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SUMMARY 

In many practical applications, target-speech intelligibility enhancement from 
a contaminated signal is needed. For different kinds of statistic properties 
of the interference noise, the complexity of the processing is significantly 
different. In this dissertation, we will investigate the situation where the 
noise itself is interference-speech as well. 

For this purpose, we developed new linear and nonlinear adaptive filtering 
techniques and robust pitch contour estimation algorithms, and applied them to 
the co-channel speech separation. 
These new adaptive filtering algorithms and the pitch contour estimation 
algorithm can have many other applications apart from speech intelligibility 
enhancement. 

A. Adaptive filtering techniques 

In many situations signals being filtered are associated with time-varying 
linear and nonlinear systems, thus are nonstationary. In such cases, filtering 
signals only in the time-domain or in a transform-domain (rather than in a 
time-transform domain) seems not adequate. On the other hand, the signals to 
be filtered may need a large filter order in the time-domain. This can cause 
an undesired long time-delay in the filter output. 

Motivated by this, we have 
LMS filters are attractive 
time-transform domain linear 
adaptive filters have been 
assumption. 

investigated the LMS type filters in more detail. 
due to their robustness and simplicity. New 
and nonlinear (second-order Volterra) LMS type 
developed under Gaussian (time-domain) data 

In particular, we have considered the algorithms under a semi-ideal transform 
condition. A semi-ideal transform is defined as one-dimensional orthogonal 
transform which projects signals onto the orthogonal and non-overlapping 
sub-spaces called "bins". Under this assumption, the filter coefficients are 
decorrelated along the bin direction, i.e. linear filter coefficients are 
mutually independent over bins, and quadratic filter coefficients are mutually 
independent over bin-pairs. 

A special selection of the window functions in the Discrete Short Time Fourier 
Transform (DSTFT) or in the Discrete Wavelet Transform (DWT) leads to a 
semi-ideal transform. Although most transforms are not semi-ideal, the 
time-transform bin domain LMS algorithm under a semi-ideal transform 
assumption can be used as a good approximation when the transform is nearly 
semi-ideal. 

The formula relations and similarities among the linear and nonlinear 
algorithms in the time-transform bin domain and in the transform-domain are 
described. It is concluded that the T-TB domain NonLinear Normalized Least 
Mean Square ADaptive Filtering (NL NLMS ADF) algorithm is a generalized form, 
which involves all the other algorithms. 
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In addition, we have investigated the RLS type of linear and nonlinear 
algorithms. RLS filters in general have fast convergence, perform exact Least 
Square (LS) calculations, and are free from the Gaussian (time-domain) input 
data limitation. 

Two new RLS adaptive filtering algorithms with an adaptive-sliding-window (one 
linear and one nonlinear time-domain filter), have been developed. They can 
provide versatile-tracking capabilities for adaptive filtering of 
nonstationary signals, especially those having non-constant changing speed of 
time-varying statistics. 

8. Robust pitch contour estimation 

We have built a general framework of pitch contour estimation from noise 
contaminated speech by a coarse-step of pitch candidate selection combined 
with a detailed-step of pitch contour estimation associated with stochastic 
models of pitch contours. This two-step algorithm is designed to use the 
existing pitch information both in the intrá- and the inter-speech frames. It 
also make use of the general a-priori knowledge about speech pitch contours. 

A new ·pseudo-perceptual pitch candidate estimation 
information from the local signa! "carriers" and 
"envelopes". The cand.idate estimation is then based 
pitch correlated information over all frequency bins. 

algorithm exploits pitch 
from the local signa! 
on the coincidence of 

A new Hidden Markov Model (HMM)-based pitch contour estimation algorithm 
exploits the correlations of pitch periods in a number of successive frames 
(pitch contours). A stochastic model describes the pitch dynamics by using the 
autocorrelations of the pitch and its first and higher order derivatives. Due 
to the training process, the model contains some general a-priori knowledge of 
pitch contours, which can later serve for pitch contour estimation, where only 
extremely noisy speech is available. 

C. Speech intelligibility enhancement by separation 

The target-speech intelligibility enhancement from the co-channel speech has 
been investigated in this thesis. Co-channel speech signa! is defined here as 
an additively combined signa! from a target and an interference speech in a 
single channel. 

New algorithms for a speech separation system have been developed for the 
co-channel speech signa! over a range of Target-Interference Energy Ratio 
(TIR) between -12dB to + 12dB. Th is system consists of a pitch estimation part 
and a speech separation part. 

In the speech separation part, the above-mentioned T-TB domain linear and 
nonlinear adaptive filtering techniques are applied to the time-frequency bin 
domain as linear and nonlinear adaptive noise cancelers. 

In the pitch estimation part, the above-mentioned two-step combined algorithm 
is applied for the simultaneous multi-pitch contour estimation. 
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The speech separation algorithms have been tested on summed stationary 
synthetic speech signals, summed nonstationary synthetic speech sentences of 
constant pitches and natural pitches at TIR between OdB and -12dB. Good speech 
intelligibility enhancement is obtained by computer simulations. Compared with 
the linear version, the nonlinear one has brought further improvement in 
attenuating most of the remaining interterenee sound with slightly increased 
distortion. 
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Chapter I 

CHAPTER 1 

INTRODUCTION 

A human listener is generally only interested in a single souree of sound (one 

speaker) at a time. All other air pressure variations reaching her/his ear are 

not of any importance in that case and can thus be considered as noise. The 

human listener turns out to be very capable of selecting the desired sound 

from the background (or foreground) noise. Those of us who visit cocktail 

parties or pop concerts know all about it. 

Non-human listeners (i.e. machines) however, are not yet as good in this 

respect, despite of the amount of research invested to solve this problem. It 

is still more or less a mystery how the human brain processes the information 

picked up by the ear. What physically happens in the hearing organ is fairly 

well known. What happens after that the hearing nerve has picked up the 

information is more unclear. 

The investigation, described m this dissertation, aims at the speech 

separation problem where one speaker has to be selected from a signa! being 

the sum of two speakers. We follow a method which combines the advantages of 

the signa! processing approach and the perceptual modeling approach. To 

develop a new speech separation method we have to develop new adaptive 

filtering and speech fundamental frequency (pitch) estimation techniques which 

are suitable for this specific application. These described techniques are on 

their own applicable to more fields than just speech separation. 

Sound production model 

Speech can be modeled by a time-varying filter representing the vocal-tract 

and an excitation representing the vocal-cord vibrations. The simplest model 

is to consider the voiced excitations as quasi-periodic impulses, the unvoiced 

excitations as white-noise sequences, and the vocal-tract function as an all 

pole filter containing at least six poles, as shown schematically in Fig.l.l. 



tongue 

pitch 

I I I I 

noise 

• voiced/unvoiced 
switch 

' gain 

Fig. l.l Speech production model 
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mouth- sound 
souree 

vocal 
tract 
filter 
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The reciprocal of the time interval between two vocal-cord impulses of voiced 

excitations is defined as the speech fundamental frequency. or the pitch. This 

speech fundamental frequency changes continuously and slowly with time. The 

time evolution curve of the speech fundamental frequency is called the pitch 

contour. The resonant peaks in the speech spectrum are called fomumts. They 

also change continuously with time, leading to the formant-trajectories. 

For an intelligible voiced-speech. its fundamental frequency (pitch) and the 

first three formants are found to be the most important features which 

determine the speech with sufficient precision. 
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Introduetion 

Co-channel speech separation 

Because the co-channel speech is defined as additively combined speech from 

multi-sourees in a single channel, it implies that a monaural speech signa! is 

handled. The reason of selecting co-channel speech for the separation task is 

due to many existing problems. For example, speech from a telephone line, from 

a mobile telephone receiver, from a video conference, in a recorded tape, and 

the input speech signals , for a computer automatic speech/ speaker recognition 

system, are almost always monaural. In such a case, our human auditory system 

is able to perform monaural sound analysis for tracing the target-speech. 

Thus, monaural processing can be regarded as the basic processing performed by 

the human auditory system. We believe that this can be an initia! and 

fundamental invesiigation step towards a successful sound separation technique 

performed by a technica! system (a machine). 

For the above adaptive speech separation purpose, we will investigate new 

time-transform domain filtering techniques. The main reason is twofold. From 

the signa! processing point of view, a nonstationary speech signa) can be 

better processed in the (two-dimensional) time-transform domain because of the 

possibility of using temporal-Iocalized signal-components, rather than in any 

one-dimensional transform. From the speech perception point of view, 

time-transform domain processing is closer to the human auditory global sound 

analysis and perception. 

Due to the relatively slow time-varying characteristics of speech signals, LMS 

type of algorithms are good candidates because their convergence speed is 

expected to be suitable for such a signa!. In the meantime, it is a simple 

algorithm with low computational costs. 

In order to separate summed speech from a single receiver, it is important to 

estimate the pitch contour of each speaker so that îhe signal's 

quasi-periodicity can be exploited by the separation process. Because the 

summed speech is the only available information, we have to estimate the pitch 

contours from this speech signa!. In order to delermine the pitch periods of a 

sequence of speech frames, a robust multi-pitch contour estimation algorithm 

has been investigated. The investigation sets a general framework of pitch 

estimation and yields an algorithm based on a coarse candidate estimation step 

3 



Ch.apter I 

foliowed by a detailed contour estimation step. 

This dissertation simultaneously follows two outlines 

1) The first outfine of the presenred research is the development of new 

algorithms for an adaptive speech separation system. 

This speech separation system consists of two parts: the actual speech 

separation part and a pitch estimation part. In the actual speech 

separation part, the pitch information is considered to be known. Thus the 

problem is limited to the adaptive summed-speech separation from a single 

receiver (or adaptive co-channel speech separation). The task of the pitch 

estimation part is to estimate pitch contours of all speakers from the 

summed-signal and provide it to the speech separation part. 

As has been mentioned, the techniques of time-transform domain adaptive 

filtering and robust speech pitch estimation are applicable to more fields 

than just co-channel speech separation, hence lead to: 

2) A secmzd outline, which can be foliowed along the investigation of adaptive 

filtering techniques, and the exploration of the stochastic model theory to 

pitch contour estimation, with a specific app/ication to the adaptive 

co-channel speech separation. 

The remaining chapters of this thesis will be organized as follows: 

In chapter 2, we will investigate linear and nonlinear adaptive filters for 

nonstationary signa! processing. This includes the investigation of new 

time-transform domain LMS adaptive filters. It also includes new RLS types of 

algorithms with an adaptive size of the data window. Some general applications 

and simulations wil! also be described. 

In chapter 3, we will concentrale on developing a new robust algorithm for 

simultaneous multi-pitch contour estimation. After reviewing the human 

auditory pitch perception models and the previous research on this field, we 

will propose a general structure by using a pitch candidate estimator plus a 

pitch contour estimator based on a stochastic model. Further details will be 

4 



Introduetion 

described, including the development of a new pseudo perceptual pitch 

candidate estimation algorithm and exploitation of Hidden Markov Model 

techniques for the maximum likelihood pitch contour estimation. Simulations, 

results and further discussions wil! be included. 

Chapter 4 is devoted to develop algorithms associated with a new adaptive 

speech separation system. We will first describe the basic ideas, the 

fundamentals and the basic system structure. We then describe how to apply the 

adaptive filtering techniques developed in chapter 2 to the adaptive speech 

separation. The simulations wil! be described in detail, including speech 

separation on summed stationary speech signals, summed speech sentences with 

constant and natura! pitches. Some of the results are included. Some remarks 

and future work wil! also be given. 

In chapter 5, some conclusions will be drawn, and future work wil! be 

discussed. 

5 



Chapter 2 

CHAPTER 2 

ADAPTIVE FILTERING OF NONSTATIONARY SIGNALS 

In this chapter, linear and nonlinear (Volterra) adaptive filters of LMS 

and RLS types are investigated. 

For the linear LMS filters , we generalize the transform-domain linear 

Normalized LMS (NLMS) adaptive filtering algorithm to the time-transfarm 

domain. One of the main reasans to introduce this new time-transfarm bin 

domain NLMS adaptive filtering algorithm is that it is a powerjul tooi for 

processing of nonstationary signals, for which separate time-domain or 

transform- (including frequency-) domain processing is not adequate anymore. 

This new algorithm can be used to dynamicafly filter nonstationary signals 

having large eigenvalue spread. In particular, we are interested in the 

algorithm under a semi-ideal transfarm assumption. In such a case, the filter 

coejjicients become a set of independent sub-vectors. F or other properly 

selected non semi-ideal orthogonal transforms, this algorithm is expected to 

produce a good approximation. 

The filter can also be used for reducing the filter input-output time-delay 

when (stationary) signals to be processed are associated with a long impu/se 

response length. 

For the nonlinear LMS filters , we generalize our transform-domain nonlinear 

NLMS algorithm into the time-transform domain, teading to a new time-transfarm 

bin domain nonlinear NLMS adaptive filter. Again, the coejjicients of the 

linear filter part are mutuafly decorrelated over bins, and the coefficients 

of the quadratic filter part are mutually decorrelated over bin-pairs under a 

semi-ideal transfarm assumption. Often, much reduction of the quadratic filter 

coefficient number can be obtained in relation to the base vector 

characteristics in each specijic domain. 

The formula relations and the similarities among the algorithms of the 

transform-domain and the T-TB domain linear and NL filters are given. ft can 

be concluded that a T-TB domain nonlinear normalized LMS adaptive filtering 

algorithm is a the generalized form. 

6 



Adaptive Filtering of Nonstationuy Signals 

Due to the Gaussian input restrictions and the relatively slow convergence 

of the LMS type of algorithms, the RLS type of algorithms are also 

investigated. Two new RLS algorithms associated with linear and nonlinear 

adaptive filters having an adaptive sliding-window-length are derived. They 

are designed to provide versafile tracking capabilities to the nonstationary 

signals with non-constant changing speed in their time-varying statistics. 

These new filtering algorithms can have wide applications, nol only in 

speech enhancement, but also in adaptive system identification, adaptive noise 

cancellation and adaptive filtering for various areas. Several examples are 

given. 

2.1. INTRODUCTION 

There has been increasing interest in adaptive filtering techniques in the 

recent decades[16,24,26,45,58,59,87] . Adaptive · filters have wide application 

areas such as radar, sonar, underwater acoustics, seismic, audio and video 

signals, medical diagnoses, and many more, with various possible demands such 

as signal detection, estimation, filtering, system identification, noise 

reduction, echo cancellation, etc. Often, nonstationary signals (which have 

time-varying statistics) are handled, rather than stationary signals. Hence, 

this requires these filters be adaptive in order to search dynamically the 

time-varying optimal salution spaces. 

the Least Mean Square (LMS) type of linear adaptive filtering algorithms 

are most popular, because of their simplicity and robustness. Although the 

time-domain filters are limited by relatively slow and non-uniform speed of 

convergence, impravement has been made by performing filters m other 

transform-domains, where signals can be decorrelated and whitened so that the 

convergence speed could possibly be improved[9,67,87]. 

However, when signals are nonstationary, a one-dimensional filter in the 

time-domain or in the transform-domain appears inadequate. Hence, it is 

necessary to investigate filters in a time-transferm domain. 

On the other hand, there has also been increasing interest in nonlinear 
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O.apter 2 

(NL) adaptive filtering techniques. Partially because for many NL problems, it 

is insufficient to use a linear approximation. Among various NL filters, much 

attention has been paid to the Volterra type of NL filters 

[ 13, 16,44,45,54,59,92]. One of the attractive and particular important 

characteristics of Volterra filters is that the filter output depends linearly 

on the filter transfer function H(z) (i .e. the Volterra kernel), despite the 

nonlinear relations between the filter input and output signals. However, 

their complexity often prevents many practical application and consequently 

very limited investigation has been done up to now. 

Another type of adaptive filtering technique, known as the Recursive Least 

Square (RLS) type has also drawn much attention [24,26,27,43,58,65,75,94). 

These algorithms have faster convergence than those of the LMS type. They 

perform exact Least Square (LS) calculation at each time instant, and are not 

restricted to Gaussian input data as in the LMS type of nonlinear filter. 

Sometimes, fast convergence is of paramount important during the real time 

processing of nonstationary signals. A relatively slow convergence filter 

could then always remain in the adaptation phase which is far from reaching 

the ideal solution. We therefore should also pay attention to RLS filters. 

As the expense of convergence improvement, more calculations are usually 

needed for the RLS type than for the LMS type. The selection of these types of 

algorithm depends on the tradeoffs between the convergence speed and the 

computational cost. 

Motivated by the above, we wil! first investigate in section 2.2 the linear 

LMS adaptive filtering algorithm in the time-transform domain. A new 

time-transform bin domain LMS adaptive filtering algorithm is developed which 

is suitable for processing nonstationary signals associated with a linear 

model (here a signa) sub-space is called a transform bin). 

Next, we investigate the nonlinear (Volterra type) LMS type of algorithm in 

section 2.3. A general form of LMS algorithm in the transform-domain is given. 

Following this line, a new nonlinear LMS algorithm in the time-transform 

domain is then derived. 

In order to 

algorithms, we 

provide more versatile 

will derive two new· 
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Adaptive Filtering of Nonstationary Signals 

respectively) with adaptive-sliding-window in order to cope with the filtering 

of nonstationary signals with non-constant changing statistics. 

Finally, we will give several examples of possible applications such as 

adaptive noise cancellation, adaptive system identification and speech 

enhancement. Some simulation results from demonstrations are also included. 

2.2. LINEAR LEAST MEAN SQUARE ADAPTIVE FILTERING 

2.2.1. Review of the linear LMS adaptive filter 

LMS adaptive filtering algorithms are widely used, because of the 

robustness and the simplicity. 

Time-domaio gradient LMS adaptive filtering 

For a given input data sequence {x n}, the time-domain gradient LMS adaptive 

filtering algorithm [103,104], as shown in Fig.2.0, can be expressed in vector 

forms as follows: 

(2.2.1) 

e = d- y 
n n n 

(2.2.2) 

(2.2.3) 

where x =[x x ... x ] T is the data vector, ~.=[h0(n) -n n n-1 n-(N-1) 
1\ 

is the time-domaio filter weight vector, y n is the filter output, d n is the 

desired response signal which depends on the applications, and ~ is the 

step-size controlling the convergence rate and the steady-state performance of 

the filter. 

A sufficient condition for convergence is 

0 < ~ < 1(A. ~ 1/ tr(R > 
max XJt 

(2.2.4) 

where À 
m&J< 

is the maximum eigenvalue of the data autocorrelation matrix 
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R =E(x x\ 
xx -n- n 

primary 
d ,;J .. e input n 

I 

n 

reference ADF F input x 
-n 

7 ( 

Fig.2.0 Block diagram of a LMS adaptive filter 

The LMS algorithm generally suffers from a slow convergence speed 

When the eigenvalue spread À. ().. . of the matrix Rxx is large, this 
max mm 

time-domain LMS algorithm shows a slow convergence speed. This can be improved 

by using an adaptive filter in the transform-domain[67], provided that an 

orthogonal transfarm is properly chosen such that the spectrum of the 

transformed data is flattened (i.e. the eigenvalue spread is reduced). 

Gradient Normalized LMS algorithm in the transform-domain[67] 

. After taking a block of N-data and performing an orthogonal transfarm W, a 

transform-domain adaptive filter can be applied. The filter coefficients are 

updated as soon as each new block of transformed data is available. 

Suppose an orthogonal transfarm W is chosen. W is a unitary matrix with 

rank N such that WTW=WWT=I. Thus, the data veetors in the time- and the 

transform-domain ~" and ~n' respectively, are related by the following formula 

z = w x 
- n -n 

(2.2.5) 

where Z =[z ... z )T. Let A2 be an N*N diagonal matrix with the (i,i)th 
- n n.I n,N 

element equal to the power estimate of z . The transform-domain gradient 
n.i 

NLMS ADF algorithm can then be expressed as 

(2.2.6) 

10 



Adaptive Filtering of Nonstationary Signals 

e = d- y 
n n n 

(2.2.7) 

H(n+ 1) = H(n) + 2f..l. e A·2z 
- - l n -n 

(2.2.8) 

where the matrix A 2=diag[E I z 17 .. E I z 12
], H is the filter weight vector in 

n.l n,N -

the transform-domain, J.L
1 

is a constant 0<!!
1
::;;1 associated with the filter 

step-size at bin · i, i=l..N. The filter weight veetors between the time- and 

the transform-domain are related by H =Wh . 
- opl -op! 

The convergence speed in the transform-domain depends on the ratio of the 

maximum and minimum eigenvalue (À. (À . ) of the matrix (A'2R ). This 
max mm zz 

eigenvalue spread is shown at least smaller than or equal to that in the 

time-domain[67]. Thus, the convergence speed in the transform-domain can be 

faster than that in the time-domain. A praperly chosen W, like the 

Karhunen-Loeve transfarm discussed below, has the effect of pre-whitening the 

data, campressing the eigenvalue spread, and thus resulting in faster 

convergence of the filter weight vector. 

* The "ideal" transform-domain: The KLT domain 

An ideal transfarm W is the Karhunen-Loeve Transfarm (KL T) [ 1 ,67] . The 

orthogonal matrix W associated with KL T is formed by eigenveetors of R , .. 
which depends on the given data. In KLT, the autocorrelation matrix R 

' ll 

becomes diagonal, thus the eigenvalue spread in the matrix (A-2R )=I becomes 
u 

one. Consequently, the fastest convergence speed can be obtained using the 

KL T. However it is computational costly because W is data-dependent 

As a result, due to the uncorrelated data in the transform-domain, solving 

a vector of coefficients h in the time-domain is simplified to the calculation 

of N scalar-coefficients of H in the transform-domain. 

2.2.2. The time-transfarm bin domain linear NLMS ADF algorithm _ 

- A new algorithm in the time-transfarm domain 

A new generalized time-transfarm damain linear LMS filtering algorithm, 

called the Time-Transfarm Bin (T-TB) domain linear Narmalized LMS (NLMS) ADF 

11 
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algorithm, is deye/oped in this section. 

Por stationary signals, a T-TB domain filter yields a mathematically 

equivalent salution to that of the transform-domain and of the time-domain in 

steady-state, but it can reduce the filter output time-delay for signals 

having a long impu/se response length. 

Por nonstationary signals, especially signals having large eigenvalue spread, 

it provides an adequate and simpte time-transfarm domain filtering approach. 

2.2.2.1. The necessity of algorithm generalization 

In some situations, a long filter tap-delay order is needed m the 

time-domain. Consequently, to obtain an equivalent filter order in the 

transform-domain, it is necessary to transform a long window of data before 

imptementing a transform-domain filtering algorithm. This is often not 

suitable for a number of reasons: 

* For a nonstationary signa!, it is obvious that a long window is not 

suitable. 

* If the signa] is stationary, it can be associated with a long impulse 

response length. In such a case, the input-output of the ADF has long 

time-delay. 

From the review in section 2.2.1 , it is seen that the transform­

/frequency-domain adaptive filtering is basically a one-dimensional filtering 

technique, even though the filter coefficients are adapted in each frame in 

order to follow the possible appearance of signal nonstationarity. A more 

suitable approach for filtering nonstationary signals is in the time-transform 

domain. 

In the following, a new Time-Transform Bin (T-TB) domain linear NLMS ADF 

Algorithm is being derived (here a signa/ sub-space is called a (transform) 

bin). In this algorithm, the length of the data sequence to be transformed can 

be selected shorter than the length of the system impu/se response, possibly 

with overlap between the successive blocl's where needed. By increasing the 

order of the adaptive filter at each bin, the previously transformed blocles of 

shifted data are used, so that the influence of the long length of the system 

12 
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impu/se response can be taken into account. 

2.2.2.2. Problem description in the T-TB domaio 

* The problem in the time-domaio 

Given a data sequence (x"}, consider the following estimation problem 

NM 

~. = L h;\-i+l 
i= I 

(2.2.9) 

The Least Mean Square (LMS) estimation under consideration is to find, for 

each time instant n, an optima! solution of L=(MN) filter coefficients h_ such ., 
that the cost function J below is minimized 

n 

Formula (2.2.9) can be re-written in a vector form 

~ =X Th 
n -n -n 

(2.2.10) 

(2.2.11) 

where veetors ~. and ~. are expressed by embedding the sub-veetors 

sequentially 
a; (n) 
- I 

a: (n) 
-2 

~M(n) 

{I I (n) 

h = [h (n) .. h (n) , h (n) .. h (n) , .. , h (n) .. h (n)] T {12 (n) 
-n I N ' N+l 2N • · (M-I)N MN 

{IM(n) 

(2.2.12) 

Formula (2.2.11) can be expressed equivalently in the trace of matrix-product 

1\ T 
y = tr(X h ) 

n n n 
(2.2.13) 

where the matrices X and h are arranged by dividing the veetors ~. and h 
- n 

from (2.2.12) into M frames, each frame having N-samples, and then 

successively embedding these frames into rows, respectively, as follows 

13 



T a; 
x x x - I 11 12 IN T 

X= x x x a; 
2 I 22 2N - 2 

XMI x x T M2 MN a; -M 

where the ·th U=l..M), of J row, 

h 11 

h= h 21 

hMI 

x and h n n 

h 12 hiN 

h22 .. .. h2N 

h hMN M2 

is associated 

hT 
- I 
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hT 
-2 (2.2.14) 

with veetors a:T(n) and 
-J 

h\n) respect i vel y In (2.2.12), [x x .. .x ]T and 
n·(j·I)N n·(j·I)N·I n-jN•I - J 

h(n) (h(j-I)N•I h T 
- J (j·I)N•2 . hjN) . (2.2.14) can be expressed equivalently 

by column veetors as follows 

(2.2.14') 

* Solving the problem in the time-transform bin domain 

Suppose that the filter order needed in the time-domain is L=MN. The frrst 

step is to divide the data into M successive frames, each of length N (overlap 

can be taken where necessity) . Then each frame of data is transformed by 

one-dimensional orthogonal transfarm W as follows: 

z x jl jl 

ziZ w x j=l..M = j2 (2.2.15) 

z x jN jN 

The relation between the M frames of data before and after the transfarm can 

be expressed in a matrix notation as follows 

z =x wT (2.2.16) 
n n 

where the matrix Z is obtained by row-embedding the M frames of the 
n 

transformed-data as follows, 

z z ziN 11 12 

Z= z z2 2 z2N = [Z (n) Z (n) ... Z (n)] 2 1 
n · I -2 • N 

(2.2.17) 

z z ZMN MI M2 

The filter coefficients in the T-TB domain are defined by the matrix H n' 

14 
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H 
11 H12 H 

IN 

H= H H22 H = [H (n) H (n) ... H (n)] 21 2N 
n - I -2 - N 

(2.2.18) 

HMI HM2 H 
MN 

where Z. and H.. i=l..N, are the column veetors in matrices Z and H , 
-o n 

respectively. The following matrix relation between the time-domain and the 

T-TB domain filters holds 

H =h wT 
n n 

(2.2.19) 

For simplicity, 

[Z (n) Z (n) 

[~1 ~2... ~N] and [J:I
1 

H
2 

... J:IN] will he used to represent 

- I -2 
~N(n)] and [J:I

1 
(n) J:I/n) J:IN(n)], respectively, in the 

following. 

By noticing that WTW=WWT=I, the filter output m (2.2.13) can he expressed 

equivalently in the T-TB domain as follows 

1\ T 
y = tr(Z H ) 

n n n 
(2.2.13') 

(2.2.13) and (2.2.13') are equal due to the equality ZHT=(XWT)(hWT)T= 

xwTWhT;.Xh T_ Thus, an equivalent problem in the T-TB domain is to determine the 

matrix H such that the Least Mean Square (LMS) error in formula (2.2.1 0) is 

rninimized. 

Define the column-scanned veetors Z , X and A of the matrices Z , X , H and 
n n n n n 

h n' respective1y as follows 

z x H h 
- I - I - I - I 

z = 
z 
- 2 x x 

- 2 A = 
H 
- 2 h = 

h 
-2 (2.2.20) 

z 
-N 

x 
-N 

H 
- N 

h -N 

(2.2.13 ') can then he expressed equivalently 

1\ T T N T 
y = tr(Z H ) = Z A = L. Z . H . 

n nn n n j = I -J · J 
(2.2.21) 

Define also a matrix W2=W®IM, where ® is the Kronecker product, then (2.2. 16) 

and (2.2.19) can be expressed equivalently by the column-scanned veetors 

below 

Z = W2 X (2.2.16' ) 
n 
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A: = W2 h 
n 

(2.2.19') 

In genera!, one has to solve the (MN) equations jointly to obtain Hn. By 

taking the following partial derivatives and setting them to zero, the (MN) 

equations associated with H" can be obtained as follows 

• 2 
aE(d" -y) 

V'(E(e 2
)) 

J n 

N T 
- 2E[Z (d - L z H) = 0 

- J n • I ·I 
j=l...N (2.2.22) 

aH . 
• J 

i= I 

By defining P (n)=E(Zd ) and R (n)=E(ZZT), the above formula can be 
- Z .d · J n z.z . -J - 1 

J J I 

expressed equivalently as follows 

N 

P -LR H=O 
-Zd ZZ -i 

i,j =l...N (2.2.22') 
j i= I j i 

for simplicity, ~z/n) and Rz_z (n) are denoted by ~Zd and Rzz , 
j J I j j i 

respectively, here and in the following . The above formula can be expressed 

equivalently in the column-scanned vector form as follows 

P (n) - R (n) A: = 0 
--+ ~-t n 

(2.2.23) 
Zd ZZ 

Thus, the optima! Wiener filter solution, which is independent of time instant 

n when the signa! is stationary, is as follows 

A: =R-1 p 
op 1 ZZ -Zd 

(2.2.24) 

provided that R- 1 

-+-+ 
is nonsingular, otherwise a pseudo inversion R+ has to be .... 

zz zz 
used instead. 

Remarks: 

I) The column and the row veetors of Z and H 

Each row-vector in Z and H represents a specific frame of the N 

transformed-data and the associated filter coefficients respectively. 

While each column-vector in Z and H corresponds to the transformed 

data-components and the associated filter coefficients of a specific bin 

from M different frames, respectively. 

Because of the possible decorrelation along the bin direction, the 

characteristics of a T-TB domain filter can be better explained by the 

column-veetors of H, as will see later. 
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2) Selection of a specific time-transfoon bin domaio 

Before using a filter in the T-TB domain, we have to select a specific 

one-dimensional orthogonal transfoon W. Sim.ilar to the principle in the 

transfonn-domain, W has to be selected in such a way that the 

transfonned-signals can be (nearly) decorrelated along the bin direction . 

In the transfonn-domain, the KL T (which is data-dependent) is an ideal 

transfoon because of its complete decorrelation of the signals. In Time-KL T 

domain, this no Jonger holds. Because the base veetors change according to 

each frame of data, there is no guarantee of orthogonality among the base 

veetors in different frames. Consequently, the KL T is not a right choice 

for a T-TB domain, even if its calculation burden could be considered a 

negligible factor. 

Because some kind of running time-transform processing will be performed, 

it is difficult to fully decompose the signal effectively in both time and 

transform directions. However, it might be possible to decompose signals in 

one direction. This leads to a so-called "semi-idea/" (one-dimensional) 

transfoon (defined later) in contrast to an "ideal" (two-dimensional) 

transfoon which fully decorrelales signals in both directions. For this 

purpose, an orthogonal one- dimensional transform, which can split signals 

into uncorrelated and orthogonal time-related components, is being 

searched. The base veetors of this transfarm must be orthogonal and 

data-independent. These veetors span a complete space of the signals under 

consideration. 

In the following, the T-TB domain filtering algorithm under a "semi-ideal" 

transfarm assumption will be first considered. Then, the approximate solution 

under non semi-ideal transfarms will be discussed. Finally, we will describe 

several transfarms which, for special cases, are associated with a 

"semi-ideal" transform. 

2.2.2.3. A T-TB domain linear LMS Adaptive filtering algorithm under a 

"semi-ideal" transform condition 

- Definition of a "semi-ideal" transform 

A "semi-ideal" transjorm is a one-dimensional orthogona/ tra!ISjorm which 
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satisfies the following conditions: 

* The transfoon matrix W is independent of the data; 

* The space spanned by the orthogonal base veetors of W foons a complete 

signa! space. Thus, each signa! component is an orthogonal projection of 

the signa! onto a specific base vector. 

The name "semi-ideal" is used as opposed to an "ideal" (two-dimensional) 

transfoon, which fully decorrelales the signa! both in time and in transfoon 

directions. 

- An optimum filter solution under a semi-ideal transform 

Consicter the signals after a semi-ideal transfarm W. Under the semi-ideal 

definition, signals are split into non-overlapping and orthogonal bins, and 

the components at different transfarm bins become uncorrelated to each 

other, i.e. 

R =0 z.z. 
IJ 

Thus, matrix R -+-+ becomes block-diagonal 
zz 

R .... = diag(Rz z Rz z .. .. Rz z 
ZZ I I 2 2 N N 

Consequently, (2.2.22') can be simplified to 

P -R H =0 
-Zd Z.Z. -j 

j J J 

(2.2.25) 

(2.2.26) 

j=l..N (2.2.27) 

This is equivalent to N-independent filters for N different bins, each 

having its own optima! coefficient vector of M-elements, 

H (opt) ; R -I P 
- j Z.Z. - Z.d 

j=I..N (2.2.28) 
J J J 

Generally speaking, the M-coefficients within a vector are correlated due to 

signa! correlations along the time direction in a "semi-ideal" transform 

associated T-TB domain. 

- Filter coeflicient update formulas 

Before presenting the detailed update foonulas of this algorithm, two 
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different approaches of updating the filter coefficients will be considered. 

In the frrst approach, the filter output error is calculated in the 

time-domain, and the individual error associated with each bin is not 

available. 

Another alternative approach is either the desired signa! or the filter 

output error is transformed so that the the error associated with each 

individual bin can be obtained. 

!)Updating filter coefficients using the filter output error in the 

time-domain 

- the limitation of using the gradient estimate 

One approach · is to calculate the filter output error in the time-domain as 

follows 

(2.2.29) 

The advantage is that the desired response signals { d") do not need to be 

transformed. Hence, the algorithm has less computational cost. In this 

case, the filter coefficients update formula becomes 

H.(n+l) = H.(n) - 1.1. V (E(e2
)) 

- J - J J J n 

= H.(n) + 2 J.l.E(e Z(n)) 
- J J n - J 

j=l..N (2.2.30) 

Let e . represent the error resulted by · the signals in the t bin, it is 
OJ 

obvious that the equality E(e Z)=E(e Z) holds, because of the bin 
n- J nr J 

mutual independency property under a semi-ideal transform. Thus, the above 

formula is equal to the formula for each independent bin as follows 

H.(n+l) = H(n) + 2 J.l.E(e . Z(n)) 
- J - J J OJ - J 

j=l..N (2.2.31) 

However, it should be mentioned that if the gradient-type estimate is 

used, extra errors can be introduced. This will be explained below. 

In a Widrow-Hoff gradient LMS algorithm, the expectation E(.) in V.E(e2
) 

J n 

to simplify the is replaced by a single sample value as V (e2
) 

J n 

calculation. Consequently, the filter coefficient update formula becomes 
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H(n+l) = H(n) + 2~e Z(n) 
- J - J J n- J 

j=l..N (2.2.32) 

This formula implies that updating coefficients at bin j is influenced by 
N 

the summed error value e = L 
n 

i =I 

e 
"·' 

bin. Under a semi-ideal transform 

rather than the error e . of the jth 
nJ 

assumption, all bins are linearly 

independent, hence it is obvious that e . rather than e 
nJ 

should be used 

for updating H (n+ I). 
- J 

The error that may be introduced by replacing e . with e can be 
"J 

explained by a simple analysis as follows . Suppose that e .=0 is reached 
"J 

at bin j , so that H (n+ I)=H (n) holds. Th is implies that the update will 
- J - J 

be stopped and an optima! solution is obtained. Unfortunately, according 

to (2.2.32) the filter coefficients may still need updating at (n+ 1) 
N 

because e =I e . is probably not zero. Consequently, the convergence 
n n.t 

i = I 

speed is slowed down by this error bias. Thus, there is a limitation using 

the Widrow-Hoff gradient LMS algorithm in a T-TB domain when the filter 

output error is calculated in the time-domain. 

Actua//y, a simi/ar situation also happens in the transform-domain 

gradient LMS a/gorithm when the error is ca/cu/ated in the time-domain . 

Summarizing, we apply the following iteration formulas in the 

corresponding algorithm 

y = f HT(n) Z(n) 
n j =I - J - J 

(2.2.21) 

(time-domain error) (2.2.29) 

H.(n+l) = H(n) + 2J.LE(e Z(n)) 
-J -J J n-J 

(exact LMS) (2.2.30) 

or: H (n+ I) = H (n) + 2~.e Z.(n) 
- J - J J n- J 

(gradient estimate) (2.2.32) 

2)Updating filter coefficients using the filter output error of individual 

bin 

To overcome the extra errors introduced by the gradient estimate in the 

above approach, either the exact-LMS update should be used as in formula 

(2.2.30), or one of the following alternative approaches can be selected: 
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(a)Calculating the error of each bin using the transformed desired-

response signals 

In this methoct, the orthogonal transform 

desired response signals { d D} to obtain 

W is also performed on the 

{ D . } , such that the filter 
DJ 

output error can be calculated in the same processing domain. The 

disadvantage is more calculation due to this extra transform. 

Now the error can be calculated in each bin individually 

E . = D . . H T Z.(n) 
RJ DJ - J - J 

j=l..N (2.2.33) 

where E . and D . represent the output error and the desired response 
DJ nJ 

signa! associated with the t bin in the T-TB domain, respectively. The 

filter weight vector of each bin can then be updated as follows 

H(n+ 1) = H(n)+ 2Jl.E .z (n) j=l..N (Gradient estimate) 
- J - J J DJ- J 

(2.2.34) 

when necessary, { E . } can be inverse-transformed later into the 
DJ 

time-domain error { e } . 
n 

(b)Calculating the error in the time-domaio and foliowed by a transform 

Another possibility is that the error is still calculated in the 
1\ 

time-domain using en=dn-yn, afterwards the error sequence (e } is n 
transformed by the same w to obtain the individual bin error (E }. In 

DJ 

this case, the filter coefficients can be updated as follows 

H(n+ 1) = H(n) + 2Jl.E Z (n) 
- J - J J DJ"J 

(Gradient estimate) (2.2.35) 

Remarks 

If one of the above approaches is used, one should be aware of the 

wraparound-error which might appear. This wraparound-error is caused by 

performing a circular convolution/correlation instead of the required 

linear one, when the data before the transform is not properly arranged . 

In order to obtain the correct results as in the linear coiwolution, we 

can use either the overlap-add or the overlap-save approaches[70,87], by 

adding zeros (or old-data of the previous frame) after (or in front of) 

the data sequence prior to the transform, and after taking the 

inverse-transform, discarding the incorrect part of the data. 
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2.2.2.4. A T-TB domain linear Normalized LMS adaptive filtering algoritbm 

In this section, the normalized algorithm corresponding to that in the 

latter section 2.2.3.3 is being derived. 

Similar to the situation in the transform-domain, one can use a Normalized 

LMS (NLMS) algorithm in a T-TB domain in order to obtain fast convergence 

speed. This can be obtained by taking the filter step-size as follows, 

0 < JlO ::; 1 
J 

j=l..N (2.2.36) 

where JlO. is a constant controlling the convergence speed and filter 
J 

steady-state performance in bin j. The normalized update formula corresponding 

to (2.2.30) can be obtained as follows 

H(n+1) = H(n) + 2 JlÜ A 2 E(e Z(n)) 
- J - J J J n - J 

. j=l..N 

where A2 is a M*M diagonal matrix defined as follows 
J 

Formula (2.2.37) can also be written in matrix form as follows 

H = H + 2 Jl A "2E( e Z ) 
n+ 1 n n n 

where the matrices A 2 and Jl are defined as follows 

0 < JlÛ ::; 1 
J 

j=l..N 

(2.2.37) 

(2.2.38) 

(2.2.39) 

(2.2.40) 

(2.2.41) 

where ® 

differently 

bin can 

is the Kronecker product, and the constant value may be selected 

llÜ ;éJlÛ., i;éj . Th is implies that the convergence speed of different 
I J 

be controlled separately by a different step-size constant if 

necessary. 

The above algorithm is summarized in Table 2.1. 
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Iteration at time instant n: 
,... ~T _. 
y =H Z 

n n n 

e =d -y 
n n n 

A 
2 =diag [ E ( I z I 2 ) .. E ( I z I 2 ) )®(MI ) 

nl nN M 

~ =diag[~0 1 ... ~ON]®IM 

H =H + 2 ~ A- 2 E(e z ) 
n+l n n n 

0<~0 :51 j=1 .. N 
j 

(exact LMS) 

(T2.1.1) 

(T2 .1.2) 

(T2 .1. 3) 

(T2 . 1. 4) 

(T2 .1. 5) 

H =H + 2 ~ A-
2 e Z 

n+l n n n 
(gradient estimate) (T2.1.6) 

Table 2.1 A T-TB domaio linear NLMS adaptive filtering algorithm 

2.2.2.5. Further discussion 

In the above, a T-TB domaio linear NLMS ADF algorithm is developed under a 

semi-ideal transform assumption. The signal components are decorrelated along 

the transform-bin direction. Consequently, the algorithm reduces to a set of 

N-independent sub-algorithms associated with N-independent bins, each having 

its own adaptive step-size normalized by the signa! energy in the associated 

bin. 

As mentioned in the previous overview, m the transform-domain only the KLT 

can reach this aim. In a T-TB domain, however, the KLT is not a semi-ideal 

transform. 

In the sequel, these import aspects wil! be discussed: 

a) The existence of "semi-ideal" transforms, with some examples. 

b) The use of the algorithm under a "semi-ideal" transform assumption as an 

approximation to other non-semi-ideal transform condition. 

c) The necessity of signa! windowing and overlapping. 

d) The properties of a T-TB domain algorithm. 

e) The advantages of a T-TB domain algorithm. 

f) The degeneration of the algorithm under specific conditions. 
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a) The existence of a semi-ideal transform 

-Examples: DSTFT-based!DWT-based time-frequency domain 

Up to the latter section it is not yet clear whether a semi-ideal 

transform can actually be found. However in the following we may expect to 

find them for some restricted cases, which may yield a proper generalization 

later on. 

In the following we wil! consider two different transforms, the Discrete 

Short Time Fourier Transfarm (DSTFT) and the Discrete Wavelet Transfarm 

(DWT) . In fact, each of the transforms contains a set of transforms 

depending on the selection of a specific window/wavelet function. These two 

transforms represent two different types of signa! frequency decompositions. 

Such transforms are especially suitable for nonstationary signal analysis in 

the time-frequency domain. We then wil/ notice that there is a special case 

in each of the transfarms which is associated with a semi-ideat transform. 

* DSTFT -based frequency decomposition 

DSTFT-type frequency decomposition[36,81] is associated with a base 

function made up by translating and modulating a single window function. 

Each specific frequency channel is related to the corresponding translated 

and modulated window function . 

In particular, there is an ideal choice of frequency decompositions by 

the DSTFT which is associated with a "semi-ideal" orthogonal transform. 

In this specific DSTFT, the signa! space is decomposed into non-overlapping 

and mutual/y orthogonal frequency channels, with uniform frequency response 

and identical bandwidth. It is associated with the following orthonormal 

base functions 

w. (t) = w(t+k)exp(i27tjt) 
J.k 

where w(t) is the sine window function, 

w(t) = sinc(t) = sin(7tt)/(7tt) 

The signa! f(t) can be expanded in this orthonormal basis as 
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f(t) = L a w. (t) (2.2.44) 
j . k ).1< ).1< 

where the DSTFf coefficients ai.l< are obtained by the following inner 

product 

* a . .l< =<f(t),w)t)> = L f(t) w . .l<(t) 
J J t J 

(2.2.45) 

where k is the time index at window center, j is the bin index, * is the 

complex conjugation, and the realm of time index t in the summation is 

determined by the length of the symmetrie window function w(t) in (2.2.42). 

In this case, for each fixed j, {wiJ<) spans the /' channel. 

However, there is no general technique to obtain such decompositions with 

windows that have both desirabie Iocalization properties and good numerical 

algorithms associated with them. Hence it represents an ideal case which is 

physically unrealizable. 

In most cases, a desirabie window w(t) is selected before a DSTFf. The 

corresponding base functions wiJ< are then not orthonormal and have overlap 

between the neighboring channels. However, there usually exists a duaJ 

window w(t) corresponding to the selected window w(t). Using the 

bi-orthogonal basis wiJ< and wiJ<' a signa! can be projeeled onto one set 

and later expanded and recovered in the other set. In order to use the 

algorithm under a semi-ideal transform assumption as an approximation, 

careful selection of this window function is needed. 

* Discrete wavelet transform-based frequency decompositions 

DWT-type frequency decompositions are associated with base functions made 

up by translation and dilation of a wavelet function[14,15,83] . 

There is an ideal case in which a DWT is associated with a so-called 

"semi-ideal" transform. In this case, an ideal wavelet basis function is 

selected which can decompose the signa! into non-overlapping orthonormal 

frequency channels. The bandwidths of these channels are related to each 

other by a sealing factor, and the frequency response within each channel is 

uniform. All the channels are symmetrie with respect to the frequency 

origin, so that all signal components in the frequency channels are 

real-values, provided that the time-domain signa! is real. The wavelet 
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expansion of signa] f(t) can be expressed as 

f(t) =I, a 'I' (t) 
j . k J.k J.k 

where ( \jfj.k (t)} is the set of wavelet base functions 

"'j.k (t) = 2j/2'1'<2jt-k) 

\jf(t) is the wavelet and <1> is a sine function, related as follows 

\jf(t) = 2<!>(2t)-<!>(t) 

<!>(t) = sinc(t) = sin(m)/(m) 

Chapter 2 

(2.2.46) 

(2.2.47) 

(2.2.48) 

(2.2.49) 

Using the orthonorrnal property, the DWT coefficients aj.k can be obtained by 

the following inner product 

* a .k =<f(t),\jf .k (t)> = I, f(t)\jf /l) 
J J l J 

(2.2.50) 

where the indices have the same meaning as in formula (2.2.45). 

Compared the DWT with the DSTFT, the base function wj.k of the DSTFT is a 

translated and modulated window w, while the wavelet base function \jfj.k of 

the DWT is a translated and dilated version of the wavelet 'I'· 

In the sequel, it describes how this DWT transfarm decomposes the signa! 

into non-overlapping orthonormal channels. 

Let V. denote the signa! space with its bandwidth limited to [0,2jn) and 
) 

for a fixed j, Jet ( <1> } be the orthogonal (sine) base functions for V .. 
J.k . . I J 

Let W . denote the signa! space with a bandwidth in the range [2Jn, 2J+ n), 
) 

and let ( \jf.k} be the orthogonal (wavelet) base functions of W. for a given 
J J 

j. Thus, W. is the orthogonal complement of V. in V. , such that V = 
J J j+l j+l 

V+W, (V u W)=V. and (V n W)=(O}. 
J ) J ) J+l ) J 

A signa! in V. can then be decomposed into a function in the low 
J 

ji'equency band part V and a function in the high frequency band part 
J·l 

W . Further, the signa! in V can recursively be decomposed into 
~I ~I 

functions in V. and in W. , and so on. Thus, a signa! in space V can be 
~ ~ J 

described at arbitrary accuracy by its projections onto a group of 

non-overlap orthogonal filter bands ( W I 1=1,2 .. N }, where N is chosen 
j-1 
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such that the signa! energy in V. is small enough to be neglected. 
J·N 

It is obvious that this ideal DWT is not physically realizable because of 

the non-causa! sine function. 

The advantages of DWT over DSTFf are that: 

* DWT has log-scale uniform frequency bandwidths rather than the uniform 

frequency bandwidths of the DSTFf. This is closer to human sound and 

vision perception. 

* DWT has different a window size at different channels: a wide time-window 

is used in a lower frequency band; and a narrow time-window in a higher 

frequency band. This is better than using a fixed-size time-window in the 

DSTFf. 

* DWT is associated with real-valued signals, while DSTFf is associated with 

complex-valued signals, when the time-domain signals are real. 

From the above, it is shown that by se/ecting an idea/ window function in 

DSTFT, or by se/ecting an idea/ wavelet function in DWT, The DSTFT or the 

DWT is associated with a semi-ideal transj01m for a specific Time-frequency 

bin domain. 

b)An approximate solution by using the algorithm under a semi-ideal transform 

assumption for a non-semi-ideal transform case 

We know that it is possible to select a proper orthogonal (or a nearly 

onhogonal) transferm such that the transformed-signals are almost 

decorrelated . In such a situation, signa! components in this T-TB domain may 

only be correlated among a few neighboring channels. It can then be expected 

that the T-TB domain NLMS ADF algorithm under a semi-ideal transform 

assumption can give a good approximate solution for a non-semi-ideal 

transformed data. 

c) Necessity of overlapping and windowing 

Generalization in data arrangement 

Previously, we have discussed the situation where the data samples under 

consideration are correlated over an MN time interval. We divided these data 
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into M frames of length N, each frame transformed by W, and then these 

frames of data were processed in a T-TB domain. 

In genera!, we might want to have some overlap between the successive 

frames (e.g. to prevent wrap-around error), and to use some kind of window 

function for time-localization inslead of using a rectangular window by 

simply cutting data into blocks (which introduces the Gibbs effect). In such 

a case, the data matrix X" in formula (2.2.14) should be re-arranged as 

T 
a: 

[" x -1 11 12 IN 
T x x x2N a: (2.2.51) x.= 21 22 -2 

x x .. x T SI S2 SN a: -S 

where a:T 
- J 

x ] [m x m x jN I n·(j·I)(N-L) 2 n-(j-1)(N-L)-1 

1J) x ]. N n-(j -I)(N-L)-N+I j=l..S, S=MN/(N-L), L is the selected overlapping with 

O:::;L~(N-1 ), and mi is a symmetrie time-window of length N. 

d)The properties of a T-TB domaio linear NLMS adaptive filtering algorithm 

* Signa! decorrelation in one direction 

Under a semi-ideal transfarm assumption, signals are fully decorrelated 

along the bin direction. Consequently, instead of finding an LMS salution 

~" in the time-domain which is a MN-element vector problem, finding an LMS 

salution H in a T-TB domain is associated with N-independent M-element 

sub-vector problems. 

In a non semi-ideal transform case, properly selected orthogonal transforrn 

reduces the signa! correlation degree in a T-TB domain as compared to the 

time-domain, In this case, an algorithm under a serni-ideal transfarm 

assumption can be used as a good approximate solution to the non-semi-ideal 

transformed data. 

* Convergence speed 

If the time-domain signa! has large eigenvalue spread, the eigenvalue 

spread À /À . of the matrix (A'2R ) in a T-TB domain is compressed, 
ma~ nun ~~ zz 
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provided an orthogonal transfarm is properly selected. Thus, faster 

convergence speed can be expected. 

e)Main advantages of a T-TB domaio linear NLMS adaptive filtering algorithm 

* An adequate approach for filtering nonstationary-signal 

For nonstationary signals, separate time-domain or transform-domain 

filtering is inadequate. A T-TB domain algorithm using the time-transfarm 

domain filtering technique is thus more suitable for dynamically 

processing nonstationary signals having large eigenvalue spread. 

* Reduce the input-output time-delay 

The filter can also be used for reducing the input-output delay-time when 

(stationary/nonstationary) signals to be filtered are associated with a 

long impulse response length. 

OAigorithm degeneration to the transform-domain 

As mentioned before, the algorithm is a generalization of the existing 

transform-domain algorithm. 

If we choose the filter order along the time direction M=l, a T-TB NLMS ADF 

algorithm degenerates into the corresponding transform-domain algorithm. 

2.2.2.6. Summary 

In section 2.2, a new T-TB domain linear NLMS adaptive filtering algorithm 

has been developed. In Particular, an algorithm under a semi-ideal orthogonal 

transfarm assumption has been developed. The advantage under this assumption 

is that it yields N-independent sub-algorithms. Two transforms, DSTFT and DWT, 

are discussed as examples. Under an ideal base function, each of them is 

associated with a semi-ideal transform, although these are physically 

un-realizable. However by applying the algorithm under a semi-ideal transfarm 

assumption to a properly selected non-semi-ideal associated T-TB domain, a 

good approximate salution can be expected. 
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2.3. NONLINEAR LEAST MEAN SQUARE ADAPTIVE FILTERING 

A new Time-Transform Bin (T-TB) domain Nonlinear (second-order Volterra type) 

NLMS Adaptive Filtering (ADF) algorithm is developed in this section under 

Gaussian (time-domain) data assumption. 

The algorithm is particularly suitable for filtering nonstationary signals 

associated with time-varying NL models, and for filtering signa/s which are 

associated with a long impu/se response length. 

The relations and the similarities among the algorithms in the T-TB domain and 

in the transform-domain linear and nonlinear NLMS ADF filters are described. 

ft is concluded that the T-TB domain NL NLMS ADF algorithm is a generalized 

form, which invo/ves all the other algorithms. 

Some advantages of this algorithm are discussed, such as the complete 

decorre/ation for the linear filter coefficients among the bins and for · the NL 

filter coefficients among the bin-pairs under the semi-idea/ transform 

assumption, and the reduction of the quadratic filter coefficient number, etc. 

2.3.1. Introduetion 

In this section, Volterra-type NonLinear (NL) adaptive filtering algorithms 

will be investigated. As mentioned before, a lot of practical problems are NL, 

for which a linear approximation is not sufficient. Hence, particular 

attention is paid to the investigation of a Volterra type of NL FIR filters in 

this section. This is because many NL systems can be well approximated by a 

Volterra series expansion of truncated order. Besides, Volterra filters have 

the attractive characteristic that its output depends /inearly on the filter 

transfer function, despite of its NL input-output re/ations. Furthermore an 

FIR-type NL filter is numerically stable, in contrast to the IIR-type NL 

filter which usua\ly suffers from numerical instability. 

A parallel set of the NL LMS type of algorithms (parallel to the linear 

versions) in some new domains will be investigated in section 2.3. Signals 

under consideration now are associated with a NL model. We might have 
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nonstationary signals with large eigenvalue-spread, or (stationary/ 

nonstationary) signals associated with a long impulse response length. We then 

may expect to use a corresponding algorithm which can be perforrned in a 

transforrn-domain to improve the relatively slow and non-uniformly convergence 

speed in the time-domain. We may also need an adequate time-transforrn domain 

algorithm where the signal components evolve with time, in order to handle the 

nonstationary signals in a better way. 

In many situations, we 

probability density function 

are dealing with signals having a 

(pdf). This leads to the particularly 

Gaussian 

attractive 

property that the linear and the quadratic filter coefficients are decoupled. 

In the following we wil/ restriet ourself to the Gaussian (time-Mmain) input 

data. 

The current section will be organized as follows. First the time-domain LMS 

NL Volterra filters will be reviewed in section 2.3.2. A new general forrn of a 

NL NLMS ADF filtering algorithm in the transform-domain will be given in 

section 2.3.3. Some properties are also investigated. Then, we will derive a 

new generalized nonlinear algorithm in the Time-Transforrn Bin (T-TB) domain, 

with further discussion on the properties of the NL filter part in section 

2.3.4. The forrnula relations among the T-TB domain NL and linear, the 

transforrn-domain NL and linear ADF algorithms will be given in section 2.3.5. 

In section 2.3.6, an example is given to show how to use this algorithm. A 

short summary of the condusion is given in section 2.3.7. 

2.3.2. Review of the time-domain LMS nonlinear second-order Volterra filter 

Consider the following NL estimation problem using the truncated 

second-order discrete Volterra kemel 

(2.3.1) 

or equivalently in vector and matrix notation 

(2.3.2) 

where veetors x, h<I> and matrix h< 2 > are defined as follows 
-n -n 
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x =[x x .. . x )T, 
-n n n-1 n-N+I 

htll=[h (n) h (n) ... h (n)f 
-n I 2 N 

(2.3.3) 

(2.3.4) 

The Least Mean Square (LMS) estimation under consideration is to find, at each 

time instant n, an optima! salution of the filter coefficients, such that the 

following cost function J. is minimized 

(2.3.5) 

A 
Where d" is the desired response signa!, and Y. is the filter output. Under 

zero-mean Gaussian input assumption, the time-domain NL LMS ADF 

algorithm[16,92] can be expressed as follows 

N 
A (I) 

= I h0 >x Y. i n-i+l 
(2.3.6) 

i= I 

N N 
A (2) 

= I I h(2) (x x - R XX (i-j)) Y. i,j n-i+ 1 n- j +I 
i= 1 j =I 

(2.3.7) 

= d -
A 

d -
A (I) A (2) 

e Y. = y - Y. n n n 
(2.3.8) 

h0 > (n+l) = h< 11(n) + 2 ll x . 
I I l 0·1+1 

(2.3.9) 

h< 21 (n+l) = h<2\n) + 11 e x . x . 
l,J I,J 2 n n-•+1 n-J+l 

(2.3.10) 

where ll
1 

and ll2 are chosen such that 

0 < lll < 1/\,., 0 < ll2 < lj(2À~.) (2.3.11) 

where À. is the maximum eigenvalue of R . In the steady-state, the linear 
max ~x 

and quadratic filter weights converge to the following optima! salution 

h<l> = R-1 p 
- opt u -t.lx 

(2.3.12) 

h<2> = 1/2 R- 1 R R-1 

opl :u dxx xx 
(2.3.13) 
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where R =E(x x T), P =E(d x ) and R =E(d x x T). The convergence speed of 
xx ·n-n -dx n-n dx.x n · n-n 

the linear filter weights depends on the eigenvalue spread (À ().., . ) of the 
max mm 

data autocorrelation matrix R , while the convergence speed of the quadratic 
llll 

filter weights depends on the squared-ratio (À ().., . )2 of this eigenvalue 
max mm 

spread. 

2.3.3. The transform-domain nonlinear NLMS ADF algorithm 

As mentioned previously, the convergence speed of this time-domain NL LMS 

ADF algorithm is relatively slow when the signa) spectrum is not flat. In 

particular, the convergence speed of the NL filter part depends on the 

squared-rario of the maximum and the minimum eigenvalues. Consequently, slow 

filter convergence speed is mainly caused by the NL part. Hence, it is 

important to improve the convergence speed of a NL filter. 

A natural consideration is to introduce a general form of a 

transform-domain algorithm. In the following, a new general form of the 

transform-domain (second-order Volterra) NL NLMS ADF algorithm[33] will be 

given, which can be considered as an extension of the corresponding linear 

one[26,45,67]. This general form also involves other specific domains such as 

a frequency-domain NL algorithm[54] . 

Description of the problem by a transform-domain nonlinear filter 

Suppose the filter in the time-domain is of order N. We can obtain the data 

in the transform-domain by using an orthogonal transferm W 

z = w x (2.3.14) 
- n -n 

where W is an unitary matrix of rank N, WTW=WWT=I, Z =[z ... z f, and 
-n n.l n,N 

x =[x ... x ] T are the data veetors in the transform-domain and the 
-n n n·(N·l) 

time-domain, respectively. It will be proved below, that a NL LMS ADF 

algorithm in the transform-domain has the same steady-state function as that 

in the time-domain 
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where vector h0 > and matrix h<2
> are the linear and quadratic filter weights 

-n n 

in the time-domain, lj~ 1 > and H!2
> are their transfonn-domain counterparts. h

0 

is needed for the unbiased filter output. In (2.3.15), the following relations 

between the filters in the time-domaio and the transfonn-domain are used 

H< 1
> = Wh0 >. 

- n - n 

By setting E(y)=O in (2.3.15), the constant tenn h
0 

can be obtained as 

h = - tr(H<2>R (n)) = - E(ZTH(2)Z ) 
0 n zz - n n - n 

Substituting (2.3.17) into (2.3.15) yields 

y = zT H(I) + tr(H<2>(z zT-R (n))T) 
n -n -n n -n-n zz 

(2.3.16) 

(2.3.17) 

(2.3.18) 

where the vector H<I> and the symmetrie matrix H<2
> are associated with the 

-n 

linear and the quadratic filter weights in the transfonn-domain respectively. 

An optima! nonlinear filter solution 

lt is important to notice that if input variables {X
0 

} are Gaussion 

i.i.d.'s (independent identical distributions), each variabie in {z . } 
OJ 

(being a linear combination of {x } after an orthogonal transform W) is also 
n 

Gaussian. 

By taking the partial derivatives of E(e2
) with respect to H(I) and H<2

> 
n 

and setting them to zero, the following is obtained 

(2.3.19) 

(2.3.20) 

Noticing that h = -E(ZTH(2)Z ), that all the odd-order moments of z become 
0 - n n - n OJ 

zero under zero-mean Gaussian assumption, that the fourth-order moment of a 

Gaussian random variabie z can be expressed as 
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= R
2
(i-j)R

2
(k-l) + R

2
(i-k)R

2
(j-l) + R

2
(i-l)R

2
(j-k) (2.3.21) 

and that H<2
l is a symmetrie matrix, the following relations can be obtained 

n 

from (2.3.19) and (2.3.20) respectively 

P - R H< 1> 
-zd zz -n 

=0 (2.3.22) 

R - 2R H<2~ = 0 
dzz zz n :u 

(2.3.23) 

where Rzz(n)=EC?3) Rdzz(n)=E(d33) and ~zd(n)=EC?ndn) are used, and for 

simplicity Rzz, Rdzz and ~zd (wil!) denote Rzz(n), Rdzz(n) and ~Jn) 

respectively here and elsewhere without mentioning. 

ft is important to notice from (2.3.22) and (2.3.23), that rhe linear and the 

quadratic filter parts are decoupled, because the random variables z are 
n,i 

Gaussian. Thus, we can expect that the linear part wil/ behave exact/y the 

same as in the Transform-domain linear LMS filter. 

Supposing R zz is non-singular, the following quadratic filter optima! solution 

can be obtained, 

H<2> = 1/2 R. 1 R R-1 

opt zz dzz zz 
(2.3.24) 

where the matrices R zz and Rdzz are independent of time. If Rzz is singular, a 

pseudo inversion R+ is used in (2.3.24). The optima! solution of the linear 
zz 

filter part H0
> = R'1 P remains the same as that of the transform-domain 

-op! zz -zd 
linear filter in section 2.2.2. 

Transform-domain nonlinear LMS ADF algorithm 

By using the negative gradient for the filter coefficient update, the 

following filter weigilt update formulas can be obtained 

H0 \n+l)=H0 l(n)-J.ll V o>E(e2)=H<
1 
\n)+ 2 Jll E(e z ) i=l..N 

1 1 1 H_ n 1 1 n n.• 
(2.3.25) 

H<2l(n+l)=H<2l(n)-!-!2 V <2> E(e2)= H<2l(n) + 2 112 E(e z . z ) 
I.J I,J IJ H. . n I,J IJ n n,1 nJ 

l.j 
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ll2,.J= ll2J.,I., H(2) = H(2) 
i,j j,i' 

j=l..i, i=l..N (2.3.26) 

where j.!l i and ll2ij are the adaptive step-si ze associated with the linear and 

quadratic filters, respectively. They control the convergence speed and the 

steady-state performance of the Jinear and the quadratic filter part 

respectively. 

The filter output error can be calculated by using the outputs of the linear 

filter part ~(ll and the quadratic filter part ~< 2>, separately 
n n 

A(l) N (I) 
y = I H (n) z = H(I)T z 

n 1 n,i 
i= I 

- n - n 

A N 

Y(2)= ~ H<2>(n) (z z R (. ")) ,(.., - zz I-J 
i . j =I I,J 0.1 OJ 

(ioj~) 

e = d- y = d-
A( I) 

Yn n n n n 

where the operator 

R (i-j)=E(z z ). The 
ZZ 0,1 OJ 

be expressed as 

A (I) 

Yn.m 

A(2) 

Yn 

0 depends 

filter output in 

. ~ H:~~(n) (zn/n.j- Rzz(i-j) ) 
1 J=m 

(2.3.27) 

(2.3.28) 

(2.3.29) 

on the selected transform-domain, 

the lh bin at m time instant n can 

(2.3.30) 

(2.3.31) 

Transform-domain nonlinear LMS algorithm in the normalized form 

lt is necessary to norrnalire the algorithm. In principle, a transfarm can 

decorrelare the filter coefficients, and the normalization can speed up the 

filter convergence. 

After transform, signals are decorrelated when their autocorrelation matrix 

becomes (nearly) diagonal. Normalization then plays a role of whitening 

signals such that, in an ideal case, all eigenvalues become equal. An uniform 

speed of convergence, thus, a fast speed of convergence can be obtained in 

this case. 

The NLMS algorithm can be obtained by dividing the filter step-size by the 

power estimate of the relevant signa! component as follows 
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jll = jllOJ (EI z _12) 
1 1 n.t 

112 .. = 1120. 1 (2E(i z .I
2
)E(i z _12)) 

IJ IJ 0,1 DJ 

where jl10.
1 

and jl20.. are constant, 
IJ 

0 < 1120 .. =1!20 _:::; 1/2 i,j=l...N 
IJ J,l 

(2.3.32) 

(2.3.33) 

(2.3.34) 

The corresponding update forrnulas of the linear and quadratic coefficients can 

be expressed in vector and matrix forrn as follows 

where the matrices jll, 112 and A2 are defined as follows 

A
2 

= diag[E I z 1
2
) ... EI z 1

21 
n,l n,N 

jl20 ... jl20 
1,2 l,N 

jl20 ... jl20 2,2 2,N 

jl20 jl20N 2 ... jl20 
N,l N.N 

In an ideal case (KLT-domain), the matrix A2 becomes 

A 
2 

= diag[\ \ ... ÀN] 

(2.3.35) 

(2.3.36) 

(2.3.37) 

(2.3.38) 

where À., i=l..N, is the eigenvalue of the matrix R . (2.3.35) and (2.3.36) 
I U 

can be written in the scalar-form because both the coefficients in the vector 

tf(I) and in the symmetrie matrix H(2l become uncorrelated. 

H0 \n+l)= H0 \n) + 2 1110 E(e z .)/À i=l..N 
I I I n n, I I 

H. (n+l)= H .. (n) + j.120 E(e z .z )/(ÀÀ) j=l..i,i=I..N 
IJ IJ IJ n 0,1 DJ I J 

(2.3.39) 

(2.3.40) 

In all these cases, the corresponding gradient estimate forrn can be obtained 

by replacing E(*) by a single sample variabie (*). 

The filter convergence speed in the transform-domain depends on the 

maximum- and minimum- eigenvalue ratio (À A . ) and the squarect-ratio of 
max mm 
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the matrix (A-2R) for the linear and the quadratic filter, respectively. For 

an ideal transform, (À. ()... . )=1, all the coefficients in the linear and the 
max mm 

quadratic filter part converge with uniform speed, and this convergence speed 

is independent of the data. 

In genera!, by properly selecting an unitary transform W, the eigenvalue 

spread in (A.2R ) may be reduced, and a faster convergence speed can be 
zz 

expected in the transform-domain. 

Advantages of the transform-domain nonlinear NLMS ADF algorithm 

A Karhunen-Loeve Transform (KL T) is an ideal orthogonal transform for the 

transform-domain filter. All the other orthogonal transforms are sub-optimum 

in the concept of decorrelating the signa!. The degree of decorrelation 

depends on the specific transform and the specific signa! under consideration. 

After a properly selected orthogonal transform, signals can be nearly 

decorrelated. In this case, the algorithm under an ideal transform assumption 

can be used as a good approximation to the non-ideal transformed data. 

a) Fast convergence speed 

* Linear and quadratic weights converge with uniform speed because of the 

speetral whitening 

In the KL T-domain, all signa! components are linear/y decorrelated (thus 

for Gaussian z. linearly independent). Thus, the corresponding signa! 

autocorrelation matrix R
22 

becomes diagonal, and all the eigenvalues À.i of 

the matrix (A"2R ) are equal. Consequently, the fastest convergence speed 
zz 

can be obtained, where the linear and the quadratic filter parts converge 

with the same speed. 

In genera!, when the signa! eigenvalue spread is large in the time-domain, 

one can process the signa! in the transform-domain with advantage. By 

properly selecting an orthogonal transform such that the transformed 

signals are nearly decorrelated, and the eigenvalue spread in matrix 

(A"2R ) approaches to one, a faster filter convergence speed than in the 
zz 

time-domain case can be expected. 

b) Decorrelation of filter .coefficients 

Because of the decoupling, the linear and the quadratic filter part can be 
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considered separately. 

* Linear filter part 

The linear filter part has the same property as that in the 

transform-domain linear filter. H0 > in the transform-domain is N scalars 

instead of a vector h0 l in the time-domain. 

* Quadratic filter part 

For the quadratic filter part, the transform-domain matrix H<2
> is still 

symmetrie as h<2
> in the time-domain. The difference is that, rather than 

jointly solving N(N+ 1)/2 coefficients in h(2), coefficients in H<2
> can be 

solved independently because of the mutual (nonlinear) independenee of all 

bin-pairs. 

c) Possible rednetion of the number of quadratic filter coefficients 

Often, a better understanding of the physical meaning in a specific 

transform-domain can prevent the excessive use of the quadratic filter 

coefficients. Rather than blindly using all quadratic terms m the 

time-domain, it is often possible to select only a part of the quadratic 

coefficients H<2
J in the transform-domain, depending on a selected domain. 

I.J 

Several examples will be given below. 

Quadratic coefficient constraint in a DFT-based frequency-domain 

In the DFT-based frequency-domain, the base veetors { exp(-j2nfn)} satisfy 

the following frequency relation, 

(2.3.41) 

which implies that the product of two data components from the different 

bins i and j can contribute to the output estimate 9 < 2 
> (k) at bin k, if 

n 

k=i+j is satisfied. Hence, in the NL filter part, only the quadratic terms 

H<2
> associated with z .z from bin i and j, which satisfy the frequency 

I.J n,1 nJ 

constraint k=i+j, ~~~. i,j=l..N, need to be selected. 

* Quadratic coefficient constraint in a WHT-domaio 

Walsh-Hadmamard Transform (WHT) is one of the most frequently used 
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non-sinusoidal type orthogonal transfoon[ 1]. 

In the WHT-domain, there exists the sequency relation on the basis function 

{ walU,t) } 

wal(iEBj,t) = wal(i,t)waJU,t) (2.3.42) 

Consequently, only those quadratic teons H<2
> associated with z .z . from 

I ,J 0.1 DJ 

bin and j, which satisfy the sequency constraint (iEBj)=k, ~~~. 

i,j=l..N, can possibly be selected for estimating y<2
> (here EB represents 

n 

module 2 addition). Thus, much less quadratic teons are used in the 

WHT-domain than that in the time-domain. 

Algorithms in several other transform-domain 

* DFT-type frequency-band domain: a complex-valued algorithm 

One can choose the orthogonal transfoon W to be the DFT (FFT). In this case 

it is associated with complex-valued data. The corresponding foonulas can be 

obtained by minimizing the objective function E(e e·) with respect to the 
n n 

weight vector !j0 > and matrix H(2). The weight update formulas in (2.3.35) 

and (2.3.36) become, 

where * stands for the complex-conjugation, and 1 z / in matrix A2 in 
"·' formula (2.3.37) represents (z .z *. ). 

n,t n . 1 

* DCT-type frequency band-domain: a real-valued algorithm 

By choosing W to be the Discrete Cosine Transfoon (DCT) [1], a nearly 

diagonal Rzz can be obtained. The oer is considered as an orthogonal 

transfarm especially suitable for speech and image signals. The base 

functions of Der are the orthonoonal Chebyshev polynornials 

{N·1fl, 2N·1flcos(2m+ l)k1t}. Signals in the Der-domain can be considered as 
2N 

bandpass filtered and thus have rea/ values. No complex arithmetic is 

involved. 
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2.3.4. The T-TB domaio nonlinear NLMS ADF algorithm 

- A new algorithm in the time-transfarm domain 

A new Time-Transfarm Bin (T-TB) domain nonlinear (second-order Volterra) 

NLMS ADF algorithm is derived, which is a NonLinear (NL) extension of the 

previous T-TB domain Linear Normalized LMS ADF algorithm. In particular, we 

consider the algorithm under a semi-idea/ transfarm assumption, where signa/ 

components are linearly decorre/ated in the bin-direction. Due to the 

decoupling of the linear and the NL filter part, the linear part has the same 

properties as those in the corresponding linear algorithm in section 2.2.3. 

Meanwhile, in the NL part, quadratic coefficients associated with different 

bin-pairs are decorrelated. The necessary number of quadratic·terms can be 

much reduced depending on each specifically chosen T-TB domain and on the 

physical background of the problem. In a properly selected non·semi-idea/ T-TB 

domain, the algorithm under a semi-ideal transfarm assumption can be used as a 

good approximation. 

The T-TB domain NL filter is particularly suitable for nonstationary 

signals associated with a NL model. ft can a lso be used to reduce the 

input-output time-de/ay needed for NL filtering of signa/s which are 

associated with long impu/se response. 

In this section, we will generalize the T-TB domaio linear algorithm m 

Section 2.2.3 into a nonlinear one. 

Like the T-TB domaio linear filtering algorithm, a T-TB domaio NL algorithm 

neects to be developed for coping with nonstationary signals and for reducing 

the long time-delay in the filter input-output. 

First, an optima! solution of the T-TB domaio NL filter in the steady-state 

condition wil! be given (section 2.3.4.2). Then the T-TB domaio NL LMS and 

Normalized LMS algorithm under a semi-ideal. transform assumption wil! be 

derived (section 2.3.4.3). Some properties of the algorithm are also discussed 

(section 2.3.4.4). Relations of the formulas among the linear and NL 

algorithms in the T-TB domaio and in the transform-domain wil! be given 
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(section 2.3.4.5) . A simpte example is given to show how to use this algorithm 

in practical situation (section 2.3.4.6). A short summary will be given 

(section 2.3.4.7). 

2.3.4.1. Nonlinear problem description in the T-TB domain 

* Nonlinear problem description in the time-domain 

Supposing the filter order needed in the time-domain is MN, the following 

estimate can be performed in the time-domain 

MN MN 
~ = h + I h < 

1 
l (n)x + 

n 0 m n ~m + 1 
m =I I 

I 

I h< 2 l (n)x x 
m , m n-m + 1 n-m + 1 

m
1

. m
2

=1 I 2 I 2 

Or, equivalently using the convolution expression form, 

~ = h + h(IJ•x + h< 2
> •(x <8>x ) 

n 0 n n n l ,n2 n I n 2 

(2.3.45) 

(2.3.45') 

Where • stands for linear convolution. Equivalently this can be expressed in 

the Z-domain, 

" Y (z) = H + H (z)X (z) + H (z)(X (z)<8>X (z)) 
n 0 In 2 n n 

(2.3.45") 

Define the time-domain data matrix X and its column-scanned vector X , the 
n n 

autocorrelation matrix R .... (n) of X n' and the quadratic data matrix X2 n as 
XX 

follows 

R (n) = E[X X T], X2 =X X T 
~... n n n n n 
XX 

x 
- I 

x 
-2 

x 
·N 

(2.3.46) 

(2.3.47) 

Define the matrix hl n as the linear filter part, and the symmetrie matrix h2 n 

as the quadratic filter part as follows 

hl hl h2 h212 h21N 11 IN 11 

hl= hl hl 
=[~ 1 (n) ~/n) .. ~N(n)], h2n = h221 h222 h22N (2.3.48) 21 2N 

n 

hl 
MI hl MN 

h2 
NI h2N2 h2NN 

with h2 (n), denoted by h2 for simplicity, represents a sub-matrix of order 
IJ 
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M*M, i,j=l..N, given below, 

~- . ~ --~ 
(I -I)M+I. (j·I)M+ I (i -I)M+I. (j-I)M+2 (i -I ) M+ljM 

h2 = 
ij 

h2 

h2 

(i -I)M+2, (j-I)M+ I 

iM,(j- I )M+I 

h2 
(i -I)M+2, (j -I)M+2 

h2 
iM,(j-I)M+2 

... h2 
(i -I )M+2jM 

... h2 
iM,jM 

(2.3.45) can then be expressed in the matrix form as follows 

y = h + tr(X hiT) + XTh2 x 
n 0 n n n nn 

(2.3.49) 

(2.3.50) 

Here h
0 

is needed for the unbiased filter output. By setting E(y)=O. h
0 

can 

be obtained as 

h = - E(XTb2 X ) = -tr(b2 R T (n)) 
0 n n n n ~-+ 

(2.3.51) 
XX 

Substituting (2.3.51) into (2.3.50) yields 

Y
0
= tr(X

0
hl) + tr(h2

0
(X2n-R .... (n))T) = X~n!0+ tr(h2

0
(X2

0
-R .. ..(n))T) (2.3.52) 

x x x x 

* Nonlinear problem description in tbe T-TB domain 

" In order to estimate yn in the T-TB domain, similar as mentioned in section 

2.2.3, the data sequence in the time-domaio is first divided into M frames, 

each having length N, (if necessary overlap is allowed). Then, the orthogonal 

transform W is performed successively on M-frames of data as in (2.2.15). A 

matrix Z n' as defined in (2.2.17), is used to represent the row-embedded 

M-frames of transformed data. Thus, for the data matrices in the time-domaio 

and in the T-TB domain, the same relation Z =X WT as in (2.2.16) holds. Each 
n n 

row-vector in X and Z corresponds to the jlh frame of data before and after 
n n 

the transform. 

Let us define the column-scanned vector Z of · matrix Z like m (2.2.20). 

Define the autocorrelation matrix R (n) of Z 
0

, the quadratic data matrix Z2
0

, 
.... n 
zz 

the T-TB domaio linear filter part Hl", its column-scanned vector H!n' and the 

T-TB domaio quadratic filter part H2
0 

respectively as follows 
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Hl 11 
Hl= Hl2I 

n 

Hl MI 

H2 11 

H2 = H2 21 
n 

H2 NI 

Hl IN 

Hl2N = [Hl 1 !:!_!2 .. .. HlN], 

..... Hl MN 

H2 H2 12 IN 
H2 H2 22 2N 

H2 H2 N2 NN 

Hl 
-I 

Hl -N 

COapter 2 

(2.3.53) 

(2.3.54) 

(2.3.55) 

where H2 (n), denoted by H2 for simplicity, is a sub-matrix of order M*M, 
u ij 

i,j=l..N. 

H2 H2 

H2 = 
ij 

H2 

H2 

(i ·l)M+l, (j·l)M+ I (i ·l)M+l , (j·l)M+2 

H2 (i ·l)M+2. (j·l)M+l (i ·l)M+2 , (j·l)M+2 

iM,(j ·I )M+l H2 iM.(j ·l)M+2 

H2 (i ·I )M+ljM 

H2 
(i ·I )M+2jM 

.. . H2 iM,jM 

For the linear filter part, the following relation holds 

Hl= hl WT 
n n 

or, equivalently, in column-scanned vector form 

Hl =W2 fit 
n 

(2.3.56) 

(2.3.57) 

(2.3.57') 

where W2=(W®IM) is defined. This is similar to formula (2.2.19) in section 

2.2.3. The following relation of the quadratic filter parts in the time-domain 

and the T-TB domain holds, 

H2 = W2 h2 W2T 
n n 

(2.3.58) 

An equivalent expression to (2.2.16) using column-scanned vector notation is 

'l = W2 X 
n 

(2.3.59) 

Hence, the filter output can be calculated by using a T-TB domain NL filter as 

follows 
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~ = h + tr(Z HIT) + zT H2 Z = h + z_T Hf + zT H2 Z 
n 0 n n n nn 0 n n n nn 

(2.3.60) 

Using the relations (W2)(W2)T=(W2)T(W2)=1, WWT=WTW=I, and the filter relations 

in (2.3.57) and (2.3.58), it can be easily proved that a time-domain and a 

T-TB domain NL filter produce an equivalent solution in the steady-state, 

si nee 

~ = h + zT Ht + zT m z 
n 0 n n n nn 

= h + (W2 x )T(W2 11t) + (W2 x )T(W2 h2 W2T)(W2 x) 
0 n n n n n 

= h + xT w2Tw2 11t + xT(W2TW2) h2 (W2TW2) x 
0 n n n n n 

= h + xT nt + xT h2 x 
0 n n n nn 

(2.3.61) 

By setting E(y )=0, h value can be obtained 
n 0 

h = -E(ZTH2 Z) = -tr(H2 RT (n)) 
0 n n n n -+-+ zz 

(2.3.62) 

11 

Substituting h
0 

in (2.3.60), yn can be obtained as follows 

~ = zT Ht + tr (H2 (Z2 -R (n)) T) 
n n n n n -+-+ zz 

(2.3.63) 

2.3.4.2. The optima! solution in a T-TB domaio 

If x in the time-domain is Gaussian, z . in a T-TB domain (which is a 
"·' linear combination of xn by an orthogonal transform) is also Gaussian. Thus, 

variables remain Gaussian in a T-TB domain. Consequently, the linear part and 

the quadratic part of the NL filter in a T-TB domain are decoupled. 

In order to obtain the optima! filter solution in the T-TB domain , a 

similar method can be used as in the linear case, i.e., by taking partial 

derivatives of E(e2)=E[(d -~ /] with respect to Hl and H2, and ·setting them 
n n n 

to zero. 

1) For an easy derivation, the column-scanned vector Z of Z is used for 

calculating V E(e2
). By setting V E(e2)= 0, we obtai~ 

Hl n Hf n 
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V E(e2
) = 2E(Z (d - h - zT HT - zT H2 z )) = 0 

-~ n n n 0 n n n n n 
Hl 

(2.3.64) 

Nolice that z is a Gaussian zero-mean variable, so that all the odd-order 
I 

moments become zero. This yields 

E(Z d ) - E[Z (ZTHT )] = 0 
n n n n n 

(2.3.65) 

defining P (n)=E(Z d ) and R (n)=E(Z ZT), (2.3.65) is equivalent to 
--+ n n -+-+ n n 

Zd ZZ 

P (n) - R (n) HT = 0 
--+ ... ..., n 

Zd ZZ 

(2.3.65') 

Suppose R _..., is non-singul ar, the optima] filter which is independent of n, 
zz 

can be obtained as below 

HT = R- 1 P 
opt ZZ - Ïd 

(2.3.66) 

Otherwise, a pseudo-inversion R: .. is to be used instead of R~~- This result 
zz zz 

is similar to (2.2.24) in section 2.2.3, as expected. 

2) By setting V E(e2
) = 0, the equations associated with H2 can be obtained 

H2 n 

as follows 

(2.3.67) 

Applying (2.3.21) for the fourth-order moment (H2 is symmetrie), and using 

the property that all the odd-order moments of z . are zero, then yields 
"•' 

P .... (n) - 2R .... (n) H2. R .... (n) = 0 
dZZ ZZ ZZ 

where P (n)=E(d Z zT). 
-+-+ n n n 

dZZ 

solution of the quadratic 

obtained as follows 

H2 
Op! 

1/2 R-I p R-I 
-+-+ -+-+ -+-+ 
ZZ dZZ ZZ 

Supposing R .... is non-singular, the 
zz 

filter, which is independent of n, 

46 

(2.3.68) 

optima! 

can be 

(2.3.69) 



Adaplive Fillering of Nooslaliooary Signah 

When R ..... is singular, a pseudo-inversion R+ ..... is to be used instead. 
zz zz 

Under a semi-ideal transfarm assumption (as defined in section 2.2.3), 

calculations needed for (2.3.66) and (2.3.69) can be much reduced. 

Consider the symmetrie matrix R ..... containing N*N sub-matrices as below 
zz 

E(~ 1 ~) E(~ 1 ~;) ... E(~~~~) 

E(~2~) E(~2~;) ... E(~2~~) (2.3.70) 

z 
-N E(~N~) E(iN~;) ... E(~N~~) 

After a semi-ideal transform, the signa! components are 

decorrelated over transform-bins. Hence, R .... becomes block-diagonal: 
zz 

0 

R .... 
zz 

0 

fully Iinear 

(2.3.71) 

Consequently, the matrix inversion R- 1 in (2.3.66) and (2.3.69) can be .... zz 
performed through N-independent inversions on sub-matrices. Each sub-matrix is 

of (maximum) rank M, which is much lower than the rank of R ...... 

2.3.4.3. 

zz 

A T-TB domain nonlinear LMS/ NLMS ADF algorithm under a semi-ideal 

transform assumption 

As mentioned before, under a semi-ideal transfarm assumption, all bins are 

Iinearly independent. This implies that the Iinear filter coefficients 

associated with different bins are mutually independent, the quadratic filter 

coefficients associated with different bin-pairs are also mutually 

independent. Thus, the following simplified algorithm is obtained under a 

semi-ideal transfarm assumption. 

• Nonlinear LMS adaptive filtering algorithm 

The filter coefficients update formulas can be obtained as follows 
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Hl(n+l) = Hl.(n) - ~J.l V E(e2
) 

-----1 --1 1 H 1 . n 
- I 

= !:!!.;(n) + 2 1J.l;E(e
0 

~;(n)) i=l..N (2.3.72) 

H2. (n+l) = H2 (n) - 112 V E(e2
) 

IJ IJ IJ H2.. n 
IJ 

= H2 .. (n) + 2 112 . E(e Z(n) :tT(n)) 
IJ IJ n I J 

H2. = H2., 
IJ J,l 

j=l..i, i=l..N (2.3.73) 

where ~J.l; is the adaptive step-si ze for the linear filter part at the i"' 

bin , and 112.. is the adaptive step-size of the quadratic filter part 
IJ 

associated with the bin-pair (i ,j). 

* The Normalized LMS adaptive filtering Algorithm 

In order to obtain the norrnalized algorithm, the step-size associated with 

the linear filter part at the i'h bin can be set as follows, 

IJ.l = ~J.lOJ (ME( I z .12
)) 

I I n.J 
i=l..N (2.3.74) 

The step-size associated with the quadratic filter part at the bin-pair 

(i,j) can be set as 

1-!2 . = 1-!20 J (2M2E( I z .I2)E( I z .1 2
)) 

IJ IJ n,1 nJ 
j=l..i, i=l..N (2.3.75) 

where ~J.l 0. and 1120. . are constants satisfying 
I IJ 

0 < ~J.lO ~ I, 
I 

0 < 1J.20. =1-!20 .. ~l/2 
IJ j,l 

(2.3.76) 

They control the convergence speed and the steady-state performance of the 

linear filter part at the i'h bin and of the quadratic filter part at the 

bin-pair (i,j), respectively. The filter coefficient update forrnulas 

(2.3.72) and (2.3.73) can then be re-written as 

Hl(n+l) = Hl(n) + 2 ~J.lO A:2 E(e Z.(n)) i=l..N 
-----1 -----1 I I n -1 

(2.3.77) 

H2 (n+ l) = H2 (n) + 1120 A:2 E(e Z (n) Z T (n)) A:2 
IJ IJ IJ I n -I - J J 

H2 .. = H2 , j=l..i, i=l..N 
IJ J.l 

(2.3.78) 
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with the matrix A 2 is defined as 
I 

i=l..N (2.3.79) 

(2.3.77) and (2.3.78) can be written in the matrix fonns respectively as 

follows 

H1 = H1 + 2 J..L1 A'2 E(e Z) 
n+l n n n 

(2.3.80) 

(2.3.81) 

where the matrices A 2, J..L1 and J..L1 are defined by 

A2 = diag[E( I z l2)oo.E( I z I2)]®(MI ) = diag[A2 A2 ... A 2] 
n,l n,N M I 2 N 

(2.3.82) 

(2.3.83) 

J..L20 J..L20 000 J..L20 1,1 1,2 l,N 

J..L2 = J..L20 J..L202,2 000 J..L202.N ®IM 2,1 (2.3.84) 

J..L20 J..L20 000 J..L2ÜN.N N.l N.2 

and J..L2 is a symmetrie matrix J..L20 .. =J..L20. . In a simplest case, one can 
IJ J,l 

select 

J..L2Ü=J..L20 .. 
IJ 

1 ~ i,j ~ N (2.3.85) 

which means that all the bins in the linear filter part are governed by the 

same step-size constant, and that all the bin-pairs in the quadratic filter 

part are governed by another step-size constant. 

The nonlinear nonnalized LMS ADF algorithm in the T-TB domain, under a 

semi-ideal transfarm assumption, is summarized in Table 2.2. 
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Iteration at time instant n: 

Çc 1 1=tr (Z HlT) =ZT HÎ 
n n n n n 

(T2. 2 .1) 

Ç12 1 =tr(H2 (Z2 -R (n))T)=:FH2 Z -E(;FH2 Z )(T2.2.2) 
n n n -+-+ n n n n n n 

z z 

HÎ =HÎ + 2 
n-+ 1 n 

J.Ll II- 2E(e Z ) 
n n 

II - 2 E(e z ZT)II - 2 

n n n 

where: 

11 2=diag[E(\z 1
2

) ... E(\z ,, \
2
))®(MI) 

n 1 1 n , N M 

J.Ll=diag(J.1l Ü
1 

J.LlÜ
2 
..• J.LlÜN)®IM 

J.L20 
l ' l 

J.L2Û 
I , 2 J.L20 

1 , N 

J.L 2= 
J.L20 2 , I 

J.L2Û 2 . 2 
J.L20 ®I 2 ,N M 

J.L20 N, I 
J.L20 N, 2 

J.L20 
N, N 

Û<J.LlÛ sl and Û< J.L2Û :>1 /2 J.L 2Û . =J.L20 
i . j l • J J • l 

a simplest select ion: J.LlÛ = J.L lÛ. ' J.L2Û = J.L20 .. 
l 1 • J 

(T2. 2. 3) 

(T2 .2.4) 

(T2 .2. 5) 

( T2 . 2. 6) 

(T2 .2 . 7) 

(T2 . 2 . 8) 

(T2 .2. 9) 

(T2.2.10) 

i ,j=l. .N 

Table 2.2 A nonlinear NLMS ADF algorithm in a T-TB domain 

under the semi-ideal transform assumption 

2.3.4.4. Some properties of the T-TB domain nonlinear NLMS adaptive filtering 

algorithm 

I) Decorrelation of the filter coefficients 

* Li near filter part H I 

Under a semi-ideal transform assumption, the linear filter part Hl is 

decorrelated along the bin direction. Consequently, Hl in the T-TB domain 

become N independent sub-vectors, each with M-elements. 

* Quadratic filter part H2 
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Under a semi-ideal transfarm assumption, all the quadratic filter 

coefficients associated with different bin-pair are decorrelated. H2 

becomes N*N independent sub-matrices. Consequently, the quadratic filter 

part H2 in the T-TB domain reduces to N(N+l)/2 independent sub-matrices of 

size M*M. Among them, N sub-matrices are symmetrie thus have M(M+1)/2 

unknown elements, the remaining ones M*M elements. Hence, the time-domain 

quadratic filter h2 (equivalent to a vector of MN(MN+ 1)/2 coefficients) is 

partially decorrelated in the T-TB domain. 

2) Possible reduction of the number of quadratic filter coefficients 

Although the signal components are linearly decorrelated along the 

transform-bin direction, there still exist NL correlations between various 

bin-pairs. In genera!, all the different bin-pair combinations are 

possible. 

Fortunately, in most cases there are some constraints on the NL filter 

coefficients according to the physical interpretations and the specific 

domain selected. Much less bin-pairs can then be used in the T-TB domain. 

* Quadratic filter coefficient constraint in the DSTFT -type T -FB domaio 

Consicter the DSTFT-type Time-frequency Bin (T-FB) domain. For a specific 

DSTFT transfarm satisfying the semi-ideal transfarm assumption, the base 

function is { wi./l)=w(t+k)exp(i21tjt)}, where w(t)=sinc(t), and denotes 

the non-overlapping and orthogonal frequency bin, k is the time-index in 

the center of the window function w. From this base function , the following 

relation can be obtained 

w. . k = ( 
1 

w . )( 
1 

w. ) (2.3.86) 
11+ 12 • v'W(f+K} 1 1.k v'w(t+k) 12.k 

This implies that for an arbitrary bin j, only signa! components from the 

two separate bins j
1 

and j
2

, j=U
1
+j

2
), may have (quadratic) NL correlation 

with the signa! components of bin j. Hence, only the quadratic filter 

coefficients m the block-matrices H2 which satisfy the frequency 
jl j2 

constraint j=(j
1
+j

2
), 1:s;j 1 ,j2~. can be selected. However, within each 

bin-pair (thus, in each block-matrix), signa! components m the different 

bins are generally nonlinear-correlated along the time-direction. 
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3) Convergence speed 

It can be expected, for stationary signals, that the filter convergence 

speed in a T-TB domain is a median value between that in the time-domain 

and in the transform-domain . This is likely because, in contrast to fully 

correlated data in the time-domaio and fully decorrelated data in the 

transforrn-domain (KLT-domain), the T-TB domaio data under a serni-ideal 

transforrn assumption is only decorrelated in one direction. 

Analytically, the convergence speed of the NL NLMS ADF algorithm in a T-TB 

domaio depends on the maximum- and minimum-eigenvalue ratio (A. (A. . ) and 
max mtn 

on the squared-ratio of (J\.2R .. ) for linear and quadratic filter part, 
zz 

respectively. By selecting a semi-ideal transforrn W, the signal components 

can be linearly decorrelated along the bin direction, resulting in a block 

diagonal matrix R .... as in forrnula (2.3.71 ). After norrnalization, the 
zz 

eigenvalue spread of (J\-2R ) is partially reduced. Hence, from this comes .... 
zz 

to the same condusion as above. 

4) Algorithm degeneration to the transform-domain 

lf M=l is selected, which means only one frame of transforrned data is 

considered, the algorithm degenerales to a corresponding transforrn-domain 

filter. This is similar to the T-TB domaio Linear ADF case. 
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2.3.4.5. Relations and similarities among the linear and nonlinear filtering 

algorithms in the T-TB domain and in the transform-domain 

In the following we will summarize the relations among the above · four 

algorithms, i.e. the transform-domain linear NLMS ADF algorithm; the 

transform-domain nonlinear NLMS ADF algorithm; the time-transform bin domain 

linear NLMS ADF algorithm; and the time-transform bin domain nonlinear NLMS 

ADF algorithm. 

1) Formula relations between the linear and NL filtering algorithms 

The linear filter is equivalent to the linear filter part of the nonlinear 

second-order volterra filter under Gaussian assumption. This holds either 

for the transform-domain, or for the T-TB domain. This implies that the 

transform-domain (or the T-TB domain) linear filter is involved by the 

transform-domain (or the T-TB domain) nonlinear filter. 

2) Formula similarities between the transform-domain and the T-TB domain 

algorithms 

If the transform-domain veetors Z , H(l)' and matrices H< 2>, R (n), J.Ll, 
-n -n n zz 

JÛ, A2
, W are replaced by the following T-TB domain veetors 'l , HY , and 

matrices H2 , R (n), f.ll®I , f.1.2®1 , A2®(MI ), W2=(W®I ), resp~ctiveÏy, the 
n -+-+ M M M M zz 

formulas in the transform-domain algorithms direetly correspond to the 

formulas in the T-TB domain algorithms. This is associated with a 

dimension-expansion in the transform-domain, along the time direetion, to a 

T-TB domain. 

In (chapter 6) Appendix, the formulas of these different algorithms and their 

corresponding relations will be synthesized. 

2.3.4.6. An Example 

A simple example is given below to show how to use the T-TB domain NL NLMS 

ADF algorithm, given sequence of data. 

Given the observed signal sequence ( y k} which is a desired signal corrupted 

by additive noise, i.e, y k =sk +nk, as well as the noise correlated observation 

( \}. The signa! \ has zero-mean and is uncorrelated with the noise nk and \ 
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(nk and \ are correlated). The data sequence { ... x" \_1· .. \-N+ 1.. . \.c·} 
is Gaussian zero-mean. An unknown NL system associated xk and nk as its input 

and output respectively. Thus, a NL NLMS ADF algorithm can be used as an NL 

Adaptive Noise Canceler (ANC). This NL ANC uses y and x as the primary and 
1\ k k 

the reference input, respectively, and has ek =\ as its output, as shown in 

Fig.2.1. 

primary 
input Y, 

reEerenee 
input ~k' ~k ®~k 

Fig.2.1 An example of a NL Adaptive Noise Canceler 

The NL ADF minimizes the following mean square error 

c =S 
k k 

(2.3.87) 

Because \ is zero mean and uncorrelated with nk and \• it equals to minimize 

12 as below 
k 

(2.3.88) 

Suppose that a T-TB domain gradient type NL NLMS adaptive filtering algorithm 

will be used . The noise nk can be modeled by a second-order NL Volterra filter 

of size L=MN=6. The analysis frame length is chosen N=3, thus the time 

directional order needed to compensate the system impulse response is M=2. An 

orthogonal transform W 
3 

is chosen as 

[ 

w w 
11 12 

W= w w 
3 21 22 

w w 
31 32 

(2.3.89) 

The data matrices before and after the transform, X" and Zn, are arranged 

respectively as follows 
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[ 
x x x ) = n n-1 n-2 
x x x 

n-3 n-4 n-5 

[ 

z (n) z (n) z (n) ] [ z z z Z- 11 12 13 _ n n-1 n-2 
n- z (n) z (n) z (n) - z z z 

21 22 23 n-3 n-4 n-5 

The relation Z =X WT can be written as follows 
n n 

[ 
z z z ) n n-1 n-2 

z z z 
n-3 n-4 n-5 

3 

LX .w. 
n+l-1 1 1 

i= I 

3 

LX w 
n-N+l- i ti 

i= I 

x x 
n-1 n-2 

x x 
n-4 n-5 

3 

LX .w. 
n+l -1 2 1 

i= I 

3 

LX .w. 
n-N+l- 1 2• 

i= I 

3 

LX w 
n+l- i 3 i 

i= I 

3 

LX w 
n-N+l- i 3i 

i= 1 

(2.3.90) 

(2.3.91) 

(2.3.92) 

One iteration step of the gradient-type NL NLMS ADF algorithm now yields: 

(1) Transform a new incoming data frame {x
11

(n) x
1
z<n) x

1
/n)} as follows . 

(overlap=Ü) 

(2.3.93) 

(2) Arrange the new transformed-data matrix Z and the vector Z 
n 

Delete the oldest data frame by shifting Z
0

_
1 

matrix (delete one bottorn 

row, and add a new row on the top). Column-scan the new matrix Z to 

obtain Z. 
n 

(3) Calculate A -2 Z 
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·I 
A2 0 02 

z 
I 2 

I, I 

z 
2.1 

A-2z 
02 

A2 
02 

z 
= 1,2 

n 2 z 
2,2 

z 
02 02 

A2 1,3 

3 z 
2,3 

where A2 = 
2E I z 1

2 

0 l 
~-· 2E I z y , i=1..3. 

"·' 
( 4) Calculate the linear filter output y(l) 

n 

(5) Calculate the quadratic filter output y(2) 
n 

z zT 
- I - I 

z zT 
- I - 2 

... z zT 
-I · N 

y (2) = tr(H2 ( 
z zT z zT .. z zT 
- 2- I - 2 - 2 -2 - N 

n n 

z zT z zT z zT 
-N-1 -N-2 -N-N n 

0 

E(Z ZT) 
-2- 2 . 

I\ 
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(2.3.94) 

(2.3.95) 

0 

E(Z ZT) 
-N-N 

(2.3.96) 

(8) Calculate the filter output error e" (the estimated signa] s_=e) 

e = Y- Y(ll_ Y(2) 
n n n n 

(9) Update H! 

Hl 
Hl 

Hl 
Hl 

Hl 

Hl 

Hl 
1.1 

2.1 

1.2 

2 .2 

1.3 

2.3 (n+ I) 

0< f..l.IO:o;l 
J 

Hl 

Hl 
Hl 

Hl 

Hl 

1.1 

2.1 

1.2 + 2e 

2.2 

u 

u ( n ) 

j=1..3 

(2.3.97) 

f..l.lO 
I 0 0 

f..l.lO 
I -- - -------

0 A'2 Z 

--- -------

0 

(2.3.98) 
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(10) Update H2 

H2 = H2 + ~20 e (A"2'l )(A"2'l ) T 
n+l n n n n 

H2 H2 H2 H2 H2 H2 1.1 1.2 1.3 1,4 1,5 1,6 

H2 H2 H2 H2 H2 H2 2,1 2.2 2,3 2 . 4 2 . 5 2 . 6 

H2 
where H2 = 

3.1 H23,2 H2 H2 3,3 3. 4 H2 3, 5 H2 3,6 
n H2 H2 H2 H2 H2 H2 4,1 4,2 4,3 4. 4 4,5 4,6 

- ---- --- ----- -- - --------- --------- -----
H2 H25.2 H2 H2 H2 H2 5,1 5,3 5.4 5,5 5. 6 

H2 H2 H2 H2 H2 H2 6.1 6.2 6,3 6,4 6,5 6,6 ( n) 

0 < ~20 ~ 1/2 ( here using ~20=~20. . 1 ~,j~ N) 
IJ 

(11) Setting a new time instant 

n:=n+N, repeat (1)-(10). 

Further discussions: 

sub-matrices H2 
1.1 

(2.3.99) 

and H2 
1.2 

(1)If the time-Der bin domain is chosen, only the 

(H2 =H2 ), corresponding to the bin-pairs 1,2 2,1 (1 ,1) and (1 ,2), can be 

selected, because of the frequency constraint l~(i+j)~3 . Thus, step (10) 

can be simplified. 

(2)If the time-WHT bin domain is chosen, only sub-matrices the H2 , H2 1,2 1.3 
and H2 , corresponding to bin-pair (1 ,2), (1 ,3) and (2,3), need to be 2,3 
selected as the quadratic tenns due to the constraint l ~(i$j)=~3 . Thus, 

step (10) is simplified because only three sub-matrices in H2 are 

concemed. 

2.3.4.7. Summary 

In this section, we have derived a new T-TB domain nonlinear (Vol terra 

type) NLMS ADF algorithm under a semi-ideal transfonn assumption. It actually 

is a time-transfonn domain NL NLMS FIR filtering algorithm. The complexity of 

this algorithm is between that of the corresponding algorithms m the time­

and in the transfonn-domain. Many attractive properties holds m the T-TB 
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domain, such as: 

* The linear and quadratic filters are decoupled, which is a consequence of 

the time-domain Gaussian input data assumption and the linear transfarm 

property of any orthogonal transfarm W. 

Consequently, the linear filter part of this NL filter has the sarne 

properties as those in the linear filter in section 2.2.3. In fact, the T-TB 

domain linear filtering algorithm is a subset (the linear part) of the 

corresponding nonlinear filtering algorithm. 

* The signal components are fully decorrelated along the bin-direction, 

provided that a semi-ideal transform is selected. Consequently, The filter 

coefficients become independent blocks of sub-vectors/ sub-matrices, which 

are much easier to be solved. 

* Quadratic filter coefficient number can be greatly reduced depending on a 

specific chosen transfarm W. 

* The convergence speed is in between that of the time-domaio and that of the 

transform-domain for stationary signals. 

* The algorithm is suitable for filtering nonstationary signals and signals 

associated with a long impulse response length. 

* Signa! overlapping and windowing can be used when needed (similar to section 

2.2.3). 

* The T-TB domain algorithm can degenerate to a transform-domain one. 

* A T-TB domain nonlinear NLMS ADF algorithm is a generalized form 

ft involves the T-TB domain linear NLMS adaptive filtering algorithm, and it 

can degenerare to the transform-domain linear and NL NLMS ADF algorithms. 

By neglecting the quadratic filter part in the T-TB domain (or in the 

transform-domain) NL algorithm, the algorithm degenerales to the T-TB domain 

(or to the transform-domain) linear version. 

By finding the similarities between the corresponding variables (vectors, 

matrices) and substituting them into the corresponding formulas in the T-TB 

domaio (or in the transform-domain) the transform-domain (or the T-TB 
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domain) algorithm is then obtained (as described in section 2.3.4.5). It is 

obvious that a T-TB domain nonlinear NLMS adaptive filtering algorithm is a 

general form of the transform-domain linear and nonlinear NLMS algorithms. 
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2.4. RECURSIVE LEAST SQUARE LINEAR ADAPTIVE FILTERING 

A Recursive Least Squares (RLS) sliding-window covariance lattice filter 

has been extended with the new function of adaptive window-length based on the 

vector space geometrie projection. Such an added new functionality impraves 

the filter performance of tracking nonstationary signals, especially when the 

signa/ stalistics have non-constant variation speed. 

2.4.1. Introduetion 

In section 2.2 and 2.3, we have investigated LMS type adaptive filters. For 

the purpose of processing nonstationary signals and signals with a long 

impulse response length, we have concentraled ·mainly on developing new 

time-transform domain algorithms. 

However, in some situations, nonstationary signals to be filtered have fast 

time-varying statistics. Thus, fast convergence is the main problem. A filter 

with relatively slow convergence (e.g. an LMS type filter) could always remain 

in the adaptation process, i.e. far from the ideal solution. In such a case, 

· one should choose other alternatives, such as RLS type filters. 

RLS filters have drawn much attention due to their fast convergence, the exact 

Least Square (LS) error calculations, and not being hampered by Gaussian data 

limitation (needed for the nonlinear LMS filters). 

Selection of LMS or RLS type of filter: tradeoffs between convergence speed 

and filter complexity 

As has been mentioned before, the LMS type of filter enjoys simplicity and 

robustness. The convergence speed of LMS filters can be improved by using a 

normalized version of some properly selected transform domain. On the other 

hand , RLS filters generally have faster convergence. They perform exact Least 

Square (LS) calculations at each time instant, and are free from the 

restrietion to Gaussian input data. However more calculations are usually 

needed for the RLS type of filter. 

Hence, the selection of an LMS type or an RLS type of adaptive filter depends 

on the application demands. Generally speaking, when a nonstationary signa! 

has slowly changing time-varying statistics, one should choose an LMS type 
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filter; for fast changing nonstationary signals an RLS type filter should be 

selected. The main tradeoff for selection is the convergence speed and the 

algorithm's complexity. 

2.4.2. RLS sliding-window covariance lattice filter with an adaptive window 

length 

Among all kinds of linear RLS adaptive filters, the lattice filters are 

particularly attractive[24]. One of their main advantages is the mutual 

orthogonality of filter outputs at different orders. Thus, the filter is 

decoupled among different orders. This implies that a globally optima! filter 

can be implemenled by choosing the local optimum for each order. A second main 

advantage is the numerical stability of this filter under finite length 

calculations, and the low sensitivity of the filter parameters to smal! 

disturbances such as caused by quantization. The difference among the various 

kinds of lattice filter results from the use of different windowed data for 

filter parameter estimation. The sliding-window covariance lattice 

filter[24,75] uses a constant-length data-window, which slides forward at each 

time instant. However, when signa/ stafistics are time-varying with 

non-constant changing speed, it is desirabie that the window size can be 

adjusted at the same time. 

Motivated by this, we have developed a new adaptive sliding-window covariance 

lattice filter algorithm, which is an extension of the previously existing 

filter with constant size of the sliding window [24,75]. The basic idea is 

that the window length can be decreased recursively if the time-varying speed 

of the signa! statistics is increased in a short time duration. While the data 

window length can be recursively increased when signa! approaches 

stationarity, so that the error-varianee can be reduced. 

The key for the derivations is to find iterative relations among the variables 

corresponding to the different window w(t) and w(t+ /) in the successive time 

instant, by using geometrie projection update formulas. The corresponding 

derivations are not presented here -the interested reader is referred to [29] 

for further details. 
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2.5. RECURSIVE LEAST SQUARE NONLINEAR ADAPTIVE FILTERING 

A new RLS Volterra type of nonlinear adaptive filter with 

adaptive-sliding-window is developed in this section. 

By introducing a finite data memory, and allowing recursive adaptation of the 

window-length of this memory, the new RLS NL filtering algorithm provides 

versarite capabilities for tracking nonstationary signals associated with a NL 

time-varying model having non-constant rate of changing speed. 

2.5.1. Introduetion 

There are many different types of NL filters. We will again concentrale on the 

NL Volterra filter due to the same reason mentioned before. 

For RLS NL filters, very little investigation has been done on adaptively 

tracking the time-varying NL parameters. Recently, Mathews and Lee[58] 

presenled a fast RLS adaptive Volterra filtering algorithm, and Giannakis and 

Dandawate proposed a RLS NL adaptive noise canceler[26,27]. In both 

algorithms, prewindowed exponentially weighted data is used. 

Often, the signa! to be filtered is nonstationary and its rime-varying 

statistics has non-constant changing speed. Previous research on RLS NL 

filters was mainly associated with prewindowed data. It becomes unsuitable to 

memorize the infinite amount of past data in the nonstationary case. A 

corresponding recursive algorithm associated with an adaptive finite window 

length[32] is developed in this section. 

The remaining part of section 2.5 will be organized as follows. First the 

adaptive NL RLS algorithm with a Sliding Window (SW) of constant length will 

be derived. Then the algorithm will be extended to an adaptive-window length. 

The simulation results will demonstrate the performance of the filter, with 

comparisons to that of the corresponding prewindowed one. Finally, some 

concluding remarks will be given. 
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2.5.2. RLS nonlinear ADF algorithm with an adaptive sliding-window 

2.5.2.1. The algorithm for constant window length 

Consider the general problem, where a NL filter needs to be explored. The 

nonlinearity can often be represented by a Volterra series expansion. Using a 

second-order Volterra kemel, the desired response d" can be approximately 

represented by the output of a truncated N-order filter 

N N 
9 =h + L h< 1>(n)x + L, h< 2> (n)x x 

n 0 mi =I mi n·ml+l mi ,m2=1 ml,m2 n·ml+l n·m2+1 
(2.5.1) 

or equivalently, in vector forrn 

9 = hTZ 
n -n-n 

(2.5.1 ') 

where Z=[X 
- n - n 

® is the Kronecker product. and X =[x x ... x { The Least Square (LS) 
- n n n-1 n-N+I 

estimation under consideration is to find at each time instant n, a sliding 

windowed, RLS salution of the optimal coefficient vector h , such that the 
-n 

following cost function is minimized for a fixed Window Length WL=(L+1) 

(2.5.2) 

For a time-varying NL system, the WL is chosen such that signals inside the 

window can be considered stationary. By taking partial derivative V (J ) with 
h n 

respect to ~. and setting it to zero, it can be proved that the optimal 

solution is 

h = R. 1 P 
-opt n -n 

(2.5.3) 

where 

n 

R = L, ?-k?-~ 
k= n ·L 

n 

L. 
k =n ·L 

n n [X l P = L. y z = L. y -k 
-n k-k k 

k = n ·L k = n • L X ®X 
- k - k 

(2.5.4) 

If the signal is stationary, (2.5.3) is independent of time instant n, 

otherwise it is an optima! salution with respect to the given data inside the 
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window. A pseudo matrix inversion R+ is used in (2.5.3) when R' 1 is singular 
n n 

or ill-conditioned. (2.5.4) can be expressed in the recursive form as 

R = R + z z T - z z T (2.5.5) 
n+l -n+l -n+l -n-L -n - L 

~n+l = ~n + Yn+l ~n+l - Yn-L ~n-L (2.5.6) 

In order to derive an update formula for the ~n+t using present data x •• t and 

the iteration results obtained at time instant n, the following auxiliary 

variables are introduced 

R. = R - Z zT 
n n - n-L - n-L 

p = p - y z 
- n - n n-L - n-L 

with these, (2.5.5) and (2.5.6) can be expressed as follows 

R =R.+Z zT 
n+l n -n+l - n+l 

P =P +y z 
-n+l - n n+l -n+l 

next, by using the following matrix inversion lemma 

(A + 8CDr1 = A-1 
- A-18(DA-18 + C 1r 1DA-1 

and choosing the following associations to (2.5.11) 

A = Rn' 8 = ~n-L' C = -1 , D = ~:-L 
we obtain 

R-1 Z zT R-1 

R-I + - - "--=-,_"--_L_-_,•_-_L_n_ 

1 - zT R - I z 
- n -L n - n · L 

h = R_ - lfi can then be expressed as 
-n n - n 

R-t z zT R - t 

h = (R -1+ n - n -L- n -L n 
)(~ n -y n-3 n-L) n n 

1 z T R-1 z -
- n -L n - n -L 

After simplification, this becomes 

11 = h - R Tlb 
- n - n n 
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where the gain R and the backward filter residual 11b are given by 
- n n 

R- 1 Z 
R = ---;;;-" _-_n_-_L-;---

- zT R- 1 z 
-n-L n -n-L 

-n 

b- zT h 
Tin - Yn-L- -n-L -n 

Similarly, using (2.5.9) and making the following associations 

A = Ï{ , B = Z , C = 1, D = zT 
n n+l n+l 

to (2.5.11), the update formulas for K , R- 1 
, h 

n+l n+l n+l 

can be obtained. Table 2.3 summarizes pred.ietion error ec 
n+ I 

filtering algorithm. 

: constant w1n OW 
step at time (n+l): 

R 
-n 

-- l R = n 
b 

'11 n 

fi 
-n 

K 
-n•l 

- 1 
R = 

n + 1 

h 
-n+l 

R- 1 z 
n -n-L 

1 - ZT R- l z 
-n-L n -n-L 

I R ZT ) R- 1 + 
-n -n-L n 

- ZT h Yn-L -n-L -n 

h - R b 
'11 -n -n n 

R-I z 
n -n~l 

1 + ZT R- 1 z 
-n + 1 n - n + 1 

( I - K ZT ) 
-n+l -n+l 

- ZT fi 
Yn+l -n+l -n 

fi + K 
-n -n+l 

f e 
n + l 

output: ~n+l (WL=L+l) 

(T2.3.1) 

(T2 .3 .2) 

(T2 .3. 3) 

(T2 .3 .4) 

(T2.3.5) 

(T2. 3. 6) 

(T2 .3. 7) 

(T2 .3. 8) 

(where Z =[X X ®x ]T 
-n+l -n+l -n+l -n+l 

and X = [x x ... x ]Tl 
-n+l n+l n n-N+2 

Table 2.3 RLS sliding-window nonlinear ADF algorithm 
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Remarks 

RI. Generalize to the plh -order NL filter 

To generalize an NL filter algorithm to a pth order Volterra kemel, one 

only needs to rewrite the vector ?- as follows 

Z =[X, X ®X, ... , X ®X ® .. . ®X ®X JT 
-n -n -n -n -n -n -n -n 

(2.5.19) 

p 

The other formulas in the algorithm will remain the same. 

R2. Trade-off between tracking capabi/ities and calculation cost 

The improved performance is obtained at the price of more calculations. 

The amount of calculations is almost doubled compared to the prewindowed 

method. However, it is still attractive for a NL system with !ow-order 

kemel, with partial NL coefficients, and with non-constant rate of 

changing time-varying speed. 

R3. Initia/ value 

The initia! condition for the algorithm is ~0 =0, R
0 
= 8 I. (8 is a smal! 

positive constant) 

R4. The filtering domain and the related complexity 

In the linear situation, because of 

algorithm, it is usually not 

transform-domain. However, for a 

the fast convergence speed of the RLS 

necessary to filter signals in the 

NL filter, the situation is slightly 

different. One might be interested in using a NL filter in other domains, 

such as in the frequency-domain[65]. Some benefit may then be obtained 

from performing filtering in the transform-domain. For each 

transform, as mentioned before, the number of NL coefficients 

significantly reduced, compared with the situation that 

coefficients in the time-domain filter are chosen. 

selected 

may be 

all NL 

For example, in the frequency-domain only the pth- and lower-order NL 

coefficients Hr r .r (n), 1=2,3 ... p, satisfying the frequency constraint 
I 2 I 

0~ L.fs(N-1), will be contained in the filter (where N is the total 
j J 

frequency bin number, p is the order of Volterra kemel). 
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Discussion of tbe Gaussian input case 

If the input variabie x" has Gaussian distribution, all the odd moments of ~k 

disappear. Due to the diagonal matrix R
0
(2), the second-order Volterra 

filtering algorithm can be simplified. Below, the fonnulas associated with the 

Gaussian input case will be derived. 

By taking parrial derivatives to (2.5.2) with respect to h and setting them to 

zero, the detailed equations can be re-written as follows 

n [X l [h (1 )] V (J) = L { -k (y -[~T (~®~)T] -k >} 
~ k=n-L X®X k k k k h(2) 

- k - k -k 

n {[yX l [X l [h(l)]} L k-k - -k [XT(X®X)T] -k 

k=n-L y(X®X) X®X -k-k-k h(2) 
k -k -k -k -k -k 

= ~~"(1)]- [ R_<2) R:(3)] ~~n(l)l = O 
P (2) R (3) R (4) h (2) 
-n n n -n 

(2.5.20) 

n n n 

Where R (2)= I X XT R (3)= I (X ®X )XT, R (4)= I (X ®X )(X ®X )T, 
n - k- k' n - k - k - k n - k - k - k - k 

k = n - L k =n-L k = n - L 

n n 

P (1)= I y X , P (2)= I y (X ®X ). 
-n k-k -n k -k -k 

k=n-L k=n-L 

Equation (2.5.20) is equivalent to the following two vector equations 

~n(l) -R0(2)~0(1) - Rp)~_(2) = 0 

P (2) - R (3)h (2) - R (4)h (2) = 0 
-n n -n n -n 

(2.5.21) 

(2.5.22) 

Hence, general, ~.(1) and ~.(2) are coupled as indicated. However when ~. is 

zero-mean Gaussian, all the odd moments of ~. are zero, so the equations can 

be simplified to 

[~"(1)]- [ Rn ( 2) 0 ] ~~n(l)l = O 
P (2) 0 R ( 4) h (2) 
-n n -n 

(2.5.23) 

i.e. 

P (1)- R (2)h (1) = 0 
- n n - n 

(2.5.24) 
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P (2)- R (4)h (2) = 0 
· n n -n 

(2.5.25) 

which implies that ~n(l) 

solutions are then given by 

and h (2) 
-n 

are now decoupled. The optima! 

h (1) = R (2)" 1P (1), h (2) = R (4)" 1P (2) 
-opt n -n -opt n -n 

(2.5.26) 

Due to the decoupling, the Rn matrix becomes diagonal, and the third order 

terms of )_( n can be neglected. Consequently, some calculations in formulas 

(T2.3.1) (T2.3.2) (T2.3.5) (T2.3.6) m Table 2.3 can be simplified 

respectively as follows 

(2.5.27) 

(2.5.28) 

n + 1 = I _ - [ X 1 (X @X ) T] n 

[ 

R. 
1 

(2) 0 l [ K(l )] . [ R_ ·
1 

(2) l 
0 R~:l(4) (2 ~(2) -n+1 -n+l -n+l ) R.~1(4) (2.5.30) 

2.5.2.2. Window-Iength adaptation 

In order to improve the tracking capability, the algorithm must be able to 

adapt its WL during iterations. 

In this section, we will discuss algorithms for: 

• Recursive window length decrement 

• Recursive window Iength iocrement 

- a forward iocrement 
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- a backward increment 

• The decision on when to change the window length 

(a) Recursive window-length decrement 

When the time-varying speed of signa! statistics speeds-up, the corresponding 

WL should be decreased such that less old data will become used. 

In order to decide if the WL should be decreased, a detector will be applied 

which calculates the short-time average residual of the filter and decides if 

this WL decrement procedure will be called. 

Description of the window-length decrement procedure 

If WL decrement procedure is called at time-instant (n+ 1), it decreases the WL 

recursively by moving the window forward by one (from time instant n to n+l) 

and eliminating the oldest m (L>nk'!l) data samples from the previous window. 

Noticing the following identities by their definition 

R =R i> =P , !i =h , R =K 
n n,L-1' -n -n,L·I -n -n.L-1 -n -n.L-1 

R =R P =P , h =h , K =K 
n+l n+l.L' -n+l -n+l,L -n+l -n+l,L - n+l - n+I,L 

and revising (2.5.5) and (2.5.6) to 

R = R + z zT 
n+l,L-m n.L - n+l - n+l 

P =P +y Z 
-n+l.L-m -n,L n+l -n+l 

m 
-I. z 

-n-L+i 
i = O 

zT 
- n-L+i 

m 

- I. y z 
n-L+i - n-L+i 

i=O 

(2.5.31) 

(2.5.32) 

(2.5.33) 

(2.5.34) 

the WL decrement procedure can be derived directly from the formulas 

(2.5.13-2.5.17). Table 2.4 summarizes this procedure. 
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Recurs ive s tep at t ime instant (n+l): 
on entrance: WL =L+l 

to dec rea s e WL by m (m~L) 

1) Call algorithm 1 (constant WL : time n+l) 
2) For i:=1 to m do 

R - 1 Z 

i< n+l n+l-L 

- n + 1 

~b = y - ZT h 
n+l n+l-L -n+l -L -n + l 

fi h - i< ~b 
-n+l -n+l n+l n+l 

h <= h 
-n+l -n+l 

L <= L-1 
end; {for) 

on return: WL <= 
output: 

WL-m 
h 
- n + 1 

(T2 .4 . 1) 

(T2.4.3) 

(T2 . 4 . 4) 

Table 2.4 Recursive WL Decrement Procedure 

(b) Recursive window-length iocrement 

Olapter 2 

As the time-varying speed of the signal statistics slows down, taking more 

data for estimation can reduce the error-variance. 

A detector will be used to check whether this window-length increment 

procedure will be called. 

Description of the window-length iocrement procedure 

lf the WL iocrement procedure is called at time instant (n+ 1), it will 

increase the WL by m recursively as follows. 

Two different approaches, forward and backward WL increment, are included if 

m> 1 is selected. In principle, the WL will be increased by one at time instant 

(n+l), because the algorithm remembers only the data within the present WL. 

This is equivalent to one iteration step of the prewindowed algorithm with 

À.= l.O. 

However, one may choose the WL iocrement m>l at each time instant (n+l) by 

combining it with the backward WL increment, at the price that more than the 
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current WL of data should be stored in memory. Thus, the WL increment 

procedure is performed by adding one present new data sample and (m-1) 

successive old data samples preceding the previous window. Using the similar 

method as in the WL decrement procedure, the WL increment procedure can be 

easi1y derived from the formulas (2.5.13-17), by not1cmg the identity 

relations in (2.5.31) and (2.5.32) and revising (2.5.5) and (2.5.6) to 

R 
n+I.L+m 

R + z zT + 
n,L - n+l - n+l 

P =P+yZ+ 
-n+I.L+m -n.l. n+l - n+l 

m-1 

I z zT 
- n- L - i - n·L·i 

i= I 

m-I 

L Y n-1..-i ~ n·L·i 
i= I 

(2.5.35) 

(2.5.36) 

Table 2.5 surnmarizes such a combined procedure with arbitrary ( 12~1 ) WL 

increment. 

In Fig.2.2, a block diagram for the full RLS nonlinear adaptive filtering 

algorithm with an adaptive sliding-window is given. 
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recurs1ve step at t1me 1nstant n+ 
on entrance: WL=L+1 

to increase WL by m (m~1) 
(1) Forward WL increment: 

( increase WL by 1) 
R- 1 Z 

k 
n - n + 1 

n + I 

h h + K e 
- n +l -n - n+l n+l 

L <= L+1 
if (m-1)~1 then do (2) 

(2) Backward WL increment: 
for i: =1 to (m- 1) do 

R - 1 Z 

i< n-+1 - n -L 

- n + 1 1 + ZT R-I z 
- n - L n+l -n-L 

eb y - Z T h 
n+ I n - L -n-L -n+l 

h h + K eb 
- n +l -n+l - n+l n+l 

L <= L+1 

end; {for} 
on retur n: WL <= WL+m 

output: b- n+l 

Table 2.5 Recursive WL Increment Procedure 
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(T2. 5. 2) 

(T2. 5. 3) 

(T2. 5 .4) 

(T2. 5. 5) 

(T2 . 5. 6) 

(T2.5.7) 

(T2.5.8) 
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input new data X
0

, (T
1 

T
2 

T
3

: g i ven t hresholds ) 

+ 
Clculate: z ( x ) = -n 

- n x ®X 
-n -n 

x = [X X .. X ) T 
- n n n - I n - L 

s 
Calculate: !___[ Ie I) s n- i 

i = 1 

+ 
[ K:= n Div M 

If (n Mod M) =O ? 

- l + I 
Calculate:* short-time average residual ene rgy 

1 kM- 1 
- 2 

[ 
2 M>S c k = ---g- c 
1 

l = (k- 1 J M 

* short -time error-var ianee 

1 k M - 1 
2 [ 

- 2 
(1" =---g- ( c 1 - c 1 ) 

k 
1 = ( k - 1 l M 

l 
I 

1 s 
}-+ ~--{ WL Decrement -- [ Ie I) > T ? W: =- 1 s n - i 1 

i = I 

+ -
- 2 and (rr 2 >T ) and w"'-1}-:-{ 

WL I ncrement 
( c k <T 2 ) 

k 3 W: =1 

t -
Constant WL procedure ] W:=O 

I 
.j. 

n: =n+1 

Fig. 2.2 Block diagram of a RLS nonlinear adaptive filter 

with an adaptive-sliding-window 
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2.5.3. Simulations and results 

Simulations have demonstrated the tracking capability of the algorithm. In the 

simulations, the available observation signals are yk and \• where yk=sk+nk. 

The signa! sk is uncorrelated with the noise nk and \• while nk and xk are 

mutually correlated. As an application of NL ADF, a NL Adaptive Noise Canceler 
1\ 

(ANC) with an adaptive WL is then used to estimate sk. 

The desired signa! sk is produced by passing zero-mean unit-varianee Gaussian 

random noise through an AR(l) filter with pole at -0.5. The noise nk is 

produced by passing a zero-mean unit-varianee exponential random process \ 

through a linear-quadratic filter. The output of the linear part is obtained 

by passing xk through a MA(2) system with the time-varying coefficients 

(h < 
1 > ,h < 

1 >), while the output of the quadratic filter is obtained by squaring 
I 2 

the linear filter output, as depicted in Fig.2.3. 

zero-mean white 
Gaussian N(O,l) 
--------------------~ 

zero-mean exponential 
random process ~ 
----~x-k------------~~ 1 

observed 
signal 

n 
k 

Fig. 2.3 The observed signa! model used in simulations 

The parameters of. the time-varying NL filter, as listed in Table 2.6, are 

changed by a step function at t=3000. The SNR = E(s2
)/ E(n2

) is set to -20dB. 
l l 

The NL ANC structure is the same as has been shown in Fig.2.1, with y
1 

and \ 

as the primary and the reference input respectively. 

The estimated filter parameters are compared with those obtained from the 

corresponding prewindowed filter (with À.=0.9975). Fig.2.4 shows the simulation 

results of this example. 
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h(2) 
1,1 . 

VL-SW 

(c) 

0 

(d) 

3000 

,----~--- ·---- -· · · ··--- ----, 

(e) 

6000 t 

Fig. 2.4 Estimation of the parameters of a nonlinear 

time-varying system (5 runs, SNR=-20dB) 

* Upper part: prewindowed (PW) method À=Ü.9975 

* Lower part: variable-window-length sliding window (VL-SW) method 

* Straight line: ideal values (as listed in Table 2.6) 
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h I l l h ( l ) h ( 2) h I 2 l h ( 2) 

l 2 l. l l ' 2 2 ' 2 

0 "' t:s 3000 1. 23 -0 . 45 1. 5129 -0.5535 0.2025 

3000< ts 6000 1. 73 0.05 2.9929 0.0865 0.0025 

Table 2.6 Time-varying nonlinear filter parameters 

2.5.4. Concluding remarks 

A new RLS NL ADF algorithm with an adaptive-sliding-window has been developed. 

It uses a finite but adaptive size of the data window. The adaptation of the 

WL is performed recursively in the algorithm. 

Due to the adaptive window length, this algorithm can provide versatile 

functions and faster convergence speed for tracking nonstationary signals and 

NL systems. Especially, if the stalistics of nonstationary signals or the 

parameters of NL systems are time-varying with non-constant changing speed, 

adjusting this window size during recursion when needed, is a very effective 

method. However, this improved performance is obtained at the price of more 

calculations. 

2.6. APPLICA TI ONS 

2.6.1. Nonlinear adaptive system identification 

In many situations, we want to estimate an unknown system from the measurement 

of its input and output signals. This problem is associated with the system 

identification. When the linear/nonlinear system is time-varying, the task is 

associated with adaptive linear/nonlinear system identification from 

nonstationary measurements. 

Adaptive system identification has wide applications. It is often combined 

with the controlling of an industrial process. Fig.2.5 shows a schematic block 
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diagram of a typical identification-control process using such a 

linear/nonlinear adaptive filter. Once the unknown system is estimated from 

the measurements, this system can then be used to control some (un)desirable 

behavior. For example, it can be used for the short-circuit proteetion of a 

high-voltage line. The system is time-varying and is changing slowly due to 

many factors, such as the number of users, the temperature, the time period 

(busy or idle), etc. 

observed observed 

input output 

~i} u __ n __ n_o_wn ___ N_L ___ s_y_s_t_e_rn_:·-----{y~t_} __ ~+~-{e __ tT}~------
HNL(Z) 

stat1st1ca 
r---+--irneasure and 

processing 

Fig.2.5 A schematic block diagram of 

adaptive system identification and control 

Previous work on adaptive system identification is mainly related to linear 

system model, represented commonly by a rational function such as an AR 

(AutoRegressive), MA (Moving Average) and ARMA process. Estimation of model 

parameters is the main task of modern linear system identification. 

Unfortunately, many practical systems are NL, thus a linear system 

approximation often can not be used. The previously given NL adaptive Volterra 

filter with an adaptive-window can, in those cases, efficiently be applied to 

adaptive NL system identification. 

For NL adaptive system identification, the estimation of model parameters 

77 



given measured input {x ) and output data {y ) is considered. The NL Volterra 
n n 

system which represents the input-output relations can then be estimated by 

N 

~ = h + I h < 
1 >(n)x + 

n 0 m n-m + 1 
(2.6.1) 

m ;I I I 
I 

Under the Least Square (LS) criterion, the adaptive system identification is 

equivalent to finding an LS solution of the time-varying coefficient vector h 
-n 

of this system, which minimizes the cost function J 
n 

(2.6.2) 

Remarks: From the characteristics of a specific system, one may choose only a 

part of the NL terms. As in most situations, selecting all the NL 

terms is neither economical nor necessary. 

2.6.2. Nonlinear adaptive noise cancellation 

The NL ADF algorithm developed above can be used as NL ANC. A similar example 

as in chapter 2.3.4.6. has been used. Suppose that the observed signa!, 

y k =\ +nk, is the des i red signa! sk corrupted by noise nk. A nother observation 

\ is given which is correlated with nk. The signa! sk is zero-mean and 

uncorrelated with the noise nk and \ · The noise nk and \ are mutually 

correlated, which can be modeled by an unknown NL system with \ and nk as 

input and output respectively. 

" In this situation, we need to estimate signa! ( \} from the noisy observation 

{ y ), given the noise correlated observation {x ) as a reference signa!. 
k k 

Similar to linear ANC, a NL ANC can be used, with yk and \ as its primary and 

reference input, respectively. The NL ANC is designed to rninirnize the 

following LS objective function 

JI = I (y - h Tz )2 (2.6.3) 
n k -k-k 

k 

where Z =[X X ®X ... X ®X ® ... ®X ®X ]T and X =[x x ... x ]T. Notice - k - k - k - k - k - k - k - k - k k k·l k·N+I 
that \ is zero-mean and uncorrelated with nk and xk. Hence it is equivalent 

to minimize 1
2 

below 
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J2 = L (n - h Tz )2 (2.6.4) 
n k -k-k 

k 
A A T 

where y k = nk = ~k ~k is the filter output. The above LMS or RLS NL ADF 

algorithm can be used directly for NL adaptive noise cancellation, as shown in 

Fig.2.6. 

prima:ry 
y = s + n ) 

.n, -1 
c =S input 

I 

., 
k k k k k 

~ 
reference 

Z =[X X ®X )T NL 
I input -k -k - k -k ANC 

7 ( 

Fig.2.6 A block diagram of a nonlinear adaptive noise canceler 

For the RLS algorithm above, an extra calculation should be added to calculate 

the forward filter residual Er (which is the estimated desired signa! ~ ) 
n+ l n+l 

Er - y - zT h (2.6.5) 
n+l - n+l -n+l-n+l 

Remarks 

(I) Relations between the adaptive system identification and the ANC 

We can regard the above NL adaptive noise cancellation as the problem of 

identification of a NL system having \ as input and nk as output. Thus, 

the NL ANC is directly associated with an NL adaptive system 

identification. 

2.6.3. Speech-like noise reduction 

In chapter 4, we will show another application of the NL ADF algorithm to 

speech-noise reduction and speech intelligibility enhancement. 
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CHAPTER 3 

ROBUST PITCH ESTIMATION 

The speech fundamental frequency (pitch) can be accurately estimated by 

using pitch information existed within each speech frame and among the 

successive speech frames. 

In order to do so, a new two-step algorithm wil/ be built. First, a 

pseudo-perceptual pitch estimation algorithm has been developed as a coarse 

pitch candidate estimator from each frame . ft simplifies the perceptual method 

from the signa/ processing point of view, while maintaining robustness. 

Secondly, pitch contours are modeled by their stochastic characteristics using 

Hidden Markov Models. The parameters of HMMs can be trained by using the data 

from noise-free speech signals. A detailed-algorithm uses these models for 

pitch contour estimation from candidates under a Maximum Likelihood (ML) 

criterion. Some simu/ation results are included. 

3.1 Introduetion 

Speech fundamental frequency (or pitch), which is defined as the reciprocal 

of the interval between two vocal-cord impulses, is one of the most important 

features of voiced speech signals. Pitch estimation is one of the most 

important tasks in speech signa! processing. In most cases, one is concerned 

with a pitch contour (we cal\ the dynamic pitch as a function of time the 

"pitch contour") rather than a single pitch pèriod. An accurate representation 

of voiced-information is often of paramount importance in many application 

aspects such as speech synthesis, coding, compression, enhancement, speaker 

identification, etc. 

Pitch estimation from stationary frames of clean speech signals is a 

relatively easy task. Many algorithms[l0,11,55,61,81) have been successfully 

developed to handle such a situation. 

However, accurate pitch estimation remains a difficult problem in more 

80 



Robust Pitch Estimation 

complicated situations. The difficulty arises when the speech signals are 

contaminated by various kinds of background noise such as white noise, 

interference speech and background music, etc, and during transition frames of 

vowel-voweVvowel-consonant in clean speech signals. In previous studies, 

several robust pitch estimation algorithms have been proposed[39,89,101] for 

solving this problem. 

In order to find a robust solution, we wil! first review some previous 

studies and search some common weak points which might be helpful for our 

consideration. Then a new pitch estimation algorithm will be formed, following 

the line of being consistent with the human auditory global processing, using 

as much as possible the souree information, and using a-priori general 

knowledge of pitch contours. 

This section will be organized as follows. First, we will describe the 

problem addressed in this research, and review some of the pitch estimation 

algorithms directed to robust pitch estimation. After analyzing the weak 

points of the existing algorithms and overviewing human pitch perception 

outlihes, a basic skeleton of a new pitch estimation algorithm, a two-step 

algorithm consisting of coarse and detailed estimation, is then formed. Two 

parts of the algorithm will be described in detail separately, together with 

some brief introduetion into the basic theory behind. The simulations are 

described in detail and some preliminary results are included. Finally 

discussion and conclusions wil! be given. 

3.2 Pitch contour estimation from noisy speech signals 

A large part of the speech signals is voiced, which is caused by the 

periodic excitations of the human vocal-cord. The frequencies of these 

excitations change slowly and continuously in speech sentences, and typically 

fall in the range between 50 and 400 Hz. Consequently, quasi-periodicity is an 

important characteristic for voiced-speech signa! analysis. 

In many practical ·applications, reliable and accurate estimation of the 

pitch periods from the continuous frames of a speech sentence (thus estimation 

of a pitch contour) is needed. Often, the speech signa) is contaminated by 

81 



noise or is in some transition state. Hence a robust estimation algorithm is 

needed. The pitch estimation problem addressed here is to find such a robust 

algorithm. More specifically, it can be used to estimate one speaker's pitch 

contour from (white and colored) noise contaminated speech, or to 

simultaneously estimate multi-speakers' pitch contours from speech corrupted 

by another background interference speech. 

As a direct link to our research in speech separation, we need an algorithm 

which can simultaneously and accurately estimate the pitch contours of both 

the target and the interference speech, from co-channel speech signals, with a 

wide range of Target-Interference Energy Ratio. 

3.3. Review of the previous studies on robust pitch estimation 

Robust pitch estimation is still an active field due to the increasing 

demands in speech processing. 

Classica! pitch estimation algorithms such as short-time AMDF (Average 

Magnitude Difference Function), short-time autocorrelation of linear 

prediction residuals with center clipping, etc[39,81], can only handle 

stationary and clean speech. Recently, a lot of algorithms with increased 

complexity have been developed to cope with these difficult situations. Some 

of these algorithms will be reviewed briefly. They are roughly categorized 

into two parts: the signa! processing-based approaches and the pitch 

perception-based approaches. The reasons to review these algorithms are 

twofold. One is to find some common weak points in order to build an improved 

algorithm. The second is that some of these algorithms can be selected after 

proper modification to provide weighted pitch candidates, which can also be 

used in the first part, the coarse estimate part, of our new algorithm. 

(l) Signal processing-based approaches 

* Histogram formed by speetral peak submultipJes 

Parson[71] has proposed a simultaneous two-speakers' pitch estimation 

algorithm at TIR around OdB. The algorithm is based on the principle that 

the spectrum of voiced-speech has peaks concentraled at the pitch harmonie 

82 



Robust Pitch Estimatîon 

frequencies. In this algorithm, all narrowband filtered speetral peaks are 

assembled. A histogram collects all possible integer submultipJes of these 

peaks. The maximum peak value in the histogram is selected to be the pitch 

of the first speaker. Then a second histogram is formed by using only those 

peaks which are not in the harmonie frequencies of the first pitch period. 

An improved approach can be obtained by using a sinusoirlal model to 

represent pitch harmonics[60]. 

* Cepstral-based pitch estimation (by linear and nonliner vocal-tract models) 

According to the simplified speech model, a speech signa! is produced by the 

convolution of vocal-cord excitations (source) with the vocal-tract function 

(system). The cepstral-based method performs homomorphic deconvolution of 

these two elements. Because vocal-cord excitations change relatively faster 

than the vocal-tract function, it is then separable in the cepstral domain 

by using a lowpass and a highpass filter respectively. The output of the 

highpass filter can be used for pitch estimation. A multiplicative cepstral 

domain analysis for pitch estimation using a nonlinear vocal-tract model[41] 

is reported to give improved performance in pitch extraction from noisy 

speech. 

• Pitch predietor 

A first-order predictor, which is a function of both the predietor 

coefficient b and the pitch period delay M, can be used[48,82). Using a 
N ·I 

Minimum Squared Error criterion E(M,b)= L. [x(n)-bx(n-M)]2
, the iterations 

n=O 
can be done by an Estimation-Maximization approach (VM;e [possible pitch 

period realm], calculate the corresponding optima! b. and E(M.,b.). The 
I I I 

pitch period is chosen by the argument maximum M=argmax E(M;,b) ). 
M 

* Super resolution pitch determination 

By defining two successive pitch periods of speech signals as the amplitude 

modulated version of each other using the similarity model xT
0 

(t,t
0
) 

=a(t )y (t,t)+e(t,t ), pitch period T
0 

is selected from the argument t
0 o •o o 

which is associated with the minimum normalized squared error J [62] 
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(3.3.1) 

* Maximum Likelihood (ML) pitch estimation 

Given noisy speech signa! r =s +n , ML estimation of the pitch period [105] 
1\ k k k 
P is equivalent to the selection of a P such that the energy of the 

estimated signa! Es(P) is maximized. Or equivalently, it is equal to 

minimize the noise varianee cr2(P). The assumptions that speech signals are 
n 

periadie with the relation sk = qk mod P and the noise nk is white and 

Gaussian are needed. 

(2) Pitch perception-based approaches 

* Perceptual pitch eslimator 

The perceptual pitch estimator[89] combines a cochlear model with a bank 

of autocorrelators. In this algorithm, a group of bandpass filters is used 

to emulate the cochlear filters, each filter centered at its characteristic 

frequency (uniform in a Bark scale), with a specific critica! bandwidth, and 

with the frequency response similar to the tuning curve of auditory nerve 

fibers. The filter output is then halfwave rectified, and passed through a 

multi-channel coupled-AGC to compress the dynamic range. The output of each 

cochlear filter is then subjeeled to short-time windewed autocorrelations, 

which can be expressed by a two-dimensional correlogram at each time 

instant. A pitch detector synthesizes the coincidence appearance of those 

correlation peaks across all channels. 

A similar algorithm is proposed by Weintraub[101]. In the algorithm the 

outputs of each cochlear filter are explained as neural fmng events, and 

the corresponding event function is then defined. The short-time 

correlations are then calculated over these event functions. 

These algorithms are reported to have high performance under various 

kinds of noise and the ability to handle multi-pitch information. 

* Pitch estimation by interspike . interval histograms 

Goldstein[28] has developed a methad where the pitch frequency is chosen 
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from the harmonie values estimated from the Interspike Interval Histogram 

(IIH) in the Maximum Likelihood (ML) sense. In this algorithm, the output of 

each cochlear filter is regarded as neural firing. In each channel, the 

intervals between two successive frrings are collected by a histogram, which 

can be depicted by a two-dimensional figure at each time, called neurogram. 

The peaks in the histograms are then synthesized over all channels for the 

pitch estimation. 

In Allen's paper[l] synthesis of IIH is performed by taking the pointwise 

product of each channel with its neighbors, and summing up over all 

channels. The results are then used for extracting pure tones (a tone is a 

sinusoid with a single frequency) embedded in noise. 

3.4. Overview of the pitch perception in human auditory models 

Human auditory processing is still far more intelligent than any other 

artificial algorithm. Therefore, the more · knowledge of human pitch perception 

we use, the more benefit we can obtain in developing a better algorithm. 

Psycho-acoustic experiments indicate that the Basilar Membrane (BM) in the 

auditory system performs some sort of running short-time speetral analysis on 

the acoustic waveforms, by decomposing a signa) into isolated frequency 

components, with further processing done essentially along the time axis. 

There are several different models of auditory pitch perception. They all 

have the same processing in the first step, as shown in the following 

schematic figure in Fig. 3.1. 

sound 
~ 

transduetion 
model 

hair cell 
model 

Fig.3.1 Auditory processing for pitch perception 
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Due to monotonous frequency band tuning along the length of the BM in the 

auditory system, the acoustic signal is split along the place dimension. To 

mimic this, the incoming speech signals are first processed through a group of 

specially designed bandpass filters, called "cochlear filters" (see section 

1.2). The place abscissa in the BM can be regarded as frequency abscissa, 

scaled in the critical bands. The cochlear filter outputs are then fed to a 

transduetion model emulated by multi-stage coupled Automatic Gain Control 

(AGC), foliowed by a hair cell model performed by a halfwave rectifier. 

Afterwards there will be different processing depends on the pitch 

perception models. There are mainly two accepted theories. 

In Licklider's theory of pitch perception[51), the output of each cochlear 

filter is passed through a neural autocorrelation mechanism which 

some kind of envelope autocorrelation of neural firings along 

direction. The analysis for pitch perception is performed 

temporal-piace domain . In the latter section, the computational 

developed by Lyon and Weintraub are based on this model. 

performs 

the time 

in the 

algorithms 

Another theory of pitch perception is based on Goldstein's mode/[28], which 

supposes that pitch perception is based on the ensemble of zero-crossing 

intervals of auditory neural firings. According to the theory, an array of 

fibers are firing synchronously with the stimulus: At moderate stimulus level, 

the neural firing-rate depends cin the stimulus frequency. As the stimulus 

intensity increases, more fibers nearby wiJl fire synchronously with this 

stimulus frequency . At high stimulus intensity, fibers are saturated so that 

the firing-rate wilt no Jonger increase. Thus, the average firing-rate is a 

function of the BM place, and the firing-pattern is a function of the stimulus 

intensity[25) . The computational algorithms of Goldstein[28] and Allen[l) in 

the above section use this model. 

3.5. Skeleton of a robust pitch estimation algorithm 

From the previous review, we see that most algorithms are only suitable for 

speech corrupted with white/colored noîse. In speech separation there are two 

different situations, which lead to different demands for a pitch estimation 
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algorithm. 

In the frrst situation, the sound of one speaker is always dominant. What we 

need to estimate is the pitch of the stronger speaker[37,66] . In such a case, 

a single speaker's pitch estimation algorithm from speech contaminated by 

colored noise can be selected. Another situation is somewhat more complicated. 

If speech of two speakers has nearly equal intensity (around 0 dB TIR), a 

multi-pitch estimation algorithm should be selected. 

Some common weak points of the previous techniques 

There are several weak points in the previous discussed algorithms. 

(l)In the signa! processing-based approaches, there is little consideration on 

how to use the human pitch perception advantages. A total neglection of 

this knowledge is not very wise, because no pitch estimation technique 

developed up to now can reach the level of human pitch perceptual 

robustness. 

(2)Although the perceptual-based algorithms are reported with high robustness 

against various kinds of noise, their high computational burden often 

inhibits their applications. 

(3)Most algorithms try to make a decision based on the estimation from each 

isolated frame. Some try to improve the results afterwards by using a 

simple smoothing algorithm or a Dynamic Programming (DP) method. However, 

the pitch information contained in the isolated frames is neither 

sufficient nor complete. Consequently, such an estimation can not be very 

reliable and accurate. 

(4)Most algorithms use only one processing approach, thus are limited to 

specific cases. According to observation from psychophysics, human 

processing is flexible, running from simple to complex, depending on the 

complexity of input signal. 
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Possible improverneut from the previous techniques 

(l)There exists a gap between the signal processing-based and the 

perceptual-based pitch estimation approaches. We believe that it is 

necessary to take into consideration how to combine the human pitch 

perception advantages with the signal processing techniques. 

We believe that mimicking the human auditory behavior for the purpose of 

pitch estimation is neither necessary nor possible. This is due to the fact 

that we are still in a very early stage of understanding the processing in 

the human auditory system, especially that in the human central nerve. 

Besides, from the signa! processing point of view, we do not mind what this 

black-box system would look like. Rather, how the output pitch can be 

"best" estimated from the given input signals is concemed. As long as an 

algorithm provides good pitch estimation, it is acceptable. 

The disadvantages of perceptual-based approach are that it must mimic all 

the micromechanisms in the human auditory system, and that it depends fully 

on the correctness of a given auditory model. This leads to high 

computational cost. 

Our algorithm tries to bridge such a gap and combines the advantages of 

simplicity in signa! processing approaches with the robustness of 

perceptual pitch algorithms. 

(2)We believe that it is very important to use information from both the inter 

and intra analysis frames. Post-processing such as a smoothing or DP 

algorithm can not reeover the lost pitch information caused by an unproper 

early decision based on each frame. Therefore, one should use such an 

isolated frame-based estimation algorithm as a step of obtaining an initia! 

guess of pitch candidates. A decision should be postponed until all 

possible pieces of information are used. 

(3)We believe that the complexity of the processing must be adaptable to the 

degree of input speech contamination. This fact, which is also indicated by 

psycho-acoustic experiments, is easy to be understood. In the most 
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complicated situations, the human auditory system even uses a-priori 

knowledge accumulated from the previous learning. In order to estimate 

pitch from extremely noisy speech, we should use more complex processing 

including a better initia! guess of pitch candidates, and some previous 

learned knowledge. 

Skeleton of the algorithm: 

Following the above line, a skeleton of our new robust pitch candidate 

estimation algorithm can be formed. 

First, the estimation can be performed in two-steps. A coarse pitch 

candidate estimation algorithm is used as an initia! guess to provide only 

pitch candidates with probability/weight values. In genera!, this algorithm 

should be selected in relation with the complexity of noisy input speech. 

Hence, a group of different algorithms can be selected. In the second step, 

given the candidates a detailed algorithm uses dynamic pitch properties among 

the frames, to estimate a "best" pitch contour under a pre-selected criterion. 

In particular, special emphasis is put on the consistency with the auditory 

system global processing throughout this whole processing. Such a processing 

shares partly the same computations in the speech separation part as will see 

in the next chapter. Consequently, as a by-product, this saves calculation 

cost for the whole system. 

3.6. A Pseudo Perceptual Pitch Candidate Estimation Algorithm 

- A coarse estinzation as an initia/ guess of candidates 

In this section, a new coarse pitch candidate estimation algorithm will be 

developed. 

Analysis shows that not only the signa/ envelopes but also the signa/ 

"carriers" can be used independently for pitch estimation. Methods for 

calculating pitch candidates from the "carriers" and the envelopes are then 

both given, based on signa/ analysis. Simplifications in filter design and 
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signa/ processing are obtained over the perceptual type of algorithms. The 

same groups of bandpass filters are used for analyzing envelopes and 

"carriers" . ft is consistent with the auditory global processing. Robustness 

can be obtained by combining the two pieces of information to provide re/iable 

estimation. Fina/ly, simu/ations are described and some results are included. 

From the previous analysis, it is seen that the perception type of pitch 

estimation algorithms has good robustness but high computational cost. From 

the signa! processing point of view, we are only interested in the estimated 

output and not in the detailed micromechanisms of the human auditory 

processing. In order to estimate the "best" output, we are interested in 

finding what pieces of information can be related to pitch, and under which 

circumstances it can be extracted. 

In the following, wè wil! first analyze what information associated with 

pitch is obtainable. An algorithm to estimate pitch candidates will then be 

given[34]. 

3.6.1. Analysis of bandpass signals 

Pitch estimation via signal envelopes and signa! carriers 

In order to be consistent with the auditory global processing, the speech 

signal is analyzed in the time-frequency domain. 

Using a sinusoidal model, the observed speech signa! s(t) can be represented 

as the components at pitch harmonie frequencies 
K<(l)o> 

s(t) = I ak (t)cos(kro0t+ <l>k) 
k = I 

where f
0
=roi27t is the fundamental (pitch) frequency, 

harmonies within the speech bandwidth, ak(t) and 

harmonie amplitude and the phase offset relative to 

frame. 

(3.6.1) 

:~~~: ~:p::;u~=r :1 
the origin of a speech 

In practical situation, the signa! component (harmonie) obtained is 
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multiplied by the frequency response of the bandpass filters as follows. 

K<roo> 
S(t) = :L bk(t)cos(kro

0
t+ cl>k) (3.6.1 ') 

k = I 
where bk (t)=W(kro

0
t-ro

1
)ak (t), and W(ro-ro

1
) is the frequency response of the lth 

bandpass filter with center frequency f
1
=roj21t, and it is supposed that the 

kth harmonie is within the frequency band of the lth bandpass filter. 

In the following, we will show that both the signal envelope and the signal 

"carrier" of bandpass filtered signals contain pitch information. In order to 

simplify the analysis, we will set the phase value <1\ to zero. 

The information contained in the output of the kth wide-bandpass filtered 

signal can be analyzed as follows: 

(l)Only one harmonie is contained in a filter band 

This situation can appear in both the narrowband and wideband filtered 

signal. 

Supposing the mth harmonie is contained in the kth bandpass filter. In this 

case, the filter output is expressed as below 

(3.6.2) 

where the signal "carrier" contains pitch information, while no pitch 

information is contained in the envelope bm(t). 

(2)Two harmonies are contained in a filter band 

Suppose the mth and (m+ l)th harmonies are obtained in the bandwidth of the 

kth bandpass filter, as follows 

After simple triangular transforms, we obtain 

b (t) 
s (t)=b (t) (1 + ~ cos(ro t)) cos(mro t)-b (t)sin(ro t)sin(mro t) 

k m b (t) 0 0 m+l 0 0 
m 

(3.6.4) 
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where supposing I b (t) I~ I b (t) I does not present any loss of generality. 
m m+l 

When moV>(filter bandwidth), the first term in (3.6.4) is the amplitude 

modulated signa!, having envelope frequency f
0
=roi27t and "carrier" 

frequency fel =mroi2n. The second term is the double-sideband (DSB) 

modulated signa!. From the property of DSB, the envelope shows a 

periodicity at time instant n/(2fc). n=l,2... Because of the sudden 180° 

phase change in the "carrier" signa! when the message signa! undergoes zero 

values, the carrier signa! is no Jonger periodic. By counting the 

short-time average local maximum numbers of the "carrier" signa! for 

calculating "carrier" frequency, the average pseudo-carrier frequency will 

be fc
2
=(m+1)roi2n. 

From the above, we can conclude that: 

(l)The envelope of \(t) presents a correlation peak at time index 1/f
0

, if 

the I b Ct) I* I b Ct) I; 
m m+l 

(2)0ne of the "carrier" period multiples of sk(t) is at the time index 

1/f
0 
=rn/fcl =(m+ 1 )/fc

2 
(3.6.5) 

Hence, either the signa! envelope or the "carrier" from the wide bandpass 

filter can be used for pitch estimation. 

(3)More than two harmonies are contained in a filter band 

Suppose that the total number of harmonies within the filter bandwidth is 

n. In this case, the filter output can be expressed 

Ll 

\(t) = I 
i= · !. 

b (t)cos((m+i)ro t) 
m+a 0 

(3.6.6) 

where L=(n div 2), LI=L if n is odd, otherwise Ll=L-1. Similarly, after 

some triangular transformations we obtain 

b (t) 
\ (t) = b m (t) ( 1 + I b "(~) cos(iro

0
t)) cos(mro

0
t) -

o m 

- I b (t)sin(iro t)sin(mro t) 
. m+a 0 0 

(3.6.7) 

which includes pitch information both in the signa! envelope (if there 

exists b (t);tb (t), m;tn), and in the signa! "carrier". 
m n 
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Remarks: 

1) Pitch information is obtainable from the signa! envelope of wideband 

filtered signals. 

Pitch information is extraetabie from the signa! envelope, if there exists 

amplitude differences among the different b m (t). There is no special demand 

for the shape of the frequency response of the bandpass filters, because it 

is unlikely that all the frequency bands coincidently present no amplitude 

modulation. The amplitude moduiated information can be enhanced afterwards 

if needed. 

2) Pitch information is obtainable from the signal "carrier" of both the 

narrowband and the wideband filtered signals 

The pitch information is also extraetabie from the signa! "carriers". This 

can be obtained from either the narrowband or the wideband fittered 

signals. This gives an 

estimation algorithm of 

restrietion that oniy 

analytica! expiaination to the perceptual pitch 

Goldstein[28] and Allen[ 1], and shows that the 

a narrow-bandpass filtered signa! carries such 

information[l], is not necessary. 

3) If the amplitudes of all harmonies are in a same value within a band, it 

can be shown that the signa! envelope contains no pitch information, while 

the signa! "carrier" still contains pitch information. 

4) In order to simplify the analysis, all phase values <l>k' k=(m-L) ... (m+Ll), 

have been set to zero. In the case of more than one harmonies in a band, it 

represents a simple and a special case of zero phase-offset difference 

among these harmonies. 

3.6.2. Algorithm descriptions 

From the previous analysis we conclude that both the signa! envelope and 

the signa! "carrier" in each bin contain pitch information. Our algorithm is 

formed by extracting pitch information existed in these signals. Much 

attention will be paid to the consistency with the global approach of pitch 

perception in the auditory system by temporal-piace domain time-directional 
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analysis. The analysis is performed along time-direction in the time-frequency 

band domain. Hence, this pitch estimation algorithm[34] can be regarded as a 

pseudo perceptual pitch estimator. 

In the following, this algorithm will be described in detail, mainly 

concentrating on the following aspects: 

* Splitting signals into frequency bins; 

* Pitch estimation from the signa! envelopes and from the signa! "carriers"; 

* The enhancement of pitch candidates. 

* Splitting signals into frequency bins by a wide-bandpass filterbank 

In the pitch estimation algorithm, the speech signa! is first filtered by a 

group of wide-bandpass filters with uniformly spaeed center frequencies at 

wk=2n:k/N, k=l..N. The filter frequency response Hk(w) is a symmetrie 

function of wk. The output signa! of the k"' bandpass filter is then in a 

real value and can be expressed as the following convolution 

S (n) = s(n)* h (n) 
(l)k k 

(3.6.8) 

where hk (n)=w(n)cos(wk n) is the impulse response of k"' bandpass ft! ter, 

w(n) is a symmetrie time-window of length L, (L is chosen comparable to the 

range of the pitch period), and (N~L). 

In order to imptement these filters we use the Short Time Fourier Transfoon 

(STFT), foliowed by shifting the output data into their bandpass version, 

and then taking the real part. 

Because STFT performs FFT on the windowed data s(t)*w(t), its advantages of 

easy implementation, computational effectiveness in software, and fast speed 

by the dedicated Digital Signa! Processor (DSP) hardware, made it an 

attractive tooi for imptementing the filterbank. 

It should be mentioned that the same group of wide bandpass filters is 

shared by both signa! envelope- and signa! "carrier"-based analysis. 

* Estimate pitch from the signa! envelopes 

I) Calculate envelope time-autocorrelations at each frequency bin. 
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First, the local maximum values and the associated time indices from the 

bandpass signals are picked up. A linear interpolation is performed between 

the successive local maxima. The d.c. element is then removed frorn the 

interpolated signals. The short-time envelope autocorrelations are 

calculated within the lags of the possible pitch period. Finally, the 

autocorrelation values are normalized by the signa! energy at that bin. 

2) Create a "correlogram" 

The local autocorrelation peak values can be depicted in a figure of 

frequency-autocorrelation lag dimension using a so called "correlogram". 

The darkness (intensity) of each point reflects the relative correlation 

strength. The pitch period candidates are often associated with those lag 

indices which coincide most with the autocorrelation peaks over all bins, 

indicated by a dark line in a "correlogram". It should be mentioned that 

this "correlogram", (the name was originally used in perceptual pitch 

analysis[52]), represents only the signa! envelope autocorrelations in this 

case. 

(3)Synthesize the coincidence appearance information 

A "correlogram" represents the envelope autocorrelations over a group of 

bins at only a specific time instant t
0

. In order to select pitch 

candidates, or, to see the time evolution process, a "correlogram" is often 

synthesized into a one-dimensional expression. It can be created by 

accuroulating at each lag the normalized autocorrelation values at those 

bins which present local peaks. The frrst several time indices associated 

with the prominent values are then selected as pitch candidates. 

* Estimate the pitch via the signal "carriers" 

1) Calculate short-time "carrier" period and its multiples 

At each frequency bin, a short-time "carrier" period value and its 

multiples are calculated. The number of signa! Jocal maxima is counted over 

a short-time duration. The average interval time between two successive 

peaks is used as the "carrier" period Tc. The time indices of "carrier" 

period multiples nT , n=l,2 ... are also calculated. 
c 
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2) Create "multiplogram" 

A "multiplogram" depiets the appearance of the carrier period multiples of 

all frequency bins at a specific time instant t
0

• Because of the 

coincidence appearance of the "carrier" period multiples at the pitch 

period over frequency bins, a verdeal line is expected in the pitch period 

index along the time direction in this figure. 

3) Synthesize the coincidence appearance information 

A one-dimensional function is calculated from a multiplogram at each time 

instant t
0 

by accumulating the ( weighted 

"carrier" period multiples over all bins. 

Remarks: 

repetition number of the 

Further impravement can be expected if the weighted repetition number is 

used, such that the total repetition number in these time-indices · wil/ 

count more heavily if the carrier period multiples appear successively in 

several neighboring frequency bins. 

* Enhance the pitch candidates 

The pitch candidates obtained from above are then enhanced, which results in 

a sharpened candidate pitch contour figure. This is done as follows: At each 

frame, the one dimensional accumulated normalized autocorrelation peak 

values from the envelopes are center clipped. Also, the one-dimensional 

accumulated repetition number of the signal "carrier" period multiples are 

center clipped and peak enhanced. 

Remarks: 

Some simplifications are obtained over the perceptual pitch estimator. F or 

instance, the design of bandpass filters is simplified, which results in 

less calculations. Simpte bandpass filters using Short Time Fourier 

Transfarm (STFT) can reptace the special cochlear filters in the perceptual 

pitch estimator. 
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3.6.3. Simulations and results 

In the following, the simulations with this pseudo-perceptual pitch 

candidate estimation algorithm wiJl be described. 

The simulations are pertonned on both stationary and nonstationary speech 

signals corrupted by white Gaussian noise and with a speech of a background 

interterenee speaker, respectively. We choose such cases because pitch 

estimation from noisy speech, and simultaneous multi-pitch estimation from 

co-channel signals often appear from many practical demands. 

In the simulations, the contaminated speech signals first were subjected to 

a group of wide-bandpass filters, which are implemented by successively 

applying STFf on overlapped frames of hamming windowed-data, succeeded by 

frequency shifting from lowpass to bandpass, and then taking the real part of 

the signals. The Hamming window function is of length L as given below 

W(n) 0.54 - 0.46 cos(21tn/(L-l)) o~~(L-1) (3.6.9) 

With the selected sample frequency f,, the equivalent bandwidth of each 

bandpass filter is 2B =4f, /L. 

Pitch candidate estimation from stationary synthetic noisy-speech signals 

In the following examples, several simulation results on pitch estimation 

from stationary speech signals corrupted by an interterenee speech or by 

Gaussian white noise at different SNR are included. The speech signals are 

synthetic with three fonnants and given pitch periods. 

Fig.3.2. shows two examples of pitch candidate estimation from speech signals 

corrupted by another interterenee speech in 0 dB SNR. Fig.3.3 shows the 

results of pitch candidate estimation from speech corrupted by white noise in 

SNR=OdB, Fig.3.4 includes two examples of pitch candidate estimation from 

speech signals corrupted by white noise in SNR=6 dB. 

In these figures, the vertical lines along the frequency axis in a 

"correlogram" of (1) and a "multiplogram" of (2) indicate more coïncident 

appearances of the possible pitch period values. In (3) and (4), the values in 

(1) and (2) are accumulated over frequency bins respectively to produce a 

one-dimensional view. 
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Fig. 3.3 Pitch candidate estimation from speech corrupted by white noise 

(SNR = 0 dB p=40(samples) f
5
=8kHz) 
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Pitch candidate estimation from summed synthetic speech sentences 

Another situation is to estimate simultaneously two-speakers' pitch 

canciidates from summed synthetic speech sentences at low TIR. The pitch 

candidates are estimated from the signal "carriers" and the signal 

"envelopes", respectively. After that, the pitch candidates are peak enhanced, 

center clipped and thinned. Fig.3.5 shows the enhanced pitch candidate figures 

which are estimated from summed synthetic speech sentences of two speakers, 

i.e., female-male and female-female, in 0 dB TIR. 

We noticed that the pitch information obtained from the signa! envelope and 

from the signal "carrier" often complements each other. Consequently, better 

pitch candidates are provided. 

Also we noticed that when the ideal pitch contours of the two speakers 

undergo many times of crossing, and are too close to each other, it is still 

difficult to get sufficiently good candidate contours, as in the example of 

summed female-female case. 
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Fig.3.5(1) Pitch candidate estimation from a summed speech sentence (TIR=Od.B) 

S
1

: "We do have a lot of good people in the office" by female 

S
2

: "You will now have fifteen seconds to do this" by male 
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Fig.3.5(2) Pitch candidate estimation from a summed speech sentence (TIR=OdB) 

S
1

: "We do have a lot of good people in the office" by female 

S
2

: "Good moming, your passport please" by female 
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Remarks and discussion 

The simulations proved that the pitch information is independent/y 

obtainable from either the signa! "carriers" or from the signal envelopes. 

Thus, both of them can be used for pitch candidate estimation. 

The simulations indicate that for extremely noisy speech, these two pieces 

of information can complement each other, and their combination produces 

better results. This phenomenon appeared in the simulations and can be 

explained as follows. 

In principle, the envelope-based analysis has higher resolution when the 

bandwidth is wider, whereas the "carrier"-based analysis has higher resolution 

when the bandwidth becomes narrower. However, this bandwidth is a relative 

value associated with the speech fundamental-frequency (pitch). The 

fundamental-frequencies are time-varying within a sentence, and among 

different speakers. Thus, due to the wide dynamic range of 

fundamental-frequencies, a filter bandwidth may be considered as wideband 

during part of a sentence and as narrowband in another part of the same 

sentence. Consequently, it appears that in some parts the results from the 

envelope-based approach are weaker while those of "carrier"-based approach are 

sharper, or the vice versa, and that in some other part both the 

envelope-based and the "carrier"-based approach provide good resolution. 

3.6.4. Concluding remarks 

A new pitch candidate estimation algorithm has been proposed which is robust 

against various distortions on speech signals such as white · noise and 

interference speech. 

The following main features hold for this algorithm: 

-The algorithm exploits the coïncident appearance of pitch information 

contained either in the signa! envelopes or in the signa! "carriers". Their 

association with the speech fundamental frequency (pitch) is indicated by 

signa! analysis. 

This method implicates also the pitch perception theories of Licklider and 

Goldstein. 

-Our simulations also proved that the "carriers" of either the narrow- or the 
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wide-bandpass fittered signals can be used independently for pitch 

estimation. 

-For extremely "noisy" synthetic speech (the presence of background speech or 

other kinds of noise in high intensity), the pitch information obtained 

respectively from the signa! "carriers" and the signa! envelopes can 

complement each other. It is found that better estimation is obtained in such 

noisy circumstances by combining these two pieces of information. 

-The algorithm is consistent with the auditory global processing without 

mimicking its behavior. 

The prelirninary simulations on noisy synthetic speech signals confirmed the 

robustness of the algorithm. More simulations are needed on the natura! speech 

signals. 
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3.7. Hidden Markov Model-based maximum likelibood pitch contour estimation 

- A detailed pitch contour estimation algorithm based on stochastic model 

In this section, a new HMM-based algorithm is developed for the Maximum 

Likelihood (ML) estimation of pitch contours from candidates with a-priori 

probabilities obtained from a coarse algorithm. The theory of HMM modeling of 

pitch contours as wel! as a corresponding algorithm for training and ML pitch 

contour estimation are described. In order to limit the memory use and to 

solve the problem of missing candidates, we also describe a practical 

algorithm with candidate prediction, pruning, and beam search. The system is 

trained by a set of pitch contours from noise-free speech data. 

3.7.1. Brief introduetion of HMM theory 

Hidden Markov Modeling (HMM) [40,49,73,76] is a probabilistic technique for 

the study of observed items arranged in a discrete-time series. The items can 

be countable or continuously distributed; they can be scalars or vectors. The 

technique uses stochastic methods; a time series is generated and analyzed by 

a parametrie probability model. 

An HMM has two components: a finite state Markov chain and a finite set of 

output probability distributions. The Markov chain synthesizes a sequence of 

states (a path) and the output distributions then turn this path into a time 

series. Thus, an observed time series gives evidence about the hidden path and 

the parameters of the generating model. 

In an HMM, the output probabilities impose a "veil" between the state 

sequence and the observed time series, as shown schematically in Fig.3.6. In 

the effort to lift the veil, a substantial body of theory has been developed 

over the past decades. The initia! work dealt with the probability spaces and 

addressed the problems of tractability of probability computation, the 

recovery of the hidden states, iterative maximum-likelihood estimation of 

model parameters from the observed time series and the proof of consistency of 

the estimates[6,7,8]. 
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Figure 3.6 HMM: a veil between the observations and the model 

An HMM is defined as a collection of states connected by transitions. Each 

transition carries two probabilities: a transition probability which provides 

the probability for taking this transition between states, and an output 

probability density function (pdO which defines the conditional probability 

of emitting each output symbol from a finite alphabet when a transition is 

taken. 

In a fust-order HMM, there are two assumptions. The fust is the Markov 

assumption: 

p(X =x I X'=x') = p(X =x I X=x) 
1+ I 1+ I I I t+ I t+ I t t 

(3.7.1) 

which states that the probability that the Markov chain is in a particular 

state at time instant (t+ 1) depends only on the state of the Markov chain at 

time instant t, and is conditional independent of the past. In (3.7.1), X,=x, 

means that a state random variabie x, takes a specific 

instant t, and x;=x; means that the random variabie of 

X'=(X ... X) takes a specific value x'=(x ... x). 
I I t I I t 
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Chapter 3 

The second assumption is output-independency: 

( I Y l · l 1-1 1+1 1+1) c I p Y =y =y , X =X = p Y =y X =X X =X ) 
I I I I I I I I I 1' I+] 1+1 

(3.7.2) 

which states that a particular symbol wiJl be emitted at time instant 

depending only on the transition taken at that time instant ( from state x, to 

x
1
+

1
), and it is conditionally independent of the past. In (3.7.2), Y

1
=y

1 

represents that an output random variabie Y
1 

takes a specific observation 

value y
1 

at time instant t, and Y1
-
1=y1

-
1 represents that an output random 

I I 

sequence (Y !" .. Y
1
) takes a specific observation sequence (y !" .. y

1
). 

There are three typical problems of interest associated with HMMs: 

* The evaluation problem 

Given a model and a sequence of observations, what is the probability the 

model generating the observation sequence? Or more precisely, what is the 

probability p(YT=/) for a given model M? Using the assumptions of HMM, we 
I I 

can manipulate it as 

p(Y T =/ )= 1. ~ {p(X =x I X =x) 
I I 1 +I Hl I I 

T + 11 = I x 
P(Y =y I X =x X =x )} 

t t l t' t+l t+l 
(3.7.3) 

I 

This probability can be calculated by using the Forward algorithm[40] . 

* The decoding problem 

Given a model and a sequence of observations, what is the most likely 

state sequence in that model, producing the observations? The best we can do 

is to produce the state sequence that has the highest probability of being 

taken while generating the observation sequence 
T + I T+ I ( T + I T + I I T . sequence X =x such that p X =x y ) IS 
I I I I I 

assumptions, this becomes 

{ ( T + I T + I I T)} max p X =x y = max 
I I I 

· T+ I 
x 

I 

i.e. choose a specific state 

maximum. Using the HMM 

(3.7.4) 

This can be calculated by using the Viterbi algorithm[40] . 
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* The leaming problem 

Given a model and a set of observations, how to detennine the parameters 

of the model such that it has a high probability of generating the 

observation? By defining the probability Y.(t)= p(X =i,X =j I/) as the 
IJ t t+l I 

probability that the model is in state i at time t and in state j at time 
T (t+l), given a specific observation sequence y
1

, the transition 

probabilities can then be calculated as 

T T 
a .. = I. y.(t) I I. I. yik(t) 

IJ t =I IJ t= I k 
(3.7.5) 

and the output (discrete) probabilities can be calculated as 

T 

bii(k) = I. Y;/1) I I. Y;/1) 
t : y 

1 
=k t= I 

(3.7.6) 

or, the parameters f of the output (continuous) pdf can be calculated 

as 

T T 
f .. = L p(y I x =i, x =j)f(y) I L p(y I x =i, x =j) 

IJ t t t+l t l t t+l 
t =I t =I 

(3.7.7) 

where a. . is the transition probability from state to j, b .. (k) is the 
~ ~ 

discrete output probability that a symbol k is observed given the condition 

that the model take a transition fonn state i to j at that time, f(y
1
) is a 

function of y, and f.. is the estimated parameter. (e.g.: In Gaussian 
I Ij 

output pdf case, two parameters need to be estimated: the mean 

the varianee cl .. The corresponding f(y ) are then y 
Ij I I 

value ~ .. and 
IJ 2 

and (y -~ . .) , 
I IJ 

respectively). 

The Y. can be estimated by using the Baum-Welch (The Forward-Backward) 
Ij 

algorithm[ 40]. 

Because of the veil between the output sequences and the state sequences 

produced by the hidden states in a given model, an HMM is a very powerlul tooi 

for many practical applications. For example it can be used to describe nested 

or implicative relations by stochastic models, provided that a large amount of 

data is available from measurements. 

In the following, we will describe a new application of HMMs to the pitch 
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contour estimation. The remaining part of the section 3.7 is organized as 

follows. First, the theory of pitch contour estimation via HMMs is described 

after a short review of the basic theory. The algorithm wil! then be described 

in detail. After that, some simulations and results wiJl be given. Finally a 

short discussion and concluding remarks are given. 

3.7.2. Theory for HMM pitch contour estimation 

In this section, we will concentrale on the following problem: given an 

array of weighted candidates obtained from the results of a coarse algorithm, 

how to estimate the "best" pitch contour. 

A new approach of HMM pitch contour estimation[35] has been proposed. The 

reason that an HMM is chosen is that, some previous knowledge and a proper 

stochastic model should be used in order to handle complicated situations. 

This algorithm is designed to solve a general class of pitch contour 

estimation problems including speech signals corrupted by various kinds of 

noise. 

HMM models are suitable to describe pitch contours 

-First, a pitch contour changes continuously due to the real speech production 

model. A Markov process is suitable to describe highly correlated, 

continuously changing curves. 

-With HMMs, each output sequence can be produced by many different (hidden) 

state sequences but with different output probabilities. Consequently, by 

avoiding to use a pitch sequence directly as a state sequence, it can provide 

more robustness against noise disturbances. 

Pitch contour estimation via HMMs 

In the Hidden Markov Modeling of pitch contours, pitch sequences are 

described by a family of models M = {m.l i=1,2 ... }, each model is an HMM 
I 

process of a 5-tuple, (S,Q,O,A,B), representing respectively the sets of 

states, symbols of quantization, initia! and transition probabilities, and the 

output parameter sets associated with Gaussian pdf's. 
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Three hidden states S = {s1,s2.s3}, the constant pitch, the pitch increment 

and the pitch decrement, have been chosen in full inter connection, as shown 

in Fig.3.7. 

Fig 3.7 State diagram for HMM pitch estimation 

The output pdf is represented by a joint multivariate distribution in order 

to describe the probabilities of the output pitch and pitch dynamics. The 

observed pitch Y
1
, and its different-order derivatives d;Y

1
, i=l,2 .. . , are 

chosen as the random variables. More random variables can be selected to 

introduce more constraints on pitch contours against noise distortions. In our 

tests, 3 random variables, the pitch value, and its first- and second-order 

derivatives, are used. The probability of a given model m (e.g. 

female/male/children) producing an output pitch sequence (Y 1 .. Y N) can be 

obtained by sumrning the probability of each specific state sequence producing 

the observations, over all the possible state sequences (Xi'.XN), where 

(Xi'.XN)E :rN which is the set of state sequences, and X; E S. 

p(YI .. YN)= L. p(Y I .. YN: diY2 .. diYN: d2Y3 .. d2YN: X1 .. XN) (3.7.8) 
(XI .. XN ) E :IN 

Supposing that the random variables Y
1
, d1 Y1 

and d2 Y1 
are statistically 

independent, the joint output pdf can then be expressed as the products of the 

marginal pdf's. Using the output independenee assumption, this can be 

expressed as follows 
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2. P
8
x p

0
(Yt\Xt)p

0
(Y2 \X2)p

1
(d

1
Y2\X2)p(X2\Xt)* 

X~E :rN I 

N 

• TI (p
0
(Y•\ Xt)p 

1 
(d

1 
Yt\Xt)p2(d2Yt \ Xt)p(Xt\ X•-t))px E 

t=3 N 

(3.7.9) 

B, E are the begin 

state and the end state respectively. The pitch contour is chosen arnong 

candidate contours associated with a maximum output probability. 

3.7.3. HMM-based ML pitch contour estimation algorithm 

Training-phase 

The training process is performed in two steps: the supervised training 

foJiowed by the unsupervised training. 

The supervised training is used for the purpose of obtaining better initial 

parameter values. 

The unsupervised training is then performed on a large set of pitch 

contours obtained from noise-free speech signals. In the unsupervised 

training, the parameters are trained using the corresponding Forward, Backward 

and Forward-backward algorithms with multivariate output. Since it is not 

difficult to derive these algorithms with multivariate output, and the results 

are clear and obvious, we will simply give those formulas. 

In this training process, the forward probability a .(t)=p(X =i,y'}, and th.e 
I l I 

backward probability P (t)=p(l I X =i) are calculated, recursively, as below 
I I+ 1 I 

(which correspond to the Forward algorithm and the Backward algorithm), 

a(t) = 2. a(t-1) a bO bl b2 
I J Jl IY id y id y t I t 2 t 

(3.7.10) 

P<t) = 2. P<t+l) a bO b1d b2d 
1 j J IJ JYl+l J lyl+l J 2yl+l 

(3.7.11) 

where a. is the transition probability from state 
IJ 

to j. The output 

probabilities bO , b1 and b2 are defined as follows 
jyl jdlyl jd2yl 

bO. = P <Y I x =j) 
JYl 0 l I 

(3.7.12) 

b t = P (d y I x =j) 
jd

1
y

1 
I I I l 

(3.7.13) 
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b2jd y = P/d2yt I X,=j) 
2 t 

(3.7.14) 

The forward-backward probability y .=p(X =i,X =j ll) can be calculated as IJ t t+l I 

follows (which corresponds to the Forward-Backward algorithm) 

Y..(t)= a .(t) a .. bO. bl.d b2. ~.(t+l)/ a (T) 
IJ 1 IJ JYt+l J lyt+l jd2yt+l J 1E 

(3.7.15) 

where a (T)= p(YT=l)= I. a .(t)a .. 
'E I I i I "E 

In order to prevent numerical underflow when the length of the output 

sequence is increased, the forward and backward probabilities can be scaled as 

follows, 

ä..(t) = a (t)/ I. a.(t), ~ (t) = ~.(t)/ I. a.(t) 
I I J I I , J 

J 

The corresponding scaled algorithms are then as below 

I.ä. (t-1)a . . b0 bi b2 
J Jl 1y

1 
id

1
y

1 
id

2
y

1 

(3.7.16) 

ä..(t) = (3.7.10') 
I 

~.(t) = ---- ----- -
1 

(3.7.11 ') 

y.(t) = ä..(t) a .. bO. blid b2id ~.(t+l)/ ä. (T) 
IJ 1 IJ JYt+l lyt+l 2yt+l J 1E 

(3.7.15' ) 

where ä. (T)=I. ä..(t)a. . They are used for estimating the Gaussian pdf 
IE I JSE 

parameters as follows 

!Lk .i =.I. Y;/t) fk (yt+l)/ I. Yi/1) 
I, l I, l 

k=0 .. 2, j=l..3 (3.7 .17) 

(3.7 .18) 

where f
0
(y

1
)=y

1
, f (y )=d y 

I t I t' 
trained 
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separately by the quantized pitch sequences from each group of speakers. 

To prevent excessive constraints, in each model (e.g.: maleffemale model) 

several states share the same output pdf. This is done by choosing the 

conditional output pdf's of the random variables Y and d
2
Y independent of 

states, as follows 

p
0
(Y I X=j) = N(~0.~) 

P/d2 y I X=j) = N(~2'~) 

j=1..3 

j=1..3 

(3.7.19) 

(3.7.20) 

which depend only on the different model, where N(~,ci) denotes the Gaussian 

pdf with mean-value ~ and varaince ei. It means that p
0
(Y I X) mainly plays the 

role of distinguishing among different models, and P/d
2 
Y I X) mainly serves as 

the eenstraint on pitch acceleration. Separately training the pdf's ind.icates 

that such selections of mergence are reasonable, as shown in Fig. 3.8. 
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The output pdf associated with random variabie d 1 Y is depending on the state, 

p1(d1YI X=j) = N( 111j, ~)· j=1..3. (3.7.21) 

Estimation-phase 

Suppose that an array of pitch candidates, representing the pitch 

information from a speech sentence of L-frames, is obtained from the coarse 

algorithm. At an arbitrary (nlh) frame, a vector of weighted pitch cand.idales 
L 

Z ={ yki I k. = 1,2 .. L, p(Yk;) = (weight value) and I p(Yki)=1 } is 
n n I n k i =1 n 

"ded A d"d contour ( yki yla .. ykn ) . d f" d prov1 . can 1 ate 
1 2 

N IS e me as a sequence 

formed by taking one element from each vector z.. i=l..N, sequentially. It is 
I 

associated with the a-priori probability 

( yk; ykl ... yk") = (Yk;) (Yla) .. . (Yk") ppri I 2 N p I p 2 p N (3.7.22) 

Given the a-pnon probability, the estimation-phase then calculates the 

output probability of each candidate contour produced by a specific model m, 

(3.7.23) 

and selects one "best" contour associated with the maximum probability. 

In order to search for a global optimally sequence, the output 

probabilities of all possible pitch sequences are calculated in parallel by 

the Forward-algorithm. The probability at the nlh frame can be calculated 

recursively from the results obtained at the (n-1 )lh frame, 

=p(Yk')I (p (X =j,Yk~ .. Yk' lm)abO bl b2 ) 
n F n · I I n · I s Jl k k k i .j iyt id y t idyt 

n I n 2 n 

(3.7.24) 

A best-candidate contour is then selected as follows under Maximum Likelihood 

(ML) criterion 

max p (Yk; ___ ykn I m) 
m .(k . ( l) .. k (N)/ I N s 

s 1 n 

(3.7.25) 
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The practical estimation algorithm 

Practically when the frame number increases, the problems of excessive use 

of memory space and large calculations appear due to many candidate sequences 

appearing. Besides, the wanted pitch candidate can be missing from the coarse 

estimation. The following approaches are used to solve these problems, while 

keeping the error rate at a negligible low level. 

* Beam search 

In reality, pitch values change slowly between successive frames due to the 

continuity constraint. The probability that two successive candidates are 

far away is very small. Thus, beam search is applied instead of full search. 

i.e., for a given sequence (Yk i ... yks ) of length (n-1 ), the search of its 
I n·l 

possible sequences (Yk; ... Yks yk') of length n at the succeeding n1
h frame 

I n ·I n 

is Iimited within the range of yks ± W , where W is a given threshold 
n·l I I 

which is bigger than the maximum pitch change between successive frames. 

* Pruning 

Pruning is performed to limit the number of candidate contours in 

intermediate frames, by giving a scaled probability threshold. Pruning is 

also done when one contour splits into multi-contours and soon afterwards 

merge again. 

* Pretlietion of missing candidates 

Prediction over short and continuous frames is allowed. A very small 

a-priori probability value is given to the predicted candidate, such that a 

long continuous prediction will lead to small total probability score for 

the whole sequence. Thus the chance that a long predieled sequence will be 

selected as the estimated contour is very smal!. 

* Length-weighted sequence a-priori probability 

Due to the beam search and pruning, some of the candidates wiJl be 

disconnected from the candidate pitch contours. These candidates are then 

formed as the roots of new contours. Consequently, candidate sequences may 
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have different lengths. Thus, it is necessary to weight the a-priori 

probability value of each sequence by its length. 

Remarks and discussions: 

1) Comparisons to the smoothing and DP algorithms 

The advantages of HMMs over a pitch contour smoothing algorithm or a 

Dynamic Programming (DP) algorithm are obvious. 

In a simple pitch contour smoothing algorithm, the wrongly estimated pitch 

value is smoothed out if there is a big jump among the successive pitch 

values, and then replaced with an interpolated pitch value such that the 

cumulate distance is minimized. 

In a DP algorithm, one can use a cumulative probability measure, but the 

global optimum can only be obtained if it can be expressed by the sum of 

all the Iocal maxima. 

HMMs-based algorithms, however, estimate a pitch contour by "best fitting" 

to a given model. Because the model can be properly selected, and can be 

well trained by noise-free pitch contours prior to the estimation from 

noise contaminated signals, the approach is expected to have potentially 

more robustness for pitch estimation. 

2) When to obtain the estimated pitch value 

In the algorithm, estimation is off-line processing. A decision is 

postponed to the end of a sentence or a continuous piece of voiced-frames. 

When one desires to do reai-time processing by maldng a decision after each 

analysis frame, degraded performance can be expected. 

3) Obtaining candidates by other pitch estimation algorithms modified 

It is also possible to estimate pitch candidates from one of the existing 

pitch estimation algorithms, according to the complexity of the input 

speech. As we have mentioned previously, in order to prevent errors by 

mak:ing unproper early decisions based on isolated frames, this selected 

algorithm must be modified to provide a set of weighted pitch candidates 
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rather than an estimated pitch value. These algorithms can then be served 

for coarse pitch estimation purposes. 

4) Applications 

The HMM-based pitch contour estimation algorithm can serve as a robust 

pitch contour estimator by post-processing the results of the conventional 

pitch estimation algorithms. 

5) Limitations 

In the presently developed algorithm, it is Iimited to the voiced-speech 

frames. Segmentation of voiced-unvoiced frames is not included, and thus 

must be judged elsewhere. To improve this, one can consicter to add extra 

states to include the unvoiced case. 

3.7.4. Simulations and results 

In the program, a pointer and a binary tree structure are used, such that 

the branches of candidate contours can be added and pruned dynamically. 

Some simulations have been done for speech signals corrupted by both white 

noise and background speech at low SNR around 0 dB. 

It showed that candidate prediction produces reasonably good results in the 

case of missing candidates during continuous short frames. When candidates are 

missing, prediction plays an important role for the algorithm to yield a good 

estimation. 

Two examples in which speech signals are corrupted by white noise at 0 dB 

SNR are included. In order to test the robustness of the algorithm for tracing 

pitch contours, a simple coarse pitch estimation algorithm of signa! 

autocorrelation and peak picking is selected, so that the obtained candidates 

array is far from ideal. In many places, it is even difficult to figure out 

the options visually. Fig.3.9. and Fig.3.10. then shows the results of the 

estimated pitch contour via HMMs. 

121 



(a) I 
Pitch 

Frequency 
_,·'-. -~----· \,_., 

(b) 

(c) 

/ .. -./- .-". 
\ .•.. ,,... .... -

· .. : 

__ Frame No. 

_.-....__ 

.-. 
·' 

· .. /',; 
;-

, i. 
I 

Fig.3.9 Pitch contour estimation via HMMs 

S/'The engineer discovered an irregularity" 

SNR = OdB (S
1 

+ white noise) 

(a) Ideal pitch contour 

(b) Pitch candidates from a coarse estimation algorithm 

(c) Estimated pitch contour from HMMs 
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Fig.3. 10 Pitch contour estimation via HMMs 

S/'So can you find somethingelse you would Iike?" 

SNR = OdB (S
2 

+ white noise) 

(a) ldeal pitch contour 

(b) Pitch candidates from a coarse estimation algorithm 

(c) Estimated pitch contour from HMMs 
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Simulations have also been done on estimating pitch contours from sumrned 

speech signals of one female and one male speaker at OdB. In the training 

phase, two models, the female and the male, are trained separately by a number 

of quantized pitch sequences from each group of speakers. Fig.3.11 shows the 

estimated pitch contours using the previously estimated pitch candidate 

results as given in Fig. 3.5.(1) (female-male case). Both the candidate files 

from the signa! "carriers" and the signal envelopes are used. These two pieces 

of information are combined into one candidate file with a-priori 

probabilities. 

"' 0 .... ... ., 
p. 

"5 ... .... 
"' 

.... .,j,-

.' ... _· 

· ..... _. /'....___-...._ · ... _-__ : .,......, 

Frame No. 

(a) Ideal pitch con-tour (female + male) 

·-..... 
. -... -· 

...... ··- ._ .... _ .. _.,· .... 

.- -.-"_,._·: 
.... .'·""' ·~ ... " ___ .. ... - :.-------

(b) Estimated pitch contour (using candidate file in Fig.3.5(a)) 

Fig.3.11 HMM-based pitch contour estimation from summed speech 

S : "We do have a lot of good people in the office" by female 
I 

S : "You will now have fifteen seconds to do this" by male 
2 

SNR = OdB ( S
1 

+ S
2 

) 
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Preliminary simulations indicate that in order to obtain reasonably good 

results, a relatively accurate coarse algorithm must be selected, due to the 

interaction of the pitch candidates from the two speakers (including their 

harmonies and sub-harmonies). If candidates are not good enough, for example, 

the pitch candidates for one speaker are missing during continuous frames, 

some difficulties may appear. It appears that the wanted pitch sequence may 

still be correctly preilicted and estimated with relatively high probability 

score, but is not associated with the maximum one. This is because of too many 

preilietion frames and the relatively smal! weight values from the coarse 

estimation algorithm. 

3.7.5. Concluding remarks 

By modeling the pitch contours, the HMM-based algorithm provides robustness 

in pitch estimation against noise. In addition, beam search, pruning, 

candidate preilietion and candidate sequence a-priori probability are used to 

solve some practical problems. The algorithm showed to be promising in 

simulations. However, if the candidate array provided by a coarse algorithm is 

very poor in performance, the algorithm may fail to estimate correctly. 

3.8. Robust pitch estimation via a combined-algorithm 

In the above two sections, we developed individually a coarse pitch 

candidate estimation algorithm, and a detailed algorithm of HMM-based ML pitch 

contour estimation. 

A combined pitch contour estimation algorithm can then be formed as the 

following schematic Fig.3.12. 

noisy 
speech 
signals 

--+ 

A coarse 
pitch 

estirnation 
algorithrn 

can 1 a 
weighted 

d'd t es A HMM-based 
pitch contour 

es tirnation 
-) algorithrn 

Fig 3.12 A proposed pitch contour estimation algorithm 
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The pitch candidates with their weighted values can be obtained by either a 

pseudo-perceptual pitch candidate estimation algorithm, or some other simpler 

estimation algorithms, depending on the complexity of the problem concerned. 

lt is important not to ignore the weight values obtained from a coarse 

estimation algorithm, because it often provides good a-pnon pitch 

information when the speech is stationary and not very noisy. An HMM-based ML 

pitch contour estimation algorithm is then used to search for the optimum 

contour. 

3.9. Summary and conclusions 

In this chapter, a new robust pitch estimation algorithm has been proposed 

which uses two processing steps. Key observations are: 

The algorithm is based on the following point of views 

* To combine the human perception advantages with the signal processing-based 

pitch estimation approach is absolutely necessary. 

* To mimic the auditory behavior for the purpose of pitch estimation is 

neither necessary nor possible. 

* To use all the existing information in both inter and intra analysis frames 

for pitch estimation is necessary. 

* The complexity of the processing in the algorithm must be adaptive in 

accordance with the variabie degree of contamination of the input speech. 

The following global improvements are obtained by using this program 

* To bridge the gap between the signal processing-based and perceptual-based 

algorithms. The algorithm is consistent with the auditory global processing. 

* To postpone the decision of choosing a pitch value from each frame of 

speech. Rather, pitch candidates are used as an initia! guess, in order to 

prevent unproper early decisions based on insufficient information from 

isolated frames. 

* The complexity of the proposed algorithm can be adapted. In a simple case, 
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the coarse pitch estimation algorithm can be replaced by a simple one, which 

is revised to provide weighted pitch candidates. 

* For extremely noisy speech input, more complex processing is used, including 

a better initia! guess algorithm (e.g.: a pseudo-perceptual algorithm) and 

the use of a stochastic model and the previously trained knowledge. 

Advantages of using a pseudo-perceptual pitch candidate estimator 

* Pitch estimation can be independently performed by using the coïncident 

appearance of the signa! "carrier" multiples or the signa! envelope 

autocorrelations. These two pieces of information aften complement each 

other. 

* Simplifications are obtained over the perceptual type of algorithms. 

* Robustness is obtained in providing rich pitch information from pitch 

candidates. 

Advantages of using an HMM-based pitch contour estimator 

* Using a stochastic model to describe pitch contours rather than using the 

smoothing or DP algorithm based on minimum cumulative distance/probability 

measure. 

* Because of the veil between the hidden states and the output m a HMM, it is 

potentially more robust against noise disturbance. 

* A simple HMM can well describe the correlations of pitch contour and its 

continuity constraint. 

* Because HMMs can be properly trained by a large set of noise-free data, the 

method is close to human pitch perception of using previously learned 

knowledge. 

Conclusions and future work 

The proposed pitch estimation algorithm showed its robustness and great 

potential in processing speech with variabie contamination. The algorithm is 
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flexible in its design, with a replaceable coarse pitch candidate estimation 

part in accordance with the complexity of the input speech. 

This algorithm could be refined, such as to include the unvoiced state in 

order to handle transitions between voiced and unvoiced fràmes, and to use, 

for example, forward combining backward search in order to handle better the 

pitch crossing points of two contours. 
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CHAPTER 4 

SPEECH INTELLIGffiiLITY ENHANCEMENT 

A new adaptive speech separation system, designed for separating co-channel 

speech signals from a single-receiver with a range of Target-lnterference 

Energy Ratio between -12 dB and +12 dB, is developed. With particu/ar emphasis 

on the global consistency to the human audifory processing without emulating 

the detailed auditory behavior, this system bridges the gap between the 

methods by pure signai-processing and by pure mimicking of auditory speech 

perception. 

The system mainly consists of two parts, the adaptive speech separation 

and the pitch contour estimation. 

In the speech separation part, a new time-frequency bin tkJmain adaptive speech 

separation approach is used, by separately exploiting the T-FB tkJmain linear 

and nonlinear LMS adaptive filtering techniques as described in chopter 2. 

In the pitch contour estimation part, a two-step estimation algorithm is 

applied, by exploiting a pitch candidate estimator plus an HMM-based pitch 

contour estimator as described in chapter 3. 

Simulations on separating summed stationary speech signals with constant 

pitches, and on separating summed (nonstationary) speech sentences with 

constant and with natura/ pitch, wil/ be described in detail. Some results 

wil/ be included. 

4.1. Description of the addressed speech intelligibility enhancement problem 

• Problem addressed 

The problem addressed by this chapter is the intelligibility enhancement of 

the target speech signal from a co-channel speech signa!. A co-channel 

speech signal is defined as · an additively combined signal from target 

speakers, from background interference speakers, and from various other 

kinds of noise in a single channel. Often we have to handle the situation 
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where there is no a-priori information about the target and the interference 

speakers and there is only a single-input from a single receiver rather than 

multi-inputs from an array of receivers (multi-receivers). The reason of 

selecting such a premise for this research is that m many practical 

situations the co-channel noisy-speech signal is the only signal available. 

* Fields of possible applications 

The addressed problem may appear in many different situations, such as in a 

microphone and a (mobile)telephone environment, from background competitive 

speakers, from crosstalk in neighboring communication channels or in 

frequency-reused channels (in the space domain), etc. 

In many situations, we need to handle the problem of co-channel interference 

reduction. Some simple examples are given below. 

- Co-channel noise in a cel/u/ar mobile telecommunications system 

In a cellular mobile telecommunications system, the reduction of 

co-channel interference becomes primarily important because of the 

introduetion of frequency reuse[50] . In such a case, users in the 

different geographic locations may simultaneously use the same frequency 

channel from the different cells. 

Co-channel noise in a car environment 

The reduction of co-channel noise in a car environment is required for 

improving the speech quality in a mobile telephone receiver. 

- Presence of background-noise in an ASR system 

Reduction of background noise in an Automatic Speech Recognition (ASR) 

system is of primary importance. It is well known that the speech 

recognition rate of ASR systems suffers significant degradation due to 

background interterenee noise. 

Crosstalk and echo noise in a telephone system 

The crosstalk from neighboring channels and echoes from the "hybrid" 

circuit (a transmission link) to a telephone receiver due to the impedance 

mismatch can degrade severely the speech quality in a telephone receiver. 
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Noisy-speech from competitive speakers in an environment with 

normal-hearing listeners and hearing-impaired 

Difficulties arise for hearing-impaired people to understand the 

target-speech in noisy surroundings. 

Difficulties even arise for normal-hearing listeners when background 

speech from many competitive speakers is present at medium to high 

acoustic levels. In these situations, intelligibility improvement of the 

desired-speech is required. One of the situations is the well-known 

cocktail party, where it is often difficult to understand a target-speech 

from background competitive speech. 

• Difficulties in solving this problem 

After decades of investigations, co-channel speech enhancement remains a 

challenge. The key difficulty is that the target signa! and the interterenee 

noise can be both speech signals, which implies that they can be both 

nonstationary and share simi/ar statistica/ characteristics. In the 

conventional situations with white/colored noise, the spectra of signa! and 

noise show a large difference. lf both the signa! and noise are speech, 

there is neither basic statistica! difference in the time-domain nor in the 

frequency-domain. 

We know that in principle whether a noise reduction technique can be 

effectively used mainly depends on two factors. First, there must exist some 

basic difference between signa! and noise which can be exploited in a 

specific domain. The larger the differences, the easier the noise is being 

reduced. Secondly, it depends on whether suitable mathematica! expressions 

and a corresponding algorithm can be developed to implement the idea. 

However, there still exist local signa/ dijferences between the target and 

the interference speech which can be exploited to reduce the noise. 

• Tbe human auditory processing 

If we could understand how the human auditory system processes noisy speech, 

and what characteristics it exploits, we might be able to develop an 

effective processing technique. Until now we are only starting to understand 

the highly intelligent mechanism of the human sound processing. However, the 
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current knowledge in this field will be helpful for developing our speech 

enhancement algorithm. 

It should be emphasized that for the purpose of searching a proper signa! 

processing technique of speech enhancement which can combine the human sound 

perception advantages, the auditory sound perception and the auditory speech 

processing are reviewed below. Thus, the detailed micromechanism of the 

auditory system is not essential for our algorithm, rather it serves for the 

purpose of a better understanding of human sound processing. 

From the following review, it will also be clear that one can not expect to 

build a speech enhancement system by emulating the auditory micromechanism 

in order to fulfill such a task, since it is still unclear about the high 

level processing in the human brain although a relatively clear figure in 

the !ow-level auditory processing has been found. 

4.2. Speech perception and auditory processing of noisy speech 

In a noisy-room, most human listeners are able to perceive target speech, even 

though there is a lot of competitive speech at high acoustic levels. 

The intelligibility of the human auditory system is at a far higher level than 

any existing signa! processing technique. This observation motivated many 

researchers to investigate the human auditory system. It is obvious that a 

better understanding of the sound interpretation in the auditory system can 

help us to effectively improve the speech signa! processing techniques. 

Human auditory processing: an inlegration of multi-knowledge sourees 

From the observable facts, the following pieces of information are likely to 

be used by the human auditory system: 

Visua/ injormati011 

People can understand better if they have face to face communication. During 

the communication, the observation of lip-movements can often help the 

speech understanding. 

132 



Speech lnteUigibility Enhancemenl 

- Binaural information 

Two ears can perceive sound better than only one ear. It is indicated that 

binaural infonnation is used for distinguishing and perceiving a specific 

sound from a multi-souree combined complex-sound. The binaural hearing 

system has the ability to infer the direction of different sound souree by 

using the difference in sound intensity and arrival-time at the two ears. 

- Linguistic knowledge 

Human listeners can better perceive their mother language than foreign 

languages in noisy surroundings. Another fact from the experiments[99] 

showed that if one pboneme in a sentence is replaced by noise, the human 

auditory system can restore this. These indicate that sound perception needs 

some kind of high level processing associated with our previous knowledge. 

- Using multi-pieces of local information 

Listeners can perceive two or more simultaneous sounds. It has been noticed 

that the following pieces of infonnation may play important roles in the 

auditory system speech perception. 

*Pitch and pitch dynamics 

The more differences among the pitches in a mixed-sound, the easier for the 

listeners to follow a specific speech in that sound. It has also been found 

that big pitch changes are recognized by listeners as the presence of 

another sound source. These observations indicate that speech fundamental 

frequency (pitch) and its dynamics are very important for human speech 

perception. 

*Formants and their dynamics 

The more differences among the speeches, the easier for listeners to 

distinguish the different speeches. As different speeches are characterized 

by their speetral peaks (fonnants) and the dynamic trajectories of those 

peaks, this indicated that the formant frequencies and their dynamics are 

used by the auditory system for sound analysis. 

*Sound onset, offset and masking 

Some other pieces of infonnation, such as sound onset and offset, sound mask 

and restoration, also appear to play important roles in sound perception. 
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*Dynamic complexity in sound processing 

In a complex situation more pieces of information are used rather than in a 

simple situation. A highly degraded sound needs more auditory processing. 

The complexity of auditory processing is thus adaptive. 

The processing in the speech enhancement and in the speech recognition are 

mutual/y dependent 

From the above, we can also conclude that the processing of speech 

enhancement involves also the processing in the speech recognition. This is 

especially obvious from the auditory sound masking and restoration 

effect[99}. 

Analysis of the auditory processing 

Much efforts have been done in understanding the structure and function of the 

peripheral portions of the auditory system. We have a relatively clear picture 

of the processing preceding the auditory nerve, however, we only know very 

little about the central processing at the higher level of the auditory 

system. The knowledge about the processing preceding to the auditory nerve can 

be summarized in Fig.4.1. 

incoming sound 

model 

~l displacements in the BM 

~~tion model (multi - stage AGc)J 

I hair cefl model ( halfwave rectification) I 

I firing in neural fibers 

.--------------· ----
1 model for a uditory nerve encoding 

I neural stimulus spectrum 

(for central auditory system) 

Fig.4.1 Schematic figure of auditory processing in low levels 
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The human ear can be partitioned into an outer, middle and inner part, as 

shown in Fig.4.2. 

Outer Middle 

Auricle 

Drum Membrane 

Fig. 4.2 Structure of the ear 
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The transmission of a sound through the outer ear via the ear canal resonances 

introduces nonlinear effects which emphasize the frequency speetral components 

of the sound. 

Midd/e ear 

A complicated linkage of bones contained in the middle ear couples the 

movements of the eardrum to the oval window at one end of the cochlea in the 

inner ear. Thus, it transfarms from air pressure variation to fluid pressure 

variation in the cochlea. 
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Inner ear 

The Basi/ar Membrane (BM), which is a fibrous tissue extending through the 

middle of the cochlea, is a vita! part for the hearing process. Each specific 

place of the BM reaches a maximum response on the stationary envelop of the 

travelling wave along the cochlea, as shown in the tuning curve of the BM in 

Fig.4.3. Hence, the frequency components of a sound are transformed to 

monotonous displacements along the BM places. 

Relative 
amplitude 

1 

05 

100 200 500 1000 2000 Frequency 
(Hz) 

Fig.4.3 Response of the BM as a function of frequency: 
one tuning curve at a specific place of the BM 

The Organ of Corti includes three rows of outer hair cells and one row of 

inner hair cells, which reside on the BM. The transduetion process takes place 

in this organ. The movement of the BM causes the bending of the hair cells 

which stimulates the firing of the neurons of the auditory nervous. Thus, the 

frequency-selective displacements of the BM are changed into neural response. 

The inner hair cells exhibit a kind of "stimulus selectivity". Each inner hair 

cel! bends optimally to stimuli at a characteristic frequency and then causes 

the firing of neurons of the auditory nerve. 

The outer hair cells are not sensory cells, rather they are the effectors of 

Automatic Gain Control (AGC) loop which modulales the mechanica! motions of 

the BM. The outer hair cells, which are normally inhibited, act as "muscles" 

which can amplify the effect of !ow-level stimuli when the inhibition is 

reduced. 
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Auditory nerves communicate the response of hair cells to the nervous system. 

The representation of acoustic information in the nerve is important because 

it is the only souree of information available to high levels of auditory 

processing. 

The critica/ bandwidth and the masking effect in the auditory system 

The masking effect plays a very important role in the auditory system speech 

analysis. Critica/ bandwidth is associated with the frequency resolution 

capabilities of the auditory system. It is around 100 Hz for center 

frequencies below 1 kHz, and is about 15% of the center frequencies above 1 

KHz. Psycho-physical research indicated that tones within the critica! 

bandwidth can not be perceived individually because of the 

frequency-resolution in the human auditory system. 

Tones which are several dB lower than the noise within a same critica! 

bandwidth can not be perceived because of the masking effect. Hence, The human 

auditory system is not sensitive to the detailed speetral structures of a 

sound within this bandwidth. Rather a weighted integration over all the tones 

above the perceivable level within the band is performed. 

Computational model for auditory low level processing 

Several existing models are based on the above knowledge. 

- Transmission fine model of the cochlea 

One of basic cochlear filter models is the transmission line model, or the 

one-dimensional model. This model describes the transformation of the 

travelling sound wave to the mechanica! movement of the BM. Each smal! 

section along the cochlear spiral is modeled as a section of transmission 

line. A transmission Jine with a low transmission velocity is, however, 

difficult to realize physically. A more convenient approach is to use 

filters, each of which represents the filter characteristic at a single 

point of the BM. Thus, the incoming sound is processed through a group of 

cochlear filters. The different places along the BM are tuned monotonously 

to the specific frequency band. 

To mimic such functions, a group of cochlear filters can be used. The 

interval between the center frequencies of these filters is equal to the 
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critica! bandwidth. The frequency response of each filter is designed to 

resembie the tuning curve of the auditory nerve fibers centered at its 

characteristic frequency. The frequency response is characterized by a sharp 

high frequency slope (at 100-400 dB/oct.), and a flat low frequency s1ope 

(at approximately 40 dB/oct) [1,40]. 

- Transduetion model to represent the saturation of the neural firing rate 

A transduetion model, the "hair cell model", is built to simulate the firing 

saturation and phase loek of the neural fibers. The hair cell model includes 

the saturation of the firing rate at high signa! intensities and the phase 

loek at a particular point of a vibration cycle. This is simuialed by the 

halfwave rectification and the compression via multi-stage AGC after the 

cochlear filter outputs. 

Neura/ stimulus spectrum representation 

There are mainly two different models to interpret the transformation of the 

fiber firings into the neural stimuli. They are based on the rate-piace and 

the temporal-piace representation, respectively. 

* Rate-piace representation 

The model by Goldstein[28] is based on the interpretation of rate-piace 

representation. The place abscissa can be regarded as the frequency 

abscissa scaled in the critica! bands. Since each fiber innervates a 

single inner hair cell, and each hair cell is sensitive to a motion in a 

specific portion of the BM, the auditory system is considered to convey 

stimulus speetral content by the average firing-rate in each of the fibers 

of the auditory nerve. 

A firing-paltern should be included in 

degrades when 

the 

the rate-piace representation 

perioctic stimuli increase. The firing pattem 

model[25], because 

intensity levels of 

can be described as 

the 

the 

the 

width of the region in which fibers fire at the same stimulus period. 

Since more fibers fire synchronously as the stimulus intensity increase, 

this can be used as a measure of stimulus intensity. 

* Temporal-p/ace represenration 

Another model is based on the temporal-piace representation [51]. It is 

noticed that neural fibers are capable of representing the temporal 

properties of the signa!. The activities of the fibers are correlated with 
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the time-varying amplitude components of the signa\. It is noticed from 

the observations that the fibers are phase-locked to the stimulus if the 

duration of a stimulus is longer than the duration of an action potential 

of 1 ms; otherwise the fibers are phase-locked to multiples of the 

stimulus-period. 

The temporal-piace 

detailed speetral 

representation 

information for 

is known to be capable of retaining 

large stimulus amplitudes of the 

periodic stimuli, however it may not be expected optima\ to the unvoiced 

stimuli. 

- Parallel time-directional processing on neural-stimulus-spectrum 

Further processing to perceive sound information is supposed to be performed 

by parallel time-directional processing on the neura\-stimulus-spectrum 

obtained from the above models. 

Auditory processing in the high level of human brain 

It is still not clear what kind of detailed auditory processing is performed 

on the information perceived from the neura\ stimulus spectrum. 

It is reasonable to assume that the central auditory processing is performed 

by a network with highly recurrent hierarchy. Thus, sound analysis might be 

performed in the acoustic, prosodie, phonetic, lexica\, grammatica\, semantic, 

linguistic layers with recurrence and constraints, meanwhile using a lot of 

other auxiliary information such as emotional attitudes and state, class, 

race, gender, etc. The layer structure of sound analysis is shown in Fig. 4.4. 
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incoming sound 

! 
acoustic analysis 

! 
prosodie analysis 

! 
phonetic analysis 

! 
lexica! analysis 

! 
grammatica! analysis 

semantic analysis 

linguistic analysis 

Fig.4.4 A recurrent hierarchy structure for auditory sound processing 

Condusion 

In the above overview, it is indicated how the human auditory system collects 

many pieces of information, and then synthesizes and integrates them to 

interpret a sound. It is clearly an adaptive process: the kind and the amount 

of inforrnation used depends on the complexity of the incoming sound. Speech 

enhancement and speech recognition for instanee complement each other in a 

complex situotion. 

4.3. Overview of the existing speech enhancement techniques 

There are two main tendencies m speech enhancement processing. One 

concentrated on using different signal processing techniques based on 

mathematics, another mimicked the auditory micromechanism in order to approach 
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human processing results. In the following, an overview of the most important 

speech enhancement/separation approaches wiJl be given. 

- Noise categories 

Speech enhancement usually infers to target speech enhancement from noise 

contarninated signals. The noise can be nonstationary or stationary white or 

colored noise, or interference speech and interference audio sound, etc. 

Speech separation is one of the speech intelligibility enhancement 

techniques, which is used for separating the target from the competitive 

interference speech. 

- Basic difference in processing 

For different kinds of noise, the speech enhancement techniques explored are 

usually different. White and colored noise (e.g.: car noise, airplane engine 

noise, machine gun noise, pop-music), have quite different statistica! 

features and frequency spectra from that of the target speech signals. Thus, 

it is relatively easy to explore the differences between the signa! and the 

noise. One can use speetral subtraction techniques in order to enhance the 

target speech. 

For the speech-like noise, there is no basic statistica! difference between 

the target speech and the background speech "noise". Therefore, different 

approaches must be explored. 

Here we will concentrale on the latter case. For the first case, readers are, 

referred to the references[22,46,69,97,98,102]. 

According to the basic principles, the existing techniques can be categorized 

as follows. 

( 1) Algorithms based on speetral subtraction by harmonie magnitude 

suppressionlselection in the frequency-domain 

(la) Speech separation by exploring the frequency structure of the 

quasi-periodic voiced-speech signa!. 

It is noticed that the voiced speech energy concentrates around the 

frequencies of pitch harmonies. Speech enhancement can therefore be 

obtained by suppression of the interference speech only at the pitch 

harmonies when the SNR is negative, or by selection of the target speech 
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only at the pitch harmonies when the SNR is positive. In the 

frequency-domain, the magnitude spectrum of each speaker can be 

approximated by the spectrum of windowed sinusoids. 

The idea, originally due to Parsons [71], has been used for selecting the 

harmonie magnitude spectrum of the target speech, when target and 

interference speech have about the same intensities. 

Hanson and Wang[37] proposed a si mi lar technique for suppressing 

in tenerenee speech when the SNR is negative. In this case, the 

interf erenee parameters are in general easier to extract than those of 

the we aker desired-speech. The idea is that the target speech can be 

estimated by subtracting the estimated interference harmonie magnitude 

spectrum from the total spectrum. This method has been applied to SNR 

between -6 and -40 dB. 

A post-processing of speetral tailor using the technique of Multi-signal 

'Minimum-Cross-Entropy Speetral Analysis (M-MCESA) has been proposed [12], 

in order to improve the 

autocorrelations of signa! R 

separated spectra, a M-MCESA 

above results. Given the a-priori 

and of noise R estimated from the 

approach estimates the a-posterior spectra 

of S(t) and n(t) by minimizing their cross-entropy under the eenstraint 

of the summed signa] autocorrelations Rs+n' 

The adaptive comb filter , which was used m the early 1970's for speech 

enhancement[23,86], has been found to give no improvement of 

intelligibility[72] . In a comb filter, only smal! bands of frequencies 

which are centered at pitch harmonies can be passed, while those portions 

of the competitive signa! outside the passband of the filter are 

rejected. Thus, by adaptively controlling the type and size of window 

functions, the comb filter "enhances" the target speech signals. 

Perlmutter[72] has proved by eX:periments that such an adaptive comb 

filter provides no improvement of intelligibility for the desired speech, 

despite of using accurate pitch information. 

(1 b) A sinusodial speech analysis/synthesis model and Least Squares error 

approach 
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A sinusodial speech analysis/synthesis model [78,79,80,88], improves the 

harmonie magnitude suppression/selection approaches. The model can 

dissolve harmonies from the different speakers, thus can improve the 

distortion in (la) when the harmonies of different speakers are too close 

to separate, or when the stronger harmonies mask the weaker harmonies. 

The sinusodial model for N-speakers is defined as 

N Mi . 

s(n) = I. I. a' cos(ro n + cp ) 
i=l k=l k a.k a.k 

(4.3.1) 

where a i, ro =27tf and cp are the amplitude, the frequency and the 
k a.k a.k a.k 

phase of the kth harmonie of the ith speaker, respectively. 

The windowed speech segment in the frequency-domain after Short Time 

Fourier Transform can be expressed as follows 

N Mi 

S w(ro) = I. I. A~ exp(jcp A.k) W(ro-kro~) 
i= I k =·M 

(4.3.2) 

where Ai is amplitude of the kth harmonie of the ith signal, and W(ro) is 
k 

the Fourier transform of the analysis window. If the frequencies in 

(4.3.2) are known a-priori, the Least Square (LS) parameter estimation 

becomes linear estimation. 

(2) Statistica/ model-based speech enhancement 

A Hidden Markov Model (HMM)-based speech enhancement technique for white 

noise has been proposed[19,20,21,22]. In this method, mixed-speech signals 

are modeled by an HMM which is associated with a random process z i =xi+ni, 

where xi and ni are statistically independent and correspond to the speech 

and the noise respectively. Clean speech is modeled by the mixtures of 

Gaussian autoregressive (AR) output processes, and the (white) noise is 

modeled by a process of independent identically distributed (i.i.d.) 

Gaussian AR vectors. The parameters of speech and noise can be trained 

separately by the target-absence or the interference-absence segments of 

the mixed-speech signals. The speech enhancement is then performed under 

ML/MAP/MMSE criterion. It may be a promising approach to be generalized to 

the interference speech case. 
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Another HMM-based approach is proposed by Varga[98] . In this model, the 

output (observation) probability is the joint distribution from the two 

models associated with the target and the interference 

p(observation) = p(observation I Ml ®M2 ) (4.3.3) 

where ® is the combination operator, Ml and M2 are the random variables 

from the two models. The decomposition for two simultaneous components 

becomes 

p
1
(i,j)= max p (u,v)al .a2 . bl . ® b2(0) 

t· J U,l VJ I J t 
U • V 

(4.3.4) 

where al (or a2 ) is the transition probability from state u to i (or 
u.i VJ 

v to j), bl . (or b2) is the output probability emitted from the state i 
I J 

(or j) in model Ml (or M2), p
1
(i,j) is a specific output observation 

sequence produced by the joint model under the constraints that model Ml 

is in state i and M2 is in state j at time instant t. This approach has 

only been tested for stationary pink noise and for machine gun noise. 

(3) Time-domain LMS adaptive filtering 

It has been proved[2] that the adaptive LMS weights of the summed periodic 

speech signals converge to the same weights of the dominant-only speech, 

provided that the power of the dominant speech is much higher than that of 

the weaker speech. 

As it is mentioned m [2], "The statistica/ and speetral similarity 

between the desired signa! (main speaker) and the interfering signa/ 

(background speakers) often prohibits an improvement using only speetral 

filtering techniques". 

However, the summed periodic signals simulated are produced by a 

second-order model only. For speech signals, at least a six-order model 

(corresponding to three formants) is needed. 

(4) Neural network based noise reduction 

A noise redaction neural network has been proposed[95,96,97] and simulated 

for speech contaminated by computer room background noise. 

(5) Methods based on monaural auditory sound separation 

A computational algorithm for sound separation based on the auditory model 
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of Lick.lider[5l] has been developed by Weintraub[lOO,lOl]. Sound from each 

cochlear filter output is represented by a group of neural events. An 

iterative dynarnic prograrnming pitch tracking algorithm is applied to 

detennine the pitch period of each of the two sound sources. The number of 

speakers and the associated periodic/non-periodic characteristics are 

detennined by a Markov model. The spectrum of each sound represented by 

the events is then iteratively estimated according to the amplitude ratio 

of the two sounds obtained from the histogram calculations from the 

trained database of each sound. 

(6) Array processinglbeamformer based approach using multi-receivers 

The approach exploits the different time-arrivals and the different 

intensities of the multi-signals from an array of receivers [18,42,74,90]. 

By designing a proper array pattem tuning to a desired signal, the target 

speech signals can be enhanced. This is more close to the concept of 

binaural auditory sound perception. 

Remarks: 

(2) and (4) need prior-trained information. In the auditory system 

processing hierarchy, this processing corresponds to functions performed 

in the high auditory levels. 

Moreover, (2) can also be regarded as a neural network, because an HMM is 

actually a recurrent neural network[68]. 

(1) (3) (5) and (6) correspond to the functions performed in the low 

auditory level. 

4.4. Objective and subjeelive criteria for speech improverneut 

It is important to measure how much speech impravement can be achieved by a 

speech enhancement system, in order to compare several different methods and 

to make a good tradeoff between algorithm complexity and the obtainable 

subjeelive speech improvement. Unfortunately, there is no such a universally 

applicable single measure available. This is because the objective distortion 

measures reflect .. only partially, in a nonlinear way, our subjective 

acceptability. 

Since speech perception is a highly complex process, it involves not only the 
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entire grammar and the resulted language structure, but also diverse factors 

such as semantic context, the speaker's emotional attitude and state, class, 

race and gender, and the divergence in human sound production organs. The 

development of a universally applicable algorithm for predierion of user 

reacrions to speech disfortion is still somewhat elusive. · Instead of that, 

certain classes of objective distortion measures[l7] can predict some aspects 

of speech distortion. 

It is worth to mention that for our speech enhancement problem, a SNR measure 

can not properly reflect the speech impravement levels to a human listener. 

Often, after the processing the SNR is increased but the intelligibility of 

the speech can be decreased. Thus, what our processing needed is to enhance 

speech intelligibly in order to fit better to the subjective measure of the 

human auditory system. 

4.5. Basis of this speech separation system 

In previous sections, the auditory sound perception at different levels has 

been reviewed. An overview of the most important existing techniques for 

speech enhancement in the presence of interference speech has also been given. 

In this section, we will first analyze some common weak points of these 

techniques, despite that they are very promising at providing speech 

enhancement within certain realms. We will then describe some basic thoughts 

of our speech separation system. 

Some remarks on the common weak points of the reviewed techniques 

( 1) On harmonic-based approaches 

It is basically a speetral filtering technique, which is not consistent 

with the auditory system global processing. 

Each frame of transformed data is· processed in isolation, without 

considering the correlation among frames. 

It dissolves harmonies from the outputs of a narrowband filterbank. From 

the · speech intelligibility point of view, it is preferabie to choose 

wideband rather than narrowband filters[8l ]. In the narrowband filter 

case, the reverberation dislortion is caused by lengthening the effective 

time-window duration of the filters. While in the wideband filter case, 
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the time-dimension aliasing distartion can be introduced by the down 

sampling in the channels. Although the narrowband and the wideband filters 

both introduce distortion, the perceptual degradation caused by 

reverberation-distortion in narrowband filtering is more severe than by 

the time-aliasing distortion from the wideband filtering, because of the 

severe damage of formant trajectories in the narrowband filtering. 

(2) On the statistica/ model-based approaches 

If one desires to generalire the statistica! model-based approaches to 

enhance speech signals from the background speech noise, one probably 

needs to include the pitch information. Existing models only contain the 

vocal-tract parameters. 

(3) On the time-domain LMS algorithm based-speech enhancement 

This approach is limited to high SNR, which makes it less attractive. 

Moreover, because of the large dynarnic range of speech spectra, the local 

SNR can not be always consistent with the global SNR constraint. Thus, the 

convergence property may not be consistent in different frequency areas. 

There may even be some divergence areas. Consequently, the algorithm may 

have difficulties for speech enhancement under high SNR constraint. 

The structure of the speech intelligibility enhancement presented in this 

thesis 

In order to form the structure of this speech separation system, we will 

exploit: 

*The time-frequency bin domain filtering of speech signals; 

*The information existing in the local speech signals; 

*The inconsistency of global and local signa! dominance; 

*The wide-bandpass fittered speech having less subjective distortion. 

Some global and basic properties of this system 

1) The processing approach must exploit local dijferences in the target and 

the interference signals, including the Iocai pitch and the local speetral 

differences, as much as possible. 

2) The adaptive filtering must be explored in the time-transfarm domain rather 

than in a single dimeosion such as the time-domain or the transform-domain, 
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due to the speech signa! nonstationarity. 

3) The method has to be expressed mathematically and to be implemented in a 

simple algorithm, effective for speech enhancement. 

4) The algorithm must be able to divide a complicated speech separation 

problem into a group of monotonic simple problems. 

5) The algorithm must be consistent with the auditory system global processing 

but avoiding to mimic the auditory micromechanism. 

6) The algorithm must be flexible in adaptation to the variabie complexity of 

the noisy speech signals. 

7) This algorithm should use no a-priori speech information of either a 

specific target or a specific interference. 

4.6. Limitations of this speech separation system 

As mentioned previously, the auditory system uses many pieces of 

information and contains many processing steps above the acoustic level. It 

must .be pointed out that from the theoretica! point of view, this speech 

separation system can not produce complete and perfect separation results, 

instead it can produce a separated target speech on which the ear can have a 

better intelligibility acceptance. This is because of our limitation to 

single-input co-channel signals (which corresponds to monaural sound), and 

because of the Iimitation caused by the acoustic level signa! processing, 

without using linguistic inforrnation and combining the speech separation 

process with the speech recognition. 

It should be mentioned that from information theory, it follows that 

information is lost in a co-channel. Thus one can not expect to restore and 

reeover the target signa! completely. 
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4.7. Fundamentals for single-input frequency-bin time-directional processing 

The speech separation system described here is based on the parallel 

time-directional adaptive processing of the decomposed signals. Particular 

emphasis is put on the consistency to human auditory global processing without 

emulating the detailed auditory behavior. 

Such a signal processing technique is applicable to speech separation due to 

the following fundamental understandings of the human auditory system and the 

following fundamental properties of the speech signals. 

Consicter the following characteristics of the auditory system: 

1) The human auditory system performs some running short-time speetral 

analysis on the acoustic waveforms, by decomposing signals into isolated 

frequency components. Further processing is done essentially along the time 

axis[ 56,64]. 

2) For a human listener, a better subjeelive sound quality is obtained by a 

synthesized speech from a wideband filterbank rather than from a narrowband 

filterbank[81]. 

Consicter further the following fundamental properties of the speech signals: 

1) It has been noticed that the target and the interference speech signals can 

dominate differently in the various frequency bands. This is because the 

speech spectrum bas a large dynarnic range. It contains many peaks 

(formants), depending on the vocal-tract shape of a specific sound. The 

globally stronger signa! can be the weaker one in 

In general, the target and the interference 

differently in the different frequency bins, as 

Fig.4.5. 
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Frequency 

Fig.4.5 Two speech spectra dominating in different frequency regions 

2) In each frequency-bin speech signals can preserve high time-resolution, if 

they are properly bandpass filtered. Consequently, voiced-speech signa! 

components contain periodicities along the time-direction associated with 

both the target and the interference speaker. 

The above mentioned properties enable a speech enhancement algorithm to 

perfmin frequency-bin time-directional adaptive processing. This implies that 

the speech separation problem can be divided into a group of monotonic 

sub-problems, by splitting speech signals into many nearly-independent 

bin-components evolving with time. Each bin only contains one monotonic 

dominant speaker. 

4.8. General system description 

As shown in Fig.4.6, the speech separation system consists mainly of five 

parts: 

1) A wide bandpass filterbank splits the co-channel signa! into frequency 

bins. 

2) A robust pitch estimation algorithm is designed for simultaneously 

multi-pitch contour estimation. 
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3) The stronger/weaker speaker is identified for each bin by the estimated 

short-time local TIR using higher-order moments. 

4) A time-frequency bin domain adaptive filtering algorithm is applied for 

speech separation. 

5) The separated signals associated with each speaker are summed over all 

frequency bins. 

Fig.4.6 Block diagram of the speech separation system 

In the following sections, the detailed system implementation will be 

descri bed. 

4.8.1. Signal decomposition 

For speech separation purpose, the co-channel speech signal is split into 

frequency bands by a group of wide-bandpass filters. Each bandpass filter has 

a frequency response Hk(ro) symmetrie to its center frequency Olk=27tk/N, k=l..N, 

with a bandwidth 2B. For the "noisy" co-channel speech signa!, more frequency 

bands should be chosen in order to keep a certain redundancy. 
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In order to simplify calculation, we implement these bandpass filters by a 

Short-Time Fourier Transfarm (STFT), foliowed by shifting the output data into 

the corresponding frequency bands, and taking the real-part of the data. 

STFT can be explained in terms of a bandpass filterbank with unifonnly 

spaeed center frequencies from 0 to 1t. Given a signal { x(t)}, the STFT is 

defined as 

-jro n -jro m 
X(n,rok) = e k ( L x(n+m)w(-m) e k ) 

m 

(4.8.1) 

where w(m) is a symmetrie window of size L. The STFT output X(n,rok) is 

corresponding to the lowpass-shifted bandpass filter output. 

The above formula can be re-written as follows 

-jro n 
X(n,rok) = e k X(n,rok) 

where X(n,rok) 

-jro m 
X(n,ro) = I x(n+m)w(-m) e k 

k 
m 

k=l.N>_L 

(4.8.2) 

(4.8.3) 

is the output of a complex-valued bandpass filter which fits the above 

bandpass filterbank demand. Thus, the corresponding filter impulse response of 

the complex filter in the STFT is 

jro n 
h (n) = w(n) e k 

k 
(4.8.4) 

* Time-resalution and frequency-resolution are limited by the uncertainty 

principle 

lt is welt known, that the STFT suffers from the time-frequency resolution 

limitation. One can not make arbitrarily high time-resalution and high 

frequency-resolution simultaneously. The time-frequency resolution is governed 

by the uncertainty princip/e[14], i.e. ~,.\2::1/47t, where ~~ and ~r are the 

bandwidths of the time-window and the corresponding frequency window, 

respectively (the equality holds if and only if the time-window w is 

Gaussian). 

However, by selecting the size of a time-window camparabie to the average 

pitch period, speech spectrogram(77], which contains pitch periodicities and 
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fonnants trajectories, will satisfy the time-resolution demands for later 

processing. 

One often likes to have different time and frequency resolution in 

different frequency bands by using a different analysis window size. This is 

referred to the "zoom in and zoom out" function. In high frequency bands, a 

higher time-resolution is needed than in the low frequency bands. Such a 

bandpass filterbank can be implement by using orthogonal Wavelet Transform 

(WT) [14,15,83]. Although it still suffers the time-frequency resolution 

limitation, the time-resolution and the frequency-resolution no Jonger have to 

be the same for every frequency bin. In WT, bandwidths of different bins are 

govemed by a scale factor. The bandwidths can thus be chosen unifonnly 

distributed on a logarithmic scale. From the physiology point of view, it is 

more suitable to decompose signa! into frequency channels with a same 

logarithmically scaled bandwidth. This is easily understood that a large data 

window is needed in a low frequency band in order to have a relatively high 

frequency-resolution, and a smal! one in a high frequency band. 

Although as mentioned above that filterbank obtained by WT is more 

attractive than that of the STFT, STFT type filterbank is still used in our 

simulations due to limitation of this research. We believe that the speech 

enhancement system depends mainly on the separation algorithm itself. However, 

one can always revise the filterbank implementation by WT in order to gain 

more benefit. 

4.8.2. Estimation of pitch 

For the pitch estimation part in this speech separation system, the algorithm 

described in chapter 3 can be applied directly for pitch contour estimation 

from co-channel speech signals. 

4.8.3. Estimation of short-time local TIR 

In each bin a short-time bin Target-Interference Energy Ratio (TIR) is roughly 

estimated in order to decide which voiced-speaker is dominant. 
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First, the bin signa! X(t,k) is half-wave rectified to )è(t,k) and the third 

order moment with the delay of each speaker's pitch period P m is calculated as 

follows 

Z (t,k) = ){(t,k))è(t-P ,k)X(t-2P ,k) 
m m m 

(4.8.5) 

where P m is provided by the pitch estimation algorithm. The short-time TIR in 

each frequency bin is then estimated by the energy ratio (in dB) 

TIR(to,k) = 10/3 log ( I. z~ (t,k) I I. z~ (t,k)) 
t t 

(4.8.6) 

where t
0 

e { t } . 

4.8.4. Adaptive speech separation 

After bandpass filtering, the noisy speech signa! components are processed by 

using a time-frequency bin (T-TB) domain adaptive noise canceler. 

Before describing the speech separation algorithm, we wil! frrst focus on the 

following two questions: 

* Can a T-FB adaptive filter be used for speech separation? 

* Does this algorithm converge to the target (interference) speech signal? 

Consicter the situation where the co-channel signa! is composed of one target 

and one interterenee speaker in a voiced-voiced or voiced-unvoiced situation. 

The bandpass filtered signals at frequency bin k can be expressed as 

(4.8.7) 

For a voiced-speech signa!, it is highly correlated among the successive 

periods. Supposing the target speech signals ST and the interterenee speech 

signals S
1 

are statistically uncorrelated, the autocorrelation function of the 

bandpass signa! with its Pr delayed version (pr is the target speech pitch 

period) at bin k can be expressed as below 

E(X(t,k) X(t-pr-j,k)) = R
5

T (j ,k) + Rs?r+j,k) (4.8.8) 

where the relation S/t-pr-j) =Sr<t-j) has been used, i.e., it has been 

supposed that the target voiced~speech signa! is stationary in the time 

interval of consideration. If the target speaker is dominant at this bin, the 
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frrst term in (4.8.8) becomes the main part. Here it is also supposed that the 

same speaker is dominant during the short-time interval. A similar analysis 

holds for the interference speech with pitch period PI" 

From the above, we would guess that a LMS filter weights in a single frequency 

bin would converge to the filter weights associated with a dominant speaker. 

On the convergence property of a T-FB domaio LMS algorithm 

* Convergence property for full-band signals 

For the summed (fullband) perioctic speech signals under the constraint of a 

dominant speaker plus a weaker interference speaker, it has been proved[2] 

that the adaptive LMS weights initially converge to the same weights as would 

be produced by the dominant speaker-only case. 

However, because of the large eigenvalue spread of the speech signals, it 

would be very difficult to keep this constraint consistently over the whole 

signa/ spectrum. Consequently, the algorithm is limited to have applications 

in most practical speech situations. 

* Convergence property in the T-FB domaio 

However, we can extend the above convergence property to the T-FB domain LMS 

algorithm. This results in a part of the foundation for the T-FB domain speech 

separation. 

The above convergence property implies that the adaptive filter of each 

frequency-bin wil/ converge to the dominant speech signa/ components in a T-FB 

domain LMS algorithm. 

Hence, we can group the fullband signa! into the components in different 

regions belonging to these three categories: the bins dominated by the 

target-speaker; those dominated by the interference-speaker; and the bins 

where the two speakers have comparable signa! energies. 

Thus, for those bins dominated by the target (interference) speaker, the 

corresponding LMS weights fast converge to the target (interference) speaker. 

While in those bins where the energy difference is smal!, the LMS algorithm 

shows a poor convergence. 
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Possibility of speech separation using a T-FB domaio LMS algorithm 

Based on the above analysis, a speech separation algorithm can be fonned by 

using a T-FB domain LMS algorithm. 

A T-FB domain LMS algorithm, functioning as a T-FB domain Adaptive Noise 

Canceler (ANC), can be used to estimate the signa! components of the 

stronger-speaker at different bins. The filter output residuals can be 

regarded as the estimated signa! components of the weaker speaker. 

In order to obtain the separated speech signals, we can simply sum, for each 

time instant, the separated signal components associated with a desired 

speaker over all bins. 

It should be mentioned that applying an LMS algorithm in those bins having 

close local Target-Interterenee Energy can produce relatively large errors. 

Those bins are the main parts of distortien introduced to the separated 

signals. 

In the following, two different speech separation approaches will be 

investigated. We will first describe the T-FB domain speech separation 

associated with a Jinear adaptive filtering approach in section 4.9, and then 

replace this linear adaptive filter with a nonlinear one, in section 4.10, in 

order to obtain further improvement. 

4.9. Speech enhancement via the time-frequency bin domaio linear NLMS adaptive 

filtering 

We wiJl first explore the possibility of speech separation via a T-FB 

domain linear LMS adaptive filtering algorithm[30] . 

In such a case, a T-FB domain linear LMS adaptive filter is used as a 

linear Adaptive Noise Canceler (L-ANC). This L-ANC extracts the stronger 

voiced-speech signals at each bin, by using the quasi-periodic correlations of 

the voiced-speech signals. In particular, we consider the algorithm under a 

semi-ideal transform assumption as defined in chapter 2, where all bins are 

linearly independent. Thus, the T-FB domain filter is simplified to a group of 

time-directional filters of independent bins. 
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This speech separation algorithm consists of the following three steps: 

1) Determination of the dominant speaker at each bin 

In each analysis frame, decisions on which speaker is locally dominant, and 

whether or not this speaker's signal is predominant are made at each bin, 

by using the estimated short-time local TIR. 

2) Estimation of the stronger speaker's signal (or the voiced-speaker's signal 

in Voiced-UnVoiced case) 

An LMS algorithm is applied to estimate the stronger speech signals in the 

V-V case (or the voiced-speech signals in a V-UV case) at each bin by using 

the perioctic correlations. The output of the adaptive filter 

M . · I 

y(t,k) = ± W(i >(t,k) X(t-P -j, k) 
j = 0 J s 

(4.9.1) 

is assigned to the stronger speaker (or to the voiced-speaker in a V-UV 

case) as the separated signal component. The filter weights at each bin are 

updated at every time instant as follows 

W(i >(t+1,k) =W(i >(t,k) + 2 ll e(t,k) X(t-P -j, k) j=O .. (M.-1) 
J J k S I 

(4.9.2) 

where w< i > (t+ 1 ,k) are the filter weights; M. is the filter order associated 
J 

llÜ( i) 

with the speaker i, (i= 1 ,2) at bin k; 11k k is the normalired 
M.E[X 2 (t,k)] 

filter step-size at bin k; 110~ i > is a positi~e small constant controlling 

the convergence speed and the filter steady state performance. 

3) Estimation of weaker speaker's signaJ 

If the stronger speaker' s signal is not predominant, the residual of the 

L-ANC 

e(t,k) = X(t,k)-y(t,k) (4.9.3) 

is assigned to the weaker speaker as the separated signa!, otherwise zero 

value is assigned. 
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As seen from the above, the voiced-speech signal is first extracted if the 

co-channel signa! consists of one Voiced and one Unvoiced (V-UV) speech 

samples. 

Fig.4.7 shows one of such L-ANCs, where the stronger voiced-speech signal 

in the kth bin is supposed to be S (t,k) with pitch period p 
I I 

X(t,k) 

(S/W,P/P
2

) 

Fig.4.7 Linear Adaptive Noise Canceler at frequency-bin k 

The program flowchart in Fig.4.8 summarizes this algorithm. 

Remarks: 

1) Di stortion in the separated results 

e(t,k) 

The difference of local signa! energy and of the pitch periods between the 

two speakers are exploited by this algorithm. The larger these differences 

· are, the better speech separation can be expected. The overall quality of 

the separated speech is ensured by the collective performance of all bins. 

2) Selection of adaptive filter step-si ze constant JlÛ~ i > 

In the separation algorithm, one should pay particular attention to the 

selection of JlÛ~ i > to ensure that no divergence occurs at any bin. 

Otherwise, the signals in the diverged bin might cause a peak in the summed 

separated speech signals. The peak might be much higher than the normal 

recovered signa! amplitude, thus would damage the overall results. 

This algorithm has been applied for co-channel speech séparation with 

promising results. The details of the simulations and some results will be 

described in section 4. I 1. 
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bin k, and time instant t 

[ ___ x_(_t_,k __ >=T_s __ 1 _(t_,_k_l __ + __ s_2_(_t_,_k_l~ 
________ ± ____________________________ , 

[t mod L=O ? (L: the length of the short time duration) 

[ ___ e_s_t_i_m_a_t_:--r_l_o_c_a __ l __ T_I_R_(_t_: ~ 
I -~ 

[ ___ s--'1'---d_o_m_l.r·-n_a_n_t ___ ? ____ }~~ 
--------'-+ + _ __I 

[ P=P(~] [ P=P(~ 
-r--- --<f----==r--' --
~1 algorithm: with p delay 

f 
[ ___ s~1 __ d_o_mT_i_n_:_n_t __ ?_}-----~-~ 

[filter output y(t,k) ~ S
1 

(t,k)J [y(t,kl-~--S-2_(_t_,_k_)] 
=r + 

predominant?~S 1 (t,k)=O 

residual e(t,k) ~ S
2

(t,k) 

f 
t:=t+l 

FigA.8 Program flowchart of speech separation using linear-ANC 

159 



Ou•pter 4 

4.10. Speech enhancement via the T-FB domaio nonlinear NLMS ADF 

Although the approach described in previous section is promising, some 

problems still remained. The simulations show that, after separation, some 

audible background interference sound still exists. The interference sound is 

however no longer understandable. 

In order to further eliminate the background speech noise while maintaining 

reasonably good intelligibility and limited target speech distortion, speech 

separation via the T-FB domain Nonlinear Normalized LMS adaptive filtering has 

been investigated[3l]. 

* The basis ror nonlinear processing 

1) Although linear predictions can be used for speech signal estimation from a 

single speaker based on an AR (AutoRegressive) model, this model is no 

longer suitable for the summed speech signals. The summed signals, which 

can be described by a system with parallel AR models, are in general 

nonlinear. The following formula describes an ARMA model produced by two 

parallel AR models. 

2) 

uo V d + L d z" 1 

0 0 I 
I (4.10.1) + 

1+ I. ·i 1+ I. bz·i 1+ I. ·k az c z 
I j k 

A more accurate speech terminal model is associated with a NL one. Although 

in the simplified case, an AR model is usually used for the ideal-lossless 

vocal-tract, evidence shows that for the nasal and the fricative sounds, a 

NL model should be considered[81]. Furthermore, by including the radiation 

at the lips, the actual vocal-cord excitations and the loss of the 

vocal-tract, the speech model is the series conneetion of the three parts 

R(z), G(z) and V(z) as shown in Fig.4.9, which is nonlinear. 

Fig. 4.9 Nonlinear terminal-model of speech signals 
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• Possible benefit from the nonlinear processing 

As we wil! see, this nonlinear speech separation algorithm is associated 

with a T-FB domain NL-ANC, which is a direct application of the algorithm 

developed in section 2.3. This NL-ANC is associated with a second-order 

Volterra filter. In this case, the bandpass filtered signa] and its delayed 

version can be used as the primary and the reference input. Again, the 

algorithm is considered under a semi-ideal transform assumption, where all 

the quadratic filter coefficients associated with different bin-pairs are 

mutually independent. Because the linear filter part is decoupled from the 

NL part as mentioned in section 2.3, we wil! therefore only discuss the new 

benefit introduced by the NL part processing. 

By using the existing nonlinear correlations, some benefit can then be 

introduced. The following products of signa] components (nonlinear) can be 

introduced for the purpose of speech enhancement: 

1) Using signa] components from other different bins 

Because there exists nonlinear cross-correlations both along the bin and 

the time directions, signa! components of bin i can be estimated from the 

weighted sum of signa] component products from bin j and k. Suppose the 

local TIR at the ilh bin is not favorable to the concemed speaker (e.g.: 

the local TIR "' OdB, or a local weaker speaker under another predominant 

one), using linear estimation can introduce relatively large distortion in 

this case. However, one can select some nonlinear terms from other 

bin-pairs where the local TIR values are favorable to the concerned 

speaker. The products of two signa] components from a bin-pair (j,k), 

j+k=i, can be selected for the concerned-signal estimation at bin i. This 

means that part of the quadratic terms in the block-matrix H2i.k m 

formula (2.3.55) can be selected for estimating the signa! components of 

the concemed speaker, i.e., part of the following terms can be selected 

(2) 

Y •. i L. H2. (l,m) (X .X -R. (1-m)) 
. J.k n-1 . J n-m.k J.k 
1, k , 1 , m 

0 ~ l,m ~ (M-1), 0~ j.k,i :s;(N-1) and (j+k)=i (4.10.2) 

where M is the time-directional quadratic filter order associated with the 

concerned speaker, N is the total bin number, R. (1-m)= E(X .X ) 
J.k n-1. J n-m.k 
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and bin k with 

2)Using the products of two signa! components of a same bin but at different 

time instant. 

In this case, the nonlinear signal time-autocorrelations and the 

periodicity of voiced-speech signals are exploited. For a co-channel 

signal X .=s<I> + s< 2 > , with pitch periods p and p
2 

respectively, the 
0,.1 n .1 n. 1 1 

pi (i=l or 2) delayed nonlinear products can be used to enhance the signal 

component estimation of a concemed speaker. 

When the local TIR at the ilh bin is not favorable to the concemed 

speaker, one can profitably use the weighted sum of signal component 

products in another bin j (with favorable local TIR), having a time-delay 

equal to the concemed speaker's pitch-period pi, i.e, by selecting part 

of the following terms 

y< 2> = I H2 (l,m)(X .X - R .(1-m)) 
"·

1 0~. mS(M·l) JJ n·IJ n·rnJ JJ 

11 ·mI =p. 
I 

j=i/2, OSi,js(N-1) (4.10.3) 

where R .(1-m)= E(X .X .) is the estimated signal autocorrelation 
JJ n ·IJ n·mJ 

function of bin j with the lag (1-m). 

When the local TIR of bin i is weak positive with respect to the concemed 

speaker, one can enhance the desired signa! component estimation by 

selecting part of the following terms 

y< 2> = I H2 (l,m)~ I X . X . I (4.10.4) 
n,l 0~. mS(M·l) 1"1 n·l.l n·m,l 

11 ·mI =p. 
I 

* Description of the algorithm 

The speech separation using the NL-LMS ADF algorithm consists of two steps. 

First the stronger speaker's signa! will be estimated; next the weaker 

speaker's signals. Both steps will be described below. 

l)Estimation of the stronger speaker's signa! 
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The stronger speaker's signa! is estimated at each bin by using a similar 

method as in the L-ANC case. The only difference is that some quadratic 

terms are introduced. 

The quadratic terms { ~ I x n·m i x n-m i I (when the local TIR(t,i) is weak 
i" 2" 

positive), X . X . (when the local TIR(t,i/2) is favorable) 
n-m 1,iJ2 n-m

2
.i!2 

I 0~ ,m :o;(M-1), I m -m I =p, with p
5 

the pitch period of the stronger 
I 2 I 2 5 

speaker of 

{X x I n-1. j n-m.k 

the ith bin can be selected. The quadratic terms 

j+k=i and O:=:;j,k:=:;(N-1), O:::;I,m:o;(M-1) } from the bin-pair 

U,k) can also be chosen to estimate the signa! components of the stronger 

speaker at bin i, where the local TIR(t,j) and TIR(t,k) are favorable to 

the stronger speaker of the ith bin. 

This is expressed more precisely in formula (4.10.5) below. Suppose the 

stronger speaker at the ith bin is speaker A. The signa! components of 

this stronger speaker A are estimated by an NL-ANC1 which may contain part 

of the following terms 

M -1 
1\ A 
y .= L Hl (Al X .+ L Hz<A>(m,m-p )~I X .X .1 + 

n.1 m. 1 n-m-p .1 ....-< 1 ,I s n-m,1 n-m-p .1 
m = 0 s O.oon_ ( MA- I ) 5 

+ L HzCAl (m,m-p )(X X - R (p )) + 
~:=:; i /2.i/2 s n-m.i /2 n-m-p .i I 2 i/2.i/2 5 

0 (MA-l) 5 

+ L H2 <A>(l,m)(X . X - R (1-m)) 
:=:; <'n• J . k n-IJ n-m.k J.k 

0 I.m-"\lVIA -I) 

(4.10.5) 

j+k=i & o:o;j .k::::;(N-1) 

where X = S(A) + S(B) is 
n,i n, i n, i 

the 

period of the stronger speaker 

duration, Hl (AJ and Hz<A>(l,m) 
m. 1 J.k 

noisy signa! at bin i, P, is the pitch 

at bin in the present short-time 

are the linear and quadratic filter 

coefficients of speaker A associated with NL-ANC1, MA is the filter order 

along the time direction for speaker A . 

In the situation where one speaker's signa! is predominant, the bin signa! 

is assigned to the relevant speaker. 

2)Estimation of the weaker speaker's signa! 

Suppose the weaker speaker at the ith bin is B. Instead of assigning 
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residuals to the weaker speaker B in the L-ANC case, an NL-ANC
2 

is used. 

In the NL-ANC
2

, only the quadratic terms are chosen in order to reduce the 

disturbance caused by the residual of the stronger speaker signal (This 

residual sometimes can he relatively large). Thus an NL-ANC
2 

may contain 

part of the following items 

fl z 
n, i 

I Hz<B> (m,m-p.)~ I el .el I + 
o$m:s;(M .J) '·' n·m,t n·m·p,.,.t 

B 

+ I Hz<B> (m,m-p )(X X - R (p )) + 
Sm< i/2,i/2 w n·m,i/2 n·m·p j/2 i/l ,i/2 w 

0 _(MB· !) w 

H2(B)(I ,m)(X X - R (1-m)) 
J , k n·IJ n-m.k J.k 

(4.10.6) 

where el"·' are the residuals of NL-ANC
1
, H2~~ are the quadratic filter 

coefficients of an NL-ANC
2 

associated with weaker speaker B, MB is the 

filter order a long the time direction for speaker B, P w is the pitch 

period of the weaker speaker. 

The process of speech separation by the NL approach at arbitrary time 

instant t and bin k can he expressed by the flowchart in Fig.4.10. 
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bin k, and time instant t 

[ X(t,k)=S (t,k)+S (t,k) 
1 2 

[ t mod L=O ? 

[ estimat! 

(L: the lengthof the short time duration) ] 

+ 

local TIR(t~ 

[ NL-ANC
1 

algorithm: with p delay 

t 
[ __ s_1 __ d_o_m_i,nra_n_t __ ?_·~}----------~--------------l 

t + 

NL - ANC 
2 

algorithm: with p delay [ -----fr- ----------------------
[ estimate+speech S 2 (t,k) }------

1 
filter output~ ~ 2 (t,k)] [filter ~-----, 

t:=t+l 

Fig.4.10 Speech separation via the T-FB domain NL-ANC 
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Simulations perfonned by using this NL-ANC show a further improvement over the 

linear approach. Details of the simulations are included in the following 

section. 

4.11. Simulations and results 

The simu/ations, inc/uding separation of stationary synthetic speech 

signals, nonstationary synthetic speech sentences with constant and natura/ 

pitch via linear and nonlinear approaches, wil/ be described in detail. Some 

results are inc/uded. 

Simulations are performed to test if ' the algorithms are practically 

applicable and effective for speech separation. 

Available information for the speech separation 

In all these simulations, only the summed-signals are available, this is 

equivalent to a single receiver case. The co-channel signals are created by 

adding two different speech signals with properly selected Target-Interference 

Energy Ratio (TIR). There is no a-priori infonnation about the target and the 

interference signals. 

Common processing part shared by the different kinds of simulations 

The first step processing is same for all kinds of simulations, i.e., 

co-channel speech signals are split into frequency bins through a wide 

bandpass-filterbank. At each frequency bin , the local stronger/ weaker speaker 

is estimated in every frame. 

Pitch estimation 

For simultaneously estimating the two pitch values in summed stationary 

speech signals (or nonstationary speech sentences) with constant pitch values 

(or constant pitch contours), only the first part of the algorithm in chapter 

3 is needed. 

For estimating naturally changing pitch contours in summed-sentences, the 

V-UV frames need to be segmented first. This is because the HMM-based pitch 

contour estimation algorithm in chapter 3 does not yet include the unvoiced 

situation. The voiced and unvoiced segments can be decided by other V-UV 
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detection algorithms, such as the signal-energy and zero-crossings based V-UV 

detection approach[81]. After the segmentation, the algorithm described in 

chapter 3 can be used to estimate pitch contours of the two speakers. 

However, in order to evaluate the adaptive speech separation part and the 

pitch estimation part separately, the pitch contours estimated from single 

speech sentences will be provided to the speech separation part temporally. 

The three parts of the simulations 

In the first part, the speech separation algorithm is applied to stationary 

synthetic speech with constant pitch period, in order to observe the 

separation resu\ts after a sufficient number of iterations. 

In the second part, synthetic speech sentences with constant pitches are used 

for speech separation, by the linear and nonlinear approaches. 

It is a relatively simple situation compared to the natura\ speech sentences 

having slowly changing pitch frequencies. The purpose of simulations m this 

part is three-fold. First, to test if the convergence of the algorithm is fast 

enough in adaptation to the time-varying vocal-tract parameters of speech 

sentences. Second, to find out if the quality of separated results is 

acceptable. Third, to see if the quality of the separated speech sentences has 

any apparent difference among the linear and nonlinear approaches. 

The third part is associated with the preliminary tests on separation of 

synthetic sentences with naturally changing pitch frequencies. In these tests, 

the co-channel speech signals are obtained as the sum of the two synthetic 

speech sentef!Ces, which are produced by separately using an LPC synthesizer 

with the estimated single speaker's pitch contour as excitations. The pitch 

contours which are provided to the speech separation system are replaced by 

their estimated values from the single-speaker's signals, in these tests in 

order to distinguish the distortion introduced by the pitch estimation part 

and the speech separation part. 

(a) Simulations on separating stationary synthetic voiced-speech signals 

(al)via T-FB domaio linear LMS adaptive noise canceler 

In these simulations, we wil\ separate summed stationary synthetic speech 
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signals, in order to check if the algorithm works effectively. 

Two stationary synthetic speech signals, each containing three formants 

with a specific pitch, are added with properly chosen TIR between 0 dB and 

±12 dB. The only signa! available to the separation algorithm is the 

summed-signal. The pitch information is obtained from the pitch estimation 

algorithm. 

In the simulations, the synthetic speech signa! is produced by passing 

perioctic excitations to a filter with three given formant frequencies and 

bandwidths. The speech signals produced are then stored as a speech file. 

In each simulation, two synthetic speech signals are added by a 

pre-selected TIR value. Before taking the STFf, each frame of speech 

signals is Hamming windowed with the selected size L=80. Since the 

fullband speech signa! bandwidth of the stationary signals is selected 

between 0-4 KHz, and the sampling frequency is f,= 8 KHz, the equivalent 

bandwidth of each bandpass filter equals 2B=4f,fL=400 Hz. The total filter 

number is chosen N=lOO to keep enough redundancy. The bandpass filters are 

uniformly distributed. The outputs of the bandpass filters are obtained by 

taking the real part of the data after the DSTFf and the bandpass 

shifting. The same step-size constant J.!O=J.!Oi=O.l is chosen for all bins in 

the adaptive filter. 

In the following, several separated results are included. Table 4.1 lists 

the parameters (the pitch values, the formant frequencies fi and the 

associated bandwidth Bi, i= 1..3) of the synthetic stationary speech signa! 

of a single speaker. These parameters will be needed as references in the 

following figures. Fig.4.11. and Fig.4.12. show the speech waveforms and 

the LPC spectra from the original, the summed and the separated speech 

signals, respectively. The TIR is selected OdB and -12dB, respectively. 

synthetic formant 1 formant 2 formant 3 pitch 

speech f1 (Hz) 81 (Hz) f2 82 f3 83 (samples) 

S! 730 50 1090 75 2440 100 40 

S2 270 50 2290 75 3010 100 47 

S3 420 50 1550 75 2400 100 47 

Table 4.1 Parameters of the synthetic stationary voiced-speech signals 
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Fig.4.11 (1) Separation of summed stationary speech signals 

by the T-FB domain linear-ANC (TIR = OdB) 
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Clean speech signa! 
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Fig.4.12(1) Separation of summed stationary speech signals 

by the T-FB domain linear-ANC (TIR = -12dB) 
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(a2)Some comparisons 

Speech intelligibility enhancement via speech separation using a Harmonie 

Magnitude Suppression (HMS) approach[37} has proved its usefulness in the 

negative dB TIR situation. This method becarne one of the main trends for 

speech separation, as mentioned in section 4.3. 

In order to compare the results obtained from these two methods, similar 

simulations as (al) are performed using the HMS technique at TIR=-12dB. In 

the simulations, the size of each analysis frame is selected L=256 

samples, with sample frequency f,=8kHz. A harnming window is used before 

FFf transform. Thus, the equivalent bandpass filter bandwidth is 

2B=4f,fL=62.5Hz (relatively to pitch frequencies 170.2 and 200 Hz, it is a 

narrowband filterbank). Fig.4.13 includes two simulation results obtained 

from using the HMS method (using the same summed speech signals as 

those in Fig.4.12). These simulation results indicate that stationary 

speech signal separation by the T-FB domain Linear-ANC algorithm in 

negative dB TIR are slightly better than that by the HMS method. 

(a) 

:0·2 

LPC spectrum 

(b} 
10' .--~----~~--.,...-~-.., 

!0' 

!01 

!0' 

!0'' 

!O' ' 0 500 1000 1500 2000 2500 3000 3500 4000 !O'' 0 500 1000 !500 2000 

Frequency (Hz) 

Fig.4.13 Separation of summed stationary speech signals by the 

Harmonie Magnitude Suppression (HMS) technique (TIR=-12dB) 

(a) Separated weaker f
3 

from summed speech (f
3 
+f

1
) in -12dB 

(b) Separated weaker f
1 

from summed speech (f
1
+f

2
) in -12dB 
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Remarks: 

In the simulations of the HMS-based separation approach, there is a 

speetral peak around 3400 Hz, which is the least common multiple of the 

two pitch harmonies. Consequently, the HMS-based approach can not resolve 

these two harmonies according to its separation principle. While in the 

T-FB domain L-ANC approach, in some of the cases there is also a smal! 

peak around 3400 Hz. In principle, this distortion is introduced by poor 

local TIR values (close to 0 dB). 

(b) Simulations on separating summed-synthetic speech sentences with constant 

pitches 

(bl)via the T-FB domaio linear Adaptive Noise Canceler (L-ANC) 

Two synthetic sentences with different but constant pitches are added with 

a selected global TIR between 0 dB and ±12 dB. The local TIR is calculated 

in each frame. The short-time signa! energy at each bin is also 

calculated, which is then used for normalizing the filter step-size. The 

constant filter step-size is chosen jlO=Jl.=Ü.l for all bins. The hamming 
I 

window size is selected as L=87. The bandwidth of the speech signals is 

0-5KHz, with the sample frequency f,=lOKHz. Thus the equivalent bandpass 

filter bandwidth 2B=4f,IL =460 HZ. The number of bandpass filters is 

chosen N=lOO. These filters are designed to cover only the signals within 

the frequency band 0-4kHz, in order to decrease the calculation burden. 

Two groups of weight vectors, each is associated with a specific speaker, 

are used. The filter weights are updated continuously across the 

successive frames, if there is no alternation of dominant speaker. 

Simulation results showed that the T-FB domain LMS type of L-ANC can adapt 

quickly to speech sentences. As examples, Fig.4.14 shows the spectrograms 

of speech sentences before and after the separation, where the TIR =OdB. 

From the spectrograms, it follows that the intelligibility of the 

separated speech is well maintained. Informal listening tests also showed 

intelligibility enhancement of the target speech. 
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(b2)via the T-FB domaio NonLinear Adaptive Noise Canceler (NL-ANC) 

Similar to (bl), the co-channel speech signa! is obtained by summed 

synthetic sentences with different constant pitches and a given TIR. For 

each speaker, there is a corresponding set of filter coefficients. The 

continuity of the filter weight coefficients associated with each speaker 

k is considered between the successive frames. The coefficients are 

updated continuously across the frames if there is no alternation of the 

dominant speaker in the concemed bin. However, if the dominant speaker 

changes between the successive frames, the filter coefficients are then 

initialized before starting a new update. 

In the practical algorithm for the simulations, only signals in the same 

bin are considered as the quadratic terms in the NL-ANC. 

At bin i, the linear and quadratic weights are updated separately as 

follows 

Ht<• ~(n+l) = Ht<• >(n) + 2 11l.el .X . . 
J, I J, 1 I n , I O·j-p J 

s 

j=O,l..M -1 
s 

(4.11.1) 

m<·~(j.j-p ,n+ 1) = m<•>(j,j-p ,n) + 
1,1 I 1, 1 S 

+ 2 111.sign(X . .X . .)el . ~ 1 X .. X 
1 n·j.l n-J-p,l n,1 n-J,I n -j-p,i 

s • 

j=O,l..M -1 
s 

(4.11.2) 

Hztw>(j,j-p ,n+ 1) = Hztw>(j,j-p ,n) + 
1,1 w 1,1 w 

+ 2 J.12isign(eln-j .ieln-j-p . i)e2n. i~ leln -j. ieln-j-p . i I 
w w 

j=O,l..M -1 
w 

(4.11.3) 

where 111.= 1110/(M E(X 
2 

)), 
I I S n , I 

112.= 1120/(M E(el 
2 

)), 1110.=1120.=0.1, P. and 
I I W n, I I I I 

M. are pitch period and 
I 

the quadratic filter order along the time 

direction at bin i, respectively (i=S,W corresponds to the stronger and 

the weaker speaker of bin i), X .• el . and e2 . are the bandpass 
n.• n,a n,1 

filtered signa!, the residuals of NL-ANC
1 

and NL-ANC
2

, of the ith bin at 

time instant n, respectively. 

The following output of the NL-ANC
1 

is associated with the estimated 

signa! component of the stronger-speaker at bin i, 
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Ms -I 
L Hl(s) X + 

j = 0 
J, I n·j ·p ,I 

s 

Ms- I 

+ I. H2<•>u,j-p) sign(X . X .) ~IX . X I 
j;;;: 

0 
1,1 s n~J-p/ n-J,J n-J-p s, i n-j, i 

(4.11.4) 

While the following output of the NL-ANC
2 

is the estimated signa! 

component of the weaker-speaker at bin i, 

Mw-1 

Z _= I. H2(wJU.j-p )sign(el _ _el .. )~ I el . .el .. I 
0,1 j =Ü 1,1 S 0-j-pw,l 0-J,I D·J·pW,l D·J, I 

(4.11.5) 

Similar simulations are done by using the T-FB domain NL-ANC. Fig.4.15 

shows the speech spectrograms of the clean speech sentences, the summed 

speech sentence at TIR=-12 dB, and the separated sentence of the weaker 

speaker, respectively. 

Speech Spectrograms 

(a) S
2 

+ S
1 

in -12 dB 

(b) Separated weaker speech signal S
2 

from (a) 

Fig.4.15 Separation of summed synthetic speech sentences 

with constant pitches by the T-FB domain nonlinear-ANC 

(TIR = -12dB, p =40, p =47 samples, f =10kHz) 
I 2 S 

(See Fig.4.14 for the clean speech S
1 

and S) 
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Compared with the simulation results obtained from the T-FB domain L-ANC 

approach, 

attenuates 

it has been indicated 

the interference sound 

distartion on the target speech signals. 

that the 

at the 

NL-ANC approach further 

expense of slightly more 

(c) Simulations on separating speech sentences with natura! pitches 

Prelirninary simulations have also been done for separating speech 

sentences with natura! pitches from two females at OdB TIR. Informal 

listening tests indicate that there is some kind of reverberation 

di stortion introduced to the separated senten ces, although the 

intelligibility of the separated sentences is rather good. 

This distartion may be due to inaccurate pitch values m those 

voiced-transition frames, where pitch values between the two successive 

frames change (relatively) quickly. Consequently, this equals to using 

biased pitch period delayed signals for the NL-ANC. Another reason rnight 

be the close pitch values of the two female pitches, which leads to more 

distartion in the separated results. Especially, there present many 

intercross frames (frames with two similar pitch values) in the testing 

sentence, which are non-separabie by this algorithm. 

Summary of the simulations 

Simulation of separating the stationary speech signals between OdB and ±12 

dB showed excellent results. Compared with the results of the HMS-based 

approach at -12 dB, we obtained similar or even slightly better quality. 

Simulations of separating synthetic speech sentences with constant pitches 

at TIR between OdB and ±12dB using the T-FB domain linear-ANC and 

nonlinear-ANC have also been done. 

The T-FB domain LMS ADF algorithms showed good tracking capability in 

adaptation to real speech sentences having time-varying vocal-tract 

parameters. 

The Iinear approach provided good intelligibility of the separated sentences, 

although there is still some audible background interference sound. 

The corresponding NL approach further impraves the separated results by 
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attenuating most of the interference sound, at the price of a slightly 

increased dislortion of the target speech and more calculation burden for the 

system. 

Simulation of separating summed speech signals from two speakers with 

natura/ pitches did yield reasonable results with good intelligibility but 

with reverberation. We noticed that the two pitch contours may often 

intercross and occupy almost the same dynamic range. 

4.12. Discussion on future work 

The NL approach shows great potential for intelligibility separation of 

speech. As mentioned in section 4.1 0, properly selection of NL terms can 

improve the results. In our simulations, we use only the pitch delayed signa! 

components from the same bin as quadratic terms because of the calculation 

burden and computer memory. 

As mentioned in section 4.1 0, a more general method can be introduced by using 

(4.10.5) and (4.10.6). The quadratic filter weights can be selected adaptively 

according to the favorable local TIR values to .the concerned speaker. The 

linear filter weights can also be adaptively selected. The constraints to the 

linear filter weights selection can be added. In the case of (relatively) poor 

local TIR, one can either select a very limited number of linear filter 

weights, or neglect the linear part totally. By doing this, one can expect to 

obtain more benefit and some improvement from the separated results. 

For the natura! speech sentence separation, a more accurate use of the 

estimated pitch values is needed, especially among the frames liaving fast 

pitch change. For the signals between the two successive frames, perhaps a 

medium pitch value should be considered. Meanwhile, one should avoid using a 

high-order filter along the time-direction, as this can cause reverberation 

distortion. 

For improving the filterbank structure, a Discrete Wavelet Transform (DWT) 

type of filterbank can be a reasonable choice. By arranging frequency 

bandwidth in a logarithmic scale and using the different time-resolution at 

different bins, the DWT type of filterbank might produce better subjective 

results. Thus, further listening impravement on the separated speech may be 
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obtained. 

4.13. Summary and conclusions 

We have investigated the speech intelligibility enhancement problem via a 

new speech separation system. This system uses single-input (one receiver) 

co-channel speech signals without any a-priori knowledge about the target and 

the interterenee speech signals. 

This speech separation system possesses the following main original 

features: 

# Speech separation is perfonned by the time-frequency bin domain adaptive 

filtering on the decomposed (nonstationary) signals, rather than the 

conventional one-dimensional processing in the frequency-domain or in the 

time-domain; 

# It is consistent with the human auditory global processing; 

# It concentrates on exploring local infonnation for separating co-channel 

speech and for estimating pitch contours. For example, local signa! 

component time-correlations, short-time local signa! energies and TIRs are 

used for speech separation; the coincidence appearance of local infonnation 

involved in the signa! envelopes and the signa! "carriers", the a-priori 

general knowledge of pitch contours and the stochastic models of pitch 

contours are used for pitch contour estimation; 

# It has a highly parallel structure, which might be attractive to fast 

hardware implementation. 

The two speech separation algorithms described can be regarded as direct 

applications of the T-TB domain linear and nonlinear NLMS ADF algorithms in 

chapter 2. 

We have described in detail the separation system and the algorithms via 

linear and nonlinear approaches. We have analyzed the benefit of using NL 

filter part. In those bins associated with poor TIRs, linear filter weights 

show a slow convergence. NL approach can be applied to help the speech 

separation in those bins. 

Simulations of co-channel interference speech rednetion by both the linear 

and NL based approaches over a range of TIR between -12 dB and +12 dB have 
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been done on the summed stationary speech signals with constant pitches, and 

summed speech sentences with constant pitches and natura! pitches. Analysis of 

the separated results by spectra, spectrograms, and infonnal listening tests 

have shown that all these algorithms provide good intelligibility enhancement 

of the target speech signals. Compared with the results obtained by the linear 

and NL associated approaches, the NL one has brought further improvements on 

attenuating most background interference sound with slightly increase 

distonion of the target speech. 

From the above simulations, we can conclude that the T-FB domaio NL 

adaptive filtering is an effective approach for speech separation over a wide 

range of TIR. 

However, the research on speech separation has been concentrated mainly on 

finding the proper techniques and methods, with off-line simulations and 

processing. The results are still limited to certain laboratory conditions, 

and the co-channel speech signa\ is synthetic and is constrained to the case 

of two-speakers. Therefore, further improvement is still needed before this 

work can be put into practical application. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

The investigation contained in this dissertation consists of three parts: 

• Linear and nonlinear (NL) adaptive filters for nonstationary signals; 

• Robust pitch contour estimation from noise contaminated speech; 

• Target-speech intelligibility enhancement from co-channel speech by adaptive 

separation. 

Conclusions 

• On LMS adaptive filters 

Linear and nonlinear LMS filters in the time-transform domain have been 

explored. We have developed new time-transform bin domain linear and 

nonlinear Normalized LMS (NLMS) adaptive filtering algorithms. 

For the NL filter version, a second-order Volterra kemel has been selected. 

A Gaussian restrietion for the filter input (time-domain) data is needed. In 

particular, we have investigated the algorithms under a "semi-ideal" 

transform assumption. 

The following conclusions can be drawn from this part of the research: 

-If an ideal window function in the DSTFT or the DWT is selected, the 

transform is associated with a "semi-ideal" one. 

-For a linear version, because of the signa! partial decorrelation under the 

semi-ideal transform assumption, the filter becomes N-independent 

sub-filters of different bins, each sub-filter having order M along the 

time-direction. 

-For the nonlinear filter version, the linear and the quadratic filter parts 

are decoupled in a T-TB domain under the Gaussian time-domain data 

restriction. 
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The linear filter part thus behaves the same as that of the linear version. 

The quadratic filter part becomes a group of independent sub-filters at 

different bin-pairs, each having order M along the time-direction, if the 

semi-ideal transfarm assumption is satisfied. 

Much reduction in the number of quadratic filter coefficients can be 

obtained, in relation to the base vector characteristics in each specific 

domain. 

-From the relations and similarities among the linear and nonlinear 

normalized LMS adaptive filtering algorithms in the T-TB and in the 

transförm-domain, it can be concluded that the T-TB domain nonlinear 

normalized LMS adaptive filtering algorithm is a generalized form. Each of 

the other three versions can be regarded as a specific degeneraled form. 

-Though most transfarms are not semi-ideal, a properly selected orthogonal 

transfarm can decompose signals into nearly orthogonal and non-overlapping 

bins. Thus, the algorithms under the serni-ideal transfarm assumption can 

give good approximate solutions for those nearly serni-ideal cases. 

-lt is necessary to introduce such T-TB domain filters, because they are 

more adequate for processing nonstationary signals, and because they can be 

used also for reducing the filter output time-delay, when signals are 

associated with a long impulse response length. 

• On the RLS adaptive filters 

Because of the relatively fast convergence speed, time-domain Linear/ 

nonlinear RLS filters have been explored. We have derived two new 

algorithms, an adaptive-sliding-window RLS (linear) covariance lattice 

filtering algorithm and an adaptive-sliding-window RLS nonlinear algorithm. 

The following conclusions can be drawn from this part of the research: 

-The RLS adaptive-sliding window covariance lattice (linear FIR) filtering 

algorithm is an extension of the existing constant-window-length version. 

Such an adaptive-window is more suitable than the existing algorithms for 

filtering nonstationary signals with non-constant changing time-varying 
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statistics. 

-The RLS nonlinear (Vol terra type FIR) filtering algorithm with an adaptive 

sliding window introduces finite 

is more suitable for filtering 

prewindowed NL filter version. 

data-memory. Consequently, this algorithm 

nonstationary signals than the ex.1stmg 

Especially, when the nonstationary signals 

are associated with a time-varying NL model having non-constant changing 

speed, this algorithm provides better tracking capability. 

• On the robust pitch contour estimation 

Pitch contour estimation from noisy-speech signals has been investigated. A 

new robust pitch contour estimation algorithm has been developed . It is a 

combination of a coarse-step for candidate estimation and a detailed-step 

for HMM-based Maximum Likelihood pitch contour estimation. 

The following conclusions can be drawn from this part of the research: 

-Pitch information ex.ists within each speech frame as well as among the 

successive speech frames. Hence, it is unproper to determine the pitch 

period based on each speech-frame in isolation. It is suggested that a 

group of weighted pitch candidates can be estimated from each frame. 

-The new pseudo-perceptual pitch estimation algorithm, using local 

information from both the signal "erivelopes" and from the signal 

"carriers", is robust for pitch candidate estimation from noisy speech. The 

information from the signal envelopes and the signal carriers is found to 

complement each other. The method is consistent with the auditory global . 

speech analysis without mimicking its detailed behavior. 

-It is unproper to use simple pitch contour smoothing algorithms without 

adding general a-priori knowledge about pitch contours, if the speech is 

"ex.tremely" noisy. 

-The Hidden Markov Model (HMM) is found to be a proper stochastic model for 

pitch contours. The fact that the parameters in each model can be trained 

from a large set of pitch contours from clean speech signals made it 

possible to use a-priori general knowledge. The veil between the output 

185 



O!apter 5 

probabilities and the states in the HMM makes the algorithm robust against 

noise disturbance. 

-The HMM-based Maximum Likelihood estimation seems a proper approach for 

estimating pitch contour from the weighted candidates. 

• On target-speech intelligibility enhancement from co-channel speech by 

adaptive separation 

Target-speech intelligibility enhancement is investigated for the co-channel 

speech signa! where the interference noise is from a competitive speaker. A 

new approach of the Time-Frequency Bin (T-FB) domain speech separation is 

developed, by applying the above T-TB domain linear/nonlinear NLMS adaptive 

filtering algorithms and the above pitch contour estimation algorithm. 

Several conclusions can be drawn from this part of the research: 

-Co-channel speech separation performed in the T-FB domain is more suitable 

than performed in the frequency-domain or the time-domain, from both the 

signa! processing point of view and from the human speech perception point 

of view. 

-It is an approach consistent globally to the human auditory temporal-p/ace 

processing. 

-In the T-FB domain, there are more possibilities for a signal processing 

algorithm to explore local differences between the signal and the 

interference, and to consicter co-channel signal components which evolve 

with time. 

-Theoretically, a time-domain LMS algorithm has been proved to converge to 

the weights of a dominant voiced-speaker in the summed signals. However, in 

practice it is generally not possible to have a consistent domination over 

the whole speech spectrum due to the large dynamic range. 

-It can be deduced from [2] that a time-frequency bin domain LMS adaptive 

filtering algorithm converges at each bin to a locally dominant speaker. 

Thus, it can be applied to the separation of summed voiced speech. 
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-Co-channel speech separation via the T-FB domain linear/nonlinear adaptive 

noise canceler has been proved to be able to enhancc effectively and 

intelligibly the target-speech over a range of TIR between -12dB and +12dB. 

Compared with the linear version, the NL one attenuates more interterenee 

sound with slightly more distortion on the target speech. 

Future work 

From the investigations described in this thesis, some possible directions for 

future work are found: 

• On the T-TB domain linear/nonlinear NLMS ADF algorithm 

- Further investigation on the T-TB domain linear/nonlinear NLMS ADF 

algorithms can be concentraled on the dynarnic behavior of these filters and 

their comparisons. 

To investigate the error introduced by using the algorithms under the 

serni-ideal transform assumption to other non semi-ideal transform cases. 

- To compare the difference between using the linear approximate solution and 

using the nonlinear solution for some nonlinear problems. 

• On the HMM-based pitch contour estimation algorithm 

To include the unvoiced state in the HMM, in order to handle the transitions 

between voiced and unvoiced frames. 

- To introduce the forward-combining-backward search in order to better handle 

the pitch crossing points of pitch contours. 

• On the co-channel speech separation algorithm 

- To study the adaptive selection of the quadratic filter weights: to select 

quadratic weights associated with these bin-pairs, which satisfy the 

frequency constraints and have favorable local TIR values. 
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- To study the adaptive selection of the Jinear filter weights: to select 

linear tenns only associated with good local TIR condition. 

- To test further speech separation on natura) sentences. In order to obtain 

improved results, more accurate use of the estimated pitch value is needed, 

especially among those frames having quick pitch change. For signals between 

the two successive frames, a medium pitch value is perhaps a proper choice. 

Meanwhile, one should avoid using a large filter order along the 

time-direction to prevent reverberation distortion. 
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CHAPTER 6 

APPENDIX 

In the following, the fonnulas associated with the traosfonn-domain aod the 

time-traosfonn bin domaio linear aod nonlinear LMS adaptive filtering 

algorithms obtained from sections 2.2 aod 2.3 are listed in Table A. I . Table 

A.2 lists the corresponding relations between the variables in a 

traosfonn-domain aod a T-TB domain. By replacing the T-TB domaio variables 

with the corresponding traosform-domain ones, the T-TB domaio algorithm then 

becomes the corresponding transfonn-domain one, aod the vice versa. Because a 

T-TB domaio algorithm cao degenerate into a corresponding traosfonn-domain one 

by setting M=l, aod because a nonlinear filter cao degenerate into a linear 

one by simply negleering the nonlinear part, a T-TB domaio nonlinear LMS 

adaptive filter is thus a generalized form. This relation is shown 

schematically in the following Fig. A.I. 

transform-domain 

linear ADF 

r T::: •• , 
time-transform bin 

domain linear ADF 

neglect quadratic 

filter part 

neglect quadratic 

filter part 

transform-domain 

nonlinear ADF 

r 
u se 

TABLE A.2 

time-transferm bin 

domain nonlinear ADF 

Fig.A.l Relations among the different LMS adaptive filters 
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transform-domain I transform-domain 

linear ADF nonlinear ADF 

Z =Wx 
- n - n 

H =Wh H 0 >=Wh( 1 l H( 2 l=Wh( 2 )WT 
- n -n - n -n n n 

I 

H =R- 1P I H 0 )= R' 1P 
- o pt zz- zd - opt zz -zd 

H =H + 2~-te A-2z 
- n+ I - n n - n 

A 2=diag{ I z 1
2 ... 1 z 1

21 
nl nN 

1J.=diag[1J.01 ~-t02 ... IJ.ON] 

0<~-tO~l j=l..N 
J 

e = d -y 
n n n 

j=l..N 

IJ.20 l ,l 1J.20 ! .2 ... 1J.20 I ,N 

112 = ~-t202.1 ~-t202 ,2 ... 1J.202,N 

~-t20 .. =~-t20. ' 0<~-t20 .~1/2 
IJ )J IJ 

1\ "(I) "(2) 
Yn = Yn + Yn 

Table A. I Formulas of LMS linear and nonlinear adaptive filters 

in a transform- and a T-TB domaio 
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T-TB domain 

linear ADF 

'l = W2 X 
n n 

H = W2 6 
o n 

T-TB domain 

nonlinear ADF 

Hf= W2 fit H2 = W2 h2 W2T 
n n n 

Hf =R- 1 P 
opt ZZ -Zd 

H2 = 1/2 R- I R R- I 

opt zz dzz zz 
r---------------------~-------------------------

A: = A: + 2 1.1 e A- 2'l 
n+l n n n 

jl= diag[jlOt"".jlON]®IM 

(0<1.10.~1) j=l...N 
J 

Hf = Hf + 2 1.11 e A-2'1. 
n+l n n n 

(0<1.110.~1) j=l..N 
J 

jl20 I ,I jl20 I ,2 ... jl20 I ,N 

jl2 = 1.1202.1 ll202.2 ... jl202.N ®IM 

jl20N,I jl20N,2 ... jl20N.N 

jl20 .. =jl20.. 0<jl20 .. ~1/2 
IJ J~ IJ 
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transform-domain filters T-TB domain filters 
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- n -n n n 

1--- ----- --- ------------

H<2l H2 
n n 

f..---------··-- ~ ... ...--- ----------~---· 

R 
zz 

(n) R .. ..(n) 
zz ---·--- --------

~Jn) ~-+ (n) 
Zd 

R R 
dzz -+-+ 

dZZ 

lll jll®IM 
~ -· --- ------ - - -- ---- ·- -- ---- -- - .. .... - -- - ----- - - - -- - --

ll2 jl218lJM 
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Az A
2
18l(MIM) 

---· 
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-
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the time-domain 
~--- . 

x x 
-n n 

--

h< 1\or h ) 

I 
fit (or h) 

-n -n n n 
-· 

I 

h(2) 

I 
h2 

n n 

Table A.2 Corresponding relations between the 

variables in a transform~ and a T-TB domain 
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CHAPTER 7 

ADF 

AGC 

AMDF 

ANC 

AR 

ARMA 

ASR 

BM 

BPE 

oer 
DFf 

DSB 

ABBREVIA TION LIST 

ADaptive Filtering 

Automatic Gain Control 

Average Magnitude Difference Function 

Adaptive Noise Canceler 

Autoregressive 

Autoregressive Moving Average 

Automatic Speech Recognitiom 

Basilar Membrane 

Backward Predierion Error 

Discrete Cosine Transform 

Discrete Fourier Transform 

Double SideBand 

DSTFf Discrete Short Time Fourier Transform 

DSP Digital Signal Processor 

DP Dynarnic Programming 

DWf 

FFT 

FIR 

FPE 

HMM 

HMS 

i.i.d. 

IIH 

IIR 

Discrete Wavelet Transform 

Fast Fourier Transform 

Finite impulse response 

Forward Predierion Error 

Hidden Markov Model 

Harmonie Magnitude Suppression 

independent identical distribution 

Interspike Interval Histogram 

Infinite Impulse Response 

KL T Karhunen-Loeve Transform 

L-ANC Linear Adaptive Noise Canceler 

LMS Least Mean Squares 

LS Least Squares 

MA Moving Average 

MAP Maximum A-Posterori 
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Abbreviation üst 

MCESA Minimum-Cross Entropy Speetral Analysis 

ML Maximum Likelihood 

MMSE 

MSE 

NL 

Minimum Mean Square Error 

Mean Square Error 

NonLinear 

NL-ANC NonLinear Adaptive Noise Canceler 

NLMS Normalized Least Mean Squares 

pdf probability density function 

RLS Recursive Least Squares 

SNR Signa! to Noise Ratio 

sw Sliding Window 

TB Transform Domain 

T-FB Time-Frequency Bin 

TIR Target to Interference Ratio 

T-TB Time-Transform Bin 

WL Window Length 

WHT Walsh-Hadamard Transform 
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Samenvatting 

SAMENVATTING 

In vele praktijktoepassingen is het nodig de verstaanbaarheid te verbeteren 
van een spraaksignaal ingebed in ruis. De complexiteit van de vereiste 
signaalverwerking blijkt sterk afuankelijk te zijn van de statistische 
eigenschappen van de storende ruis. In dit proefschrift zullen we de situatie 
bestuderen waarin een tweede spraaksignaal de ruisbron vormt. 

Daartoe ontwikkelden we nieuwe lineaire en niet-lineaire adaptieve­
filteringstechnieken evenals krachtige algoritmen voor het schatten van het 
toonhoogteverloop (de "pitch"). Deze technieken en algoritmen worden toegepast 
voor het verbeteren van de verstaanbaarheid van spraaksignalen in een 
gemeenschappelijk kanaal. Ze zijn daarnaast bruikbaar voor een breed gebied 
van toepassingen. 

A. Adaptieve-filteringstechnieken 

In vele gevallen zijn de te filteren signalen niet-stationair, d.w.z. ze zijn 
geassocieerd met tijdsafuankelijke lineaire en niet-lineaire systeemmodellen. 
In ons geval blijkt het onvoldoende om de signalen slechts in het tijddomein 
of slechts in een transformdomein te filteren (in plaats van in een 
tijd-transformdomein). Daarnaast kan de lange impulsresponsie van een signaal 
een hoge filterorde in het tijddomein vereisen. Dit kan leiden tot grote 
tijdvertragingen in de filteruitvoer. 

Hierdoor gemotiveerd hebben we ons gericht op LMS-type filters, bekend om hun 
eenvoud en robuustheid. Nieuwe LMS-type lineaire en niet-lineaire (2e orde 
Volterra) adaptieve filters voor een tijd-transformdomein zijn ontwikkeld 
onder de aanname van Gaussische data in het tijddomein. 

We hebben de algoritmen voomarnelijk beschouwd onder de semi-ideale-trans­
formatievoorwaarde . Een semi-ideale transformatie definiëren we als een 
ééndimensionale orthogonale transformatie die de signalen projecteert op 
orthogonale niet-overlappende deelruimten (de zogenaamde "bins''). Onder deze 
aanname zijn de filtercoëfficiënten gedecorreleerd langs de "bin"-richting. 
Dat wil zeggen dat de lineaire filtercoëfficiënten voor elke "bin" onderling 
onafuankelijk zijn en de kwadratische filtercoëfficiënten voor elk "bin"-paar. 

Het bestaan van een dergelijke semi-ideale transformatie wordt aangetoond. Een 
speciale keuze van de vensterfuncties in de "Discrete Short Time Fourier 
Transform" of in de "Discrete Wavelet Transform" leidt tot een semi-ideale 
transformatie. Bij de keuze van een bijna semi-ideale orthogonale trans­
formatie, kan het tijd-transformdomeinalgoritme onder de semi-ideale aanname 
gebruikt worden als een goede benadering. 

De diverse uitdrukkingen voor de lineaire en niet-lineaire algoritmen in het 
tijd-transformdomein en in het transformdomein worden met elkaar vergeleken. 
Hieruit blijkt dat het "time-transform bin domain nonlinear normalized Least 
Mean Square adaptive filtering" algoritme de generaliseerde vorm is die alle 
andere algoritmen bevat. 

Naast het LMS-type hebben we ook RLS-type lineaire en niet-lineaire filters 
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onderzocht. RLS-type filters vertonen in het algemeen een snelle convergentie 
en voeren de kleinste-kwadratenberekeningen exact uit, zonder dat de aanname 
van Gaussische (tijddomein) invoerdata vereist is. 

Twee nieuwe RLS-type adaptieve-filteringsalgoritmen, met een adaptief glijdend 
venster, voor filtering in het tijddomein zijn ontwikkeld: zowel een lineair 
als een niet-lineair filter. Deze algoritmen bieden flexibele-volg­
mogelijkheden voor het adaptief filteren van niet-stationaire signalen. De 
RLS-type filters zijn vooral zinvol in het geval van signalen met een 
niet-constante snelheidsverandering van de tijdsafhankelijke statistische 
eigenschappen. 

B. Robuste schatting van het toonhoogteverloop 

We hebben een algemeen geraamte gebouwd voor het schatten van het 
toonhoogteverloop van een spraaksignaal ingebed in ruis. Een ruwe stap waarin 
een aantal kandidaten voor de toonhoogte worden bepaald gevolgd door een 
gedetailleerde stap waarin stochastische modellen worden gebruikt voor het 
kiezen van het meest-waarschijnlijke toonhoogteverloop. Dit twee-staps­
algoritme is ontworpen om gebruik te kunnen maken van de informatie in de 
"intra and inter speech frames". Het algoritme maakt gebruik van de algemene 
kennis over optredende toonhoogteverlopen. 

Een nieuw algoritme voor de schatting van toonhoogtekandidaten (dat enige 
overeenkomst vertoont met de menselijke waarneming) maakt gebruik van de 
plaatselijke signaaldraaggolven en van de plaatselijke signaalomhullenden. De 
kandidaatselectie is vervolgens gebaseerd op het gelijktijdig optreden van 
toonhoogte-gecorreleerde informatie over alle frequentie-"bins". 

Een nieuw algoritme voor het schatten van het toonhoogteverloop, gebaseerd op 
een "Hidden Markov model", benut de correlatie van de toonhoogteperioden in 
een aantal opeenvolgende "frames" (toonhoogteverloop). Een stochastisch model 
beschrijft de toonhoogtedynamica aan de hand van de autocorrelaties van de 
toonhoogte en van de eerste en hogere orde afgeleiden hiervan. Als gevolg van 
het leerproces bevat het model enige a-priori kennis van toonhoogteverlopen. 
Deze kennis kan van nut zijn voor het schattingsproces in het geval het 
spraaksignaal slechts ingebed in zeer sterke ruis beschikbaar is . 

C. Verstaanbaarheidsverbetering door middel van spraakscheiding 

De verbetering van de verstaanbaarheid van één spraaksignaal afkomstig uit een· 
gemeenschappelijk-kanaalsignaal, is in dit proefschrift onderzoekt. Het 
gemeenschappelijk-kanaalsignaal wordt gedefineerd als de som van twee 
spraaksignalen (het doelsignaal en het stoorsignaal) in een één kanaal. 

Nieuwe algoritmen voor een spraakscheidingssysteem zijn ontwikkeld. Deze zijn 
geschikt voor het gemeenschappelijksignaalkanaal bij doel-storingsenergie­
ratio's (TIR's) tussen -12 dB en +12 dB. Dit systeem bestaat uit een 
toonhoogteschattingsdeel en een spraakscheidingsdeel. 

In het 
(lineaire 

spraakscheidingsdeel worden de bovengenoemde tijd-transformdomein 
én niet-lineaire) adaptieve-filteringstechnieken toegepast als 
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ruisonderdrukkers. 

In het toonhoogteschattingsdeel wordt het bovengenoemde twee-stapsalgoritme 
toegepast voor het gelijktijdig schatten van het meervoudige toonhoogte­
verloop. 

De spraakscheidingsalgoritmen zijn getest aan de hand van gesommeerde 
stationaire synthetische spraaksignalen, gesommeerde synthetische uitgesproken 
zinnen met constante toonhoogte en natuurlijke toonhoogten met een TIR tussen 
0 dB en -12 dB. Uit de computersimulaties blijkt dat een goede 
verstaanbaarheid van het spraaksignaal wordt verkregen. Het lineaire algoritme 
laat nog enîge ongewenste spraak achter. Het niet-lineaire algoritme 
verwijdert ook deze, maar geeft iets meer vervorming van het doelsignaal. 
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STATEMENTS 

(1) Voiced speech separation by the hannonic magnitude suppression technique 

shows two fundamental disadvantages: it is basically inconsistent with 

human auditory global processing; and it dissolves speech hannonics from 

each isolated frame without consirlering the correlations among the frames. 

(This thesis, chapter 4) 

(2) It is generally not possible to have a consistent domination of one 

speaker over the whole speech spectrum. Consequently, the algorithm as 

proposed by Alexander will have difficulties when applied to voiced speech 

separation. 

(This thesis, chapter 4; S.T.Alexander, proc. ICASSP 1985) 

(3) A time-frequency domain LMS adaptive filtering algorithm converges at each 

bin to the locally dominant speaker. Thus, it can be applied to voiced 

speech separation. 

(This thesis, chapter 4) 

(4) It is worthwhile to use global processing of the human auditory system for 

machine speech intelligibility enhancement. However, contrary to 

Weintraub's opinion it is neither possible nor necessary to rnirnic all the 

rnicromechanisms of the human auditory system. 

(This thesis, chapter 4; M.Weintraub, Ph.D. diss., Stanford Univ., 1985) 

(5) A transform-domain LMS (or a block LMS) adaptive filter does not consider 

the time-evolving process of signal components, thus it is not adequate 

for nonstationary signal filtering. This disadvantage can be overcome by. 

using a time-transform domain LMS adaptive filter, perforrning on the 

temporally localized signal components. 

(This thesis, chapter 2) 



(6) A successful Ph.D. research demonstrates one's ability of attacking 

difficult technica! problems and doing research. It does not mean that one 

is only able to work in that small specialized field . 

(7) An optima! filter without adaptation only remains optima! in a 

time-invariant system. A plan economy without adaptation by effective 

feedback from the dynamic market thus is not adequate. 

(8) Understanding another culture is only possible through a noisy 

communication channel. To solve this estimation problem, in an acceptable 

way, one has to train the human neural network. Then cultural differences 

can be understood by the human brain. 

(9) True religion and true science are always in agreement. True religion can 

never be opposed to scientific facts; true science which discovers the 

Iaws of the universe and supports our material and mental actvancement can 

never be opposed to true religion which reveals spiritual truths. 

(Gloria Faizi, "The Bahá'l faith: an introduction", p.73) 

(IO)When attending an international conference, the bi-directional exchange 

and stimulation of ideas are more important than the uni-directional 

presentation of a paper. 

(ll)The visa requirements for refugees from the former Jugoslavian republics, 

as imposed by several European governments, are a violation of the 

principle of "non-refoulement"1*1 which is considered binding on all 

states. 

[•J Artiele 33 of lhe 1951 Uniled Nations Convenlion re lating lO the 

Status of Refugees. 
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