gaussian pdf’s.
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Three hidden states S = {sl,sz.ss}, the constant pitch, the pitch increment
and the pitch decrement, have been chosen in full inter connection, as shown
in Fig.3.7.

pitch pitch

decrement . . increment

Fig 3.7 State diagram for HMM pitch estimation

The output pdf is represented by a joint multivariate distribution in order
to describe the probabilities of the output pitch and pitch dynamics. The
observed pitch Yl, and its different-order derivatives diY‘, i=1,2..., are
chosen as the random variables. More random variables can be selected to
introduce more constraints on pitch contours against noise distortions. In our
tests, 3 random variables, the pitch value, and its first- and second-order
derivatives, are wused. The probability of a given model m, (e.g.
female/male/children) producing an output pitch sequence (Yl..YN) can be
obtained by summing the probability of each specific state sequence producing
the observations, over all the possible state sequences (Xl..XN), where
(Xl..XN)e xN which is the set of state sequences, and Xi e S.

p(Yr..Yn)= X p(Yt..YN diYz.diYn, d2Ys.d2Yn: Xi.XN) 3.7.8)
X1..XN)e X,

Supposing that the random variables Y‘, dY and dY are statistically
independent, the joint output pdf can then be expressed as the products of the
marginal pdf’s. Using the output independence assumption, this can be
expressed as follows

N. N. N. N.
p(Y1L.YN) = E p(Y Y, |XY) p(dY,.d Y, |X)*p d Y. dY X pX})
X

1
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= 1 > Pk po(Yl|X1)p0(Y2|X2)pl(dlY2|X2)p(X2|X1)*
XNe IN !

N
T [po(YI | X0p, (d, Y:|X0p,(d, Y| Xp(X: lxt.l)]px . . (3.7.9)
N

1=3
_ _ N_ .
where dlY‘—(Yl-YH), d2Y!-—(dlYl-d1YH). Xl—(Xl..XN), B, E are the begin

state and the end state respectively. The pitch contour is chosen among
candidate contours associated with a maximum output probability.

3.7.3. HMM-based ML pitch contour estimation algorithm
Training-phase

The training process is performed in two steps: the supervised training
followed by the unsupervised training.

The supervised training is used for the purpose of obtaining better initial
parameter values.

The unsupervised training is then performed on a large set of pitch

contours obtained from noise-free speech signals. In the unsupervised
training, the parameters are trained using the corresponding Forward, Backward
and Forward-backward algorithms with multivariate output. Since it is not
difficult to derive these algorithms with multivariate output, and the results
are clear and obvious, we will simply give those formulas. .
In this training process, the forward probability ai(t)=p(Xl=i,y:), and the
backward probability ﬁi(t):p(yT+l |X|=i) are calculated, recursivcly‘, as below
(which correspond to the Forward algorithm and the Backward algorithm),

o) = Z ocj(t—l) a, bOiyl bl , b2, (3.7.10)

d
i Yo 9N

d d
+1 leH-l J2yl'r1

B = X B(t+1) a, b0, b1, = b2, (3.7.11)
J 1

where a is the transition probability from state 1 to j. The output
probabilities b0, bl.  and b2 are defined as follows
, My, My,
b0 = p,0y,IX) (3.7.12)

bljdly‘ = pl(dlyl|Xl=j) (3.7.13)
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w2, = P,y |X=) (3.7.14)

The forward-backward ~probability . =p(X =i.X =j|yf) can be calculated as

t+1
follows (which corresponds to the Forward-Backward algorithm)

d
Wi e

yij(t)= ai(t) aij bij bl, b2‘d ﬁj(t+1)/ a’E(T ) 3.7.15)
where a (M= p(YT=yT)= > oti(t)ais .
E i E

In order to prevent numerical underflow when the length of the output
sequence is increased, the forward and backward probabilities can be scaled as
follows,

a® = a®/ X o, B®=p®/ L a® (3.7.16)
i i .

The corresponding scaled algorithms are then as below

Zaj (t-l)ajibOiylblid y b2,

- J 17t d2yl
o = (3.7.10°)
T B(t+1a b0 bl b2,
o j B" Y ‘Iyt+l "dlynl Jd2yt+|
B = = (37.11°)
1 2
i? ﬁj(Hl)aijbojymb jdlymb LA
Yij(t) = 0 (1) a, boi’.nbli";m.bzf‘zmIBJ'(M)/ asgn (3.7.15)

where &‘(T)=Z &i(t)ais. They are used for estimating the Gaussian pdf
E i E
parameters as follows

b, =IO LGV IO k0.2, j=1.3 G.1.17)

o, = [iz(vij(t) £y

1

RAC ] - (3.7.18)

where fo(yl)=y‘, f‘(y‘)=dlyl, fz(yl)=d2y|. The different models are trained
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separately by the quantized pitch sequences from each group of speakers.

To prevent excessive constraints, in each model (e.g.: male/female model)
several states share the same output pdf. This is done by choosing the
conditional output pdf’s of the random variables Y and dY independent of
states, as follows

p,(Y| X=j) =N, j=1.3 (3.7.19)
P, Y| X=) = Nu,od)  j=1.3 (3.7.20)

which depend only on the different model, where N(p.,ol) denotes the Gaussian
pdf with mean-value P and varaince o’. It means that po(Y|X) mainly plays the
role of distinguishing among different models, and p2(d2Y|X) mainly serves as
the constraint on pitch acceleration. Separately training the pdf’s indicates
that such selections of mergence are reasonable, as shown in Fig. 3.8.
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Fig.3.8 Output probability distributions in a HMM-based pitch contour model
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The output pdf associated with random variable dyY is depending on the state,

p(d Y| X=j) = N( TR of_j), =1.3. (3.7.21)

Estimation-phase

Suppose that an array of pitch candidates, representing the pitch
information from a speech sentence of L-frames, is obtained from the coarse
algorithm. At an arbitrary (n"‘) frame, a vector of weighted pitch candidates

ki ki . & ki ,
Z=( Y] k =12 . L, p(Y™) = (weight value) and X p(Y D=1 } is
n n I n k|= n
provided.. A candidate contour ( Yl’(j leq . Y]l:" ) is defined as a sequence

formed by taking one element from each vector Zi, i=1..N, sequentially. It is
associated with the a-priori probability

bkl iy _ ki e kn
P YT YT YD) = pOYIR(YS) p(Y") (3.7.22)

Given the a-priori probability, the estimation-phase then calculates the
output probability of each candidate contour produced by a specific model m_

p (YELY* | m) = ppﬁ(Y‘fi..Yl:')p(Yll(i..Yl:‘l m) (3.7.23)

and selects one "best” contour associated with the maximum probability.

In order to search for a global optimally sequence, the output
probabilities of all possible pitch sequences are calculated in parallel by
the Forward-algorithm. The probability at the n™ frame can be calculated
recursively from the results obtained at the (n-l)1h frame,

ki ks ko B

P (Y LY Y |ms)—

_ kt ki ks |

=p(YOZ [p (X, =YY ? [m)abo bl b2 (3.7.24)
(I ]

)ynl |d1ynl ldzynl
A best-candidate contour is then selected as follows under Maximum Likelihood

(ML) criterion

p LYY | m) = max p,(YN.Yk | m) (3.7.25)
s ms.(ki(l)..kn(N)) *
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The practical estimation algorithm

Practically when the frame number increases, the problems of excessive use
of memory space and large calculations appear due to many candidate sequences
appearing. Besides, the wanted pitch candidate can be missing from the coarse
estimation. The following approaches are used to solve these problems, while
keeping the error rate at a negligible low level.

* Beam search

In reality, pitch values change slowly between successive frames due to the
continuity constraint. The probability that two successive candidates are
far away is very small. Thus, beam search is applied instead of full search.
ie, for a given sequence (Yll(i...Yl::) of length (n-1), the search of its

ks

- Yl:') of length n at the succeeding n'™ frame

is limited within the range of Yl:’_l t W, where W1 is a given threshold

possible sequences (Ylfi...Y

which is bigger than the maximum pitch change between successive frames.

* Pruning

Pruning is performed to limit the number of candidate contours in
intermediate frames, by giving a scaled probability threshold. Pruning is
also done when one contour splits into multi-contours and soon afterwards
merge again.

* Prediction of missing candidates

Prediction over short and continuous frames is allowed. A very small
a-priori probability value is given to the predicted candidate, such that a
long continuous prediction will lead to small total probability score for
the whole sequence. Thus the chance that a long predicted sequence will be
selected as the estimated contour is very small.

* Length-weighted sequence a-priori probability

Due to the beam search and pruning, some of the candidates will be
disconnected from the candidate pitch contours. These candidates are then
formed as the roots of new contours. Consequently, candidate sequences may
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have different lengths. Thus, it is necessary to weight the a-priori
probability value of each sequence by its length.

Remarks and discussions:

1) Comparisons to the smoothing and DP algorithms

The advantages of HMMs over a pitch contour smoothing algorithm or a
Dynamic Programming (DP) algorithm are obvious.

In a simple pitch contour smoothing algorithm, the wrongly estimated pitch
value is smoothed out if there is a big jump among the successive pitch
values, and then replaced with an interpolated pitch value such that the
cumulate distance is minimized.

In a DP algorithm, one can use a cumulative probability measure, but the
global optimum can only be obtained if it can be expressed by the sum of
a]l the local maxima.

HMMs-based algorithms, however, estimate a pitch contour by "best fitting"
to a given model. Because the model can be properly selected, and can be
well trained by noise-free pitch contours prior to the estimation from
noise contaminated signals, the approach is expected to have potentially
more robustness for pitch estimation.

2) When to obtain the estimated pitch value

In the algorithm, estimation is off-line processing. A decision is
postponed to the end of a sentence or a continuous piece of voiced-frames.
When one desires to do real-time processing by making a decision after each
analysis frame, degraded performance can be expected.

3) Obtaining candidates by other pitch estimation algorithms modified

It is also possible to estimate pitch candidates from one of the existing
pitch estimation algorithms, according to the complexity of the input
speech. As we have mentioned previously, in order to prevent errors by
making unproper early decisions based on isolated frames, this selected
algorithm must be modified to provide a set of weighted pitch candidates
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rather than an estimated pitch value. These algorithms can then be served
for coarse pitch estimation purposes.

4) Applications

The HMM-based pitch contour estimation algorithm can serve as a robust
pitch contour estimator by post-processing the results of the conventional
pitch estimation algorithms.

5) Limitations

In the presently developed algorithm, it is limited to the voiced-speech
frames. Segmentation of voiced-unvoiced frames is not included, and thus
must be judged elsewhere. To improve this, one can consider to add extra
states to include the unvoiced case.

3.7.4. Simulations and results

In the program, a pointer and a binary tree structure are used, such that
the branches of candidate contours can be added and pruned dynamically.

Some simulations have been done for speech signals corrupted by both white
noise and background speech at low SNR around 0 dB.
It showed that candidate prediction produces reasonably good results in the
case of missing candidates during continuous short frames. When candidates are
missing, prediction plays an important role for the algorithm to yield a good
estimation.

Two examples in which speech signals are corrupted by white noise at 0 dB
SNR are included. In order to test the robustness of the algorithm for tracing
pitch contours, a simple coarse pitch estimation algorithm of signal
autocorrelation and peak picking is selected, so that the obtained candidates
array is far from ideal. In many places, it is even difficult to figure out
the options visually. Fig.3.9. and Fig.3.10. then shows the results of the
estimated pitch contour via HMMs.
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Simulations have also been done on estimating pitch contours from summed
speech signals of one female and one male speaker at 0dB. In the training
phase, two models, the female and the male, are trained separately by a number
of quantized pitch sequences from each group of speakers. Fig.3.11 shows the
estimated pitch contours using the previously estimated pitch candidate
results as given in Fig. 3.5.(1) (female-male case). Both the candidate files
from the signal "carriers” and the signal envelopes are used. These two pieces

of information are combined into one candidate file with
probabilities.
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Fig.3.11 HMM-based pitch contour estimation from summed speech
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Preliminary simulations indicate that in order to obtain reasonably good
results, a relatively accurate coarse algoritﬁm must be selected, due to the
interaction of the pitch candidates from the two speakers (including their
harmonics and sub-harmonics). If candidates are not good enough, for example,
the pitch candidates for one speaker are missing during continuous frames,
some difficulties may appear. It appears that the wanted pitch sequence may
still be correctly predicted and estimated with relatively high probability
score, but is not associated with the maximum one. This is because of too many
prediction frames and the relatively small weight values from the coarse
estimation algorithm.

3.7.5. Concluding remarks

By modeling the pitch contours, the HMM-based algorithm provides robustness
in pitch estimation against noise. In addition, beam search, pruning,
candidate prediction and candidate sequence a-priori probability are used to
solve some practical problems. The algorithm showed to be promising in
simulations. However, if the candidate array provided by a coarse algorithm is
very poor in performance, the algorithm may fail to estimate correctly.

3.8. Robust pitch estimation via a combined-algorithm

In the above two sections, we developed individually a coarse pitch
candidate estimation algorithm, and a detailed algorithm of HMM-based ML pitch
contour estimation.

A combined pitch contour estimation algorithm can then be formed as the
following schematic Fig.3.12.

weighted
_ A coarse camdidates A HMM-based gégggur(s)
Y pitch s pitch contour
speech — : . : ; ; oy
signals estlm@tlon ‘ 1 estlmgtlon
algorithm algorithm

Fig 3.12 A proposed pitch contour estimation algorithm
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The pitch candidates with their weighted values can be obtained by either a
pseudo-perceptual pitch candidate estimation algorithm, or some other simpler
estimation algorithms, depending on the complexity of the problem concerned.
It is important not to ignore the weight values obtained from a coarse
estimation  algorithm, because it often provides good a-priori pitch
information when the speech is stationary and not very noisy. An HMM-based ML
pitch contour estimation algorithm is then used to search for the optimum
contour.

3.9. Summary and conclusions

In this chapter, a new robust pitch estimation algorithm has been proposed
which uses two processing steps. Key observations are:

The algorithm is based on the following point of views

* To combine the human perception advantages with the signal processing-based
pitch estimation approach is absolutely necessary.

* To mimic the auditory behavior for the purpose of pitch estimation is
neither necessary nor possible. '

* To use all the existing information in both inter and intra analysis frames
for pitch estimation is necessary.

* The complexity of the processing in the algorithm must be adaptive in
accordance with the variable degree of contamination of the input speech.

The following global improvements are obtained by using this program
* To bridge the gap between the signal processing-based and perceptual-based

algorithms. The algorithm is consistent with the auditory global processing.

* To postpone the decision of choosing a pitch value from each frame of
speech. Rather, pitch candidates are used as an initial guess, in order to
prevent unproper early decisions based on insufficient information from
isolated frames.

* The complexity of the proposed algorithm can be adapted. In a simple case,
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the coarse pitch estimation algorithm can be replaced by a simple one, which

is revised to provide weighted pitch candidates.

* For extremely noisy speech input, more complex processing is used, including
a better initial guess algorithm (e.g.: a pseudo-perceptual algorithm) and
the use of a stochastic model and the previously trained knowledge.

Advantages of using a pseudo-perceptual pitch candidate estimator

* Pitch estimation can be independently performed by using the coincident
appearance of the signal ‘“carrier” multiples or the signal envelope
autocorrelations. These two pieces of information often complement each
other.

* Simplifications are obtained over the perceptual type of algorithms.

* Robustness is obtained in providing rich pitch information from pitch
candidates.

Advantages of using an HMM-based pitch contour estimator

* Using a stochastic model to describe pitch contours rather than using the
smoothing or DP algorithm based on minimum cumulative distance/probability
measure.

* Because of the veil between the hidden states and the output in a HMM, it is
potentially more robust against noise disturbance.

* A simple HMM can well describe the correlations of pitch contour and its
continuity constraint.

* Because HMMs can be properly trained by a large set of noise-free data, the
method is close to human pitch perception of using previously learned
knowledge.

Conclusions and future work

The proposed pitch estimation algorithm showed its robustness and great
potential in processing speech with variable contamination. The algorithm is
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flexible in its design, with a replaceable coarse pitch candidate estimation
part in accordance with the complexity of the input speech.

This algorithm could be refined, such as to include the unvoiced state in
order to handle transitions between voiced and unvoiced frames, and to use,
for example, forward combining backward search in order to handle better the
pitch crossing points of two contours.
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CHAPTER 4

SPEECH INTELLIGIBILITY ENHANCEMENT

A new adaptive speech separation system, designed for separating co-channel
speech signals from a single-receiver with a range of Target-Interference
Energy Ratio between -12 dB and +12 dB, is developed. With particular emphasis
on the global consistency to the human auditory processing without emulating
the detailed auditory behavior, this system bridges the gap between the
methods by pure signal-processing and by pure mimicking of auditory speech
perception.

The system  mainly consists of two parts, the adaptive speech separation
and the pitch contour estimation.
In the speech separation part, a new time-frequency bin domain adaptive speech
separation approach is used, by separately exploiting the T-FB domain linear
and nonlinear LMS adaptive filtering techniques as described in chapter 2.
In the Dpitch contour estimation part, a two-step estimation algorithm s
applied, by exploiting a pitch candidate estimator plus an HMM-based pitch
contour estimator as described in chapter 3.

Simulations on separating summed stationary speech signals with constant
pitches, and on separating summed (nonstationary) speech sentences with
constant and with natural pitch, will be described in detail. Some results
will be included.

4.1. Description of the addressed speech intelligibility enhancement problem
* Problem addressed

The problem addressed by this chapter is the intelligibility enhancement of
the target speech signal from a co-channel speech signal. A co-channel
speech signal is defined as an additively combined signal from target
speakers, from background interference speakers, and from various other
kinds of noise in a single channel. Often we have to handle the situation
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where there is no a-priori information about the target and the interference
speakers and there is only a single-input from a single receiver rather than
multi-inputs from an array of receivers (multi-receivers). The reason of
selecting such a premise for this research is that in many practical
situations the co-channel noisy-speech signal is the only signal available.

Fields of possible applications

The addressed problem may appear in many different situations, such as in a
microphone and a (mobile)telephone environment, from background competitive
speakers, from crosstalk in neighboring communication channels or in
frequency-reused channels (in the space domain), etc.

In many situations, we need to handle the problem of co-channel interference
reduction. Some simple examples are given below.

- Co-channel noise in a cellular mobile telecommunications system

In a cellular mobile telecommunications system, the reduction of
co-channel interference becomes primarily important because of the
introduction of frequency reuse[50]. In such a case, users in the
different geographic locations may simultaneously use the same frequency
channel from the different cells.

- Co-channel noise in a car environment
The reduction of co-channel noise in a car environment is required for
improving the speech quality in a mobile telephone receiver.

- Presence of background-noise in an ASR system
Reduction of background noise in an Automatic Speech Recognition (ASR)
system is of primary importance. It is well known that the speech
recognition rate of ASR systems suffers significant degradation due to
background interference noise.

- Crosstalk and echo noise in a telephone system
The crosstalk from neighboring channels and echoes from the “hybrid"
circuit (a transmission link) to a telephone receiver due to the impedance
mismatch can degrade severely the speech quality in a telephone receiver.

130



Speech Intelligibility Enhancement

- Noisy-speech  from  competitive  speakers in an  environment  with
normal-hearing listeners and hearing-impaired

Difficulties arise for hearing-impaired people to understand the
target-speech in noisy surroundings.

Difficulties even arise for normal-hearing listeners when background
speech from many competitive speakers is present at medium to high
acoustic levels. In these situations, intelligibility improvement of the
desired-speech is required. One of the situations is the well-known
cocktail party, where it is often difficult to understand a target-speech
from background competitive speech.

* Difficulties in solving this problem

After decades of investigations, co-channel speech enhancement remains a
challenge. The key difficulty is that the target signal and the interference
noise can be both speech signals, which implies that they can be both
nonstationary  and  share  similar  statistical  characteristics. In  the
conventional situations with white/colored noise, the spectra of signal and
noise show a large difference. If both the signal and noise are speech,
there is neither basic statistical difference in the time-domain nor in the
frequency-domain.

We know that in principle whether a noise reduction technique can be
effectively used mainly depends on two factors. First, there must exist some
basic difference between signal and noise which can be exploited in a
specific domain. The larger the differences, the easier the noise is being
reduced. Secondly, it depends on whether suitable mathematical expressions
and a corresponding algorithm can be developed to implement the idea.

However, there still exist local signal differences between the target and
the interference speech which can be exploited to reduce the noise.

* The human auditory processing

If we could understand how the human auditory system processes noisy speech,
and what characteristics it exploits, we might be able to develop an
effective processing technique. Until now we are only starting to understand
the highly intelligent mechanism of the human sound processing. However, the
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current knowledge in this field will be helpful for developing our speech
enhancement algorithm.

It should be emphasized that for the purpose of searching a proper signal
processing technique of speech enhancement which can combine the human sound
perception advantages, the auditory sound perception and the auditory speech
processing are reviewed below. Thus, the detailed micromechanism of the
auditory system is not essential for our algorithm, rather it serves for the
purpose of a better understanding of human sound processing.

From the following review, it will also be clear that one can not expect to
build a speech enhancement system by emulating the auditory micromechanism
in order to fulfill such a task, since it is still unclear about the high
level processing in the human brain although a relatively clear figure in
the low-level auditory processing has been found.

4.2. Speech perception and auditory processing of noisy speech

In a noisy-room, most human listeners are able to perceive target speech, even
though there is a lot of competitive speech at high acoustic levels.

The intelligibility of the human auditory system is at a far higher level than
any existing signal processing technique. This observation motivated many
researchers to investigate the human auditory system. It is obvious that a
better understanding of the sound interpretation in the auditory system can
help us to effectively improve the speech signal processing techniques.

Human auditory processing: an integration of multi-knowledge sources

From the observable facts, the following pieces of information are likely to
be used by the human auditory system:

- Visual information
People can understand better if they have face to face communication. During
the communication, the observation of lip-movements can often help the
speech understanding.

132



Speech Intelligibility Enhancement

- Binaural information
Two ears can perceive sound better than only one ear. It is indicated that
binaural information is used for distinguishing and perceiving a specific
sound from a multi-source combined complex-sound. The binaural hearing
system has the ability to infer the direction of different sound source by
using the difference in sound intensity and arrival-time at the two ears.

- Linguistic knowledge
Human listeners can better perceive their mother language than - foreign
languages in noisy surroundings. Another fact from the experiments[99]
showed that if one phoneme in a sentence is replaced by noise, the human
auditory system can restore this. These indicate that sound perception needs
some kind of high level processing associated with our previous knowledge.

- Using multi-pieces of local information
Listeners can perceive two or more simultaneous sounds. It has been noticed
that the following pieces of information may play important roles in the
auditory system speech perception.

*Pitch and pitch dynamics

The more differences among the pitches in a mixed-sound, the easier for the
listeners to follow a specific speech in that sound. It has also been found
that big pitch changes are recognized by listeners as the presence of
another sound source. These observations indicate that speech fundamental
frequency (pitch) and its dynamics are very important for human speech
perception.

*Formants and their dynamics

The more differences among the speeches, the easier for listeners to
distinguish the different speeches. As different speeches are characterized
by their spectral peaks (formants) and the dynamic trajectories of those
peaks, this indicated that the formant frequencies and their dynamics are
used by the auditory system for sound analysis.

*Sound onset, offset and masking
Some other pieces of information, such as sound onset and offset, sound mask
and restoration, also appear to play important roles in sound perception.
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*Dynamic complexity in sound processing

In a complex situation more pieces of information are used rather than in a
simple situation. A highly degraded sound needs more auditory processing.
The complexity of auditory processing is thus adaptive.

- The processing in the speech enhancement and in the speech recognition are
mutually dependent
From the above, we can also conclude that the processing of speech
enhancement involves also the processing in the speech recognition. This is
especially obvious from the auditory sound masking and restoration
effect[99].

Analysis of the auditory processing

Much efforts have been done in understanding the structure and function of the
peripheral portions of the auditory system. We have a relatively clear picture
of the processing preceding the auditory nerve, however, we only know very
little about the central processing at the higher level of the auditory
system. The knowledge about the processing preceding to the auditory nerve can
be summarized in Fig.4.1.

incoming sound
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cochlear filter model
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transduction model (multi-stage AGC)
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hair cell model (halfwave rectification)

f firing in neural fibers

model for auditory nerve encoding

l neural stimulus spectrum
(for central auditory system)

Fig.4.1 Schematic figure of auditory processing in low levels
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The human ear can be partitioned into an outer, middle and inner part, as
shown in Fig.4.2.
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Fig. 4.2 Structure of the ear
outer ear

The transmission of a sound through the outer ear via the ear canal resonances
introduces nonlinear effects which emphasize the frequency spectral components
of the sound.

Middle ear

A complicated linkage of bones contained in the middle ear couples the
movements of the eardrum to the oval window at one end of the cochlea in the
inner ear. Thus, it transforms from air pressure variation to fluid pressure
variation in the cochlea.
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Inner ear

The Basilar Membrane (BM), which is a fibrous tissue extending through the
middle of the cochlea, is a vital part for the hearing process. Each specific
place of the BM reaches a maximum response on the stationary envelop of the
travelling wave along the cochlea, as shown in the tuning curve of the BM in
Fig.4.3. Hence, the frequency components of a sound are transformed to
monotonous displacements along the BM places.

Relative
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Fig.4.3 Response of the BM as a function of frequency:
one tuning curve at a specific place of the BM

The Organ of Corti includes three rows of outer hair cells and one row of
inner hair cells, which reside on the BM. The transduction process takes place
in this organ. The movement of the BM causes the bending of the hair cells
which stimulates the firing of the neurons of the auditory nervous. Thus, the
frequency-selective displacements of the BM are changed into neural response.

The inner hair cells exhibit a kind of "stimulus selectivity". Each inner hair
cell bends optimally to stimuli at a characteristic frequency and then causes
the firing of neurons of the auditory nerve.

The outer hair cells are not sensory cells, rather they are the effectors of
Automatic Gain Control (AGC) loop which modulates the mechanical motions of
the BM. The outer hair cells, which are normally inhibited, act as "muscles”
which can amplify the effect of low-level stimuli when the inhibition is
reduced.
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Auditory nerves communicate the response of hair cells to the nervous system.
The representation of acoustic information in the nerve is important because
it is the only source of information available to high levels of auditory
processing.

The critical bandwidth and the masking effect in the auditory system

The masking effect plays a very important role in the auditory system speech
analysis. Critical bandwidth is associated with the frequency resolution
capabilities of the auditory system. It is around 100 Hz for center
frequencies below 1 kHz, and is about 15% of the center frequencies above 1
KHz. Psycho-physical research indicated that tones within the critical
bandwidth can not be  perceived individually because of the
frequency-resolution in the human auditory system.

Tones which are several dB lower than the noise within a same critical
bandwidth can not be perceived because of the masking effect. Hence, The human
auditory system is not sensitive to the detailed spectral structures of a
sound within this bandwidth. Rather a weighted integration over all the tones
above the perceivable level within the band is performed.

Computational model for auditory low level processing

Several existing models are based on the above knowledge.

- Transmission line model of the cochlea

One of basic cochlear filter models is the transmission line model, or the
one-dimensional model. This model describes the transformation of the
travelling sound wave to the mechanical movement of the BM. Each small
section along the cochlear spiral is modeled as a section of transmission
line. A transmission line with a low transmission velocity is, however,
difficult to realize physically. A more convenient approach is to use
filters, each of which represents the filter characteristic at a single
point of the BM. Thus, the incoming sound is processed through a group of
cochlear filters. The different places along the BM are tuned monotonously
to the specific frequency band.

To mimic such functions, a group of cochlear filters can be used. The
interval between the center frequencies of these filters is equal to the
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critical bandwidth. The frequency response of each filter is designed to
resemble the tuning curve of the auditory nerve fibers centered at its
characteristic frequency. The frequency response is characterized by a sharp
high frequency slope (at 100-400 dB/oct.), and a flat low frequency slope
(at approximately 40 dB/oct) [1,40].

Transduction model to represent the saturation of the neural firing rate

A transduction model, the "hair cell model”, is built to simulate the firing
saturation and phase lock of the neural fibers. The hair cell model includes
the saturation of the firing rate at high signal intensities and the phase
lock at a particular point of a vibration cycle. This is simulated by the
halfwave rectification and the compression via multi-stage AGC after the
cochlear filter outputs.

Neural stimulus spectrum representation

There are mainly two different models to interpret the transformation of the
fiber firings into the neural stimuli. They are based on the rate-place and
the temporal-place representation, respectively.

* Rate-place representation

The model by Goldstein[28] is based on the interpretation of rate-place
representation. The place abscissa can be regarded as the frequency
abscissa scaled in the critical bands. Since each fiber innervates a
single inner hair cell, and each hair cell is sensitive to a motion in a
specific portion of the BM, the auditory system is considered to convey
stimulus spectral content by the average firing-rate in each of the fibers
of the auditory nerve.

A firing-pattern should be included in the model[25], because the
rate-place  representation degrades when the intensity levels of the
periodic stimuli increase. The firing pattern can be described as the
width of the region in which fibers fire at the same stimulus period.
Since more fibers fire synchronously as the stimulus intensity increase,
this can be used as a measure of stimulus intensity.

* Temporal-place representation

Another model is based on the temporal-place representation [51]. It is
noticed that neural fibers are capable of representing the temporal
properties of the signal. The activities of the fibers are correlated with
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the time-varying amplitude components of the signal. It is noticed from
the observations that the fibers are phase-locked to the stimulus if the
duration of a stimulus is longer than the duration of an action potential
of 1 ms; otherwise the fibers are phase-locked to multiples of the
stimulus-period.

The temporal-place representation is known to be capable of retaining
detailed spectral information for large stimulus amplitudes of the
periodic stimuli, however it may not be expected optimal to the unvoiced
stimuli.

- Parallel time-directional processing on neural-stimulus-spectrum
Further processing to perceive sound information is supposed to be performed
by parallel time-directional processing on the neural-stimulus-spectrum
obtained from the above models.

Auditory processing in the high level of human brain

It is still not clear what kind of detailed auditory processing is performed
on the information perceived from the neural stimulus spectrum.

It is reasonable to assume that the central auditory processing is performed
by a network with highly recurrent hierarchy. Thus, sound analysis might be
performed in the acoustic, prosodic, phonetic, lexical, grammatical, semantic,
linguistic layers with recurrence and constraints, meanwhile using a lot of
other auxiliary information such as emotional attitudes and state, class,
race, gender, etc. The layer structure of sound analysis is shown in Fig. 4.4.
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Fig.4.4 A recurrent hierarchy structure for auditory sound processing

Conclusion

In the above overview, it is indicated how the human auditory system collects
many pieces of information, and then synthesizes and integrates them to
interpret a sound. It is clearly an adaptive process: the kind and the amount
of information used depends on the complexity of the incoming sound. Speech
enhancement and speech recognition for instance complement each other in a
complex situation.

4.3. Overview of the existing speech enhancement techniques
There are two main tendencies in speech enhancement processing. One

concentrated on using different signal processing techniques based on
mathematics, another mimicked the auditory micromechanism in order to approach
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human processing results. In the following, an overview of the most important
speech enhancement/separation approaches will be given.

- Noise categories
Speech enhancement usually infers to target speech enhancement from noise
contaminated signals. The noise can be nonstationary or stationary white or
colored noise, or interference speech and interference audio sound, etc.
Speech  separation is one of the speech intelligibility enhancement
techniques, which is used for separating the target from the competitive
interference speech.

- Basic difference in processing
For different kinds of noise, the speech enhancement techniques explored are
usually different. White and colored noise (e.g.: car noise, airplane engine
noise, machine gun noise, pop-music), have quite different statistical
features and frequency spectra from that of the target speech signals. Thus,
it is relatively easy to explore the differences between the signal and the
noise. One can use spectral subtraction techniques in order to enhance the
target speech.
For the speech-like noise, there is no basic statistical difference between
the target speech and the background speech “noise”. Therefore, different
approaches must be explored.
Here we will concentrate on the latter case. For the first case, readers are
referred to the references[22,46,69,97,98,102].

According to the basic principles, the existing techniques can be categorized
as follows.

(1) Algorithms based on spectral subtraction by harmonic  magnitude
suppressionlselection in the frequency-domain

(la) Speech separation by exploring the frequency structure of the
quasi-periodic voiced-speech signal.
It is noticed that the voiced speech energy concentrates around the
frequencies of pitch harmonics. Speech enhancement can therefore be
obtained by suppression of the interference speech only at the pitch
harmonics when the SNR is negative, or by selection of the target speech
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only at the pitch harmonics when the SNR is positive. In the
frequency-domain, the magnitude spectrum of each speaker can be
approximated by the spectrum of windowed sinusoids.

The idea, originally due to Parsons [71], has been used for selecting the
harmonic magnitude spectrum of the target speech, when target and
interference speech have about the same intensities.

Hanson and Wang[37] proposed a similar technique for suppressing
interference speech when the SNR is negative. In this case, the
interference parameters are in general easier to extract than those of
the weaker desired-speech. The idea is that the target speech can be
estimated by subtracting the estimated interference harmonic magnitude
spectrum from the total spectrum. This method has been applied to SNR
between -6 and -40 dB.

A post-processing of spectral tailor using the technique of Multi-signal

‘Minimum-Cross-Entropy Spectral Analysis (M-MCESA) has been proposed [12],

in order to improve the above results. Given the a-priori
autocorrelations of  signal R and of noise Rn estimated from the
separated spectra, a M-MCESA approach estimates the a-posterior spectra
of S(t) and n(t) by minimizing their cross-entropy under the constraint
of the summed signal autocorrelations Rm.

The adaptive comb filter, which was used in the early 1970’s for speech
enhancement[23,86], has been found to give no improvement of
intelligibility[72]. In a comb filter, only small bands of frequencies
which are centered at pitch harmonics can be passed, while those portions
of the competitive signal -outside. the passband of the filter are
rejected. Thus, by adaptively controlling the type -and size of window
functions, the comb filter ‘“enhances” the target speech signals.
Perlmutter[72] has proved by experiments that such an adaptive comb
filter provides no improvement of intelligibility for the desired speech,
despite of using accurate pitch information.

A sinusodial speech analysis/synthesis model and Least Squares error
approach
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A sinusodial speech analysis/synthesis model [78,79,80,88], improves the
harmonic magnitude suppression/selection approaches. The model can
dissolve harmonics from the different speakers, thus can improve the
distortion in (la) when the harmonics of different speakers are too close
to separate, or when the stronger harmonics mask the weaker harmonics.

The sinusodial model for N-speakers is defined as

N Mi |
sm =X X a cos(@ n + ¢ ) 4.3.1)
i=1 k=1

where a:(, u)ak=21tfa'k and ¢a* are the amplitude, the frequency and the
phase of the k™ harmonic of the i" speaker, respectively.

The windowed speech segment in the frequency-domain after Short Time
Fourier Transform can be expressed as follows

5@ =

" Mz

Mi ) .
1 k{_MA; exp(i9, ) W(w-kw) (432)

where A:{ is amplitude of the k™ harmonic of the i® signal, and W(w) is
the Fourier transform of the analysis window. If the frequencies in
(4.3.2) are known a-priori, the Least Square (LS) parameter estimation
becomes linear estimation.

(2) Statistical model-based speech enhancement

A Hidden Markov Model (HMM)-based speech enhancement technique for white
noise has been proposed[19,20,21,22]. In this method, mixed-speech signals
are modeled by an HMM which is associated with a random process z =X+,
where X, and n are statistically independent and correspond to the speech.
and the noise respectively. Clean speech is modeled by the mixtures of
Gaussian autoregressive (AR) output processes, and the (white) noise is
modeled by a process of independent identically distributed (i.i.d.)
Gaussian AR vectors. The parameters of speech and noise can be trained
separately by the target-absence or the interference-absence segments of
the mixed-speech signals. The speech enhancement is then performed under
ML/MAP/MMSE criterion. It may be a promising approach to be generalized to
the interference speech case.
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Another HMM-based approach is proposed by Varga[98]. In this model, the
output (observation) probability is the joint distribution from the two
models associated with the target and the interference

p(observation) = p(observation | M1 M2 ) : 4.3.3)

where ® is the combination operator, M1 and M2 are the random variables
from the two models. The decomposition for two simultaneous components
becomes

pij)= max p_(uvial a2 bl ® b2(0) 4.3.9)

where alu‘i (or ava) is the transition probability from state u to i (or
v to j), b1i (or b2j) is the output probability emitted from the state i
(or j) in model M1 (or M2), pt(i,j) is a specific output observation
sequence produced by the joint model under the constraints that model Ml
is in state i and M2 is in state j at time instant t. This approach has
only been tested for stationary pink noise and for machine gun noise.

Time-domain LMS adaptive filtering

It has been proved[2] that the adaptive LMS weights of the summed periodic
speech signals converge to the same weights of the dominant-only speech,
provided that the power of the dominant speech is much higher than that of
the weaker speech.

As it is mentioned in [2], "The-  statistical and spectral similarity
between the desired signal (main speaker) and the interfering signal
(background speakers) often prohibits an improvement using only spectral
filtering techniques".

However, the summed periodic signals simulated are produced by a
second-order model only. For speech signals, at least a six-order model
(corresponding to three formants) is needed.

Neural network based noise reduction
A noise reduction neural network has been proposed[95,96,97] and simulated
for speech contaminated by computer room background noise.

Methods based on monaural auditory sound separation
A computational algorithm for sound separation based on the auditory model
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of Licklider[51] has been developed by Weintraub[100,101]. Sound from each
cochlear filter output is represented by a group of neural events. An
iterative dynamic programming pitch tracking algorithm is applied to
determine the pitch period of each of the two sound sources. The number of
speakers and the associated periodic/non-periodic  characteristics are
determined by a Markov model. The spectrum of each sound represented by
the events is then iteratively estimated according to the amplitude ratio
of the two sounds obtained from the histogram calculations from the
trained database of each sound.

(6) Array processinglbeamformer based approach using multi-receivers
The approach exploits the different time-arrivals and the different
intensities of the multi-signals from an array of receivers [18,42,74,90].
By designing a proper array pattern tuning to a desired signal, the target
speech signals can be enhanced. This is more close to the concept of
binaural auditory sound perception.

Remarks:
(2) and (4) need nprior-trained information. In the auditory system
processing hierarchy, this processing corresponds to functions performed
in the high auditory levels.
Moreover, (2) can also be regarded as a neural network, because an HMM is
actually a recurrent neural network[68].
(1) (3) (5 and (6) correspond to the functions performed in the low
auditory level.

4.4. Objective and subjective criteria for speech improvement

It is important to measure how much speech improvement can be achieved by a
speech enhancement system, in order to compare several different methods and
to make a good tradeoff between algorithm complexity and the obtainable
subjective speech improvement. Unfortunately, there is no such a universally
applicable single measure available. This is because the objective distortion
measures reflect . only partially, in a nonlinear way, our subjective
acceptability.

v

Since speech perception is a highly complex process, it involves not only the
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entire grammar and the resulted language structure, but also diverse factors
such as semantic context, the speaker’s emotional attitude and state, class,
race and gender, and the divergence in human sound production organs. The
development of a universally applicable algorithm for prediction of user
reactions to speech distortion is still somewhat elusive. Instead of that,
certain classes of objective distortion measures[17] can predict some aspects
of speech distortion.

It is worth to mention that for our speech enhancement problem, a SNR measure
can not properly reflect the speech improvement levels to a human listener.
Often, after the processing the SNR is increased but the intelligibility of
the speech can be decreased. Thus, what our processing needed is to enhance
speech intelligibly in order to fit better to the subjective measure of the
human auditory system.

4.5. Basis of this speech separation system

In previous sections, the auditory sound perception at different levels has
been reviewed. An overview of the most important existing techniques for
speech enhancement in the presence of interference speech has also been given.

In this section, we will first analyze some common weak points of these
techniques, despite that they are very promising at providing speech
enhancement within certain realms. We will then describe some basic thoughts
of our speech separation system.

Some remarks on the common weak points of the reviewed techniques

(1) On harmonic-based approaches
It is basically a spectral filtering technique, which is not consistent
with the auditory system global processing.
Each frame of transformed data is* processed in isolation, without
considering the correlation among frames.
It dissolves harmonics from the outputs of a narrowband filterbank. From
the speech intelligibility point of view, it is preferable to choose
wideband rather than narrowband filters[81]. In the narrowband filter
case, the reverberation distortion is caused by lengthening the effective
time-window duration of the filters. While in the wideband filter case,
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(2)

(3)

the time-dimension aliasing distortion can be introduced by the down
sampling in the channels. Although the narrowband and the wideband filters
both  introduce distortion, the perceptual degradation caused by
reverberation-distortion in narrowband filtering is more severe than by
the time-aliasing distortion from the wideband filtering, because of the
severe damage of formant trajectories in the narrowband filtering.

On the statistical model-based approaches

If one desires to generalize the statistical model-based approaches to
enhance speech signals from the background speech noise, one probably
needs to include the pitch information. Existing models only contain the
vocal-tract parameters.

On the time-domain LMS algorithm based-speech enhancement

This approach is limited to high SNR, which makes it less attractive.
Moreover, because of the large dynamic range of speech spectra, the local
SNR can not be always consistent with the global SNR constraint. Thus, the
convergence property may not be consistent in different frequency areas.
There may even be some divergence areas. Consequently, the algorithm may
have difficulties for speech enhancement under high SNR constraint.

The structure of the speech intelligibility enhancement presented in this
thesis

In

order to form the structure of this speech separation system, we will

exploit:

*The time-frequency bin domain filtering of speech signals;

*The information existing in the local speech signals;

*The inconsistency of global and local signal dominance;

*The wide-bandpass filtered speech having less subjective distortion.

Some global and basic properties of this system

1)

2)

The processing approach must exploit local differences in the target and
the interference signals, including the local pitch and the local spectral
differences, as much as possible.

The adaptive filtering must be explored in the time-transform domain rather
than in a single dimension such as the time-domain or the transform-domain,
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due to the speech signal nonstationarity.

3) The method has to be expressed mathematically and to be implemented in a
simple algorithm, effective for speech enhancement.

4) The algorithm must be able to divide a complicated speech - separation
problem into a group of monotonic simple problems.

5) The algorithm must be consistent with the auditory system global processing
but avoiding to mimic the auditory micromechanism.

6) The algorithm must be flexible in adaptation to the variable complexity of
the noisy speech signals.

7) This algorithm should use no a-priori speech information of either a
specific target or a specific interference.

4.6. Limitations of this speech separation system

As mentioned previously, the auditory system uses many pieces of
information and contains many processing steps above the acoustic level. It
must be pointed out that from the theoretical point of view, this speech
separation system can not produce complete and perfect separation results,
instead it can produce a separated target speech on which the ear can have a
better intelligibility acceptance. This is because of our limitation to
single-input co-channel signals (which corresponds to monaural sound), and
because of the limitation caused by the acoustic level signal processing,
without using linguistic information and combining the speech separation
process with the speech recognition.

It should be mentioned that from information theory, it follows that
information is lost in a co-channel. Thus one can not expect to restore and
recover the target signal completely.
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4.7. Fundamentals for single-input frequency-bin time-directional processing

The speech separation system described here is based on the parallel
time-directional adaptive processing of the decomposed signals. Particular
emphasis is put on the consistency to human auditory global processing without
emulating the detailed auditory behavior.

Such a signal processing technique is applicable to speech separation due to
the following fundamental understandings of the human auditory system and the
following fundamental properties of the speech signals.

Consider the following characteristics of the auditory system:

1) The human auditory system performs some running short-time spectral
analysis on the acoustic waveforms, by decomposing signals into isolated
frequency components. Further processing is done essentially along the time
axis[56,64].

2) For a human listener, a better subjective sound quality is obtained by a
synthesized speech from a wideband filterbank rather than from a narrowband
filterbank[81].

Consider further the following fundamental properties of the speech signals:

1) It has been noticed that the target and the interference speech signals can
dominate differently in the various frequency bands. This is because the
speech spectrum has a large dynamic range. It contains many peaks
(formants), depending on the vocal-tract shape of a specific sound. The
globally stronger signal can be the weaker one in some frequency regions.
In general, the target and the interference signals can dominate
differently in the different frequency bins, as shown schematically in
Fig.4.5.
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Amplitude

Frequency

Fig.4.5 Two speech spectra dominating in different frequency regions

2) In each frequency-bin speech signals can preserve high time-resolution, if
they are properly bandpass filtered. Consequently, voiced-speech signal
components contain periodicities along the time-direction associated with
both the target and the interference speaker.

The above mentioned properties enable a speech enhancement algorithm to
perform frequency-bin time-directional adaptive processing. This implies that
the speech separation problem can be divided into a group of monotonic
sub-problems, by splitting speech signals into many nearly-independent
bin-components evolving with time. Each bin only contains one monotonic
dominant speaker.

4.8. General system description

As shown in Fig.4.6, the speech separation system consists mainly of five
parts:

1) A wide bandpass filterbank splits the co-channel signal into frequency
bins.

2) A robust pitch estimation algorithm is designed for simultaneously
multi-pitch contour estimation.
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3) The stronger/weaker speaker is identified for each bin by the estimated

short-time local TIR using higher-order moments.

4) A time-frequency bin domain adaptive filtering algorithm is applied for
speech separation.

5) The separated signals associated with each speaker are summed over all
frequency bins.

adaptive speech separatlon’_
z T 5
S
a [ S/W speaker estimation et:] 1
1 : ".>__)_
S+ S ﬁ . i :
1 2|0 :
— 1"
.4 i
: | adaptive speech separatlo?’_ S2
|
o]
o T
e L»{ S/W speaker estimation b
ko]
-
=
|« |

> multi-pitch
contour estimation >
+ (candidate estimate + HMMs)

Fig.4.6 Block diagram of the speech separation system

In the following sections, the detailed system implementation will be
described.

4.8.1. Signal decomposition

For speech separation purpose, the co-channel speech signal is split into
frequency bands by a group of wide-bandpass filters. Each bandpass filter has
a frequency response Hk(co) symmetric to its center frequency mk=21ck/N, k=1..N,
with a bandwidth 2B. For the "noisy" co-channel speech signal, more frequency
bands should be chosen in order to keep a certain redundancy.
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In order to simplify calculation, we implement these bandpass filters by a
Short-Time Fourier Transform (STFT), followed by shifting the output data into
the corresponding frequency bands, and taking the real-part of the data.

STFT can be explained in terms of a bandpass filterbank with uniformly
spaced center frequencies from O to =m. Given a signal {x(t)}, the STFT is
defined as

Jom } 4.8.1)

Jon k
K(n,o) = e [ 3. x(n+m)w(-m) e
m
where w(m) is a symmetric window of size L. The STFT output X(n,wk) is
corresponding to the lowpass-shifted bandpass filter output.
The above formula can be re-written as follows

-jo n
X(n,mk) =e X(n,(.ok) 4.8.2)
where X(n,a)k)
j(okm

X(n,(x)k) = 3, x(n+m)w(-m) e-

m

k=1.N=L (4.8.3)

is the output of a complex-valued bandpass filter which fits the above
bandpass filterbank demand. Thus, the corresponding filter impulse response of
the complex filter in the STFT is

- jon

hk(n) = w(n) e K (4.8.4)

* Time-resolution and frequency-resolution are limited by the uncertainty
principle

It is well known, that the STFT suffers from the time-frequency resolution
limitation. One can not make arbitrarily high time-resolution and high
frequency-resolution .simultaneously. The time-frequency resolution is governed
by the wuncertainty principle[14], i.e. AlAf21/41t, where Al and Af are the
bandwidths of the time-window and the corresponding frequency window,
respectively (the equality holds if and only if the time-window w is
Gaussian).

However, by selecting the size of a time-window comparable to the average
pitch period, speech spectrogram{77], which contains pitch periodicities and
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formants trajectories, will satisfy the time-resolution demands for later
processing.

One often likes to have different time and frequency resolution in
different frequency bands by using a different analysis window size. This is
referred to the "zoom in and zoom out” function. In high frequency bands, a
higher time-resolution is needed than in the low frequency bands. Such a
bandpass filterbank can be implement by using orthogonal Wavelet Transform
(WT) [14,15,83]. Although it still suffers the time-frequency resolution
limitation, the time-resolution and the frequency-resolution no longer have to
be the same for every frequency bin. In WT, bandwidths of different bins are
governed by a scale factor. The bandwidths can thus be chosen uniformly
distributed on a logarithmic scale. From the physiology point of view, it is
more suitable to decompose signal into frequency channels with a same
logarithmically scaled bandwidth. This is easily understood that a large data
window is needed in a low frequency band in order to have a relatively high
frequency-resolution, and a small one in a high frequency band.

Although as mentioned above that filterbank obtained by WT is more
attractive than that of the STFT, STFT type filterbank is still ‘used in our
simulations due to limitation of this research. We believe that the speech
enhancement system depends mainly on the separation algorithm itself. However,
one can always revise the filterbank implementation by WT in order to gain
more benefit. '

4.8.2. Estimation of pitch

For the pitch estimation part in this speech separation system, the algorithm
described in chapter 3 can be applied directly for pitch contour estimation
from co-channel speech signals.

4.8.3. Estimation of short-time local TIR

In each bin a short-time bin Target-Interference Energy Ratio (TIR) is roughly
estimated in order to decide which voiced-speaker is dominant.
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First, the bin signal X(t,k) is half-wave rectified to X(tk) and the third
order moment with the delay of each speaker’s pitch period P is calculated as
follows

Z (k) = XOOX@-P_JX(t-2P k) ' (4.8.5)

where Pm is provided by the pitch estimation algorithm. The short-time TIR in
each frequency bin is then estimated by the energy ratio (in dB)

TIR(t ) = 1073 log[ 22 (k) /32 (t,k)] (4.8.6)

where t, € {t}

4.8.4. Adaptive speech separation

After bandpass filtering, the noisy speech signal components are processed by
using a time-frequency bin (T-TB) domain adaptive noise canceler.

Before describing the speech separation algorithm, we will first focus on the
following two questions: : ‘

* Can a T-FB adaptive filter be used for speech separation?

* Does this algorithm converge to the target (interference) speech signal?

Consider the situation where the co-channel signal is composed of one' target
and one interference speaker in a voiced-voiced or voiced-unvoiced situation.
The bandpass filtered signals at frequency bin k can be expressed as

X(tk) = ST(t,k) + S‘(t,k) (4.8.7)

For a voiced-speech signal, it is highly correlated among the successive
periods. Supposing the target speech signals ST and the interference speech
signals Sl are statistically uncorrelated, the autocorrelation function of the
bandpass signal with its P, delayed version (pT is the target speech pitch
period) at bin k can be expressed as below

E(X(LK) X@p-ik) = R. GK) + Ry (peik) @8y
T 1

where the relation ST(l-pT—j) =ST(l-j) has been wused, 1i.e., it has been
supposed that the target voiced-speech signal is stationary in the time
interval of consideration. If the target speaker is dominant at this bin, the
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first term in (4.8.8) becomes the main part. Here it is also supposed that the
same speaker is dominant during the short-time interval. A similar analysis
holds for the interference speech with pitch period PI.

From the above, we would guess that a LMS filter weights in a single frequency
bin would converge to the filter weights associated with a dominant speaker.

On the convergence property of a T-FB domain LMS algorithm

* Convergence property for full-band signals

For the summed - (fullband) periodic speech signals under the constraint of a
dominant speaker plus a weaker interference speaker, it has been proved[2]
that the adaptive LMS weights initially converge to the same weights as would
be produced by the dominant speaker-only case.

However, because of the large eigenvalue spread of the speech signals, it
would be very difficult to keep this constraint consistently over the whole
signal spectrum. Consequently, the algorithm is limited to have applications
in most practical speech situations.

* Convergence property in the T-FB domain

However, we can extend the above convergence property to the T-FB domain LMS
algorithm. This results in a part of the foundation for the T-FB domain speech
separation.

The above convergence property implies that the adaptive filter of each
Jfrequency-bin will converge to the dominant speech signal components in a T-FB,
domain LMS algorithm.

Hence, we can group the fullband signal into the components in different
regions belonging to these three categories: the bins dominated by the
target-speaker; those dominated by the interference-speaker; and the bins
where the two speakers have comparable signal energies.

Thus, for those bins dominated by the target (interference) speaker, the
corresponding LMS weights fast converge to the target (interference) speaker.
While in those bins where the energy difference is small, the LMS algorithm
shows a poor convergence.
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Possibility of speech separation using a T-FB domain LMS algorithm
Based on the above analysis, a speech separation algorithm can be formed by
using a T-FB domain LMS algorithm.
A T-FB domain LMS algorithm, functioning as a T-FB domain Adaptive Noise
Canceler (ANC), can be used to estimate the signal components of the
stronger-speaker at different bins. The filter output residuals can be
regarded as the estimated signal components of the weaker speaker.

In order to obtain the separated speech signals, we can simply sum, for each
time instant, the separated signal components associated with a desired
speaker over all bins.

It should be mentioned that applying an LMS algorithm in those bins having
close local Target-Interference Energy can produce relatively large errors.
Those bins are the main parts of distortion introduced to the separated
signals.

In the following, two different speech separation approaches will be
investigated. We will first describe the T-FB domain speech separation
associated with a linear adaptive filtering approach in section 4.9, and then
replace this linear adaptive filter with a nonlinear one, in section 4.10, in
order to obtain further improvement.

4.9. Speech enhancement via the time-frequency bin domain /inear NLMS adaptive
filtering

We will first explore the possibility of speech separation via a T-FB
domain linear LMS adaptive filtering algorithm[30].

In such a case, a T-FB domain linear LMS adaptive filter is used as a
linear Adaptive Noise Canceler (L-ANC). This L-ANC extracts the stronger
voiced-speech signals at each bin, by using the quasi-periodic correlations of
the voiced-speech signals. In particular, we consider the algorithm under a
semi-ideal transform assumption as defined in chapter 2, where all bins are
linearly independent. Thus, the T-FB domain filter is simplified to a group of
time-directional filters of independent bins.
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This speech separation algorithm consists of the following three steps:
1) Determination of the dominant speaker at each bin

In each analysis frame, decisions on which speaker is locally dominant, and
whether or not this speaker’s signal is predominant are made at each bin,
by using the estimated short-time local TIR.

2) Estimation of the stronger speaker’s signal (or the voiced-speaker’s signal
in Voiced-UnVoiced case)

An LMS algorithm is applied to estimate the stronger speech signals in the
V-V case (or the voiced-speech signals in a V-UV case) at each bin by using
the periodic correlations. The output of the adaptive filter

M. -1

itk = T Wk X(EP, k) 4.9.1)
j=0

is assigned to the stronger speaker (or to the voiced-speaker in a V-UV

case) as the separated signal component. The filter weights at each bin are

updated at every time instant as follows

W (t+1,k) =w;i Y(tk) + 2 Wek) X(tP-j, k) j=0..(M-1) (4.9.2)

j
where W;i)(t+l,k) are the filter weights;. Mi is the filter order associated
(i
uo
with the speaker i, (i=1,2) at bin k; “f’—zk
ME[X"(t.k)]
filter step-size at bin k; uOl((') is a positive small constant controlling

is the normalized

the convergence speed and the filter steady state performance.

3) Estimation of weaker speaker’s signal

If the stronger speaker’s signal is not predominant, the residual of the
L-ANC

e(tk) = X(t,k)-y(tk) (4.9.3)

is assigned to the weaker speaker as the separated signal, otherwise zero
value is assigned.
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As seen from the above, the voiced-speech signal is first extracted if the
co-channel signal consists of one Voiced and one Unvoiced (V-UV) speech
samples.

Fig.4.7 shows one of such L-ANCs, where the stronger voiced-speech signal
in the k™ bin is supposed to be $,(tk) with pitch period p,

X(t,k) ) e(t,k)

(s/W,p, /p,) - }’
—Z "1 ADF Y

—— vyt )= § (£.X)

Fig.4.7 Linear Adaptive Noise Canceler at frequency-bin k

The program flowchart in Fig.4.8 summarizes this algorithm.

Remarks:

1) Distortion in the separated results

- The difference of local signal energy and of the pitch periods between the
two speakers are exploited by this algorithm. The larger these differences
‘are, the better speech separation can be expected. The overall quality of
the separated speech is ensured by the collective performance of all bins.

2) Selection of adaptive filter step-size constant uO:”
In the separation algorithm, one should pay particular attention to the
selection of uOl((i) to ensure that no divergence occurs at any bin.
Otherwise, the signals in the diverged bin might cause a peak in the summed
separated speech signals. The peak might be much higher than the normal
recovered signal amplitude, thus would damage the overall results.

This algorithm has been applied for co-channel speech separation with
promising results. The details of the simulations and some results will be
described in section 4.11.
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bin k, and time instant t
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Fig.4.8 Program flowchart of speech separation using linear-ANC
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4.10. Speech enhancement via the T-FB domain nonlinear NLMS ADF

Although the approach described in previous section is promising, some
problems still remained. The simulations show that, after separation, some
audible background interference sound still exists. The interference sound is
however no longer understandable.

In order to further eliminate the background speech noise while maintaining
reasonably good intelligibility and limited target speech distortion, speech
separation via the T-FB domain Nonlinear Normalized LMS adaptive filtering has
been investigated[31]. :

* The basis for nonlinear processing

1) Although linear predictions can be used for speech signal estimation from a
single speaker based on an AR (AutoRegressive) model, this model is no
longer suitable for the summed speech signals. The summed signals, which
can be described by a system with parallel AR models, are in general
nonlinear. The following formula describes an ARMA model produced by two
parallel AR models. '

-1
u Vv d+2dz

— + _ = = (4.10.1)
1+ ¥ aiz" 1+ Y bjz'J 1+ ¥ ¢z’
; j k

2) A more accurate speech terminal model is associated with a NL one. Although
in the simplified case, an AR model is usually used for the ideal-lossless
vocal-tract, evidence shows that for the nasal and the fricative sounds, a
NL model should be considered{81]. Furthermore, by including the radiation
at the lips, the actual vocal-cord excitations and the loss of the
vocal-tract, the speech model is the series connection of the three parts
R(z), G(z) and V(z) as shown in Fig.4.9, which is nonlinear.

vocal-cord vocal radiation "
impulse tract at lips
G(z) V(z) R(z) |SPeech
signals

Fig. 4.9 Nonlinear terminal-model of speech signals
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* Possible benefit from the nonlinear processing

As we will see, this nonlinear speech separation algorithm is associated
with a T-FB domain NL-ANC, which is a direct application of the algorithm
developed in section 2.3. This NL-ANC is associated with a second-order
Volterra filter. In this case, the bandpass filtered signal and its delayed
version can be used as the primary and the reference input. Again, the
algorithm is considered under a semi-ideal transform assumption, where all
the quadratic filter coefficients associated with different bin-pairs are
mutually independent. Because the linear filter part is decoupled from the
NL part as mentioned in section 2.3, we will therefore only discuss the new
benefit introduced by the NL part processing.

By using the existing nonlinear correlations, some benefit can then be
introduced. The following products of signal components (nonlinear) can be
introduced for the purpose of speech enhancement:

1) Using signal components from other different bins

Because there exists nonlinear cross-correlations both along the bin and
the time directions, signal components of bin i can be estimated from the
weighted sum of signal component products from bin j and k. Suppose the
local TIR at the i bin is not favorable to the concerned speaker (e.g.:
the local TIR = 0dB, or a local weaker speaker under another predominant
one), using linear estimation can introduce relatively large distortion in
this case. However, one can select some nonlinear terms from other
bin-pairs where the local TIR values are favorable to the concerned
speaker. The products of two signal components from a bin-pair (k).
j+k=i, can be selected for the concerned-signal estimation at bin i. This
means that part of the quadratic terms in the block-matrix H2 in
formula (2.3.55) can be selected for estimating the signal components of
the concerned speaker, i.e., part of the following terms can be selected

y¥ = 3 H2, (Lm) (X | X R (-m)

i km

0 <lm < (M-1), 0< jk,i <(N-1) and (j+k)=i (4.10.2)

where M is the time-directional quadratic filter order associated with the
concerned speaker, N is the total bin number, R’,k(l-m)= E(Xnv]'jxn_mk)
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is the estimated signal crosscorrelation function of bin j and bin k with
lag (I-m).

2)Using the products of two signal components of a same bin but at different
time instant.

In this case, the nonlinear signal time-autocorrelations and the
periodicity of voiced-speech signals are exploited. For a co-channel
signal an=S:1: + S’(f: » with pitch periods p and p, respectively, the

p, (i=1 or 2) delayed nonlinear products can be used to enhance the signal
component estimation of a concerned speaker.

When the local TIR at the i bin is not favorable to the concerned
speaker, one can profitably use the weighted sum of signal component
products in another bin j (with favorable local TIR), having a time-delay
equal to the concerned speaker’s pitch-period P, ie, by selecting part
of the following terms

@ _ R .
Yo _oSJ;mS(M-l)HZJ’J(l’m)(Xn-len-mJ RJJ(I m)
IT-ml=p,

j=i/2, 0<i,j<(N-1) (4.10.3)

where RjJ(l—m): E(X X ) is the estimated signal autocorrelation

n-1j" n-my

function of bin j with the lag (I-m).

When the local TIR of bin i is weak positive with respect to the concerned
. speaker, one can enhance the desired signal component estimation by
selecting part of the following terms

yr(|2? = Z Hzn(]’rn)’l n-li n-m,i (4104)

01, m<(M-1)
li-ml=p,
1

* Description of the algorithm
The speech separation using the NL-LMS ADF algorithm consists of two steps.
First the stronger speaker’s signal will be estimated; next the weaker
speaker’s signals. Both steps will be described below.

1)Estimation of the stronger speaker’s signal
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The stronger speaker’s signal is estimated at each bin by using a similar
method as in the L-ANC case. The only difference is that some quadratic
terms are introduced.

The quadratic terms { A Xn_m ] Xnm | (when the local TIR(t,i) is weak
1.| - 2,|

positive), Xmm J/2Xn-m2‘i/2 (when the local TIR(t,i/2) is favorable)

| OSml,mZS(M-l), |ml-m2|=ps, with p, the pitch period of the stronger
speaker of the i*  bin } can be selected. The quadratic terms

(X jxn_mkl j+k=i and O<jk<(N-1), 0<I,m<(M-1) } from the bin-pair

(j,k) can also be chosen to estimate the signal components of the stronger
speaker at bin i, where the local TIR(t,j) and TIR(t,k) are favorable to
the stronger speaker of the i bin.

This is expressed more precisely in formula (4.10.5) below. Suppose the
stronger speaker at the i bin is speaker A. The signal components of
this stronger speaker A are estimated by an NL-ANC1 which may contain part
of the following terms

A A’
yn.i= Z Hll:\A: Xn-m-p .i+ z HzfA:(m'm_ps)‘l n-m.i n-m- i +
m=0 . & 0SmS(M, 1) : Py
(A)
T OSng%M iy )Hzi IZ.W(m’m_ps)(Xn-m.i/2xn-m-ps,i/ 2- lellﬂ(ps)) *
A
+ H2N0m)(X X - R (-m) (4.10.5)

oSl,mS(MA-l)
jrk=i & 05 kS(N-1)

where Xn.i= S:‘l‘: + Sl(f? is the noisy signal at bin i, P, is the pitch-
period of the stronger speaker at bin 1 in the present short-time
duration, Hl;f: and HZE'T‘:(I,m) are the linear and quadratic filter
coefficients of speaker A associated with NL-ANCI, MA is the filter order
along the time direction for speaker A .

In the situation where one speaker’s signal is predominant, the bin signal
is assigned to the relevant speaker.

2)Estimation of the weaker speaker’s signal

Suppose the weaker speaker at the i" bin is B. Instead of assigning

163



Chapter 4

residuals to the weaker speaker B in the L-ANC case, an NL-ANC2 is used.
In the NL—ANC2, only the quadratic terms are chosen in order to reduce the
disturbance caused by the residual of the stronger speaker signal (This
residual sometimes can be relatively large). Thus an NL—ANC2 may contain
part of the following items

A
zZ = X H2® (m,m-p WTel el T+
ni OSmS(MB-l) [ w) n-m.i ﬂ‘m‘pw.l
(B)

+ 0$n<§M ! )H2iIZ.W(m'm-pW)(Xn-m.ilzxn.m.p - Rl/hlz(Pw)) +

- B w

(B8) ) )

+ OSI.ES(MB . sz ’k(l,m)(xwxn_mk Rjk(l m)) (4.10.6)

jrk=i & 1<j kSN

where elnli are the residuals of NL—ANCI, HZ?_’: are the quadratic filter
coefficients of an NL-ANC2 associated with weaker speaker B, MB is the
filter order along the time direction for speaker B, P s the pitch
period of the weaker speaker.

The process of speech separation by the NL approach at arbitrary time
instant t and bin k can be expressed by the flowchart in Fig.4.10.
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bin k, and time instant t

X(t,k):Sl(t,k)+Sz(t,k)
Y

t mod L=0 ? (L: the length of the short time duration)
_+ ¥

estimate local TIR(t,k)

Y «
S, dominant ? -
Aj +
p=p(S,) p=p(S,)
| 1
Y
NL-ANC1 algorithm: with p delay
T
S, dominant ? = >
B ,
filter output y(t,k) = Sl(t,k) yv{t,k) = Sz(t,k)
i Y Y
S2 (t,k)=0 S1 predominant? 82 predominant? L5 Sl (t,k):O—\
= ,‘ F-
p=p(S ) p=p(S )
T 7
Y
NL—ANC2 algorithm: with p delay
Y
estimate speech S, (t,k) -
T+ )
filter outputs Sz(t,k) filter outputs Sl(t,k)
¥
1
t:=t+1

Fig.4.10  Speech separation via the T-FB domain NL-ANC
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Simulations performed by using this NL-ANC show a further improvement over the
linear approach. Details of the simulations are included in the following
section.

4.11. Simulations and results

The simulations, including separation of stationary synthetic  speech
signals, nonstationary synthetic speech sentences with constant and natural
pitch via linear and nonlinear approaches, will be described in detail. Some
results are included.

Simulations are performed to test if ~the algorithms are practically
applicable and effective for speech separation. ;

Available information for the speech separation

In all these simulations, only the summed-signals are available, this is
equivalent to a single receiver case. The co-channel signals are created by
adding two different speech signals with properly selected Target-Interference
Energy Ratio (TIR). There is no a-priori information about the target and the
interference signals.

Common processing part shared by the different kinds of simulations

The first step processing is same for all kinds of simulations, i.e.,
co-channel speech signals are split into frequency bins through a wide
bandpass-filterbank. At each frequency bin, the local stronger/ weaker speaker
is estimated in every frame.

Pitch estimation

For simultaneously estimating the two pitch values in summed stationary
speech signals (or nonstationary speech sentences) with constant pitch values
(or constant pitch contours), only the first part of the algorithm in chapter
3 is needed.

For estimating naturally changing pitch contours in summed-sentences, the
V-UV frames need to be segmented first. This is because the HMM-based pitch
contour estimation algorithm in chapter 3 does not yet include the unvoiced
situation. The voiced and unvoiced segments can be decided by other V-UV
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detection algorithms, such as the signal-energy and zero-crossings based V-UV
detection approach[81]. After the segmentation, the algorithm described in
chapter 3 can be used to estimate pitch contours of the two speakers.

However, in order to evaluate the adaptive speech separation part and the
pitch estimation part separately, the pitch contours estimated from single
speech sentences will be provided to the speech separation part temporally.

The three parts of the simulations

In the first part, the speech separation algorithm is applied to stationary
synthetic speech with constant pitch period, in order to observe the
separation results after a sufficient number of iterations.

In the second part, synthetic speech sentences with constant pitches are used
for speech separation, by the linear and nonlinear approaches.

It is a relatively simple situation compared to the natural speech sentences
having slowly changing pitch frequencies. The purpose of simulations in this
part is three-fold. First, to test if the convergence of the algorithm is fast
enough in adaptation to the time-varying vocal-tract parameters of speech
sentences. Second, to find out if the quality of separated results is
acceptable. Third, to see if the quality of the separated speech sentences has
any apparent difference among the linear and nonlinear approaches.

The third part is associated with the preliminary tests on separation of
synthetic sentences with naturally changing pitch frequencies. In these tests,
the co-channel speech signals are obtained as the sum of the two synthetic
speech sentences, which are produced by separately using an LPC synthesizer
with the estimated single speaker’s pitch contour as excitations. The pitch
contours which are provided to the speech separation system are replaced by
their estimated values from the single-speaker’s signals, in these tests in
order to distinguish the distortion introduced by the pitch estimation part
and the speech separation part.

(a) Simulations on separating stationary synthetic voiced-speech signals

(al)via T-FB domain linear LMS adaptive noise canceler
In these simulations, we will separate summed stationary synthetic speech
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signals, in order to check if the algorithm works effectively.

Two stationary synthetic speech signals, each containing three formants
with a specific pitch, are added with properly chosen TIR between 0 dB and
+12 dB. The only signal available to the separation algorithm is the
summed-signal. The pitch information is obtained from the pitch estimation
algorithm.

In the simulations, the synthetic speech signal is produced by passing
periodic excitations to a filter with three given formant frequencies and
bandwidths. The speech signals produced are then stored as a speech file.
In each simulation, two synthetic speech signals are added by a
pre-selected TIR value. Before taking the STFT, each frame of speech
signals is Hamming windowed with the selected size L=80. Since the
fullband speech signal bandwidth of the stationary signals is selected
between 0-4 KHz, and the sampling frequency is fs= 8 KHz, the equivalent
bandwidth of each bandpass filter equals 2B=4fs/L=400 Hz. The total filter
number is chosen N=100 to keep enough redundancy. The bandpass filters are
uniformly distributed. The outputs of the bandpass filters are obtained by
taking the real part of the data after the DSTFI and the bandpass
shifting. The same step-size constant u0=u0i=0.1 is chosen for all bins in
the adaptive filter.

In the following, several separated results are included. Table 4.1 lists
the parameters (the pitch values, the formant frequencies fi and the
associated bandwidth Bi, i=1..3) of the synthetic stationary speech signal
of a single speaker. These parameters will be needed as references in the
following figures. Fig.4.11. and Fig.4.12. show the speech waveforms and
the LPC spectra from the original, the summed and the separated speech
signals, respectively. The TIR is selected OdB and -12dB, respectively.

synthetic| formant 1 formant 2| formant 3 pitch
speech fi(Hz) Bi1(Hz)| f2 B2 fa B3 | {(samples)
S 730 50° 1090 75 2440 100 40
S2 270 50 2290 75 3010 100 47
S3 420 50 1550 75 2400 100 47

Table 4.1 Parameters of the synthetic stationary voiced-speech signals
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Co-channel signal (f1+ f3 in 0dB)

(a) Waveforms (b) LPC spectrum
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Fig.4.11(1)  Separation of summed stationary speech signals

by the T-FB domain linear-ANC (TIR = 0dB)
(al) (bl) co-channel speech signal
(a2) (b2) separated speech signal f3
(a3) (b3) separated speech signal f1
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Co-channel signal (f1+ f2 in 0dB)

(b) LPC spectrum
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Fig.4.11(2)  Separation of summed stationary speech signals
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Clean speech signal

(a) Waveforms
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Fig.4.11(3)  The clean signal waveforms and spectra

(used in Fig.4.11(1), 4.11(2))
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Co-channel signal (f3+ f] in -12dB)

(a) Waveforms (b) LPC spectrum
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by the T-FB domain /inear-ANC (TIR = -12dB)
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Co-channel signal (f1+ f2 in -12dB)

(a) Waveforms (b) LPC spectrum
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by the T-FB domain linear-ANC (TIR = -12dB)
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(a2)Some comparisons

Amplitude -

Speech intelligibility enhancement via speech separation using a Harmonic
Magnitude Suppression (HMS) approach[37] has proved its usefulness in the
negative dB TIR situation. This method became one of the main trends for
speech separation, as mentioned in section 4.3.

In order to compare the results obtained from these two methods, similar
simulations as (al) are performed using the HMS technique at TIR=-12dB. In
the simulations, the size of each analysis frame is selected L=256
samples, with sample frequency fs=8kHz. A hamming window is used before
FFT transform. Thus, the equivalent bandpass filter bandwidth is
2B=4fs/L=62.5Hz (relatively to pitch frequencies 170.2 and 200 Hz, it is a
narrowband filterbank). Fig.4.13 includes two simulation results obtained
from using the HMS method (using the same summed speech signals as
those in Fig.4.12). These simulation results indicate that stationary
speech signal separation by the T-FB domain Linear-ANC algorithm in
negative dB TIR are slightly better than that by the HMS method.

LPC spectrum

(a) (b)
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Fig.4.13 Separation of summed stationary speech signals by the
Harmonic Magnitude Suppression (HMS) technique (TIR=-12dB)

(a) Separated weaker f1 from summed speech (f3+fl) in -12dB
(b) Separated weaker fl from summed speech (f1+f2) in -12dB
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Remarks:

In the simulations of the HMS-based separation approach, there is a
spectral peak around 3400 Hz, which is the least common multiple of the
two pitch harmonics. Consequently, the HMS-based approach can not resolve
these two harmonics according to its separation principle. While in the
T-FB domain L-ANC approach, in some of the cases there is also a small
peak around 3400 Hz. In principle, this distortion is introduced by poor
local TIR values (close to 0 dB).

(b) Simulations on separating summed-synthetic speech sentences with constant
pitches

(bl)via the T-FB domain l/inear Adaptive Noise Canceler (L-ANC)

Two synthetic sentences with different but constant pitches are added with
a selected global TIR between O dB and *12 dB. The local TIR is calculated
in each frame. The short-time signal energy at each bin is also
calculated, which is then used for normalizing the filter step-size. The
constant filter step-size is chosen u0=p.i=0.1 for all bins. The hamming
window size is selected as L=87. The bandwidth of the speech signals is
0-5KHz, with the sample frequency fs=10KHz. ‘Thus the equivalent bandpass
filter bandwidth 2B=4fs/L =460 HZ. The number of bandpass filters is
chosen N=100. These filters are designed to cover only the signals within
the frequency band 0-4kHz, in order to decrease the calculation burden.
Two groups of weight vectors, each is associated with a specific speaker,
are used. The filter weights are .updated continuously across the
successive frames, if there is no alternation of dominant speaker.

Simulation results showed that the T-FB domain LMS type of L-ANC can adapt
quickly to speech sentences. As examples, Fig.4.14 shows the spectrograms
of speech sentences before and after the separation, where the TIR =0dB.
From the spectrograms, it follows that the intelligibility of the
separated speech is well maintained. Informal listening tests also showed
intelligibility enhancement of the target speech.
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Fig.4.14 Separation of summed synthetic speech sentences
with constant pitches by the T-FB domain linear-ANC

(TIR = 0 dB, pl=40, p2=47 samples, fs=10kHz)

176



Speech Intelligibility Enhancement
(b2)via the T-FB domain NonLinear Adaptive Noise Canceler (NL-ANC)

Similar to (bl), the co-channel speech signal is obtained by summed
synthetic sentences with different constant pitches and a given TIR. For
each speaker, there is a corresponding set of filter coefficients. The
continuity of the filter weight coefficients associated with each speaker
k is considered between the successive frames. The coefficients are
updated continuously across the frames if there is no alternation of the
dominant speaker in the concerned bin. However, if the dominant speaker
changes between the successive frames, the filter coefficients are then
initialized before starting a new update.

In the practical algorithm for the simulations, only signals in the same
bin are considered as the quadratic terms in the NL-ANC.
At bin i, the linear and quadratic weights are updated separately as

follows

(s) — (s) i =
HI® (n+1) = HI® () + 2 ulieln‘ix“_j1asj i=0,1.M-1 4.11.1)
H2Gjp,n+l) = H2Gjpm)  +

+ 2 ulisign(X X )cln _lJ X X

n-j,i n-j-ps.i n-ji n-j- ps,i

j=0,1.M-1 (4.11.2)

HA" G0, n+D) = HE7Gip,m +

+ 2 },L2i51gn(cln.j .ieln_}pw‘ i)e2“_ i'l leln n ieln_j‘Pw‘ : |

j=0,1.M -1 (4.11.3)
where pl= ulOI/(MsE(ani)), u2= uZO/(MwE(elnzi)). #10=420=0.1, p, and
Mi are pitch period and the quadratic filter order along the time
direction at bin i, respectively (i=S,W corresponds to the stronger and
the weaker speaker of bin 1), an’ elni and e2ni are the bandpass
filtered signal, the residuals of NL-ANCl and NL-ANCZ, of the i" bin at
time instant n, respectively.

The following output of the NL-ANCl is associated with the estimated
signal component of the stronger-speaker at bin i,
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y = H X 4
n,i i=0 j.i n-J-ps.l
Ms -1 o)y - .
+ ,Eoni'i(]’J-ps) s1gn(Xn_j_Ps_an_jJ) A |Xn_j_ps T (4.11.4)

While the following output of the NL-ANC2 is the estimated signal
component of the weaker-speaker at bin i,

z = ): Hz‘ )(],_]p )sign(el . el . NTel —— el (4.11.5)
i-0 -pw‘l n-j, i n-j-pw,l n-j, 1

Similar simulations are done by using the T-FB domain NL-ANC. Fig.4.15
shows the speech spectrograms of the clean speech sentences, the summed

speech sentence at TIR=-12 dB, and the separated sentence of the weaker
speaker, respectively.

Speech Spectrograms
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(b) 'Separaled weaker speech signal 82 from (a)

Fig.4.15 Separation of summed synthetic speech sentences

with constant pitches by the T-FB domain nonlinear-ANC
(TIR = -12dB, p1=40’ p2=47 samples, fs=10kHz)

(See Fig.4.14 for the clean speech Sl and Sz)
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Compared with the simulation results obtained from the T-FB domain L-ANC
approach, it has been indicated that the NL-ANC approach further
attenuates the interference sound at the expense of slightly more
distortion on the target speech signals.

(c) Simulations on separating speech sentences with natural pitches

Preliminary simulations have also been done for separating speech
sentences with natural pitches from two females at 0dB TIR. Informal
listening  tests indicate that there is some kind of reverberation
distortion  introduced to the separated sentences, although the
intelligibility of the separated sentences is rather good.

This distortion may be due to inaccurate pitch values in those
voiced-transition frames, where pitch values between the two successive
frames change (relatively) quickly. Consequently, this equals to using
biased pitch period delayed signals for the NL-ANC. Another reason might
be the close pitch values of the two female pitches, which leads to more
distortion in the separated results. Especially, there present many
intercross frames (frames with two similar pitch values) in the testing
sentence, which are non-separable by this algorithm.

Summary of the simulations

Simulation of separating the stationary speech signals between OdB and *12
dB showed excellent results. Compared with the results of the HMS-based
approach at -12 dB, we obtained similar or even slightly better quality. ‘

Simulations of separating synthetic speech sentences with constant pitches
at TIR between O0dB and *12dB using the T-FB domain [linear-ANC and
nonlinear-ANC have also been done.

The T-FB domain LMS ADF algorithms showed good tracking capability in
adaptation to real speech sentences having time-varying  vocal-tract
parameters.

The linear approach provided good intelligibility of the separated sentences,
although there is still some audible background interference sound.

The corresponding NL approach further improves the separated results by
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attenuating most of the interference sound, at the price of a slightly
increased distortion of the target speech and more calculation burden for the
system.

Simulation of separating summed speech signals from two speakers with
natural pitches did yield reasonable results with good intelligibility but
with reverberation. We noticed that the two pitch contours may often
intercross and occupy almost the same dynamic range.

4.12. Discussion on future work

The NL approach shows great potential for intelligibility separation of

speech. As mentioned in section 4.10, properly selection of NL terms can
improve the results. In our simulations, we use only the pitch delayed signal
components from the same bin as quadratic terms because of the calculation
burden and computer memory.
As mentioned in section 4.10, a more general method can be introduced by using
(4.10.5) and (4.10.6). The quadratic filter weights can be selected adaptively
according to  the favorable local TIR values to the concerned speaker. The
linear filter weights can also be adaptively selected. The constraints to the
linear filter weights selection can be added. In the case of (relatively) poor
lpcal TIR, one can either select a very limited number of linear filter
weights, or neglect the linear part totally. By doing this, one can expect to
obtain more benefit and some improvement from the separated results.

For - the natural speech sentence separation, a more accurate use of the
estimated pitch values is needed, especially among the "frames having fast
pitch change. For the signals between the two successive frames, perhaps a
medium pitch value should be considered. Meanwhile, one should avoid using a
high-order filter along the time-direction, as this can cause reverberation
distortion.

For improving the filterbank structure, a Discrete Wavelet Transform (DWT)
type of filterbank can be a reasonable choice. By arranging frequency
bandwidth in a logarithmic scale and using the different time-resolution at
different bins, the DWT type of filterbank might produce better subjective
results, Thus, further listening improvement on the separated speech may be
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obtained.

4.13. Summary and conclusions

We have investigated the speech intelligibility enhancement problem via a
new speech separation system. This system uses single-input (one receiver)
co-channel speech signals without any a-priori knowledge about the target and
the interference speech signals.

This speech separation system possesses the following main original
features:

# Speech separation is performed by the time-frequency bin domain adaptive
filtering on the decomposed (nonstationary) signals, rather than the
conventional one-dimensional processing in the frequency-domain or in the
time-domain,

# It is consistent with the human auditory global processing;

# It concentrates on exploring local information for separating co-channel
speech and for estimating pitch contours. For example, local signal
component time-correlations, short-time local signal energies and TIRs are
used for speech separation; the coincidence appearance of local information
involved in the signal envelopes and the signal ‘“carriers”, the a-priori
general knowledge of pitch contours and the stochastic models of pitch
contours are used for pitch contour estimation;

# 1t has a highly parallel structure, which might be attractive to fast
hardware implementation.

The two speech separation algorithms described can be regarded as direct
applications of the T-TB domain linear and nonlinear NLMS ADF algorithms in
chapter 2.

We have described in detail the separation system and the algorithms via
linear and nonlinear approaches. We have analyzed the benefit of using NL
filter part. In those bins associated with poor TIRs, linear filter weights
show a slow convergence. NL approach can be applied to help the speech
separation in those bins.

Simulations of co-channel interference speech reduction by both the linear
and NL based approaches over a range of TIR between -12 dB and +12 dB have
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been done on the summed stationary speech signals with constant pitches, and
summed speech sentences with constant pitches and natural pitches. Analysis of
the separated results by spectra, spectrograms, and informal listening tests
have shown that all these algorithms provide good intelligibility enhancement
of the target speech signals. Compared with the results obtained by the linear
and NL associated approaches, the NL one has brought further improvements on
attenuating most  background interference sound with slightly increase
distortion of the target speech.

From the above simulations, we can conclude that the T-FB domain NL
adaptive filtering is an effective approach for speech separation over a wide
range of TIR.

However, the research on speech separation has been concentrated mainly on
finding the proper techniques and methods, with off-line simulations and
processing. The results are still limited to certain laboratory conditions,
and the co-channel speech signal is synthetic and is constrained to the case
of two-speakers. Therefore, further improvement is still needed before this
work can be put into practical application.
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CHAPTER §

CONCLUSIONS AND FUTURE WORK

The investigation contained in this dissertation consists of three parts:

m Linear and nonlinear (NL) adaptive filters for nonstationary signals;

= Robust pitch contour estimation from noise contaminated speech;

m Target-speech intelligibility enhancement from co-channel speech by adaptive
separation.

Conclusions

s On LMS adaptive filters

Linear and nonlinear LMS filters in the time-transform domain have been
explored. We have developed new time-transform bin domain linear and
nonlinear Normalized LMS (NLMS) adaptive filtering algorithms. .
For the NL filter version, a second-order Volterra kernel has been selected.
A Gaussian restriction for the filter input (time-domain) data is needed. In
particular, we have investigated the algorithms under a “semi-ideal"
transform assumption.

The following conclusions can be drawn from this part of the research:

-If an ideal window function in the DSTFT or the DWT is selected, the
transform is associated with a "semi-ideal” one.

-For a linear version, because of the signal partial decorrelation under the
semi-ideal  transform  assumption, the filter becomes N-independent
sub-filters of different bins, each sub-filter having order M along the
time-direction.

-For the nonlinear filter version, the linear and the quadratic filter parts
are decoupled in a T-TB domain under the Gaussian time-domain data
restriction.
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The linear filter part thus behaves the same as that of the linear version.

The quadratic filter part becomes a group of independent sub-filters at
different bin-pairs, each having order M along the time-direction, if the
semi-ideal transform assumption is satisfied. '

Much reduction in the number of quadratic filter coefficients can be
obtained, in relation to the base vector characteristics in each specific
domain.

-From the relations and similarities among the linear and nonlinear
normalized LMS adaptive filtering algorithms in the T-TB and in the
transform-domain, it can be concluded that the T-TB domain nonlinear
normalized LMS adaptive filtering algorithm is a generalized form. Each of
the other three versions can be regarded as a specific degenerated form.

-Though most transforms are not semi-ideal, a properly selected orthogonal
transform can decompose signals into nearly orthogonal and non-overlapping
bins. Thus, the algorithms under the semi-ideal transform assumption can
give good approximate solutions for those nearly semi-ideal cases.

-It is necessary to introduce such T-TB domain filters, because they are
more adequate for processing nonstationary signals, and because they can be
used also for reducing the filter output time-delay, when signals are
associated with a long impulse response length.

On the RLS adaptive filters

Because of the relatively fast convergence speed, time-domain Linear/
nonlinear RLS filters have been explored. We have derived two. new
algorithms, an adaptive-sliding-window RLS (linear) covariance lattice
filtering algorithm and an adaptive-sliding-window RLS nonlinear algorithm.

The following conclusions can be drawn from this part of the research:

-The RLS adaptive-sliding window covariance lattice (linear FIR) filtering
algorithm is an extension of the existing constant-window-length version.
Such an adaptive-window is more suitable than the existing algorithms for
filtering nonstationary signals with non-constant changing time-varying
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statistics.

-The RLS nonlinear (Volterra type FIR) filtering algorithm with an adaptive
sliding window introduces finite data-memory. Consequently, this algorithm
is more suitable for filtering nonstationary signals than the existing

~ prewindowed NL filter version. Especially, when the nonstationary signals
are associated with a time-varying NL model having non-constant changing
speed, this algorithm provides better tracking capability.

= On the robust pitch contour estimation

Pitch contour estimation from noisy-speech signals has been investigated. A
new robust pitch contour estimation algorithm has been developed. It is a
combination of a coarse-step for candidate estimation and a detailed-step
for HMM-based Maximum Likelihood pitch contour estimation.

The following conclusions can be drawn from this part of the research:
-Pitch information exists within each speech frame as well as among the
successive speech frames. Hence, it is unproper to determine the pitch
period based on each speech-frame in isolation. It is suggested that a
group of weighted pitch candidates can be estimated from each frame.

-The new pseudo-perceptual pitch estimation algorithm, using local
information from both the signal ‘“envelopes" and from the signal
“carriers”, is robust for pitch candidate estimation from noisy speech. The
information from the signal envelopes and the signal carriers is found to
complement each other. The method is consistent with the auditory global
speech analysis without mimicking its detailed behavior.

-It is unproper to use simple pitch contour smoothing algorithms without
adding general a-priori knowledge about pitch contours, if the speech is
"extremely" noisy.

-The Hidden Markov Model (HMM) is found to be a proper stochastic model for
pitch contours. The fact that the parameters in each model can be trained
from a large set of pitch contours from clean speech signals made it
possible to use a-priori general knowledge. The veil between the output
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probabilities and the states in the HMM makes the algorithm robust against
noise disturbance.

-The HMM-based Maximum Likelihood estimation seems a proper approach for
estimating pitch contour from the weighted candidates.

On target-speech intelligibility enhancement from co-channel speech by
adaptive separation

Target-speech intelligibility enhancement is investigated for the co-channel
speech - signal where the interference noise is from a competitive speaker. A
new approach of the Time-Frequency Bin (T-FB) domain speech separation is
developed, by applying the above T-TB domain linear/nonlinear NLMS adaptive
filtering algorithms and the above pitch contour estimation algorithm.

Several conclusions can be drawn from this part of the research:

-Co-channel speech separation performed in the T-FB domain is more suitable
than performed in the frequency-domain or the time-domain, from both the
signal processing point of view and from the human speech perception point
of view.

-It is an approach consistent globally to the human auditory temporal-place
processing.

-In the T-FB domain, there are more possibilities for a signal processing
algorithm to explore local differences between the signal and the
interference, and to consider co-channel signal components which evolve
with time.

-Theoretically, a time-domain LMS algorithm has been proved to converge to
the weights of a dominant voiced-speaker in the summed signals. However, in
practice it is generally not possible to have a consistent domination over
the whole speech spectrum due to the large dynamic range.

-It can be deduced from [2] that a time-frequency bin domain LMS adaptive

filtering algorithm converges at each bin to a /locally dominant speaker.
Thus, it can be applied to the separation of summed voiced speech.
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-Co-channel speech separation via the T-FB domain linear/nonlinear adaptive
noise canceler has been proved to be able to enhance effectively and
intelligibly the target-speech over a range of TIR between -12dB and +12dB.
Compared with the linear version, the NL one attenuates more interference
sound with slightly more distortion on the target speech. '

Future work

From the investigations described in this thesis, some possible directions for
future work are found:

= On the T-TB domain linear/nonlinear NLMS ADF algorithm

Further investigation on the T-TB domain linear/nonlinear NLMS ADF
algorithms can be concentrated on the dynamic behavior of these filters and
their comparisons.

To investigate the error introduced by using the algorithms under the
semi-ideal transform assumption to other non semi-ideal transform cases.

To compare the difference between using the linear approximate solution and
using the nonlinear solution for some nonlinear problems.

s On the HMM-based pitch contour estimation algorithm

To include the unvoiced state in the HMM, in order to handle the transitions

between voiced and unvoiced frames.

To introduce the forward-combining-backward search in order to better handle
the pitch crossing points of pitch contours.

= On the co-channel speech separation algorithm

To study the adaptive selection of the quadratic filter weights: to select
quadratic  weights associated with these bin-pairs, which satisfy the
frequency constraints and have favorable local TIR values.
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- To study the adaptive selection of the linear filter weights: to select
linear terms only associated with good local TIR condition.

- To test further speech separation on natural sentences. In order to obtain
improved results, more accurate use of the estimated pitch value is needed,
especially among those frames having quick pitch change. For signals between
the two successive frames, a medium pitch value is perhaps a proper choice.
Meanwhile, one should avoid wusing a large filter order along the
time-direction to prevent reverberation distortion.
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APPENDIX

In the following, the formulas associated with the transform-domain and the
time-transform bin domain linear and nonlinear LMS adaptive filtering
algorithms obtained from sections 2.2 and 2.3 are listed in Table A.l. Table
A2 lists the corresponding relations between the variables in a
transform-domain and a T-TB domain. By replacing the T-TB domain variables
with the corresponding transform-domain ones, the T-TB domain algorithm then
becomes the corresponding transform-domain one, and the vice versa. Because a
T-TB domain algorithm can degenerate into a corresponding transform-domain one
by setting M=1, and because a nonlinear filter can degenerate into a linear
one by simply neglecting the nonlinear part, a T-TB domain nonlinear LMS
adaptive filter is thus a generalized form. This relation 1is shown
schematically in the following Fig. A.l.

neglect quadratic
filter part
(—

transform-domain " transform-domain

linear ADF nonlinear ADF
use use
TABLE A.2 TABLE A.2
time-transform bin time-transform bin
-

domain linear ADF domain nonlinear ADF

neglect quadratic
filter part

Fig.A.1 Relations among the different LMS adaptive filters
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variables in the
transform-domain filters

variables in the
T-TB domain filters
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Table A.2

Corresponding relations between the

variables in a transform- and a T-TB domain
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ABBREVIATION LIST
ADF ADaptive Filtering
AGC Automatic Gain Control
AMDF  Average Magnitude Difference Function
ANC Adaptive Noise Canceler
AR Autoregressive
ARMA Autoregressive Moving Average
ASR Automatic Speech Recognitiom
BM Basilar Membrane
BPE Backward Prediction Error
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DSB Double SideBand
DSTFT Discrete Short Time Fourier Transform
DSP Digital Signal Processor
DP Dynamic Programming
DWT Discrete Wavelet Transform
FFT Fast Fourier Transform
FIR Finite impulse response
FPE Forward Prediction Error
HMM  Hidden Markov Model
HMS Harmonic Magnitude Suppression
iid. independent identical distribution
IIH Interspike Interval Histogram
IIR Infinite Impulse Response
KLT Karhunen-Loeve Transform
L-ANC Linear Adaptive Noise Canceler
LMS Least Mean Squares
LS Least Squares
MA Moving Average
MAP Maximum A-Posterori
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MCESA Minimum-Cross Entropy Spectral Analysis
ML Maximum Likelihood

MMSE Minimum Mean Square Error

MSE Mean Square Error

NL NonLinear

NL-ANC NonLinear Adaptive Noise Canceler
NLMS Normalized Least Mean Squares
pdf probability density function

RLS Recursive Least Squares

SNR Signal to Noise Ratio

SW " Sliding Window

TB Transform Domain

T-FB Time-Frequency Bin

TIR Target to Interference Ratio

T-TB Time-Transform Bin

WL Window Length

WHT Walsh-Hadamard Transform
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SAMENVATTING

In vele praktijktoepassingen is het nodig de verstaanbaarheid te verbeteren
van een spraaksignaal ingebed in ruis. De complexiteit van de vereiste
signaalverwerking  blijkt  sterk  afhankelijk te zijn van de statistische
eigenschappen van de storende ruis. In dit proefschrift zullen we de situatie
bestuderen waarin een tweede spraaksignaal de ruisbron vormt.

Daartoe  ontwikkelden we nieuwe lineaire en niet-lineaire  adaptieve-
filteringstechnieken evenals krachtige algoritmen voor het schatten van het
toonhoogteverloop (de "pitch"). Deze technieken en algoritmen worden toegepast
voor het verbeteren van de verstaanbaarheid van spraaksignalen in een
gemeenschappelijk kanaal. Ze =zijn daarnaast bruikbaar voor een breed gebied
van toepassingen.

A. Adaptieve-filteringstechnieken

In vele gevallen zijn de te filteren signalen niet-stationair, d.w.z. ze zijn
geassocieerd met tijdsafhankelijke lineaire en niet-lineaire systeemmodellen.
In ons geval blijkt het onvoldoende om de signalen slechts in het tijddomein
of slechts in een transformdomein te filteren (in plaats van in een
tijd-transformdomein). Daarnaast kan de lange impulsresponsie van een signaal
een hoge filterorde in het tijddomein vereisen. Dit kan leiden tot grote
tijdvertragingen in de filteruitvoer.

Hierdoor gemotiveerd hebben we ons gericht op LMS-type filters, bekend om hun
eenvoud en robuustheid. Nieuwe LMS-type lineaire en niet-lineaire (2e orde
Volterra) adaptieve filters voor een tijd-transformdomein zijn ontwikkeld
onder de aanname van Gaussische data in het tijddomein.

We hebben de algoritmen voornamelijk beschouwd onder de semi-ideale-trans-
formatievoorwaarde. Een semi-ideale transformatie definiéren we als een
ééndimensionale orthogonale transformatic die de signalen projecteert op
orthogonale niet-overlappende deelruimten (de zogenaamde "bins"). Onder deze
aanname zijn de filtercoéfficiénten gedecorreleerd langs de "bin"-richting.
Dat wil zeggen dat de lineaire (filtercoéfficiénten voor elke "bin" onderling
onafhankelijk zijn en de kwadratische filtercoéfficiénten voor elk "bin"-paar.

Het bestaan van een dergelijke semi-ideale transformatie wordt aangetoond. Een
speciale keuze van de vensterfuncties in de "Discrete Short Time Fourier
Transform” of in de "Discrete Wavelet Transform” leidt tot een semi-ideale
transformatie. Bij de keuze van een bijna semi-ideale orthogonale trans-
formatie, kan het tijd-transformdomeinalgoritme onder de semi-ideale aanname
gebruikt worden als een goede benadering.

De diverse uitdrukkingen voor de lineaire en niet-lineaire algoritmen in het
tijd-transformdomein en in het transformdomein worden met elkaar vergeleken.
" Hieruit blijkt dat het "time-transform bin domain nonlinear normalized Least
Mean Square adaptive filtering” algoritme de generaliseerde vorm is die alle
andere algoritmen bevat.

Naast het LMS-type hebben we ook RLS-type lineaire en niet-lineaire filters
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onderzocht. RLS-type filters vertonen in het algemeen een snelle convergentie
en voeren de kleinste-kwadratenberekeningen exact uit, zonder dat de aanname
van Gaussische (tijddomein) invoerdata vereist is.

Twee nieuwe RLS-type adaptieve-filteringsalgoritmen, met een adaptief glijdend
venster, voor filtering in het tijddomein zijn ontwikkeld: zowel een lineair
als een  niet-lineair  filter. Deze  algoritmen  bieden  flexibele-volg-
mogelijkheden voor het adaptief filteren van niet-stationaire signalen. De
RLS-type filters zijn vooral zinvol in het geval van signalen met een
niet-constante  snelheidsverandering  van  de  tijdsafhankelijke  statistische
eigenschappen.

B. Robuste schatting van het toonhoogteverioop

We hebben een algemeen geraamte gebouwd voor het schatten van het
toonhoogteverloop van een spraaksignaal ingebed in ruis. Een ruwe stap waarin
een aantal kandidaten voor de toonhoogte worden bepaald gevolgd door een
gedetailleerde stap waarin  stochastische modellen worden gebruikt voor het
kiezen van het meest-waarschijnlijke toonhoogteverloop. Dit twee-staps-
algoritme is ontworpen om gebruik te kunnen maken van de informatie in de
"intra and inter speech frames". Het algoritme maakt gebruik van de algemene
kennis over optredende toonhoogteverlopen.

Een nieuw algoritme voor de schatting van toonhoogtekandidaten (dat enige
overeenkomst vertoont met de menselijke waarmeming) maakt gebruik van de
plaatselijke signaaldraaggolven en van de plaatselijke signaalomhullenden. De
kandidaatselectie is vervolgens gebaseerd op het gelijktijdig optreden van
toonhoogte-gecorreleerde informatie over alle frequentie-"bins".

Een nieuw algoritme voor het schatten van het toonhoogteverloop, gebaseerd op
een "Hidden Markov model”, benut de correlatie van de toonhoogteperioden in
een aantal opeenvolgende "frames" (toonhoogteverloop). Een stochastisch model
beschrijft de toonhoogtedynamica aan de hand van de autocorrelaties van de
toonhoogte en van de cerste en hogere orde afgeleiden hiervan. Als gevolg van
het leerproces bevat het model enige a-priori kennis van toonhoogteverlopen.
Deze kennis kan van nut zijn voor het schattingsproces in het geval het
spraaksignaal slechts ingebed in zeer sterke ruis beschikbaar is .

C. Verstaanbaarheidsverbetering door middel van spraakscheiding

De verbetering van de verstaanbaarheid van één spraaksignaal afkomstig uit een
gemeenschappelijk-kanaalsignaal, is in dit proefschrift onderzoekt. Het
gemeenschappelijk-kanaalsignaal wordt gedefineerd als de som van twee
spraaksignalen (het doelsignaal en het stoorsignaal) in een één kanaal.

Nieuwe algoritmen voor een spraakscheidingssysteem zijn ontwikkeld. Deze zijn
geschikt voor het gemeenschappelijksignaalkanaal bij doel-storingsenergie-
ratio’s (TIR’s) tussen -12 dB en +12 dB. Dit systeem bestaat uit een
toonhoogteschattingsdeel en een spraakscheidingsdeel.

In het spraakscheidingsdeel worden de bovengenoemde tijd-transformdomein
(lineaire én niet-lineaire) adaptieve-filteringstechnieken toegepast als

203



Samenvatting

ruisonderdrukkers.

In het toonhoogteschattingsdeel wordt het bovengenoemde twee-stapsalgoritme

toegepast voor het gelijktijdig schatten van het meervoudige toonhoogte-
verloop.

De spraakscheidingsalgoritmen zijn getest aan de hand van gesommeerde
stationaire synthetische spraaksignalen, gesommeerde synthetische uitgesproken
zinnen met constante toonhoogte en natuurlijke toonhoogten met een TIR tussen
0 dB en -12 dB. Uit de computersimulaties blijkt dat een goede
verstaanbaarheid van het spraaksignaal wordt verkregen. Het lineaire algoritme
laat nog enige ongewenste spraak achter. Het niet-lineaire algoritme
verwijdert ook deze, maar geeft iets meer vervorming van het doelsignaal.
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STATEMENTS

Voiced speech separation by the harmonic magnitude suppfession technique
shows two fundamental disadvantages: it is basically inconsistent with
human auditory global processing; and it dissolves speech harmonics from
each isolated frame without considering the correlations among the frames.
(This thesis, chapter 4)

It is generally not possible to have a consistent domination of one
speaker over ‘the whole speech spectrum. Consequently, the algorithm as
proposed by Alexander will have difficulties when applied to voiced speech
separation.

“(This thesis, chapter 4; S.T.Alexander, proc. ICASSP 1985)

(3) A time-frequency domain LMS adaptive filtering algorithm converges at each

@

bin to the locally dominant speaker. Thus, it can be applied to voiced
speech separation.
(This thesis, chapter 4)

It is worthwhile to use global processing of the human auditory system for
machine  speech intelligibility enhancement. However, contrary to
Weintraub’s opinion it is neither possible nor necessary to mimic all the
micromechanisms of the human auditory system.

(This thesis, chapter 4; M. Weintraub, Ph.D. diss., Stanford Univ., 1985)

(5) A transform-domain LMS (or a block LMS) adaptive filter does not consider

the time-evolving process of signal components, thus it is not adequate
for nonstationary signal filtering. This disadvantage can be overcome by.
using a time-transform domain LMS adaptive filter, performing on the
temporally localized signal components.

(This thesis, chapter 2)



(6) A successful Ph.D. research demonstrates one’s ability of attacking
difficult technical problems and doing research. It does not mean that one
is only able to work in that small specialized field.

(7) An optimal filter without adaptation only remains optimal in a
time-invariant system. A plan economy without adaptation by effective
feedback from the dynamic market thus is not adequate.

(8) Understanding another culture is only possible through a noisy
communication channel. To solve this estimation problem, in an acceptable
way, one has to train the human neural network. Then cultural differences
can be understood by the human brain.

(9) True religion and true science are always in agreement. True religion can
never be opposed to scientific facts; true science which discovers the
laws of the universe and supports our material and mental advancement can
never be opposed to true religion which reveals spiritual truths.

(Gloria Faizi, "The Bah4’{ faith: an introduction”, p.73)

(10)When attending an international conference, the bi-directional exchange
and stimulation of ideas are more important than the uni-directional
presentation of a paper.

(11)The visa requirements for refugees from the former Jugoslavian républics,
as imposed by several European governments, are a violation of the

principle of "non-refoulement"'”!

which is considered binding on all
states.
*] Anticle 33 of the 1951 United Nations Convention relating to the

Status of Refugees.



