
Lattice-Based zk-SNARKs from Square Span Programs

Rosario Gennaro1, Michele Minelli2,3, Anca Nitulescu2,3, and Michele Orrù2,3

1 City College of New York, USA
2 DIENS, École normale supérieure, CNRS, PSL University, 75005 Paris, France

3 Inria

rosario@cs.ccny.cuny.edu

{michele.minelli, anca.nitulescu, michele.orru}@ens.fr

Abstract. Zero-knowledge SNARKs (zk-SNARKs) are non-interactive proof systems with
short and efficiently verifiable proofs. They elegantly resolve the juxtaposition of individual
privacy and public trust, by providing an efficient way of demonstrating knowledge of
secret information without actually revealing it. To this day, zk-SNARKs are being used for
delegating computation, electronic cryptocurrencies, and anonymous credentials. However,
all current SNARKs implementations rely on pre-quantum assumptions and, for this reason,
are not expected to withstand cryptanalitic efforts over the next few decades.
In this work, we introduce the first designated-verifier zk-SNARK based on lattice assumptions,
which are believed to be post-quantum secure. We provide a generalization in the spirit of
Gennaro et al. (Eurocrypt’13) to the SNARK of Danezis et al. (Asiacrypt’14) that is based
on Square Span Programs (SSPs) and relies on weaker computational assumptions. We focus
on designated-verifier proofs and propose a protocol in which a proof consists of just 5 LWE
encodings. We provide a concrete choice of parameters as well as extensive benchmarks on a
C implementation, showing that our construction is practically instantiable.

Keywords: post-quantum; SNARK; zero-knowledge.

1 Introduction

Zero-Knowledge Proof Systems. Proof systems [GMR89] are a fundamental tool in theoretical
computer science and cryptography. Consider an NP relation R which defines the language of all
statements x for which there exists a witness w so that R(x,w) = true. In a zero-knowledge proof
for R a prover, knowing a witness, wants to convince a verifier that x is in the language, without
revealing any additional information about the witness.

Since their introduction in [GMR89] zero-knowledge (ZK) proofs have been shown to be a very
powerful instrument in the design of secure cryptographic protocols.

For practical applications, researchers immediately recognized two limiting factors in zero-
knowledge proofs: the original protocols were interactive and the proof could be as long as (if
not longer than) the witness. When considering statistically sound proof systems for NP, unless
some complexity-theoretic collapse occurs, the prover P has to communicate, roughly, as much
information as the size of the NP witness. Looking for ways to overcome this bound motivated the
study of computationally-sound proof systems, also called argument systems [BCC88].

Non-interactive zero-knowledge (NIZK) proofs [BFM88] and succinct ZK arguments [Kil92,
Mic94] were introduced shortly thereafter. Those results were considered mostly theoretical
proofs of concept until more recently, when several theoretical and practical breakthroughs
[PHGR13, DFGK14] have shown that such proofs (renamed zk-SNARGs for Succinct Non-interactive
ARGuments, or zk-SNARKs if the proofs also guarantee that the prover knows the witness w) can
indeed be used in practical applications.

Succinct Non-Interactive Arguments of Knowledge. Starting from Kilian’s protocol [Kil92],
Micali [Mic94] constructed a one-message succinct argument for NP whose soundness is set in the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/211847941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

random oracle model. In the plain model, a non-interactive argument requires the verifier V to
generate a common reference string crs ahead of time and independently of the statement to be
proved by the prover P. Such systems are called succinct non-interactive arguments (SNARGs)
[GW11]. Several SNARGs constructions have been proposed [Gro10, BCCT12, Lip12, BCC+14,
GGPR13, BCI+13, PHGR13, BCG+13, BCTV14], and the area of SNARGs has become popular
in the last years with the proposal of constructions which introduced significant improvements
in efficiency. An important remark is that all such constructions are based on non-falsifiable
assumptions [Nao03], a class of assumptions that is likely to be inherent in proving the security
of SNARGs for general NP languages (without random oracles), as shown by Gentry and Wichs
[GW11].

Many SNARGs are also arguments of knowledge – so called SNARKs [BCCT12, BCC+14].
Intuitively speaking, the knowledge soundness property of SNARKs says that every prover producing
a convincing proof must “know” a witness. Proofs of knowledge are useful in many applications,
such as anonymous credentials, computation delegation, confidential transactions, and recursive
proof composition [Val08, BCCT13].

Public vs. Designated Verifiability. We distinguish two types of arguments of knowledge:
publicly verifiable ones, where the verification algorithm takes as input only common reference
string crs, and designated-verifier ones, where the verifier V takes as input together with the crs
some additional private verification key vrs. In the first case, proofs are meant to be verified by
anyone having access to the crs. In the case of designated-verifier proofs, the proof can be verified
only by the verifier V knowing the secret information vrs. It is straightforward to note that, with
the help of an encryption scheme, any publicly-verifiable proof system can be transformed into
an analogous designated-verifier one (by just encrypting the proof under the verifier’s key). It is
nonetheless important to note that in the standard model, all NIZK constructions we are aware of
somehow imply the existence of an encryption scheme.

Quadratic Span Programs. Gennaro, Gentry, Parno and Raykova [GGPR13] proposed a new,
influential characterization of the complexity class NP using Quadratic Span Programs (QSPs), a
natural extension of span programs defined by Karchmer and Wigderson [KW93]. They show there
is a very efficient reduction from boolean circuit satisfiability problems to QSPs. Their work has led
to fast progress towards practical verifiable computations. For instance, using Quadratic Arithmetic
Programs (QAPs), a generalization of QSPs for arithmetic circuits, Pinocchio [PHGR13] provides
evidence that verified remote computation can be faster than local computation. At the same time,
their construction is zero-knowledge, enabling the server to keep intermediate and additional values
used in the computation private. Optimized versions of SNARK protocols based on QSPs approach
are used in various practical applications, including cryptocurrencies such as Zcash [BCG+14a], to
guarantee anonymity while preventing double-spending.

The QSP approach was generalized in [BCI+13] under the concept of Linear PCP (LPCP),
a form of interactive ZK proofs where security holds under the assumption that the prover is
restricted to compute only linear combinations of its inputs. These proofs can then be turned
into (designated-verifier) SNARKs by using an extractable linear-only encryption scheme, i.e., an
encryption scheme where any adversary can output a valid new ciphertext only if this is an affine
combination of some previous encryptions that the adversary had as input (intuitively this “limited
malleability” of the encryption scheme, will force the prover into the above restriction).

So far all known zk-SNARKs rely on “classical” pre-quantum assumptions4. Yet, there are
widely deployed systems relying on zk-SNARKs (for instance, the Zcash cryptocurrency [BCG+14b])
which are expected not to withstand cryptanalitic efforts over the course of the next 10 years

4 We note that the original protocol of Kilian [Kil92] is a zk-SNARK which can be instantiated with a
post-quantum assumption since it requires only a collision-resistant hash function – however (even in the
best optimized version recently proposed in [BSBHR18]) the protocol does not seem to scale well for
even moderately complex computations.

2

Table 1. Security estimates for different choices of LWE parameters (circuit size fixed to d = 215), together with
the corresponding sizes of the proof π and of the CRS (when using a seeded PRG for its generation).

security level λ n logα log q |π| |crs| ZK

medium
168 1270 −150 608 0.46 MB 7.13 MB

162 1470 −180 736 0.64 MB 8.63 MB 3

high
244 1400 −150 672 0.56 MB 7.88 MB

247 1700 −180 800 0.81 MB 9.37 MB 3

paranoid
357 1450 −150 800 0.69 MB 9.37 MB

347 1900 −180 864 0.98 MB 10.1 MB 3

[ABL+17, Appendix C]. It is an interesting research question, as well our duty as cryptographers,
to provide protocols that can guarantee people’s privacy over the next decade. We attempt to make
a step forward in this direction by building a designated-verifier zk-SNARK from lattice-based
(knowledge) assumptions. Our scheme uses as a main building block encodings that rely on the
Learning With Errors (LWE) assumption, initially proposed by Regev in 2005 [Reg05], and right
now the most widespread post-quantum cryptosystem supported by a theoretical proof of security.

SNARGs based on lattices. Recently, in two companion papers [BISW17, BISW18], Boneh et
al. provided the first designated-verifier SNARGs construction based on lattice assumptions.

The first paper has two main results: an improvement on the LPCP construction in [BCI+13]
and a construction of linear-only encryption based on LWE. The second paper presents a different
approach where the information-theoretic LPCP is replaced by a LPCP with multiple provers,
which is then compiled into a SNARG again via linear-only encryption. The main advantage of this
approach is that it reduces the overhead on the prover, achieving what they call quasi-optimality5.
The stronger notion of knowledge soundness (which leads to SNARKs) can be achieved by replacing
the linear-only property with a stronger (extractable) assumption [BCI+13].

Our contributions. In this paper, we frame the construction of Danezis et al. [DFGK14] for
Square Span Programs in the framework of “encodings” introduced by Gennaro et al. [GGPR13].
We slightly modify the definition of encoding to accommodate for the noisy nature of LWE schemes.
This allows us to have a more fine-grained control over the error growth, while keeping previous
example encodings still valid instantiations. Furthermore, SSPs are similar to but simpler than
Quadratic Span Programs (QSPs) since they use a single series of polynomials, rather than 2 or 3.
We use SSPs to build simpler and more efficient designated-verifier SNARKs and Non-Interactive
Zero-Knowledge arguments (NIZKs) for circuit satisfiability (CIRC-SAT).

We think our work is complementary to [BISW17, BISW18]. However, there are several reasons
why we believe that our approach is preferable:

– Zero-Knowledge. The LPCP-based protocols in [BISW17, BISW18] do not investigate the
possibility of achieving zero-knowledge. This leaves open the question of whether zk-SNARKs
can be effectively instantiated. Considering the LPCP constructed for a QSP satisfiability
problem, there is a general transformation to obtain ZK property [BCI+13]. However, in
the case of “noisy” encodings, due to possible information leakages in the error term, this
transformation cannot be directly applied. Our SNARK construction, being SSP-based, can
be made ZK at essentially no cost for either the prover or the verifier. Our transformation is

5 This is the first scheme where the prover does not have to compute a cryptographic group operation for
each wire of the circuit, which is instead true e.g., in QSP-based protocols.

3

different, exploiting special features of SSPs, and yields a zk-SNARK with almost no overhead.
Our construction constitutes the first (designated-verifier) zk-SNARK on lattices.

– Weaker Assumptions. The linear-only property on encodings introduced in [BCI+13] implies
all the security assumptions needed by a SSP-suitable encoding, but the reverse is not known
to hold. Our proof of security therefore relies on weaker assumptions and, by doing so, “distills”
the minimal known assumptions needed to prove security for SSP, and instantiates them with
lattices. We study the relations between our knowledge assumption and the (extractable)
linear-only assumption in Appendix A.

– Simplicity and Efficiency. While the result in [BISW18] seems asymptotically more efficient
than any SSP-based approach, we believe that, for many applications, the simplicity and
efficiency of the SSP construction will still provide a concrete advantage in practice. We
implemented and tested our scheme: we provide some possible concrete parameters for the
instantiation of our zk-SNARKs in Table 1, whereas more details on the implementation, along
with benchmark results, are presented in Section 6.

Technical challenges. Although conceptually similar to the original proof of security for QSP-
based SNARKs, our construction must incorporate some additional modifications in order to
overcome the noise growth of the LWE-based homomorphic operations. These challenges do not
arise in the line of work of Boneh et al. [BISW17, BISW18] due to the more general (and stronger)
assumption of linear-only encoding (see Appendix A for details). Additionally, our construction
benefits from the optimizations of SSP-based SNARKs [DFGK14].

Instantiating our encoding scheme with a lattice-based scheme like Regev encryption, differs
from [GGPR13] and introduces some technicalities, first in the verification step of the protocol, and
secondly in the proof of security. Our encoding scheme is additively homomorphic and allows for
linear operations; however, correctness of the encoding is guaranteed only for a limited number
of homomorphic operations because of the error growth in lattice-based encoding schemes. More
specifically, to compute a linear combination of N encodings, we need to scale some parameters
for correctness to hold. Throughout this work we will consider only encodings where a bounded
number of homomorphic “linear” operations is allowed, and make sure that this bound is sufficient
to perform verification and to guarantee the existence of a security reduction.

2 Prerequisites

2.1 Notation

Let λ ∈ N be the computational security parameter, and κ ∈ N the statistical security parameter.
We say that a function is negligible in λ, and we denote it by negl(λ), if it is a f (λ) = o (λ−c)
for any fixed constant c. We also say that a probability is overwhelming in λ if it is 1− negl(λ).
We let M.rl(λ) be a length function (i.e., a function N→ N polynomially bounded) in λ defining
the length of the randomness for a probabilistic interactive Turing Machine M. When sampling
uniformly at random the value a from the set S, we employ the notation a←$S. When sampling
the value a from the probabilistic algorithm M, we employ the notation a ← M. We use := to
denote assignment. For an n-dimensional column vector ~a, we denote its i-th entry by ai. In the
same way, given a polynomial f , we denote its i-th coefficient by fi. Unless otherwise stated, the
norm ‖·‖ considered in this work is the `2 norm. We denote by ~a ·~b the dot product between vectors

~a and ~b. Let R bet a relation between statements denoted by u and witnesses denoted by w. u.
Unless otherwise specified, all the algorithms defined throughout this work are assumed to be

probabilistic Turing machines that run in time poly(λ) - i.e., PPT. An adversary is denoted by A;
when it is interacting with an oracle O, we write AO. For two PPT machines A,B, with the writing
(A‖B)(x) we denote the execution of A followed by the execution of B on the same input x and
with the same random coins. The output of the two machines is concatenated and separated with a
semicolon, e.g., (outA; outB)← (A‖B) (x).

4

2.2 Square Span Programs

We characterize NP as Square Span Programs (SSPs) over some field F of order p. SSPs were
introduced first by Danezis et al. [DFGK14].

Definition 1 (SSP). A Square Span Program (SSP) over the field F is a tuple consisting of m+1
polynomials v0(x), . . . , vm(x) ∈ F[x] and a target polynomial t(x) such that deg(vi(x)) 6 deg(t(x))
for all i = 0, . . . ,m. We say that the square span program ssp has size m and degree d = deg(t(x)).
We say that ssp accepts an input a1, . . . , a` ∈ {0, 1} if and only if there exist a`+1, . . . , am ∈ {0, 1}
satisfying:

t(x) divides

(
v0(x) +

m∑
i=1

aivi(x)

)2

− 1.

We say that ssp verifies a boolean circuit C : {0, 1}` → {0, 1} if it accepts exactly those inputs
(a1, . . . , a`) ∈ {0, 1}` satisfying C(a1, . . . , a`) = 1.

Universal circuit. In the definition, we may see C as a logical specification of a satisfiability
problem. In our zk-SNARK we will split the ` inputs into `u public and `w private inputs to make
it compatible with the universal circuit CU : {0, 1}`u × {0, 1}`w → {0, 1}, that take as input an
`u-bit description of a freely chosen circuit C and an `w-bit value w, and return 1 if and only if
C(w) = 1. Along the lines of [DFGK14], we consider the “public” inputs from the point of view of
the prover. For an outsourced computation, they might include both the inputs sent by the clients
and the outputs returned by the server performing the computation.

Theorem 2 ([DFGK14, Theorem 2]). For any boolean circuit C : {0, 1}` → {0, 1} of m wires
and n fan-in 2 gates and for any prime p ≥ max(d, 8), for d = m + n, there exist polynomials
v0(x), . . . , vm(x) ∈ F[x] and distinct roots r0, . . . , rd−1 ∈ F such that C is satisfiable if and only if:

d−1∏
i=0

(x− ri) divides

(
v0(x) +

m∑
i=1

aivi(x)

)2

− 1,

where a1, . . . , am ∈ {0, 1} correspond to the values on the wires in a satisfying assignment for the
circuit.

Define t(x) :=
∏d−1
i=0 (x− ri), then for any circuit C : {0, 1}` → {0, 1} of m wires and n gates,

there exists a degree d = m+ n square span program ssp = (v0(x), . . . , vm(x), t(x)) over a field F,
of order p ≥ max(d, 8) that verifies C.

SSP generation. We consider the uniform probabilistic algorithm SSP that, on input a boolean
circuit C : {0, 1}` → {0, 1} of m wires and n gates, chooses a field F, with |F| ≥ max(d, 8)
for d = m + n, and samples d random elements r0, . . . , rd ∈ F to define the target polynomial
t(x) =

∏d−1
i=0 (x− ri), together with the set of polynomials {v0(x), . . . , vm(x)} composing the SSP

corresponding to C.
(v0(x), . . . , vm(x), t(x))← SSP(C)

2.3 Succinct Non-Interactive Arguments

In this section we provide formal definitions for the notion of succinct non-interactive arguments of
knowledge (SNARKs).

Definition 3. A non-interactive (NI) proof system for a relation R is a triple of algorithms
Π = (G,P,V) as follows:

(crs, vrs, td)← G(1λ,R) the CRS generation algorithm takes as input some security parameter in
unary 1λ and outputs a common reference string crs that will be given publicly, a verification
key vrs, and trapdoor information td.

5

Game KSNDΠ,R,A,ExtA(λ)

(crs, vrs, td)← Π.G(1λ,R)

(u, π;w)← (A‖ExtA)Π.V(vrs,·)(crs)

return (R(u,w) = false ∧ Π.V(vrs, u, π))

Game COMPLΠ,R,A(λ)

(crs, vrs, td)← Π.G(1λ,R)

(u,w)← A(crs)

π ← Π.P(crs, u, w)

return (Π.V(vrs, u, π) = false and R(u,w))

Game ZKΠ,R,A(λ)

(crs, vrs, td)← Π.G(1λ,R)

b←$ {0, 1}
b′ ← AProve(vrs)

return (b = b′)

Oracle Prove(u,w)

if R(u,w) = false return ⊥
if b = 1 π ← Π.P(crs, u, w)

else π ← Π.Sim(td, u)

return π

Fig. 1. Games for completeness (COMPL), knowledge soundness (KSND), and zero-knowledge (ZK).

π ← P(crs, u, w) the prover algorithm takes as input the CRS, a statement u, and a witness w. It
outputs some proof π.

bool← V(vrs, u, π) the verifier algorithm takes as input a statement u together with a proof π, and
vrs. It outputs true if the proof was accepted, false otherwise.

In the same line of past works [DFGK14, Fuc18], we will assume for simplicity that crs can be
extracted from the verification key vrs, and that the unary security parameter 1λ as well as the
relation R can be inferred from the crs.

Non-interactive proof systems are generally asked to satisfy some security properties that
simultaneously protect the prover from the disclosure of the witness, and the verifier from a forged
proof. We now examine some of these notions.

A proof is complete if every correctly-generated proof verifies. More formally,

Definition 4 (Completeness). A non-interactive proof system Π for the relation R is (computa-
tionally) complete if for any PPT adversary A:

Advcompl
Π,R,A(λ) := Pr

[
COMPLΠ,R,A(λ) = true

]
= negl(λ) ,

where COMPLΠ,R,A(λ) is the game depicted in Fig. 1.

The concept that the prover “must know” a witness is expressed by assuming that such knowledge
can be efficiently extracted from the prover by means of a so-called knowledge extractor. For any
prover able to produce a valid proof, there exists an efficient algorithm which, when given the same
inputs as the prover (and the same random coins), is capable of extracting a witness for the given
statement. Formally:

Definition 5 (Knowledge Soundness). A non-interactive proof system Π for the relation R is
knowledge-sound if for any PPT adversary A there exists an extractor ExtA such that:

AdvksndΠ,R,A,ExtA(λ) := Pr
[
KSNDΠ,R,A,ExtA(λ) = true

]
= negl(λ) ,

where KSNDΠ,R,A,ExtA(λ) is defined in Figure 1.

An argument of knowledge is a knowledge-sound proof system. If the adversary is computationally
unbounded, we speak of proofs rather than arguments.

Remark 6. An important consideration that arises when defining knowledge soundness in the
designated-verifier setting is whether the adversary should be granted access to a verification oracle.
Pragmatically, allowing the adversary to query a verification oracle captures the fact that CRS can

6

be reused poly(λ) times. While this distinction cannot be made in the publicly-verifiable setting,
the same is not true for the designated-verifier setting. In the specific case of our construction, we
formulate and prove our protocol allowing the adversary access to the verification algorithm (which
has been named strong soundness in the past [BISW17]), and later discuss which optimizations
can take place when using the weaker notion of soundness, where the adversary cannot access the
verification oracle.

A proof system Π for R is zero-knowledge if no information about the witness is leaked by the
proof. More precisely, Π specifies an additional poly(λ) algorithm Π.Sim that takes as input the
trapdoor information td and a statement u, and outputs a valid proof π indistinguishable from
those generated via Π.P.

Definition 7 (Zero-Knowledge). A non-interactive proof system Π is zero-knowledge if there
for any PPT adversary A:

AdvzkΠ,R,A(λ) := Pr
[
ZKΠ,R,A(λ) = true

]
= negl(λ) ,

where ZKΠ,R,A(λ) is defined in Figure 1.

Succinctness. Finally, we say that a proof system Π is succinct if the proof has size (quasi-)linear
in the security parameter, i.e., |π| = Õ(λ).

Definition 8 (SNARK). A succinct non-interactive argument of knowledge (SNARK) is a non-
interactive proof system that is complete, succinct, and knowledge-sound. A zk-SNARK is a SNARK
with zero-knowledge.

Publicly verifiable vs. designated verifier. If security (knowledge soundness) holds against
adversaries that have also access to the verification state vrs (i.e., A receives vrs) then the SNARK
is called publicly verifiable, otherwise it is designated-verifier.

In the remainder of this work all constructions and proofs are given for the designated-verifier
setting.

2.4 Encoding Schemes

Encoding schemes for SNARKs were initially introduced in [GGPR13]. Here, we present a variant
of this definition that accommodates for encodings with noise.

Definition 9 (Encoding Scheme). An encoding scheme Enc over a field F is composed of the
following algorithms:

– (pk, sk) ← K(1λ), a key generation algorithm that takes as input some security parameter in
unary 1λ and outputs some secret state sk together with some public information pk. To ease
notation, we are going to assume the message space is always part of the public information
and that pk can be derived from sk.

– S ← E(a), a non-deterministic encoding algorithm mapping a field element a to some encoding
space S, such that {{E(a)} : a ∈ F} partitions S, where {E(a)} denotes the set of the possible
evaluations of the algorithm E on a.
Depending on the encoding algorithm, E will require either the public information pk generated
from K or the secret state sk. For our application, it will be the case of sk. To ease notation, we
will omit this additional argument.

The above algorithms must satisfy the following properties:

d-linearly homomorphic: there exists a poly(λ) algorithm Eval that, given as input the public
parameters pk, a vector of encodings (E (a1) , . . . ,E (ad)), and coefficients ~c = (c1, . . . , cd) ∈ Fd,
outputs a valid encoding of ~a · ~c with probability overwhelming in λ.

7

Game q-PKEEnc,Z,A,ExtA,z
(λ)

(pk, sk)← K(1λ)

α, s←$F∗

σ ← (pk,E(1),E(s), . . . ,E(sq),E(α),E(αs), . . . ,E(αsq))

z ← Z(pk, σ)

(ct, ĉt; a0, . . . , aq)← (A‖ExtA)(σ, z)

return (ĉt− αct ∈ {E(0)}) ∧ ct 6∈
{

E(
∑q
i ais

i)
}

Game q-PKEQEnc,A,ExtA
(λ)

(pk, sk)← K(1λ)

s←$F

σ ← (pk,E(1),E(s), . . . ,E(sq),E(sq+2), . . . ,E(s2q))

(E(c), e; b)← (A‖ExtA)(σ)

if b = 0 return e ∈ {E(c)}
else return e 6∈ {E(c)}

Game q-PDHEnc,A(λ)

(pk, sk)← K(1λ)

s←$F

σ ← (pk,E(1),E(s), . . . ,E(sq),E(sq+2), . . . ,E(s2q))

y ← A(σ)

return y ∈
{

E(sq+1)
}

Fig. 2. Games for q-PKE, q-PKEQ, q-PDH assumptions.

quadratic root detection: there exists an efficient algorithm that, given some parameter δ (either
pk or sk), E(a0), . . . ,E(at), and the quadratic polynomial pp ∈ F[x0, . . . , xt], can distinguish if
pp(a1, . . . , at) = 0. With a slight abuse of notation, we will adopt the writing pp(ct0, . . . , ctt) = 0
to denote the quadratic root detection algorithm with inputs δ, ct0, . . . , ctt, and pp.

image verification: there exists an efficiently computable algorithm ∈ that, given as input some
parameter δ (again, either pk or sk), can distinguish if an element c is a correct encoding of a
field element.

Our specific instantiation of the encoding scheme presents some slight differences with [GGPR13].
In fact, we can allow only for a limited number of homomorphic operations because of the error
growth in lattice-based encoding schemes. We note that this modification does not invalidate
previous constructions. Sometimes, in order to ease notation, we will employ the writing ct :=
Eval (E (ai)i ,~c) = E (t), actually meaning that ct is a valid encoding of t =

∑
aici; that is,

ct ∈ {E (t)}. It will be clear from the context (and the use of symbol for assignment instead of that
for sampling) that the randomized encoding algorithm E is not actually invoked.

Decoding algorithm. When using a homomorphic encryption scheme in order to instantiate
an encoding scheme, we simply define the decoding algorithm D as the decryption procedure of
the scheme. More specifically, since we study encoding schemes derived from encryption functions,
quadratic root detection and image verification for designated-verifiers are trivially obtained by
using the decryption procedure D.

2.5 Assumptions

Throughout this work we rely on a number of computational assumptions. All of them are long-
standing assumptions in the frame of dLog-hard groups, and have already been generalized in the
scope of “encoding schemes” in [GGPR13]. We recall them here for completeness.

The q-power knowledge of exponent assumption (q-PKE) is a generalization of the knowledge
of exponent assumption (KEA) introduced by Damgard [Dam92]. It says that given E(s), . . . ,E(sq)
and E(αs), . . . ,E(αsq) for some coefficient α, it is difficult to generate ct, ĉt that encode c, αc without
knowing the linear combination of the powers of s that produces ct.

8

Assumption 1 (q-PKE). The q-Power Knowledge of Exponent (q-PKE) assumption holds relative
to an encoding scheme Enc and for the class Z of auxiliary input generators if, for every non-
uniform PPT auxiliary input generator Z ∈ Z and non-uniform PPT adversary A, there exists a
non-uniform extractor Ext such that:

AdvpkeEnc,Z,A,ExtA
(λ) := Pr

[
q-PKEEnc,Z,A,ExtA(λ) = true

]
= negl(λ) ,

where q-PKEEnc,Z,A,ExtA(λ) is the game depicted in Figure 2.

The q-PDH assumption has been a long-standing, standard q-type assumption [Gro10, BBG05],
It basically states that given

(
E(1),E (s) , . . . ,E (sq) ,E

(
sq+2

)
, . . . ,E

(
s2q
))

, it is hard to compute
an encoding of the missing power E(sq+1).

Assumption 2 (q-PDH). The q-Power Diffie-Hellman (q-PDH) assumption holds for encoding
Enc if for all PPT adversaries A we have:

Advq-pdhEnc,A(λ) := Pr
[
q-PDHEnc,A(λ) = true

]
= negl(λ) ,

where q-PDHEnc,A(λ) is defined as in Figure 2.

Optionally, to achieve strong-soundness (see Remark 6), we need an assumption to be able to
“compare” adversarially-generated messages. The q-PKEQ assumptions states that for any adversary
A that outputs two ciphertexts, there exists an extractor ExtA that can tell whether they encode
the same value.

Assumption 3 (q-PKEQ). The q-Power Knowledge of Equality (q-PKEQ) assumption holds for
the encoding scheme Enc if, for every PPT adversary A, there exists an extractor ExtA such that:

Advq-pkeqEnc,A,ExtA
(λ) := Pr

[
q-PKEQEnc,A,ExtA(λ) = true

]
= negl(λ) ,

where q-PKEQEnc,A,ExtA(λ) is the game depicted in Figure 2.

Te q-PKEQ assumption is needed solely in the case where the attacker has access to a verification
oracle. Since the encoding could be non-deterministic, the simulator in the security reduction of
Section 5.2 needs to rely on q-PKEQ to simulate the verification oracle. Pragmatically, this
assumption allows us to test for equality of two adversarially-produced encodings without having
access to the secret key.

Finally, we recall here a well-known assumption for lattices, that we will use to instantiate our
quantum-secure encoding scheme.

Assumption 4 (dLWE).
The decisional Learning With Errors (dLWE) assumption holds for a parameter generation

algorithm Pg if for any PPT adversary A:

Advdlwe
Pg,A(λ) := Pr

[
dLWEPg,A(λ) = true

]
− 1/2 = negl(λ) ,

where dLWEPg,A(λ) is defined as in Figure 3.

In [Reg05], Regev showed that solving the decisional LWE problem is as hard as solving some
lattice problems in the worst case.

3 An encoding scheme based on Learning With Errors

In this section we give a brief introduction to lattices and we describe a possible encoding scheme
based on learning with errors (LWE).

9

Game dLWEPg,A(λ)

Γ := (p, q, n, α) := Pg(1λ)

~s←$Znq

b←$ {0, 1}
b′ ← AEncode(Γ)

return (b = b′)

Oracle Encode

~a←$Znq

e← χqα

if b = 1 c := ~s · ~a+ e

else c←$Zq

return (~a, c)

Fig. 3. The decisional LWE problem for parameters Γ .

Lattices. A m-dimensional lattice Λ is a discrete additive subgroup of Rm. For an integer k < m
and a rank k matrix B ∈ Rm×k, Λ (B) =

{
B~x ∈ Rm | ~x ∈ Zk

}
is the lattice generated by the

columns of B.

Gaussian distribution. For any σ ∈ R+, let ρσ(~x) := e−π‖~x‖
2/σ2

be the Gaussian function over
Rn with mean 0 and parameter σ. For any discrete subset A ⊆ Rn we define ρσ(A) :=

∑
~x∈A ρσ(~x),

the discrete integral of ρσ over A. We then define χσ, the discrete Gaussian distribution over A
with mean 0 and parameter σ as:

χσ : A→ R+ : ~y 7→ ρσ(~y)

ρσ(A)
.

We denote by χnσ the discrete Gaussian distribution over Rn where each entry is independently
sampled from χσ.

3.1 Lattice-based Encoding Scheme

We propose an encoding scheme Enc that consists of three algorithms as depicted in Figure 4. This
is a slight variation of the classical LWE cryptosystem initially presented by Regev [Reg05] and
later extended in [BV11]. The encoding scheme Enc is described by parameters Γ := (q, n, p, α),
with q, n, p ∈ N such that (p, q) = 1, and 0 < α < 1. Our construction is an extension of the one
presented in [BV11].

We assume the existence of a deterministic algorithm Pg that, given as input the security
parameter in unary 1λ, outputs an LWE encoding description Γ . The choice of using a deterministic
parameter generation Pg was already argued by Bellare et al. [BFS16]. The main advantage of this
choice is that every entity can (re)compute the description for a given security parameter, and that
no single party needs to be trusted with generating the encoding parameters. Moreover, it is often
the case that real-world encodings have fixed parameters for some well-known values of λ. For the
sake of simplicity, we define our encoding scheme with a LWE encoding description Γ and assume
that the security parameter λ can be derived from Γ .

Roughly speaking, the public information is constituted by the LWE parameters Γ and an
encoding of m is simply an LWE encryption of m. The LWE secret key constitutes the secret state
of the encoding scheme.

3.2 Basic Properties

Correctness.. We say that the encoding scheme is (statistically) correct if all valid encodings are
decoded successfully (with overwhelming probability).

Definition 10. An encoding scheme Enc is correct if, for any ~s← K(1λ) and m ∈ Zp,

Pr[D(~s,E(~s,m)) 6= m] = negl(λ) .

10

K(1λ)

Γ := (p, q, n, α) := Pg(1λ)

~s←$Znq

return (Γ, ~s)

E(~s,m)

Γ := (p, q, n, α) := Pg(1λ)

~a←$Znq

σ := qα; e← χσ

return (−~a, ~a · ~s+ pe+m)

D(~s, (~c0, c1))

Γ := (p, q, n, α) := Pg(1λ)

return (~c0 · ~s+ c1) (mod p)

Fig. 4. An encoding scheme based on LWE.

We say that an encoding ct of a message m under secret key ~s is valid if D (~s, ct) = m. We say that
an encoding is fresh if it is generated through the E algorithm. We say that an encoding is stale if
it is not fresh.

Lemma 11 (Correctness). Let ct = (−~a,~a · ~s+ pe+m) be an encoding. Then ct is a valid
encoding of a message m ∈ Zp if e < q

2p .

Image verification.. Using the decryption algorithm D, and provided with the secret key (i.e.,
δ := sk), we can implement image verification. The algorithm ∈ for image verification proceeds as
follows: decrypts the encoded element and tests for equality between the two messages.

Quadratic root detection.. The algorithm Q for quadratic root detection is straightforward
using D: decrypt the message and evaluate the polynomial, testing if it is equal to 0.

d-linearly homomorphicity.. Given a vector of d encodings ~ct ∈ Z
d×(n+1)
q and a vector of

coefficients ~c ∈ Zdp, the homomorphic evaluation algorithm is defined as follows: Eval
(
~ct,~c

)
:= ~c · ~ct.

3.3 Technical Challenges

Noise growth.. During the homomorphic evaluation the noise grows as a result of the operations
which are performed on the encodings. Consequently, in order to ensure that the output of Eval is a
valid encoding of the expected result, we need to start with a sufficiently small noise in each of the
initial encodings.

In order to bound the size of the noise, we first need a basic theorem on the tail bound of
discrete Gaussian distributions due to Banaszczyk [Ban95]:

Lemma 12 ([Ban95, Lemma 2.4]). For any σ, T ∈ R+ and ~a ∈ Rn:

Pr[~x← χnσ : |~x · ~a| ≥ Tσ ‖~a‖] < 2 exp(−πT 2). (1)

At this point, this corollary follows:

Corollary 13. Let ~s←$ Znq be a secret key and ~m = (m0, . . . ,md−1) ∈ Zdp be a vector of messages.

Let ~ct be a vector of d fresh encodings so that ~cti ← E (~s,mi), and ~c ∈ Zdp be a vector of coefficients.

If q > 2p2σ
√

κd
π , then Eval

(
~c, ~ct

)
outputs a valid encoding of ~m · ~c under the secret key ~s with

probability overwhelming in κ.

Proof. The fact that the message part is ~m · ~c is trivially true by simple homomorphic linear
operations on the encodings. Then the final encoding is valid if the error does not grow too much
during these operations. Let ~e ∈ Zdp be the vector of all the error terms in the d encodings, and let

T =
√
κ/π. Then by Lemma 12 we have:

Pr

[
~e← χdσ : |~e · ~c | ≥

√
κ

π
σ ‖~c ‖

]
< 2 exp(−κ).

11

For correctness we need the absolute value of the final noise to be less than q/2p (cf. Lemma 11).
Since it holds that ∀~c ∈ Zdp, ‖~c ‖ ≤ p

√
d, we can state that correctness holds if:√

κ

π
σp
√
d <

q

2p

which gives q > 2p2σ

√
κd

π
. 2

Smudging.. When computing a linear combination of encodings, the distribution of the error term
in the final encoding does not result in a correctly distributed fresh encoding. The resulting error
distribution depends on the coefficients used for the linear combination, and despite correctness
of the decryption still holds, the error could reveal more than just the plaintext. We combine
homomorphic evaluation with a technique called smudging [AJL+12], which “smudges out” any
difference in the distribution that is due to the coefficients of the linear combination, thus hiding
any potential information leak. This technique has been also called “noise flooding” in the past
[BPR12].

Lemma 14 (Noise Smudging, [Gen09]). Let B1 = B1 (κ) and B2 = B2 (κ) be positive integers.
Let x ∈ [−B1, B1] be a fixed integer and y←$ [−B2, B2]. Then the distribution of y is statistically
indistinguishable from that of y + x, as long as B1/B2 = negl(κ).

Proof. Let ∆ denote the statistical distance between the two distributions. By its definition:

∆ =
1

2

B1+B2∑
v=−(B1+B2)

|Pr [y = v]− Pr [y = v − x]| = 1

2

 −B2∑
v=−(B1+B2)

1

B2
+

B1+B2∑
v=B2

1

B2

 =
B1

B2
.

The result follows immediately. 2

In order to preserve the correctness of the encoding scheme while allowing linear evaluations, we
need once again q to be large enough to accommodate for the flooding noise. In particular, q will
have to be at least superpolynomial in the statistical security parameter κ.

Corollary 15. Let ~s ∈ Znq be a secret key and ~m = (m1, . . . ,md) ∈ Zdp be a vector of messages.

Let ~ct be a vector of d encodings so that ~cti is a valid encoding of mi, and ~c ∈ Zdp be a vector of

coefficients. Let eEval be the noise in the encoding output by Eval
(
~ct,~c

)
and BEval a bound on its

absolute value. Finally, let Bsm = 2κBEval, and esm←$ [−Bsm, Bsm]. Then the statistical distance
between the distribution of esm and that of esm + eEval is 2−κ. Moreover, if q > 2pBEval (2κ + 1)

then the result of Eval
(
~ct,~c

)
+
(
~0, esm

)
is a valid encoding of ~m · ~c under the secret key ~s.

Proof. The claim on the statistical distance follows immediately from Lemma 14 and the fact that
the message part is ~m · ~c is true by simple homomorphic linear operations on the encodings. In
order to ensure that the final result is a valid encoding, we need to make sure that the error in this
output encoding remains smaller than q/2p. The final error is upper bounded by BEval +Bsm, so
we have

BEval +Bsm <
q

2p
=⇒ BEval + 2κBEval <

q

2p
=⇒ q > 2pBEval (2κ + 1) .

2

Error testing.. By making non-blackbox use of our LWE encoding scheme, it is possible to
define an implementation of the function test-error in order to guarantee the existence of a security
reduction from adversarially-generated proofs. In fact, it is not sufficient to show that a series
of homomorphic operations over a forged proof can break one of the assumptions. We must also
guarantee that these manipulations do not alter the correctness of the encoded value. In the specific
case of LWE encodings, it is sufficient to use the secret key, recover the error, and enforce an upper
bound on its norm. A possible implementation of test-error is displayed in Figure 5.

12

Procedure test-error(~s, (~c0, c1))

Γ := (p, q, n, α) := Pg(1λ)

e′ := (~c0 · ~s+ c1) // p

return (Eq. (3))

Fig. 5. The error testing procedure.

Other requirements for security reduction.. The following lemma will be needed later during
the security proof. It essentially defines the conditions under which we can take an encoding, add a
smudging term to its noise, sum it with the output of an execution of Eval and finally multiply the
result by an element in Zp.

Lemma 16 (For reduction). Let ~s, ~ct, ~c, eEval, BEval be as in Corollary 15, and let ct′ =
(−~a′, ~s · ~a′ + pe′ +m′) be a valid encoding of a message m′ ∈ Zp with noise e′ bounded by Be. Let
Bsm = 2κBe and esm←$ [−Bsm, Bsm] be a “smudging noise”. Then, if q > 2p2 ((2κ + 1)Be +BEval),
it is possible to add the smudging term esm to ct′, sum the result with the output of Eval

(
~ct,~c

)
,

multiply the outcome by a coefficient bounded by p, and obtain a valid encoding of k (~m · ~c+m′).

Proof. The correctness of the message part comes immediately from performing homomorphic
linear operations on encodings, and the final output is valid if the noise remains below a certain
threshold. After adding the smudging term and performing the sum, the noise term is at most
Be +Bsm +BEval = (2κ + 1)Be +BEval. After the multiplication by a coefficient bounded by p, it
is at most p ((2κ + 1)Be +BEval). Thus, the encoding is valid if:

p ((2κ + 1)Be +BEval) <
q

2p
, (2)

which immediately gives the result. 2

Conditions on the modulus q. Corollaries 13 and 15 and Lemma 16 give the conditions that
the modulus q has to respect in order to allow for all the necessary computations. In particular,
Corollary 13 gives the condition to be able to homomorphically evaluate a linear combination of
fresh encodings through the algorithm Eval; Corollary 15 gives the condition to be able to add a
smudging noise to the result of such an evaluation; Lemma 16 gives a condition that will have to be
satisfied in the security reduction. They are ordered from the least stringent to the most stringent,
so the condition that must be satisfied in the end is the one given by Lemma 16:

q > 2p2 ((2κ + 1)Be +BEval) (3)

Leftover hash lemma (LHL). We now recall the definition of min-entropy, and the famous
“leftover hash lemma” introduced by Impagliazzo et al. [HILL99].

Definition 17 (Min-entropy). The min-entropy of a random variable X is defined as

H∞ (X) = − log
(

max
x

Pr[X = x]
)

Lemma 18 (Leftover hash lemma). Assume a family of functions
{
Hx : {0, 1}n → {0, 1}`

}
x∈X

is universal, i.e., ∀a 6= b ∈ {0, 1}n,

Prx∈X [Hx (a) = Hx (b)] = 2−`.

Then, for any random variable Y ,

∆ ((X,HX (Y)) , (X,U`)) ≤
1

2

√
2−H∞(Y) · 2`,

where U`←$ {0, 1}`.

13

Setup Π.G(1λ, C)

α, β, s←$F; (pk, sk)← K(1λ)

(v0, . . . , vm(x), t(x))← SSP(C)

Compute crs as per Eq. (4)

vrs := td := (sk, s, α, β)

return (vrs, crs, td)

Verifier Π.V(vrs, u, π)

(H, Ĥ, V̂ , Vw, Bw) := π

(a1, a2, . . . a`u) := u; (sk, s, α, β) := vrs

ws := D(Vw); bs := D(Bw)

hs := D(H); ĥs := D(Ĥ)

v̂s := D(V̂); ts := t(s)

vs := v0(s) +
∑`u
i=1 aivi(s) + ws

Check Eqs. (eq-pke) to (eq-lin)

return test-error(sk, Bw)

Prover Π.P(crs, u, w)

(v0, . . . , vm(x), t(x))← SSP(C)

u := (a1, . . . , a`u) ∈ {0, 1}`u ;

w := (a`u+1, . . . , am)

ν(x) := v0(x) +
∑m
i=1 aivi(x) + γt(x)

vmid(x) :=
∑m
i>`u

aivi(x) + γt(x)

h(x) = (ν(x)2 − 1)/t(x)

// Compute the proof terms as per Eq. (6)

H := Eval((E(si))di , (hi)
d
i) = E(h(s))

Ĥ := Eval((E(αsi))di , (hi)
d
i) = E(αh(s))

V̂ := Eval((E(αsi)di , (νi)
d
i) = E(αν(s))

Bw := Eval((E(βvi(s)))
m
i ‖(E(βt(s))), (ai)

m
i ‖(γ))

Vw := Eval((E(si))di , (vmidi)
d
i) = E(vmid(s))

Apply smudging on H, Ĥ, V̂ , Bw, Vw

return (H, Ĥ, V̂ , Vw, Bw)

Fig. 6. Our zk-SNARK protocol Π.

Zero-Knowledge.. We now present a version of the LHL that will be useful later in this work,
when proving the zero-knowledge property of our construction. In a nutshell, it says that a random
linear combination of the columns of a matrix is statistically close to a uniformly random vector,
for some particular choice of coefficients.

Lemma 19 (“Specialized” leftover hash lemma). Let n, p, q, d be non-negative integers. Let
A←$ Zn×dq , and ~r←$ Zdp. Then we have

∆ ((A,A~r) , (A, ~u)) ≤ 1

2

√
p−d · qn,

where A~r is computed modulo q, and ~u←$ Znq .

Proof. For the vector ~r, we have that H∞ (~r) = d log p. Then the proof is immediate from Lemma 18:

∆ ((A,A~r) , (A, ~u)) ≤ 1

2

√
2−d log p · qn =

1

2

√
p−d · qn.

2

4 Our designated-verifier zk-SNARK

Let Enc be an encoding scheme (Definition 9). Let C be some circuit taking as input an `u-bit string
and outputting 0 or 1. Let ` := `u + `w, where `u is the length of the “public” input, and `w the
length of the private input. The value m corresponds to the number of wires in C and n to the
number of fan-in 2 gates. Let d := m+ n. We construct a zk-SNARK scheme for any relation RC

on pairs (u,w) ∈ {0, 1}`u × {0, 1}`w that can be computed by a polynomial size circuit C with m
wires and n gates. Our protocol is formally depicted in Figure 6.

CRS generation. The setup algorithm G takes as input some complexity 1λ in unary form and
the circuit C : {0, 1}`u × {0, 1}`w → {0, 1}. It generates a square span program of degree d = m+ n
over a field F, of size |F| ≥ d that verifies C by running:

ssp := (v0(x), . . . , vm(x), t(x))← SSP(C)

14

Then, it runs (pk, sk)← K(1λ) using the encoding scheme Enc. Finally, it samples α, β, s← F such
that t(s) 6= 0, and returns the CRS:

crs :=
(

ssp, pk, E(1),E(s), . . . ,E(sd),

E(α),E(αs), . . . ,E(αsd),

E(βt(s)), (E(βvi(s)))
m
i=`u+1

) (4)

The error for each of these encodings has to be chosen carefully. In a nutshell, we need to intentionally
increase the magnitude of the noise in some encodings, in order to mimic its distribution in the
simulated CRS provided to the adversary in the security reduction. Failing to do so results in
limiting the adversary’s ability to perform homomorphic operations on the CRS and, thus, in a
flawed proof. We defer further analysis on this point to Section 6. The verification string vrs, as
well as the trapdoor td, consists of the secret key sk of the encoding scheme, and the secrets s, α, β
(we implicitly include the crs in vrs).

Prover. The prover algorithm, on input some statement u := (a1, . . . , a`u), computes a witness
w := (a`u+1, . . . , am) such that (u‖w) = (a1, . . . , am) is a satisfying assignment for the circuit C.
The (ai)i are such that:

t(x) divides

(
v0(x) +

m∑
i=1

aivi(x)

)2

− 1,

as per Theorem 2. Then, it samples γ←$ F and sets ν(x) := v0(x) +
∑m
i=1 aivi(x) + γt(x). Let:

h(x) :=
(v0(x) +

∑m
i aivi(x) + γt(x))2 − 1

t(x)
=
ν(x)2 − 1

t(x)
, (5)

whose coefficients can be computed from the polynomials provided in the ssp; them by linear
evaluation it is possible to obtain:

H := E(h(s)), Ĥ := E(αh(s)), V̂ := E (αν(s)) ,

Vw := E

(
m∑

i=`u+1

aivi(s) + γt(s)

)
,

Bw := E

(
β

(
m∑

i=`u+1

aivi(s) + γt(s)

))
.

(6)

In fact, the encoding H - respectively, Ĥ - can be computed from the encodings of 1, s, . . . , sd -
respectively, α, αs, . . . , αsd - and the coefficients of Equation (5). The element V̂ can be computed
from the encodings of αs, . . . , αsd. Finally, Vw - respectively, Bw - can be computed from the
encodings of s, . . . , sd - respectively, βt(s), βv`u+1(s), . . . , βvm(s). All these linear evaluations involve
at most d+ 1 terms and the coefficients are bounded by p. Using the above elements, the prover
returns a proof π := (H, Ĥ, V̂ , Vw, Bw).

Verifier. Upon receiving a proof π and a statement u = (a1, . . . , a`u), the verifier, in possession of
the verification key vrs (that implicitly contains the crs), proceeds with the following verifications.
First, it uses the quadratic root detection algorithm of the encoding scheme Enc to verify that the
proof satisfies:

ĥs − αhs = 0 and v̂s − αvs = 0, (eq-pke)

(v2s − 1)− hsts = 0, (eq-div)

bs − βws = 0. (eq-lin)

15

where (hs, ĥs, v̂s, ws, bs) are the values encoded in (H, Ĥ, V̂ , Vw, Bw) := π and ts, vs are computed

as ts := t(s) and vs := v0 +
∑`u
i=1 aivi(s) + ws.

Then, the verifier checks whether it is still possible to perform some homomorphic operations,
using the test-error procedure, implemented in Figure 5 for the specific case of lattice encodings.
More precisely, the verifier tests whether it is still possible to add another encoding and multiply the
result by an element bounded by p, without compromising the correctness of the encoded element.
This will guarantee the existence of a reduction in the knowledge soundness proof of Section 5.2. If
all above checks hold, the verifier returns true. Otherwise, return false.

Remark 20. Instantiating our encoding scheme on top of a “noisy” encryption scheme like Regev’s
introduces multiple technicalities that affect the protocol, the security proof, and the parameters’
choice. For instance, in order to compute a linear combination of d encodings via Eval we need
to scale down the error parameter and consequently increase the parameters q and n in order to
maintain correctness and security. Similarly, the distributions of the error terms and the random
vectors are affected by the homomorphic evaluation, and we must guarantee that the resulting terms
are still simulatable. All these issues will be formally addressed in Section 5, and then analyzed
more pragmatically in Section 6.

5 Proofs of security

In this section, we prove our main theorem:

Theorem 21. If the q-PKE, q-PKEQ and q-PDH assumptions hold for the encoding scheme Enc,
the protocol Π on Enc is a zk-SNARK with statistical completeness, statistical zero-knowledge and
computational knowledge soundness.

Proof (of statistical completeness). Corollary 13 states the conditions on Γ for which the homo-
morphically computed encodings are valid with probability at least 1− negl(κ). Lemma 16 affirms
that correctly generated proofs satisfy Equation (2) with probability overwhelming in κ. Therefore
test-error returns true and completeness follows trivially by Theorem 2. 2

5.1 Zero-Knowledge

In order to obtain a zero-knowledge protocol, we perform smudging of the proofs terms, and we
randomize the target polynomial t(x). The first step hides the witness, the second makes the
distribution of the final noise independent from the coefficient ai. The random vectors constituting
the first element of the ciphertext are guaranteed to be statistically indistinguishable from uniformly
random vectors by leftover hash lemma (cf. Lemma 19).

Proof (of zero-knowledge). The simulator for zero-knowledge is shown in Figure 7. The error are inde-
pendently sampled from the same uniform distribution over the (integer) interval [−2κTσBw

, 2κTσBw
],

where T is a small constant and σBw
:= pσ

√
d+ 1

√
p2 +m− `u. We will call this the smudging

distribution.
Checking that the proof output by Π.Sim is indeed correct (i.e., that it verifies Eqs. (eq-pke)

to (eq-lin)) is trivial. We are left with showing that the two proofs are statistically indistinguishable.
Note that once the value of Vw in the proof has been fixed, the verification equations uniquely

determine H, Ĥ, V̂ , and Bw. This means that for any (u,w) such that C(u,w) = 1, both the real
arguments and the simulated arguments are chosen uniformly at random such that the verification
equations will be satisfied. One can prove that values for Vw are statistically indistinguishable when
executing Π.P and Π.Sim: Vw is the encoding of a uniformly random variable γw in Π.Sim and the
masking of a polynomial evaluation by adding γt(s), where γ is chosen uniformly at random (note
that t(s) 6= 0) in Π.P. What is encoded in the remaining terms is simply dictated by the verification
constraints.

16

Simulator Π.Sim(td, u)

(sk, s, α, β) := td; (a1, . . . , a`u) := u

γw ←$F

h :=
(

(v0(s) +
∑`u
i aivi(s) + γw)2 − 1

)
/ t(s)

H ← E(h); Ĥ ← E(αh); V̂ ← E(αv0(s) +
∑`u
i aiαvi(s) + αγw)

Vw ← E(γw); Bw ← E(βγw)

Apply smudging on H, Ĥ, V̂ , Bw, Vw

return (H, Ĥ, V̂ , Vw, Bw)

Fig. 7. Simulator for Zero-Knowledge.

In both worlds, the proof is a tuple of 5 encodings (H, Ĥ, V̂ , Vw, Bw). Once the vrs is fixed, each
encoding can be written as (−~a,~a · ~s+ pe+m), for some ~a ∈ Znq and some m ∈ Zp satisfying the
verification equations. Due to Lemma 18, the random vectors ~a are indistinguishable from uniformly
random in both worlds. The error terms are statistically indistinguishable due to Lemma 14. (See
Section 6 for a detailed explanation of these values.) 2

Zero-knowledge comes at a cost: smudging the error terms requires us to scale the ciphertext
modulus by κ bits. For those applications where zero-knowledge is not required, we can simplify the
protocol by removing γt(x) from the computation of h(x) and avoiding the smudging procedure
on every proof term. In Table 1 we show some choices of parameters, both with and without
zero-knowledge.

5.2 Knowledge Soundness

Before diving into the technical details of the proof of soundness, we provide some intuition in an
informal sketch of the security reductions: the CRS for the scheme contains encodings of E(s), . . . ,
E(sd), as well as encodings of these terms multiplied by some field elements α, β ∈ F. The scheme
requires the prover P to exhibit encodings computed homomorphically from such CRS.

The reason for requiring the prover to duplicate its effort w.r.t. α is so that the simulator in the
security proof can extract representations of V̂ , Ĥ as degree-d polynomials v(x), h(x) such that
v(s) = vs, h(s) = hs, by the q-PKE assumption (for q = d). The assumption also guarantees that
this extraction is efficient. This explains the first quadratic root detection check Equation (eq-pke)
in the verification algorithm.

Suppose an adversary manages to forge a SNARK of a false statement and pass the verification
test. Then, by soundness of the square span program (Theorem 2), for the extracted polynomials

v(x), h(x) and for the new defined polynomial vmid(x) := v(x) − v0(x) −
∑`u
i aivi(x), one of the

following must be true:

i. h(x)t(x) 6= v2(x)− 1, but h(s)t(s) = v2(s)− 1, from Equation (eq-div);
ii. vmid(x) 6∈ Span(v`u+1, . . . , vm), but Bw is a valid encoding of E(βvmid(s)), from Equation (eq-lin).

If the first case holds, then p(x) := (v2(x) − 1) − h(x)t(x) is a nonzero polynomial of degree
some k ≤ 2d that has s as a root, since the verification test implies (v2(s)− 1)− h(s)t(s) = 0. The
simulator can use p(x) to solve q-PDH for q ≥ 2d− 1 using the fact that E

(
sq+1−kp(s)

)
∈ {E(0)}

and subtracting off encodings of lower powers of s to get E(sq+1).
To handle the second case, i.e., to ensure that vmid(x) is in the linear span of the vi(x)’s with

`u < i ≤ m we use an extra scalar β, supplement the CRS with the terms {E(βvi(s))}i>`u ,E(βt(s)),
and require the prover to present (encoded) βvmid(s) in its proof. The adversary against q-PDH
will choose a polynomial β(x) convenient to solve the given instance. More specifically, it sets β(x)
with respect to the set of polynomials {vi(x)}i>`u such that the coefficient for xq+1 in β(x)vmid(x)

17

is zero. Then, to generate the values in the crs it sets β := β(s) (which can be computed from its
input consisting of encodings of powers of s). Using the above, it runs the SNARK adversary and
to obtain from its output Bw an encoding of some polynomial with coefficient sq+1 non-zero and
thus solve q-PDH. Also here, the verification algorithm guarantees that even with all the above
homomorphic operations, the challenger still decrypts the correct value with 1− negl(κ) probability.

Proof (of computational knowledge soundness). Let AΠ be the PPT adversary in the game for
knowledge soundness (Figure 1) able to produce a proof π for which Π.V returned true. We first
claim that it is possible to extract the coefficients of the polynomial v(x) corresponding to the values
vs encoded in V . The setup algorithm first generates the parameters (pk, sk) of an encoding scheme
Enc and picks α, β, s ∈ F, which are used to compute E(1),E(s), . . . ,E(sd),E(α),E(αs), . . . ,E(αsd).
Fix some circuit C, and let ssp be an SSP for C. Let APKE be the d-PKE adversary, that takes as
input a set of encodings:

σ :=
(
pk,E(1),E(s), . . . ,E(sd),E(α),E(αs), . . . ,E(αsd)

)
.

The auxiliary input generator Z is the PPT machine that upon receiving as input σ, samples
β←$ Zp, constructs the remaining terms of the CRS (as per Equation (4)), and outputs them in z
using ssp. Thus, APKE sets crs := (ssp‖σ‖z) and invokes AΠ(crs). As a result, it obtains a proof

π = (H, Ĥ, V̂ , Vw, Bw). On this proof, it computes:

V := E

(
v0 +

`u∑
i=1

aivi(s) + ws

)
= Vw + v0 +

`u∑
i=1

aivi(s). (7)

where ws is the element encoded in Vw. Finally, APKE returns (V̂ , V). If the adversary A outputs a

valid proof, then by verification equation Eq. (eq-pke) it holds that the two encodings (V, V̂) encode
values vs, v̂s such that v̂s − αvs = 0. Therefore, by q-PKE assumption there exists an extractor
ExtPKE that, using the same input (and random coins) of APKE, outputs a vector (c0, . . . , cd) ∈ Fd+1

such that V is an encoding of
∑d
i=0 cis

i and V̂ is an encoding of
∑d
i=0 αcis

i. In the same way, it is

possible to recover the coefficients of the polynomial h(x) used to construct (H, Ĥ), the first two
elements of the proof of AΠ (again, by Eq. (eq-pke)).

Our witness-extractor ExtΠ, given crs, emulates the extractor ExtPKE above on the same input
σ, using as auxiliary information z the rest of the CRS given as input to ExtΠ. By the reasoning
discussed above, ExtΠ can recover (c0, . . . , cd) coefficients extracted from the encodings (V, V̂).

Consider now the polynomial v(x) :=
∑d
i=0 cix

i. If it is possible to write the polynomial as
v(x) = v0(x) +

∑m
i aivi(x) + δt(x) such that (a1, . . . , am) ∈ {0, 1}m satisfies the assignment for the

circuit C with u = (a1, . . . , a`u), then the extractor returns the witness w = (a`u+1, . . . , am).

With overwhelming probability, the extracted polynomial v(x) :=
∑d
i=0 cix

i does indeed provide
a valid witness w. Otherwise, there exists a reduction to q-PDH that uses the SNARK adversary
AΠ. Define the polynomial

vmid(x) := v(x)− v0(x)−
`u∑
i=1

aivi(x).

We know by definition of SSP (Definition 1) and by Theorem 2 that C is satisfiable if and only if

t(x) | v2(x)− 1 ∧ vmid(x) =

d∑
i

cix
i − v0(x)−

`u∑
i

aivi(x) ∈ Span(v`u+1, . . . , vm, t)

Therefore, by contradiction, if the adversary AΠ does not know a witness w ∈ {0, 1}m−`u for u
(such that (u,w) ∈ RC), but still the two verification checks Eq. (eq-div) and Eq. (eq-lin) pass, we
have that either one of the following two cases must hold:

i. t(x)h(x) 6= v2(x)− 1, but t(s)h(s) = v2(s)− 1; or

18

ii. vmid(x) 6∈ Span(v`u+1, . . . , vm, t), but Bw is an encoding of βvmid(s).

Let BPDH be an adversary against the q-PDH assumption. Given a q-PDH challenge(
E(1),E(s), . . . ,E(sq),E

(
sq+2

)
, . . . ,E

(
s2q
))
, for q ∈ {2d− 1, d}

adversary BPDH samples uniformly at random α←$ F, and defines some β ∈ F (that we will formally
construct later) and constructs a CRS as per Equation (4). There are some subtleties in how BPDH

generates the value β. In fact, β can be generated without knowing its value explicitly, but rather

knowing its representation over the power basis
{
si
}2q
i=0,i6=q+1

– that is, knowing a polynomial β(x)

and its evaluation in s. Some particular choices of β will allow us to provide a solution for a q-PDH
challenge. BPDH invokes the adversary AΠ as well as the extractor ExtΠ on the generated CRS, thus
obtaining a proof π and the linear combination used by the prover for the polynomials h(x), v(x)
and also extracts a witness for the statement being proved.

For the strong soundness (see Remark 6), in order to simulate the verification oracle and to
answer the verification queries of AΠ, BPDH has to compare its encodings (obtained from the
extracted coefficients and its input) with A’s proof terms, accepts if the terms match, and rejects
otherwise. Because the encoding scheme is not deterministic, adversary BPDH invokes the PKEQ
extractor and simulates the verification oracle correctly with overwhelming probability.

The reduction in the two mentioned cases works as follows:

i. The extracted polynomials h(x) and v(x) satisfy t(s)h(s) = v2(s)− 1, but t(x)h(x) 6= v2(x)− 1.
By q-PDH assumption this can happen only with negligible probability. We define p(x) =
v2(x) − 1 − t(x)h(x), that in this case is a non-zero polynomial of degree k ≤ 2d having s
as a root. Let pk be the highest nonzero coefficient of p(x). Write p̃(x) = xk − p−1k · p(x).
Since s is a root of xk − p̃(x), it is a root of xq+1 − xq+1−kp̃(x). BPDH solves q-PDH by
computing E(sq+1) = E(sq+1−kp̃(s)) for q = 2d − 1. Since deg(p̃) ≤ k − 1, the latter is a
known linear combination of encodings E(1),E(s), . . . ,E(sq) which are available from the q-PDH
challenge. More precisely, BPDH will compute Eval((E(si+q+1−k))i, (p̃i)

2d−1
i) on fresh encodings

E(1),E(s),E(s2), . . . ,E(sq) solving the q-PDH challenge for q ≥ 2d− 1.

ii. In the second case, suppose that the polynomial vmid extracted as previously described cannot
be expressed as a linear combination of {v`u+1, . . . , vm, t}. The proof still passes the verification,
so we have a consistent value for Bw ∈ {E(βvmid(s))}.
BPDH generates a uniformly random polynomial a(x) of degree q subject to the constraint that
all of the polynomials a(x)t(x) and {a(x)vi(x)}mi=`u+1 have coefficient 0 for xq+1. We note that
for q = d, there are q − (m− `u) > 0 degrees of freedom in choosing a(x).

BPDH defines β to be the evaluation of a(x) in s, i.e., β := a(s). Remark that BPDH does
not know s explicitly, but having access to the encodings of 2q − 1 powers of s, it is able to
generate valid encodings (E(βvi(s)))i and E(βt(s)) using Eval. Note that, by construction of
β, this evaluation is of d+ 1 elements in F and that the (q + 1)-th power of s is never used.
Now, since vmid(x) is not in the proper span, the coefficient of degree q + 1 of xa(x)vmid(x)
must be nonzero with overwhelming probability 1 − 1/|F|. The term Bw of the proof must

encode a known polynomial in s:
∑2q
i=0 bis

i := βvmid(s) = a(s)vmid(s) where the coefficient bq+1

is non-trivial. BPDH can subtract off encodings of multiples of other powers of s to recover
E(sq+1) and break q-PDH. This requires an evaluation on fresh encodings:

Eval

(
(E(si))q+di=0

i6=q+1
, (−bi)q+di=0

i 6=q+1

)
. (8)

Adding the above to Bw and multiplying by the inverse of the (q + 1)-th coefficient (using once
again Eval) will provide a solution to the q-PDH problem for q = d.

Since the two cases above are not possible by q-PDH assumption, ExtΠ extracts a valid witness if
the proof of AΠ is valid. 2

19

As previously mentioned in Remark 6, the proof of knowledge soundness allows oracle access to
the verification procedure. In the context of a weaker notion of soundness where the adversary does
not have access to the Π.V(vrs, ·, ·) oracle, the proof is almost identical, except that there is no need
for the BPDH adversary to answer queries and to simulate the verification, and therefore no need
for the q-PKEQ assumption. This greatly simplifies our construction: the protocol does not need to
rely on the q-PKEQ assumption, and the prime modulus can be of κ bits.

6 Efficiency and concrete parameters

The prover’s computations are bounded by the security parameter and the size of the circuit, i.e.,
P ∈ Õ (λd). As in [GGPR13, DFGK14], the verifier’s computations depend solely on the security
parameter, i.e., V ∈ O (λ). The proof consists of a constant number (precisely, 5) of LWE encodings,

i.e., |π| = 5 · Õ (λ). Finally, the complexity for the setup procedure is Õ (λd).

Using the propositions from Section 3 and knowing the exact number of homomorphic operations
that need to be performed in order to produce a proof, we can now attempt at providing some
concrete parameters for our encoding scheme.

We fix the statistical security parameter κ := 32, as already done in past works on fully
homomorphic encryption (e.g., [DM15, CGGI16]). We fix the circuit size d := 215, which is sufficient
for some practical applications such as the computation of SHA-256. For some practical examples
of circuits, we direct the reader towards [BCG+14a, PHGR13].

For a first attempt at implementing our solution, we assume a weaker notion of soundness, i.e.,
that in the KSND game the adversary does not have access to a verification oracle (cf. Figure 1).
Concretely, this means that the only bound in the size of p is given by the guessing probability of
the witness, and the guessing of a field element. We thus fix p to be a prime6 of 32 bits for the size
of the message space.

The CRS is composed of encodings of different nature: some of them are fresh (E(1),E(s), . . . ,
E(sd)), some happen to be stale in the construction ofAPKE and the construction of BPDH Section 5.2
(Item i.) (E(αs), . . . ,E(αsd)), and some are stale from the construction of BPDH Section 5.2 (Item ii.)
(E(βt(s)), (E(βvi(s)))i). They are displayed in Figure 8. Since, as we have seen, BPDH manipulates
the q-PDH challenge via homomorphic operations, we must guarantee that the protocol adversary
can perform at least the same number of homomorphic operations as in the real-world protocol.
Therefore, in the real protocol, we must intentionally increase the magnitude of the noise in
the CRS: the terms E(αsi) (with i = 0, . . . , d) are generated by multiplying the respective fresh
encoding E(si) by a term bounded by p; the terms E(βt(s)),{E(βvi(s))}i instead are generated via
Eval of d+ 1 elements with coefficients bounded by p. Concretely, when encoding these elements
using the encoding scheme of Section 3, the error for E(αsi) is sampled from p · χσ; the error for
E(βt(s)),E(βvi(s))) is sampled from (p

√
d+ 1) · χσ.

The proof π consists of five elements (H, Ĥ, V̂ , Vw, Bw), as per Equation (6). H and Vw are

computed using an affine function on d encodings with coefficients modulo p; Ĥ, V̂ are computed
using a linear function on d+ 1 encodings with coefficients modulo p; finally, Bw is computed using
a linear combination of m− `u encodings with coefficients in {0, 1}, except the last one which is
modulo p. Overall, the term that carries the highest load of homomorphic computations is Bw. The
generation of Bw is outlined in Figure 8, and to it (as well as to the other proof terms) we add a
smudging term for constructing a zero-knowledge proof π.

In the construction of the adversary BPDH (Item ii.) we need to perform some further homo-
morphic operations on the proof element Bw in order to solve the q-PDH challenge, namely one
addition (Equation (8)) and one multiplication by a known scalar b bounded by p. The result of the
first operation is denoted by E(b · sq+1) in Figure 8; the final result is the solution to the q-PDH
challenge.

6 In particular, we need p and q to be relatively prime for the correctness of the encoding scheme [BV11,
footnote 18].

20

βt(s)

E(~s) Bw π E(b · sq+1) E(sq+1)

βvi(s) E(~s)

Eval [d
+

1,
p] Eval [1, p]

Eval [m
− `

u
, 2]Eval [d+

1, p]

smudging mult p

Eval [2d
, p

]

APKE, BPDH Π.P BPDH

Fig. 8. Summary of evaluations in the security proof. The leftmost part of the figure refers to the construction
of adversaries for q-PKE and q-PDH; the central part refers to the protocol itself (i.e., the construction
of the proof π); the rightmost part refers to the construction of the adversary for q-PDH (Section 5.2 -
Item ii.). The syntax Eval [d, p] denotes a homomorphic evaluation on d encodings with coefficients in Zp.
E(~s) denotes the PDH challenge.

We now outline the calculations that we use to choose the relevant parameters for our encoding
scheme. In particular, we will focus on the term Bw since, as already stated, it is the one that is
involved in the largest number of homomorphic operations. The chain of operations that need to be
supported is depicted in Figure 8: we now analyze them one by one. The correctness of the other
terms follows directly from Corollary 13.

First of all, the terms (βvi(s))i and βt(s) are produced through the algorithm Eval executed on
d+ 1 fresh encodings with coefficients modulo p. Let σ be the discrete Gaussian parameter of the
noise terms in fresh encodings; then, by Pythagorean additivity, the Gaussian parameter of encodings
output by this homomorphic evaluation is σEval := pσ

√
d+ 1. Then the term βt(s) is multiplied by

a coefficient in Zp, and the result is added to a subset sum of the terms (βvi(s))i, i.e., a weighted
sum with coefficients in {0, 1}. It is trivial to see that, for the first term, the resulting Gaussian
parameter is bounded by pσEval, whereas for the second term it is bounded by σEval

√
m− `u. The

parameter of the sum of these two terms is then bounded by σBw
:= σEval

√
p2 +m− `u. Let us

then consider a constant factor T for “cutting the Gaussian tails”, i.e., such that the probability
of sampling from the distribution and obtaining a value with magnitude larger than T times the
standard deviation is as small as desired. We can then write that the absolute value of the error in
Bw is bounded by TσBw . At this point we add a smudging term, which amounts to multiplying
the norm of the noise by (2κ + 1) (cf. Corollary 15). Finally, the so-obtained encoding has to be
summed with the output of an Eval invoked on 2d fresh encodings with coefficients modulo p and
multiplied by a constant in Zp. The final noise is then bounded by TpσBw

(2κ + 1) + TpσEval (cf.
Lemma 16). By substituting the values of σEval, σBw

, remembering that σ := αq and imposing the
condition for having a valid encoding, we obtain

Tp2αq
√
d+ 1

(√
p2 +m− `u (2κ + 1) + 1

)
<

q

2p
.

The above corresponds to Equation (3) with bounds Be := TσBw and BEval := TσEval. By simplifying
q and isolating α, we get:

α <
1

2Tp3
√
d+ 1

(√
p2 +m− `u (2κ + 1) + 1

) .
With our choice of parameters and by taking T = 8, we can select for instance α = 2−180.

21

Table 2. Comparison with previous works. PQ stands for post-quantum. We note that the construction of
[PHGR13] is very different (namely, based on elliptic curves), and comparing security levels is therefore
difficult.

PQ λ ZK |π| |crs| d

[PHGR13] 7 256 3 288 B 6.50 MB 23,785
[BISW17] 3 100 7 0.02 MB 1.23 GB 10,000

this work 3 162 3 0.64 MB 8.63 MB 32,767

Once α and p are chosen, we select the remaining parameters q and n in order to achieve the
desired level of security for the LWE encoding scheme. To do so, we take advantage of Albrecht’s
estimator7 [APS15] which, as of now, covers the following attacks: meet-in-the-middle exhaustive
search, coded-BKW [GJS15], dual-lattice attack and small/sparse secret variant [Alb17], lattice
reduction with enumeration [LP11], primal attack via uSVP [AFG14, BG14], Arora-Ge algorithm
[AG11] using Gröbner bases [ACFP14]. Some possible choices of parameters are reported in Table 1.

Finally, based on these parameters, we can concretely compute the size of the CRS8 and that
of the proof π. The CRS is composed of d + (d+ 1) + (m+ 1) encodings, corresponding to the
encodings of the d powers of s, the encodings of α multiplied by the d + 1 powers of s, the m
encodings of (βvi)i, and the encoding of βt (s). This amounts to (2d+m+ 2) LWE encodings, each
of which has size (n+ 1) log q bits9. For the calculations, we bound m by d and state that the size
of the CRS is that of (3d+ 2) LWE encodings. From an implementation point of view, we can
consider LWE encodings (~a, b) ∈ Zn+1

q where the vector ~a is the output of a seeded PRG. This has
been proven secure in the random oracle model [Gal13]. Therefore, the communication complexity
is greatly reduced, as sending an LWE encoding just amounts to sending the seed for the PRG and
the value b ∈ Zq. For security to hold, we can take the size of the seed to be λ bits, thus obtaining
the final size of the CRS: (3d+ 2) log q + λ bits. The proof π is composed of 5 LWE encodings,
therefore it has size |π| = 5 (n+ 1) log q bits. Note that in this case we cannot trivially use the same
trick with the PRG, since the encodings are produced through homomorphic evaluations.

In Table 2 we show a comparison between our implementation, the zk-SNARK of [PHGR13]
(informally called “Pinocchio”), and the recent implementation of [BISW17] by Samir Menon,
Brennan Shacklett, and David Wu10. Despite the fact that the construction of Parno et al. [PHGR13]
is fundamentally different as it targets encoding over elliptic curves, we believe that they provide
a good term of comparison (when used with circuits of the same size) for the loss incurred when
using lattice-based encodings instead. Note therefore that the security parameter of [PHGR13] is
not comparable with the two other results.

Moreover, it is worth noting that the implementation of [BISW17] targets 80 bits of security,
which is justified using the estimate provided in [LP11]. We report λ = 100 as given by Albrecht’s
tool [APS15], which we believe to be more accurate. Nonetheless, the estimated post-quantum
security level is 50, thus insufficient for modern applications. Additionally, we note that, despite
targeting the construction of SNARGs, it seems the construction of [BISW17] can be turned into a
SNARK by using the stronger extractable linear-only assumption. In order to achieve this, they can
use a technique called double encryption, which doubles the size of each ciphertext. More details
about this are given in Appendix A.

22

Table 3. Benchmarks of our proof system (zk) for different circuit sizes (i.e., d).

Circ. size Setup (s) Prover (s) Verifier (ms)

210 1.46 s ± 18.7 ms 1.61 s ± 27.8 ms 1.26 ms ± 16 µs
213 12.3 s ± 37.9 ms 13 s ± 224 ms 1.50 ms ± 16 µs
215 57.8 s ± 134 ms 53.6 s ± 247 ms 2.28 ms ± 17 µs
216 167 s ± 269 ms 235 s ± 451 ms 3.46 ms ± 17 µs

6.1 Implementation

We implemented our construction in standard C11, using the library GMP [Gt12] for handling
arbitrary precision integers and the library FLINT [HJP13] for handling polynomials. We chose the
pseudo-Mersenne prime p := 232 − 5, and a the modulus q := 2736. This allows for fast arithmetic
operations: reduction modulo q simply consists in a bitmask, modular operations by p can fit a
uint64 t type, and multiplication of a scalar modulo p to a vector in Zn+1

q does not require any
memory allocation for the carry. The dimension of the lattice was chosen n = 1470, corresponding
to the “medium” security level displayed in Table 1. We used AES-256 in counter mode as a PRG,
taking advantage of AES-NI instructions when available.

We performed extensive benchmarks of our protocol on a single thread of an Intel Core i7-4770K
CPU @ 3.50GHz, running Debian (kernel version 4.9.110). Our implementation is publicly available
11. Time is measured using gettimeofday(2). Encoding a uniformly random element of Zp using
Enc.E takes on average 310 µs (std. dev. 34 µs); decoding it using Enc.D is about the same order of
magnitude, 197 µs (std. dev. 24 µs). Measurements were done over 100, 000 samples. The algorithm
for homomorphic evaluations Eval is able to compute a linear combination of 215 ciphertexts with
coefficients modulo p in roughly 13 s, and of 218 in about 94 s.

For proving satisfiability of a boolean circuit with roughly 214 gates (i.e., d = 215), we measured
57 s for the CRS generation algorithm; 53 s for the prover; 2.28 ms for the verifier (on average,
over 100 repeated executions varying SSPs). This is about one order of magnitude slower w.r.t.
Pinocchio’s benchmarks [PHGR13, Fig. 8]; verification instead is one order of magnitude faster.
More detailed benchmarks for different circuit sizes can be found in Table 3.

Acknowledgments. We would like to thank Balthazar Bauer and Florian Bourse for insightful
discussions. Rosario Gennaro was supported by NSF Award no. 1565403. Michele Minelli was
supported by European Union’s Horizon 2020 research and innovation programme under grant
agreement no. H2020-MSCA-ITN-2014-643161 ECRYPT-NET. Anca Nitulescu was supported by
the European Research Council under the European Community’s Seventh Framework Programme
(FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud). Michele Orrù was supported by
ERC grant 639554 (project aSCEND).

7
https://bitbucket.org/malb/lwe-estimator

8 We take into account only the encodings that are contained in the CRS. The other terms have considerably
smaller impact on its size or can be agreed upon offline (e.g., the SSP).

9 Note that the magnitude of the noise term, i.e., whether the encoding is fresh or stale, has no impact on
the size of an encoding. This size is a function only of n (the number of elements in the vector) and the
modulus q.

10 Results are extracted from the source code at https://github.com/dwu4/lattice-snarg.
11 See https://www.di.ens.fr/~orru/pq-zk-snarks.

23

https://bitbucket.org/malb/lwe-estimator
https://github.com/dwu4/lattice-snarg
https://www.di.ens.fr/~orru/pq-zk-snarks

References

ABL+17. Divesh Aggarwal, Gavin K Brennen, Troy Lee, Miklos Santha, and Marco Tomamichel. Quantum
attacks on bitcoin, and how to protect against them. arXiv preprint arXiv:1710.10377, 2017.

ACFP14. Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, and Ludovic Perret. Algebraic algorithms
for LWE. Cryptology ePrint Archive, Report 2014/1018, 2014. http://eprint.iacr.org/

2014/1018.

AFG14. Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy of solving LWE by
reduction to unique-SVP. In Hyang-Sook Lee and Dong-Guk Han, editors, ICISC 13, volume
8565 of LNCS, pages 293–310. Springer, Heidelberg, November 2014.

AG11. Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In Luca Aceto,
Monika Henzinger, and Jiri Sgall, editors, ICALP 2011, Part I, volume 6755 of LNCS, pages
403–415. Springer, Heidelberg, July 2011.

AJL+12. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and
Daniel Wichs. Multiparty computation with low communication, computation and interaction
via threshold FHE. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 483–501. Springer, Heidelberg, April 2012.

Alb17. Martin R. Albrecht. On dual lattice attacks against small-secret LWE and parameter choices
in HElib and SEAL. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part II, volume 10211 of LNCS, pages 103–129. Springer, Heidelberg, May
2017.

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

Ban95. Wojciech Banaszczyk. Inequalities for convex bodies and polar reciprocal lattices inr n. Discrete
& Computational Geometry, 13(2):217–231, 1995.

BBG05. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS,
pages 440–456. Springer, Heidelberg, May 2005.

BCC88. Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci., 37(2):156–189, October 1988.

BCC+14. Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein,
and Eran Tromer. The hunting of the SNARK. Cryptology ePrint Archive, Report 2014/580,
2014. http://eprint.iacr.org/2014/580.

BCCT12. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In Shafi
Goldwasser, editor, ITCS 2012, pages 326–349. ACM, January 2012.

BCCT13. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th ACM STOC, pages 111–120. ACM Press, June 2013.

BCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs
for C: Verifying program executions succinctly and in zero knowledge. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer,
Heidelberg, August 2013.

BCG+14a. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE
Symposium on Security and Privacy, pages 459–474. IEEE Computer Society Press, May 2014.

BCG+14b. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from Bitcoin. Cryptology
ePrint Archive, Report 2014/349, 2014. http://eprint.iacr.org/2014/349.

BCI+13. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In Amit Sahai, editor, TCC 2013,
volume 7785 of LNCS, pages 315–333. Springer, Heidelberg, March 2013.

BCTV14. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge
via cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 276–294. Springer, Heidelberg, August 2014.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications (extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988.

24

http://eprint.iacr.org/2014/1018
http://eprint.iacr.org/2014/1018
http://eprint.iacr.org/2014/580
http://eprint.iacr.org/2014/349

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an untrusted CRS:
Security in the face of parameter subversion. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 777–804. Springer, Heidelberg,
December 2016.

BG14. Shi Bai and Steven D. Galbraith. Lattice decoding attacks on binary LWE. In Willy Susilo
and Yi Mu, editors, ACISP 14, volume 8544 of LNCS, pages 322–337. Springer, Heidelberg,
July 2014.

BISW17. Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and their appli-
cation to more efficient obfuscation. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 247–277. Springer, Heidelberg,
May 2017.

BISW18. Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal snargs via linear
multi-prover interactive proofs. Cryptology ePrint Archive, Report 2018/133, 2018. https:

//eprint.iacr.org/2018/133.
BPR12. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In

David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 719–737. Springer, Heidelberg, April 2012.

BSBHR18. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046,
2018. https://eprint.iacr.org/2018/046.

BV11. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE Computer
Society Press, October 2011.

CGGI16. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully homo-
morphic encryption: Bootstrapping in less than 0.1 seconds. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 3–33. Springer,
Heidelberg, December 2016.

Dam92. Ivan Damg̊ard. Towards practical public key systems secure against chosen ciphertext attacks.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 445–456. Springer,
Heidelberg, August 1992.

DFGK14. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs
with applications to succinct NIZK arguments. In Palash Sarkar and Tetsu Iwata, editors, ASI-
ACRYPT 2014, Part I, volume 8873 of LNCS, pages 532–550. Springer, Heidelberg, December
2014.

DM15. Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic encryption in less
than a second. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 617–640. Springer, Heidelberg, April 2015.

Fuc18. Georg Fuchsbauer. Subversion-zero-knowledge snarks. In IACR International Workshop on
Public Key Cryptography, pages 315–347. Springer, 2018.

Gal13. Steven D. Galbraith. Space-efficient variants of cryptosystems based on learning with errors.
preprint, 2013. https://www.math.auckland.ac.nz/~sgal018/compact-LWE.pdf.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

GJS15. Qian Guo, Thomas Johansson, and Paul Stankovski. Coded-BKW: Solving LWE using lattice
codes. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I,
volume 9215 of LNCS, pages 23–42. Springer, Heidelberg, August 2015.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki
Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, Heidelberg,
December 2010.

Gt12. Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple Precision
Arithmetic Library, 5.0.5 edition, 2012. http://gmplib.org/.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages
99–108. ACM Press, June 2011.

25

https://eprint.iacr.org/2018/133
https://eprint.iacr.org/2018/133
https://eprint.iacr.org/2018/046
https://www.math.auckland.ac.nz/~sgal018/compact-LWE.pdf
http://gmplib.org/

HILL99. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

HJP13. W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number Theory, 2013.
Version 2.4.0, http://flintlib.org.

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
24th ACM STOC, pages 723–732. ACM Press, May 1992.

KW93. M. Karchmer and A. Wigderson. On span programs. In IEEE Computer Society Press, editor,
In Proc. of the 8th IEEE Structure in Complexity Theory, pages 102–111, Gaithersburg, MD,
USA, 1993. IEEE Computer Society Press.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge
arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 169–189. Springer,
Heidelberg, March 2012.

LP11. Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption.
In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS, pages 319–339. Springer,
Heidelberg, February 2011.

Mic94. Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE Computer
Society Press, November 1994.

Nao03. Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 96–109. Springer, Heidelberg, August 2003.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252.
IEEE Computer Society Press, May 2013.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May
2005.

Val08. Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 1–18. Springer,
Heidelberg, March 2008.

26

http://flintlib.org

Game EXT-LOEnc,M,A,ExtA(λ)

(pk, sk)← K(1λ, 1d)

(m1, . . . ,md)← M(1λ, 1d)

σ ← (E(m1), . . . ,E(md))

(ct; a0, . . . , ad)← (A‖ExtA)(σ)

return ct 6∈
{

E(a0 +
∑d
i=1 aimi)

}

Fig. 9. Game for Extractable Linear-Only target malleability.

Appendix A Lattices and Assumptions

At a first glimpse, it might seem unjustified to have brought assumptions often used in the dLog
setting into the lattice domain, where they are highly non-standard. Despite this fact, in this section
we argue (i) that the q-PKE and q-PDH assumptions are weaker than the targeted linear-only
malleability of [BCI+13, BISW17], and (ii) which consequences an attack on those assumptions
would have.

Over the course of the last years, a long line of research in lattice-based cryptography has been
trying to develop fully-homomorphic encryption schemes and bilinear pairing maps. So far, no
bilinear map is known in the context of lattices, and some have argued that its existence would lead
to efficient cryptographic primitives such as multilinear maps and indistinguishability obfuscation
(iO). Furthermore, although there exist FHE schemes based on lattices, it is not clear how to achieve
it without giving away additional information such as encryption of the secret key itself. Showing
that it is possible to indeed compute non-linear homomorphisms on top of Regev’s encryption
scheme would be a major breakthrough in both research areas. We see this as a win-win situation.

Moreover, our assumptions are weaker than previously employed assumptions for lattice-based
SNARGs. Indeed, the linear-only assumption of [BCI+13, BISW17] informally states that an
adversary can only perform affine operations over the encodings provided as input. More specifically:

Definition 22 (EXT-LO, [BCI+13]). An encoding scheme Enc satisfies extractable linear-only
target malleability if for all PPT adversaries A and plaintext generation algorithm M there exists
an efficient extractor Ext such that the advantage

Advext-loEnc,M,A,ExtA(λ) := Pr
[
EXT-LOEnc,M,A,ExtA(λ) = true

]
is negl(λ), where EXT-LOEnc,M,A,ExtA(λ) is defined as in Figure 9.

We note that, despite [BCI+13] presents the above assumption for so-called linear-only encryption
schemes, all such schemes are also encodings satisfying the properties of Definition 9.

It is not immediately clear to see what does this assumption imply in the case of LWE encodings
(like the one we presented in section Section 3) or the one in [LP11], used in [BISW17]. Consider
for example a set of parameters Γ allowing for d− 1 homomorphic operations modulo p and the
adversary A that, upon receiving as input d ciphertexts, computes d homomorphic linear operations
on them. With non-negligible probability the error wraps around the modular representation, leading
to a “decryptable” encoding (any element of Zn+1

q is a valid encoding) but for which the adversary
does not know an affine map. The authors of [BISW17] suggest to use double-encryption in these
cases, i.e., present two different encodings of each value, and ask the adversary to homomorphically
evaluate these terms twice. If the two ciphertexts do not encode the same element, the game is
lost. Obviously, this comes at the cost of doubling the size of each encoding and doubling the
computation time for the prover and the verifier.

Theorem 23. If Enc is an IND-CPA extractable linear-only encoding scheme, it satisfies q-PDH.

27

Proof. Let us consider an adversary APDH for the q-PDH assumption. We show that there exists
an adversary able to break IND-CPA.

Consider the PPT machine A that samples uniformly at random two field elements, s0 and s1,
then submits the two distinct chosen plaintexts sq+1

0 , sq+1
1 to the IND-CPA challenger. A queries

the IND-CPA encoding oracle with sk0 , s
k
1 for k = 0, . . . , q, q + 2, . . . , 2q. The oracle gives back

some encodings σ :=
(

E(1),E(sb), . . . ,E(sqb),E(sq+2
b), . . . ,E(s2qb)

)
for b ∈ {0, 1}. A runs the q-PDH

adversary on σ, thus obtaining (with non-negligible probability) some encoding ct ∈
{

E(sq+1
b)

}
. By

EXT-LO, there exists an extractor ExtLO which, given as input σ and the same random coins of the
adversary APDH, returns a polynomial p such that p(sb) = sq+1

b . Let f(x) := p(x)−xq+1. By q-PDH,
f(sb) = 0; by Schwartz-Zippel lemma, f(s1−b) 6= 0 with probability 1− 2q/|F| = 1− negl(λ). A
returns the bit b∗ such that f(sb∗) = 0, thus solving the IND-CPA challenge with overwhelming
probability. 2

Theorem 24. If Enc is an IND-CPA extractable linear-only encoding scheme, it satisfies q-PKE.

Proof. We will show that Enc satisfies q-PKE, meaning there is no APKE‖ExtA able to win the
q-PKE game (cf. Figure 2).

Suppose by contradiction that there exists an adversary APKE able to produce a valid output
ct, ĉt, i.e., such that αct− ĉt = 0. We show that as a consequence there exists an extractor ExtA
that outputs the correct linear combination with non negligible probability.

Let M be the plaintext generation algorithm that, upon receiving the computational security
parameter λ and d = 2q + 2 in unary form, samples s←$ F and outputs plaintexts 1, s, . . . , sq.
Let σ ← (E(1),E(s), . . . ,E(sq),E(α),E(αs), . . . ,E(αsq)). The adversary APKE, when run on this
input σ, outputs (with non-negligible probability) ct, ĉt such that αct− ĉt = 0 (via quadratic root
detection algorithm).

Let us define the adversaries B0 and B1 for the game EXT-LO that, upon receiving as input
σ, run the same instantiation of APKE and output ct - respectively ĉt. By our claim of linear-
only property, there exist the extractors Ext0 and Ext1 for B0 and B1, respectively, outputting
a0, . . . , aq, b0, . . . , bq and a′0, . . . , a

′
q, b
′
0, . . . , b

′
q such that

ct ∈
{

E
(∑d

i ais
i +
∑d
i biαs

i
)}

, ĉt ∈
{

E
(∑d

i a
′
is
i +
∑d
i b
′
iαs

i
)}

with non negligible probability.
Knowing that αct− ĉt = 0 implies either that the polynomial

P (X,Y) = X2∑d
i biY

i +X
∑d
i (ai − b′i)Y i −

∑d
i a
′
iY

i

is the zero polynomial, or that (α, s) are roots of P (X,Y). The second case is ruled out by semantic
security of the encoding scheme and Schwartz-Zippel lemma, by a reasoning similar to the proof of
Theorem 23.

The case where P (X,Y) = 0 gives us bi = a′i = 0, ai = b′i∀i = 0, . . . , q. Therefore, we are able to
define an extractor ExtA for q-PKE that outputs the coefficients ai of the linear combination with
non-negligible probability, showing that any successful adversary against q-PKE able to output ct, ĉt

such that αct− ĉt ∈ {E(0)}, has knowledge of the coefficients ai such that ct ∈
{

E
(∑d

i ais
i
)}

.
2

28

	Lattice-Based zk-SNARKs from Square Span Programs
	Introduction
	Prerequisites
	Notation
	Square Span Programs
	Succinct Non-Interactive Arguments
	Encoding Schemes
	Assumptions

	An encoding scheme based on Learning With Errors
	Lattice-based Encoding Scheme
	Basic Properties
	Technical Challenges

	Our designated-verifier zk-SNARK
	Proofs of security
	Zero-Knowledge
	Knowledge Soundness

	Efficiency and concrete parameters
	Implementation

	Lattices and Assumptions

