63 research outputs found

    Lattice-Based zk-SNARKs from Square Span Programs

    Get PDF
    Zero-knowledge SNARKs (zk-SNARKs) are non-interactive proof systems with short (i.e., independent of the size of the witness) and efficiently verifiable proofs. They elegantly resolve the juxtaposition of individual privacy and public trust, by providing an efficient way of demonstrating knowledge of secret information without actually revealing it. To this day, zk-SNARKs are widely deployed all over the planet and are used to keep alive a system worth billion of euros, namely the cryptocurrency Zcash. However, all current SNARKs implementations rely on so-called pre-quantum assumptions and, for this reason, are not expected to withstand cryptanalitic efforts over the next few decades. In this work, we introduce a new zk-SNARK that can be instantiated from lattice-based assumptions, and which is thus believed to be post-quantum secure. We provide a generalization in the spirit of Gennaro et al. (Eurocrypt'13) to the SNARK of Danezis et al. (Asiacrypt'14) that is based on Square Span Programs (SSP) and relies on weaker computational assumptions. We focus on designated-verifier proofs and propose a protocol in which a proof consists of just 5 LWE encodings. We provide a concrete choice of parameters, showing that our construction is practically instantiable

    Lattice-Based zk-SNARKs from Square Span Programs

    Get PDF
    International audienceZero-knowledge SNARKs (zk-SNARKs) are non-interactive proof systems with short (i.e., independent of the size of the witness) and efficiently verifiable proofs. They elegantly resolve the juxtaposition of individual privacy and public trust, by providing an efficient way of demonstrating knowledge of secret information without actually revealing it. To this day, zk-SNARKs are widely deployed all over the planet and are used to keep alive a system worth billion of euros, namely the cryptocurrency Zcash. However, all current SNARKs implementations rely on so-called pre-quantum assumptions and, for this reason, are not expected to withstand cryptanalitic efforts over the next few decades. In this work, we introduce a new zk-SNARK that can be instantiated from lattice-based assumptions, and which is thus believed to be post-quantum secure. We provide a generalization in the spirit of Gennaro et al. (Eurocrypt'13) to the SNARK of Danezis et al. (Asiacrypt'14) that is based on Square Span Programs (SSP) and relies on weaker computational assumptions. We focus on designated-verifier proofs and propose a protocol in which a proof consists of just 5 LWE encodings. We provide a concrete choice of parameters, showing that our construction is practically instantiable

    zk-SNARKs from Codes with Rank Metrics

    Get PDF
    Succinct non-interactive zero-knowledge arguments of knowledge (zk-SNARKs) are a type of non-interactive proof system enabling efficient privacy-preserving proofs of membership for NP languages. A great deal of works has studied candidate constructions that are secure against quantum attackers, which are based on either lattice assumptions, or post-quantum collision-resistant hash functions. In this paper, we propose a code-based zk-SNARK scheme, whose security is based on the rank support learning (RSL) problem, a variant of the random linear code decoding problem in the rank metric. Our construction follows the general framework of Gennaro et al. (CCS\u2718), which is based on square span programs (SSPs). Due to the fundamental differences between the hardness assumptions, our proof of security cannot apply the techniques from the lattice-based constructions, and indeed, it distinguishes itself by the use of techniques from coding theory. We also provide the scheme with a set of concrete parameters

    Snarky Signatures: Minimal Signatures of Knowledge from Simulation-Extractable SNARKs

    Get PDF
    We construct a pairing based simulation-extractable SNARK (SE-SNARK) that consists of only 3 group elements and has highly efficient verification. By formally linking SE-SNARKs to signatures of knowledge, we then obtain a succinct signature of knowledge consisting of only 3 group elements. SE-SNARKs enable a prover to give a proof that they know a witness to an instance in a manner which is: (1) succinct - proofs are short and verifier computation is small; (2) zero-knowledge - proofs do not reveal the witness; (3) simulation-extractable - it is only possible to prove instances to which you know a witness, even when you have already seen a number of simulated proofs. We also prove that any pairing based signature of knowledge or SE-NIZK argument must have at least 3 group elements and 2 verification equations. Since our constructions match these lower bounds, we have the smallest size signature of knowledge and the smallest size SE-SNARK possible

    Lattice-based Zero-knowledge SNARGs for Arithmetic Circuits

    Get PDF
    Succinct non-interactive arguments (SNARGs) enable verifying NP computations with substantially lower complexity than that required for classical NP verification. In this work, we construct a zero-knowledge SNARG candidate that relies only on lattice-based assumptions which are claimed to hold even in the presence of quantum computers. Central to this new construction is the notion of linear-targeted malleability introduced by Bitansky et al. (TCC 2013) and the conjecture that variants of Regev encryption satisfy this property. Then, using the efficient characterization of NP languages as Square Arithmetic Programs we build the first quantum-resilient zk-SNARG for arithmetic circuits with a constant-size proof consisting of only 2 lattice-based ciphertexts. Our protocol is designated-verifier, achieves zero-knowledge and has shorter proofs and shorter CRS than the previous such schemes, e.g. Boneh et al. (Eurocrypt 2017)

    Ways to improve the performance of zero-knowledge succinct non-interactivearguments of knowledge and the analysis of the rusults achieved

    Get PDF
    Рассматриваются способы повышения производительности кратких неинтерактивных аргументов с нулевым разглашением на основе полиномиальных наборов с использованием различных вычислительных методов. Проводится сравнительный анализ протоколов по размерам главных ссылочных строк и доказательств достоверности вычислений, затратам формирования доказательств и их верификации

    Usalduse vähendamine ja turvalisuse parandamine zk-SNARK-ides ja kinnitusskeemides

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsioonezk-SNARK-id on tõhusad ja praktilised mitteinteraktiivsed tõestussüsteemid, mis on konstrueeritud viitestringi mudelis ning tänu kompaktsetele tõestustele ja väga tõhusale verifitseeritavusele on need laialdaselt kasutusele võetud suuremahulistes praktilistes rakendustes. Selles töös uurime zk-SNARK-e kahest vaatenurgast: nende usalduse vähendamine ja turvalisuse tugevdamine. Esimeses suunas uurime kui palju saab vähendada usaldust paaristuspõhiste zk-SNARK-ide puhul ilma nende tõhusust ohverdamata niiviisi, et kasutajad saavad teatud turvataseme ka siis kui seadistusfaas tehti pahatahtlikult või kui avalikustati seadistusfaasi salajane teave. Me pakume välja mõned tõhusad konstruktsioonid, mis suudavad takistada zk-SNARK-i seadistusfaasi ründeid ja mis saavutavad senisest tugevama turvataseme. Näitame ka seda, et sarnased tehnikad võimaldavad leevendada usaldust tagauksega kinnitusskeemides, mis on krüptograafiliste primitiivide veel üks silmapaistev perekond ja mis samuti nõub usaldatud seadistusfaasi. Teises suunas esitame mõned tõhusad konstruktsioonid, mis tagavad parema turvalisuse minimaalsete lisakuludega. Mõned esitatud konstruktsioonidest võimaldavad lihtsustada praegusi TK-turvalisi protokolle, nimelt privaatsust säilitavate nutilepingusüsteemide Hawk ja Gyges konstruktsiooni, ja parandada nende tõhusust. Uusi konstruktsioone saab aga otse kasutada uutes protokollides, mis soovivad kasutada zk-SNARK-e. Osa väljapakutud zk-SNARK-e on implementeeritud teegis Libsnark ja empiirilised tulemused kinnitavad, et usalduse vähendamiseks või suurema turvalisuse saavutamiseks on arvutuslikud lisakulud väikesed.Zero-knowledge Succinct Non-interactive ARguments of Knowledge (zk-SNARKs) are an efficient family of NIZK proof systems that are constructed in the Common Reference String (CRS) model and due to their succinct proofs and very efficient verification, they are widely adopted in large-scale practical applications. In this thesis, we study zk-SNARKs from two perspectives, namely reducing trust and improving security in them. In the first direction, we investigate how much one can mitigate trust in pairing-based zk-SNARKs without sacrificing their efficiency. In such constructions, the parties of protocol will obtain a certain level of security even if the setup phase was done maliciously or the secret information of the setup phase was revealed. As a result of this direction, we present some efficient constructions that can resist against subverting of the setup phase of zk-SNARKs and achieve a certain level of security which is stronger than before. We also show that similar techniques will allow us to mitigate the trust in the trapdoor commitment schemes that are another prominent family of cryptographic primitives that require a trusted setup phase. In the second direction, we present some efficient constructions that achieve more security with minimal overhead. Some of the presented constructions allow to simplify the construction of current UC-secure protocols and improve their efficiency. New constructions can be directly deployed in any novel protocols that aim to use zk-SNARKs. Some of the proposed zk-SNARKs are implemented in Libsnark, the state-of-the-art library for zk-SNARKs, and empirical experiences confirm that the computational cost to mitigate the trust or to achieve more security is practical.https://www.ester.ee/record=b535927

    Practical Zero-Knowledge Arguments from Structured Reference Strings

    Get PDF
    Zero-knowledge proofs have become an important tool for addressing privacy and scalability concerns in cryptographic protocols. For zero-knowledge proofs used in blockchain applications, it is desirable to have small proof sizes and fast verification. Yet by design, existing constructions with these properties such as zk-SNARKs also have a secret trapdoor embedded in a relation dependent structured reference string (SRS). Knowledge of this trapdoor suffices to break the security of these proofs. The SRSs required by zero-knowledge proofs are usually constructed with multiparty computation protocols, but the resulting parameters are specific to each individual circuit. In this thesis, we propose a model for constructing zero-knowledge arguments (i.e. zero-knowledge proofs with computational soundness) in which the generation of the SRS is directly considered in the security analysis. In our model the same SRS can be used across multiple applications. Further, the model is updatable i.e. users can update the universal SRS and the SRS is considered secure provided at least one of these users is honest. We propose two zero-knowledge arguments with updatable and universal SRSs, as well as a third which is neither updatable nor universal, but which through similar techniques achieves simulation extractability. The proposed arguments are practical, with proof sizes never more than a constant number of group elements. Verification for two of our constructions consist of a small number of pairing operations. For our other construction, which has the desirable property of a linear sized updatable and universal SRS, we describe efficient batching techniques so that verification is fast in the amortised setting

    Mitte-interaktiivsed nullteadmusprotokollid nõrgemate usalduseeldustega

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneTäieliku koosluskindlusega (TK) kinnitusskeemid ja nullteadmustõestused on ühed põhilisemad krüptograafilised primitiivid, millel on hulgaliselt päriselulisi rakendusi. (TK) Kinnitusskeem võimaldab osapoolel arvutada salajasest sõnumist kinnituse ja hiljem see verifitseeritaval viisil avada. Täieliku koosluskindlusega protokolle saab vabalt kombineerida teiste täieliku koosluskindlusega protokollidega ilma, et see mõjutaks nende turvalisust. Nullteadmustõestus on protokoll tõestaja ja verifitseerija vahel, mis võimaldab tõestajal veenda verifitseerijat mingi väite paikapidavuses ilma rohkema informatsiooni lekitamiseta. Nullteadmustõestused pakuvad suurt huvi ka praktilistes rakendustes, siinkohal on olulisemateks näideteks krüptorahad ja hajusandmebaasid üldisemalt. Siin on eriti asjakohased just lühidad mitteinteraktiivsed nullteadmustõestused (SNARKid) ning kvaasiadaptiivsed mitteinteraktiivsed nullteadmustõestused (QA-NIZKid). Mitteinteraktiivsetel nullteadmustõestustel juures on kaks suuremat praktilist nõrkust. Esiteks on tarvis usaldatud seadistusfaasi osapoolte ühisstringi genereerimiseks ja teiseks on tarvis täielikku koosluskindlust. Käesolevas doktoritöös me uurime neid probleeme ja pakume välja konkreetseid konstruktsioone nende leevendamiseks. Esmalt uurime me õõnestuskindlaid SNARKe juhu jaoks, kus seadistusfaasi ühisstring on õõnestatud. Me konstrueerime õõnestuskindla versiooni seni kõige tõhusamast SNARKist. Samuti uurime me QA-NIZKide õõnestuskindlust ja konstrueerime kõige efektiivsemate QA-NIZKide õõnestuskindla versiooni. Mis puutub teise uurimissuunda, nimelt täielikku koosluskindlusesse, siis sel suunal kasutame me pidevaid projektiivseid räsifunktsioone. Me pakume välja uue primitiivi, kus eelmainitud räsifunktsioonid on avalikult verifitseeritavad. Nende abil me konstrueerime seni kõige tõhusama mitteinteraktiivse koosluskindla kinnitusskeemi. Lõpetuseks me töötame välja uue võtte koosluskindlate kinnitusskeemide jaoks, mis võimaldab ühisarvutuse abil luua nullteadmustõestuste ühisstringe.Quite central primitives in cryptographic protocols are (Universally composable (UC)) commitment schemes and zero-knowledge proofs that getting frequently employed in real-world applications. A (UC) commitment scheme enables a committer to compute a commitment to a secret message, and later open it in a verifiable manner (UC protocols can seamlessly be combined with other UC protocols and primitives while the entire protocol remains secure). A zero-knowledge proof is a protocol usually between a prover and a verifier that allows the prover to convince the verifier of the legality of a statement without disclosing any more information. Zero-knowledge proofs and in particular Succinct non-interactive zero-knowledge proofs (SNARKs) and quasi adaptive NIZK (QA-NIZK) are of particular interest in the real-world applications, with cryptocurrencies or more generally distributed ledger technologies being the prime examples. The two serious issues and the main drawbacks of the practical usage of NIZKs are (i) the demand for a trusted setup for generating the common reference string (CRS) and (ii) providing the UC security. In this thesis, we essentially investigate the aforementioned issues and propose concrete constructions for them. We first investigate subversion SNARKs (Sub zk-SNARKs) when the CRS is subverted. In particular, we build a subversion of the most efficient SNARKs. Then we initiate the study of subversion QA-NIZK (Sub-QA-NIZK) and construct subversion of the most efficient QA-NIZKs. For the second issue, providing UC-security, we first using hash proof systems or smooth projective hash functions (SPHFs), we introduce a new cryptographic primitive called publicly computable SPHFs (PC-SPHFs) and construct the currently most efficient non-interactive UC-secure commitment. Finally, we develop a new technique for constructing UC-secure commitments schemes that enables one to generate CRS of NIZKs by using MPC in a UC-secure mannerhttps://www.ester.ee/record=b535926

    Accelerating zero knowledge proofs

    Get PDF
    Les proves de coneixement zero són una eina criptogràfica altament prometedora que permet demostrar que un predicat és correcte sense revelar informació addicional sobre aquest. Aquestes tipus de proves són útils en aplicacions que requereixen tant integritat computacional com privadesa, com ara verificar la correcció dels resultats d'una computació delegada a una altra entitat, on hi poden haver involucrats valors d'entrada confidencials. Tanmateix, té un impediment que obstaculitza la seva adopció pràctica: el procés potencialment lent de generació de les proves. Així doncs, aquest projecte explora la viabilitat d'accelerar les proves de coneixement zero mitjançant hardware, amb l'objectiu de superar aquest obstacle crític.Las pruebas de conocimiento cero representan una herramienta criptográfica altamente prometedora que permite demostrar la corrección de un predicado sin revelar información adicional. Estas pruebas son útiles en aplicaciones que requieren tanto integridad computacional como privacidad, como por ejemplo la validación de los resultados de una computación delegada a otra entidad, donde pueden estar involucrados valores de entrada confidenciales. Sin embargo, existe un desafío significativo que obstaculiza su adopción práctica: el proceso potencialmente lento de generación de pruebas. Como resultado, este proyecto explora la viabilidad de acelerar las pruebas de conocimiento cero utilizando hardware, con el objetivo de superar este obstáculo crítico.Zero-knowledge proofs represent a highly promising cryptographic tool that enables the validation of a statement's correctness without revealing any supplementary information. These proofs find utility in applications demanding both computational integrity and privacy, such as validating outsourced computation results, where confidential input values may be involved. However, a significant challenge hinders their practical adoption: the potentially time-consuming process of generating proofs. Consequently, this project investigates the feasibility of accelerating zero-knowledge proofs using hardware, aiming to overcome this critical hurdle.Outgoin
    corecore