
Bachelor’s degree thesis

Accelerating Zero Knowledge
Proofs

Author

Laia Pujol Ventosa

Supervisor (MIT)

Daniel Sánchez

Tutor (UPC)

Antonio González

In partial fulfillment of the requirements for the

Bachelor’s degree in Mathematics

Bachelor’s degree in Informatics Engineering

October 2023

Abstract

Zero-knowledge proofs represent a highly promising cryptographic tool that enables
the validation of a statement’s correctness without revealing any supplementary in-
formation. These proofs find utility in applications demanding both computational
integrity and privacy, such as validating outsourced computation results, where
confidential input values may be involved. However, a significant challenge hin-
ders their practical adoption: the potentially time-consuming process of generating
proofs. Consequently, this project investigates the feasibility of accelerating zero-
knowledge proofs using hardware, aiming to overcome this critical hurdle.

Keywords: verifiable computation, zero-knowledge proofs, zk-SNARKs, learning
with errors, lattice-based cryptography, accelerator

MSC2020: 94A60

Resum

Les proves de coneixement zero són una eina criptogràfica altament prometedora que
permet demostrar que un predicat és correcte sense revelar informació addicional
sobre aquest. Aquestes tipus de proves són útils en aplicacions que requereixen tant
integritat computacional com privadesa, com ara verificar la correcció dels resultats
d’una computació delegada a una altra entitat, on hi poden haver involucrats valors
d’entrada confidencials. Tanmateix, té un impediment que obstaculitza la seva
adopció pràctica: el procés potencialment lent de generació de les proves. Aix́ı
doncs, aquest projecte explora la viabilitat d’accelerar les proves de coneixement
zero mitjançant hardware, amb l’objectiu de superar aquest obstacle cŕıtic.

Paraules clau: computació verificable, proves the coneixement zero, zk-SNARKs,
aprenentatge amb errors, criptografia basada en reticles, accelerador

MSC2020: 94A60

Resumen

Las pruebas de conocimiento cero representan una herramienta criptográfica alta-
mente prometedora que permite demostrar la corrección de un predicado sin revelar
información adicional. Estas pruebas son útiles en aplicaciones que requieren tan-
to integridad computacional como privacidad, como por ejemplo la validación de
los resultados de una computación delegada a otra entidad, donde pueden estar
involucrados valores de entrada confidenciales. Sin embargo, existe un desaf́ıo sig-
nificativo que obstaculiza su adopción práctica: el proceso potencialmente lento de
generación de pruebas. Como resultado, este proyecto explora la viabilidad de acele-
rar las pruebas de conocimiento cero utilizando hardware, con el objetivo de superar
este obstáculo cŕıtico.

Palabras clave: computación verificable, pruebas de conocimiento cero, zk-SNARKs,
aprendizaje con errores, criptograf́ıa basada en ret́ıculos, acelerador

MSC2020: 94A60

First and foremost, I would like to thank Nikola Samardzic and Simon Langowski
for their help and patience answering all my doubts and guiding me through the
intricacies of this project. Your advice and support has been instrumental and deeply
appreciated.

I would also like to express my sincere thanks to Professor Daniel Sanchez for
hosting me over these recent months and welcoming me into his group. Being part
of it and participating in its meetings has proved to be a truly enriching experience.

I want to thank Professor Antonio González for helping me get this opportunity and
offering invaluable feedback on this project.

I am also grateful to the program Centre de Formació Interdisciplinària Superior
(CFIS) for all their support during these last years. Moreover, this experience has
been possible thanks to the funding provided by Fundació Privada Cellex and Fun-
dació Ciutat de Valls. Thank you all for your contributions.

Lastly, thanks to my family and friends for being there throughout all these years.
This journey would not have been possible without you.

Contents

1. Introduction 1

2. Background and motivation 3
2.1. Verifiable Computation (VC) . 3

2.1.1. Definition . 3
2.1.2. Public and designated verifier 4

2.2. Zero Knowledge Proofs . 5
2.2.1. Definition . 5
2.2.2. Examples . 6
2.2.3. Interactivity of a proof . 9
2.2.4. Applications . 10

3. Implementing Zero Knowledge with zk-SNARKs 13
3.1. Overview . 13
3.2. Intuition of a proof’s structure . 14

3.2.1. Arithmetic circuit setup . 14
3.2.2. Selector polynomials . 15
3.2.3. Master and vanishing polynomial 17
3.2.4. Quadratic Arithmetic Program 18
3.2.5. Rank-1 Constraint Satisfiability 19
3.2.6. Linear PCPs . 20

3.3. The protocol . 21
3.3.1. Benefits and drawbacks . 21
3.3.2. Implementation . 22

4. Hardware design 24
4.1. Description of the problem . 24

4.1.1. Computing H polynomial 24
4.1.2. Matrix vector multiplication 25

4.2. Number Theoretic Transform . 25
4.2.1. Improving polynomial multiplication 26
4.2.2. Evaluation and interpolation using the Vandermonde matrix 27
4.2.3. The radix-2 DIT algorithm 28
4.2.4. Generic algorithm . 29
4.2.5. Hardware design . 31

v

Contents

4.3. Matrix vector multiplication . 34
4.3.1. Näıve algorithm . 34
4.3.2. Tiling . 35

5. Evaluation 38
5.1. Arbitrary input circuits . 38

5.1.1. Circuit description . 39
5.1.2. Explaining the code . 39
5.1.3. Workloads . 41

5.2. Integrating jsnark . 43
5.3. Estimated hardware results . 44

5.3.1. Memory bandwidth . 46
5.4. Final considerations . 46

6. Conclusions 48

7. Future work 50

Bibliography 52

vi

Chapter 1

Introduction

In the ever-changing world of communication technologies, the need for trust and
security has never been more paramount. In the past few years, individuals and
organizations are increasingly relying on digital platforms for sensitive transactions
or data processing. Therefore, the need to ensure the integrity, privacy and efficiency
of these operations has become a major concern. This is where the world of verifiable
computation and zero-knowledge proofs enters the stage.

Verifiable computation looks to address the challenge of efficiently validating com-
putations that have been outsourced to another party. Furthermore, it also seeks to
enable the verification of those computations without the need to reveal sensitive
or private input data provided by the party in charge of the computation.

The cryptographic primitives that provide the tools for its implementation are zero-
knowledge proofs. Succintly, they allow one party, the prover, to demonstrate the
validity of a statement to another party, the verifier, without revealing any specific
details about the statement itself. The main drawback for using them in practice
is that the proof generation is very time-consuming. Therefore, in this project we
want to study if a specific protocol that provides an implementation for verifiable
computation can be accelerated through hardware.

In summary, the main goal of this work is to learn what Zero Knowledge Proofs are
and to understand the basic concepts on how to implement them practically. Then,
we want to investigate if it is possible to accelerate the generation of the proof using
hardware design.

In the following chapters we will explore the concepts explained previously. Our
journey will be divided into the following sections:

In Chapter 2, we will dive into the basics of Verifiable Computation and Zero
Knowledge Proofs. We will use examples to make these ideas clear and also
look at real-life situations where researchers have suggested using them.

1

Chapter 1. Introduction

Chapter 3 will introduce zk-SNARKs, a group of protocols that are widely
used to implement Zero Knowledge Proofs. There will also be a practical
explanation on how to generate a proof for an arithmetic circuit as well as a
description of the characteristics of the protocol mainly used in this project.

In Chapter 4 we will focus on the design of some units needed to accelerate
the proof generation in a zk-SNARK.

In Chapter 5 we will explain the code made with the purpose of executing
workloads to be used as baselines. We will also do a back-of-the-envelope
calculation of the time and area needed when using the hardware explained
in the previous chapter.

Chapter 6 and 7 will provide the conclusions of the project as well as some
proposals on how this work could continue in the future.

2

Chapter 2

Background and motivation

The purpose of this chapter is to provide an understanding of essential concepts
outlined in this thesis. Additionally, it aims to present compelling examples of
their applications to the real world.

2.1. Verifiable Computation (VC)

Due to the uneven distribution of computational power, there is an increasing de-
mand to outsource computation from a weak client (such as mobile phones) to one
or more powerful workers (like an external server). This leads to the need to ver-
ify that the results obtained have been computed correctly. This verification serves
the purpose of protecting the client against malfunctioning workers or malicious
ones that are able to return plausible results without performing the computation.

2.1.1. Definition

In a nutshell, a public verifiable computation scheme allows a client to out-
source the computation of a function F on an input u to one or more workers.
The workers, who we shall call provers, will generate a proof of the correctness
of the computation that the client, also known as verifier, can later check. The
verification should require less work than would be needed for the evaluation of F .

Figure 2.1: Verifiable Computation diagram.

3

Chapter 2. Background and motivation

We can find a more formal definition in [1] and [2]:

Definition 2.1.1 (Public Verifiable Computation Scheme): A Public Veri-
fiable Computation Scheme VC consists on the set of three polynomial-time
algorithms defined below:

1. KeyGen(F, 1λ) → (EKF , V KF): Given the security parameter λ (see
definition 2.1.2), the randomized key generation algorithm generates a
public evaluation key EKF that encodes the target function F and a
public verification key V KF .

2. Compute(EKF , u)→ (y, πy): In a deterministic algorithm, the worker
uses the public evaluation key EKF and input u to compute F (u)→ y
and the proof of y’s correctness πy.

3. Verify(V KF , u, y, πy) → {0, 1}: The deterministic verification algo-
rithm uses the verification key V KF to output 1 if F (u) = y and 0
otherwise.

In the field of cryptography, the security parameter measures the difficulty for ad-
versaries to break a chryptographic scheme. In our definition the security parameter
λ sets an upper limit on the probability that an adversary can successfully forge
a proof using the EKF and V KF . It is usually expressed as a string of λ 1s,
conventionally 1λ. Its formal definition is given in [1]:

Definition 2.1.2 (Security parameter): For any function F and any proba-
bilistic polynomial-time adversary A:

Pr

 (û, ŷ, π̂y)← A(EKF , V KF) :
F (û) ̸= ŷ

and
Verify(V KF , û, ŷ, π̂y) = 1

 ≤ negl(λ)

2.1.2. Public and designated verifier

In the definition above, the entity that checks the correctness of the proof is called
a public verifier. The main characteristic of this scheme is that the verifier can
be any third party that is willing to participate in the verification process, i.e., with
a single proof, everyone can be convinced of the correctness of the computation.

In contrast, we could also have a VC scheme that is designated verifier, where
only this individual will be convinced of the proof. In this case, the verification key
V KF and the output of the verification function (i.e., if the proof provided by the
prover is correct or not) need to be kept a secret in order to maintain the scheme
secure against attacks.

4

2.2. Zero Knowledge Proofs

2.2. Zero Knowledge Proofs

Until now, we have considered all the computation’s inputs u to be known by the
verifier. However, in some situations, the prover might have a private input w (also
known as witness) they do not want to share with the verifier.

Figure 2.2: VC diagram with private inputs.

This leads to the need to make the VC scheme zero-knowledge, which essentially
means that the verifier learns nothing about the prover’s private input beyond the
output of the computation.

2.2.1. Definition

Zero Knowledge Proofs were first conceived by Shafi Goldwasser, Silvio Micali and
Charles Rackoff in 1985 ([3]). Since then, they have become more popular due to
its multiple applications in fields such as verifiable computing, authentication or
privacy.

Essentially, a Zero Knowledge Proof (ZKP) is a proof that yields nothing be-
yond the validity of the assertion ([4]). In other words, ZKP systems allow one
party (the prover) to convince the other parties (the verifiers) that a statement
is true without revealing any other information about it. A ZKP system should
satisfy three properties ([5],[6]):

Completeness: if a statement is true and both the prover and the verifier
follow the protocol, then the prover can convince the verifier to accept the
statement.

Soundness: if a statement is false and the verifier follows the protocol, the
verifier will not be convinced to accept it.

Zero-knowledge: if a statement is true and the prover follows the protocol,
the interaction will not reveal any additional information beyond its truth to
the verifier.

5

Chapter 2. Background and motivation

2.2.2. Examples

To better understand the concept of Zero Knowledge Proofs, in this section we will
provide illustrative examples to facilitate the reader’s comprehension of the subject.

Red and green balls

In this example, suppose there are two balls: one red and one green. Alice (the
prover) wants to prove to his color-blind friend Bob (the verifier) that these balls
have different colors. To do so they follow these steps:

1. Bob takes the two balls, apparently identical to him, and shows Alice the
initial position of the balls.

2. Then, in private, Bob tosses a coin and exchanges the balls if it lands on
heads.

3. Bob shows the balls to Alice and asks her if he exchanged the balls.

If Alice is indeed able to tell apart the color of the two balls she will always know if
Bob switched the balls. Hence, after repeating the steps enough times, Bob will be
convinced that the colors of the two balls are different (completeness). It is worth
noting that if Alice could not distinguish the balls she would have a 50% chance of
guessing correctly each time. After repeating the test 20 times she would have a 1
in 1,048,576 chance of (luckily) answering right every time.

If Alice is also color-blind and the experiment is repeated enough times, at some
point she will be ”unlucky” and give a wrong answer. Thus, Bob will not be
convinced that she is saying the truth (soundness).

Finally, Bob never discovers which is the color of each ball and therefore we achieve
the zero-knowledge property.

Graph isomorphism

The following example is a more mathematical one and first we will recall the
definition of graph isomorphism:

Definition 2.2.1 (Graph isomorphism): A graph G0 is isomorphic to G1 if
∃ and isomorphism π : [N]→ [N] such that ∀i, j:

(π(i), π(j)) ∈ E1 ⇐⇒ (i, j) ∈ E0

where N is the number of nodes and E0, E1 are the sets of edges of G0, G1

respectively.

6

2.2. Zero Knowledge Proofs

Note that saying that there is an isomorphism between two graphs is equivalent
to the concept of being able to obtain one graph pattern from the other just by
”moving the nodes”. In Figure 2.3 we can see an example of two isomorphic graphs.
In this case an isomorphism would be:

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
π−→ (5, 4, 9, 7, 2, 8, 1, 6, 10, 3)

1

2

3 4

56
10

8 9

7

G0

3

6

1
2

5

4

9 7
10

8

G1

Figure 2.3: Isomorphic graphs.

In this example, Alice (our prover) wants to convince Bob (the verifier) that she
knows an isomorphism for two graphs G0 and G1.

Before starting the interaction, Alice defines a new graph H that is isomorphic to
G0 (and G1). She can do this by applying some random permutation γ : [N]→ [N]
to the nodes of G0 (it would be analogous for G1): H = γ(G0). Then, the steps
for the proof would be:

1. Alice creates and sends graph H to Bob.

2. Bob flips a coin and sends the result to Alice.

3. If the result was heads, Alice needs to return an isomorphism to G0. Other-
wise, she has to send an isomorphism to G1.

If Alice knows an isomorphism π such that G0 and G1 are isomorphic, she will
always be able to return an isomorphism to H to the prover. If it landed on
heads, she will just return γ. In the other case, she can return γ ◦ π−1 because
H = γ(G0) = γ(π−1(G1)). Thus, we have completeness.

We also have soundness after repeating the experience multiple times. If the prover
does not truly know the isomorphism between both graphs, they can try to fake a
proof by guessing which isomorphism will be required by the verifier and construct-
ing H from G0 or G1. The probability of having a lucky guess once is 1/2 so after
k repetitions Pr[Accepting a false proof]= 1/2k.

7

Chapter 2. Background and motivation

The zero-knowledge property is also achieved because the verifier never learns what
the isomorphism between both graphs is.

Ali-Baba Cave

Another well-known example of a ZKP is the one proposed by Jean-Jacques Quisquater
and others in [7].

Suppose there is a cave with exactly one entrance from the outside. Inside, the cave
forks into two passages (which we will call A and B) in an intersection that cannot
be seen from outside the cave (see Figure 2.4). In this case Alice (prover) wants
to show Bob (verifier) that she knows the password to a secret door that connects
both passages.

The procedure to prove this statement is the following:

1. Alice goes inside the cave and chooses one of the two passages while Bob
stands outside the cave. This means that Bob is unable to see which of both
passages Alice has chosen.

2. Bob goes into the cave and stops at the intersection. Then he shouts which
of the two passages (A or B) he wants Alice to come out from.

3. Alice comes back through the passage Bob asked her, using the secret door if
needed.

(a) Alice chooses a passage to go in.
(b) Bob shouts through which passage Alice
should come back.

Figure 2.4: Ali-Baba cave example.

After repeating this procedure enough times (similarly to the previous examples),
Bob will be convinced that Alice’s statement was true.

One important remark that needs to be made is the fact that a third party would
not be convinced by this proof because Bob and Alice could have colluded to fake
the results by agreeing beforehand which passage would be chosen each time. This
means that Alice is just disclosing this knowledge to Bob and not to the rest of the

8

2.2. Zero Knowledge Proofs

world. One way to convince a third party would be to flip a coin (or some other
random algorithm) to decide which passage should Alice come back from. Then,
the observer would be reassured that Alice and Bob have not colluded.

2.2.3. Interactivity of a proof

All the examples we have seen until now in 2.2.2 have been interactive proofs.
This means that the prover and the verifier can interact back and forth in order to
complete the proof. In the following paragraphs we will explain a way to change
them into non-interactive proofs. This will be useful because it will allow us to
directly generate a proof that will convince the verifier without needing to exchange
so many messages.

This procedure was first explained in [8] and it is commonly known as the Fiat-
Shamir heuristic. Essentially, it takes a public coin interactive protocol1 and
turns it into a non-interactive one. The practical way to do this is making the
prover generate the “coins” given by the verifier with a hash function.

In a public coin protocol, the interaction could be something like what is shown
on the left of Figure 2.5. Firstly, the prover sends a message m1, then the verifier
sends back the result of one or more coin tosses and finally the prover replies back
with m2. Afterwards, the verifier checks that the result is correct using the public
input x (if there is one), the result of the coin toss and the messages m1 and m2.
In the graph isomorphism example 2.2.2, m1 would be the graph H and m2 would
be the isomorphism to G0 or G1 depending on the result of the coin toss.

Figure 2.5: Fiat-Shamir heuristic. On the left we can see the public coin protocol
and on the right we have the modified one so that it is non-interactive.

Let H : {0, 1}∗ → {0, 1}k be a cryptographic hash function2. The way to remove
the interactivity is to apply the hash function H to the first message m1 and the
public input x. As the results of the hash function are supposed to be random, we

1In this setting, the random choices made by the verifier are made public.
2Informally, they are functions that map a string of arbitrary length to one with a fixed length

k. They have many useful properties that can be applied to cryptography, for instance, it is
unfeasible to retrieve an input from its hash under certain conditions or to find other inputs with
the same hash value.

9

Chapter 2. Background and motivation

will replace the random value that comes from the verifier’s coin toss by H(x,m1)
and generate m2 using that value. The verification is made using x, m1, H(x,m1)
and m2 (right side of Figure 2.5).

Note that this procedure can be used for our previous examples in 2.2.2 because
they all could use a coin to simulate the behaviour of the verifier. Therefore, we
can transform them into non-interactive proofs using the Fiat-Shamir heuristic.
Beware that this does not mean that every interactive zero-knowledge proof can be
transformed so that they are not interactive. Firstly, they need to be converted into
public-coin protocols. Also, for Fiat-Shamir heuristic to work, we need the prover
to be computationally bounded so that they are not able to invert H. Nonetheless,
it is used in many implementations of zero-knowledge proofs ([9]).

There is one last comment on this heuristic. Suppose that we consider H to be a
random-oracle i.e. a theoretical “black box” that responds to every unique query
with a truly random string and that gives the same response if the query is re-
peated. Then, completeness and soundness hold ([9]). However, there are still some
questions about the security of the new protocol due, in part, to the fact that a
random-oracle is often used as an idealised version of a hash function. More work
on this can be found in [10] and [11].

2.2.4. Applications

Having explored some “toy examples” in section 2.2.2, let’s now delve into some
real-world applications.

Preventing identity theft

One of the first application ideas that were devised right after the conception of
zero-knowledge proofs was a way to prevent identity theft ([8]). Essentially, if a
user wants to prove their identity to some server, the user should create a zero-
knowledge proof stating that they know the answer to a hard theorem such as
factoring or graph isomorphism (as seen in 2.2.2). This method provides a way to
avoid the use of passwords, which can be stolen from the server and even if they
are encrypted, said encryption could be broken if it is not secure enough.

Nuclear disarmament

Another idea that was proposed and is rather interesting is using it in the context
of nuclear disarmament, which has the aim of reducing or completely eliminating
nuclear weapons from the world in order to avoid a potential nuclear catastrophe,
both accidental or caused by wars. One of the reasons it is not being done faster is
that countries need reassurance that the others are doing it as well, an that is when
zero-knowledge proofs come in. Their privacy-preserving characteristics would allow
to prove that certain operations regarding the elimination of nuclear weapons have

10

2.2. Zero Knowledge Proofs

been performed without needing to disclose sensitive information. Work on this
was done by Boaz Barak among others and is shown in papers such as [12].

Forensics

Zero-knowledge proofs could also be used in forensics. This field consists in applying
scientific methods to investigate and analyze evidence from crime scenes and other
incidents, and can be used to aid in legal investigations and proceedings. In this
case, we could prove that and individual’s DNA is different from the one found
in a crime scene without disclosing the DNA of the person. This application was
explored in [13] by Ben Fisch, Daniel Freund and Moni Naor.

Cryptocurrencies with privacy and anonymity

One of the fields where zero-knowledge that has had the most success are cryp-
tocurrencies. In this area, the motivation of zero-knowledge proofs was maintaining
the privacy of the transactions the users make. There was work on this in [14] and
there are some digital currencies such as Zcash that already use it.

Verification dilemmas in the law

There are other cases where we want to avoid exposing personal or proprietary in-
formation. For instance, when applying for a loan it is necessary to disclose personal
data such as the salary to the bank, when for example it should only be necessary
to prove that it is above a certain quantity. Also, in deal-making negotiations be-
tween firms, they might need to disclose some proprietary information that could
be used by the competitor if the deal falls through. Additionally, litigants in court
proceedings might have to reveal trade secrets in order to prove their claim. In [15],
they explore these and other cases and present zero-knowledge proofs as a way to
keep the sensitive data private.

Electronic voting

The possibility of voting electronically opens many possibilities like the option of
having completely transparent vote counting. Then, zero-knowledge proofs can be
used here to ensure voter’s privacy. Some work on this is explained by Jens Groth
in [16].

Fight disinformation

Lastly, a very peculiar example is the one presented in [17] on how to fight disin-
formation. The main idea is to be able to generate proofs that the images in some
articles come from the place and time the article is talking about. To do so, the
camera has an embedded certified signing key that cannot be extracted from it.
There is a standard for it called C2PA but there is a problem with post-processing

11

Chapter 2. Background and motivation

because these images might be cropped or manipulated. The solution for it is gen-
erating a proof that the new image comes from the original. That is where we
can use zk-SNARKs, an implementation of all we have been talking about in this
chapter and that we will discuss in the following chapter (3).

12

Chapter 3

Implementing Zero Knowledge
with zk-SNARKs

Among the most promising and widely used candidates for a practical implemen-
tation of non-interactive zero-knowledge proofs we can find zk-SNARKs1. They
encompass a group of protocols that enable the prover to generate a proof for a
computation without revealing the values used in such computation.

In this chapter we will find a brief description of zk-SNARKs as well as an intuition
on how to create a proof for a specific arithmetic circuit. Later we will also describe
the specific protocol we will be working with and discuss some of its advantages and
drawbacks with respect to other state-of-the-art protocols. Finally, we will provide
a brief analysis of the algorithm we will want to accelerate in later chapters.

3.1. Overview

zk-SNARKs are a type of VC (2.1) schemes that allow the prover to generate
ZKP. The acronym zk-SNARK stands for zero knowledge succint non-interactive
argument of knowledge:

Zero-Kownledge: the verifier of the statement cannot acquire any new in-
formation through the process, they only learn whether the statement is true
or false.

Succint: the proof of the statement is short and can be efficiently verified
without the need to perform the full computation. In practice, this means that
the length of the proof and the verification complexity should be sublinear in
the size of the circuit computing F we are generating the proof for ([18]).

1There are also other type of protocols such as zk-STARKs (Zero-knowledge Scalable Trans-
parent Argument of Knowledge) or Bulletproofs which we will not see in this project.

13

Chapter 3. Implementing Zero Knowledge with zk-SNARKs

Non-interactive: it does not require any back-and-forth interaction between
the prover and verifier, the prover just needs to send a single message with
the proof to the verifier.

ARgument of Knowledge: the proof system provides evidence that the
prover knows certain information required to complete the proof. It is worth
noting that this is an argument and not a proof, though they are often used
interchangeably. If a proof system only satisfies the soundness condition with
respect to polynomial-time provers, then it is called an argument system.

3.2. Intuition of a proof’s structure

At this point we have seen the definitions of Zero Knowledge Proofs and zk-SNARKS
but we have not yet learned how to create a proof for a given function. In this section
we are going to try to give an intuition on that. It is meant to be an introductory
explanation based on the ones given in [19] and the lectures found in [9]. For a more
complete one it can be useful to refer to some articles explaining their respective
protocol in more detail ([1], [6] and [18]).

3.2.1. Arithmetic circuit setup

Suppose that we are given an arithmetic circuit C over a finite field F that computes
the function we are generating the proof for2. The prover claims to know a secret
witness w such that C(x,w) = y, where x is the public input of the circuit and y is
its output.

Figure 3.1: Circuit description. It is composed by 3 addition gates (purple) and 3
multiplication gates (red). The arrows at the top of the picture represent the secret
input w and the ones at the bottom are part of the output y.

2In the example shown in Figure 3.1 the function would be F (w1, w2, w3, w4, w5, w6, w7) =
((w1 + w2) + w3)(w4, w5), (w4w5)(w6 + w7).

14

3.2. Intuition of a proof’s structure

The circuit we will use for this example is shown in Figure 3.1 and for the sake of
simplicity, we will take the public input x to be empty.

In our example, the output (known by the verifier) will be the vector

y = (132, 108)

which we can get with the secret input (which the prover wants to prove they know)

w = (2, 5, 4, 3, 4, 7, 2)

To generate the proof, we will also numerate the multiplication gates (as can be
seen in Figure 3.2) and define a vector with the inputs/outputs of the multiplication
gates. If there is an addition gate before a multiplication one, we will add the inputs
of the addition gate to the vector instead of the output value of the addition gate.
For clarity, these values are shown in red in Figure 3.2.

Figure 3.2: Circuit with values specified. The inputs/outputs of the multiplication
gates are shown in red and each multiplication gate is numbered.

This will give us the following vector

c = (c1, c2, c3, c4, c5, c6, c7, c8, c9, c10) = (2, 5, 4, 3, 4, 7, 2, 12, 132, 108)

3.2.2. Selector polynomials

We are now able to start constructing the proof. For each value in vector c we
will first define three selector polynomials which will encode if they are the left
input, right input or output of a multiplication gate 3. Each gate will have a

3As we will see, the addition gates will be implicit in the procedure.

15

Chapter 3. Implementing Zero Knowledge with zk-SNARKs

distinct evaluation point assigned, i.e. when evaluating each selector polynomial at
this point, we will get if it is the left input, right input or output of that gate. In
this example we will choose these points as roots of the unity {ω, ω2, ω3} in F. This
is done to make polynomial manipulation faster as we will use a variation of a Fast
Fourier Transform for finite fields4.

For example, the selector polynomials assigned to the 1st element of c: l1(x), r1(x)
and o1(x). They would be defined as:

l1(x) : l1(ω) = 0, l1(ω
2) = 1, l1(ω

3) = 0 because it is a left input to the second
multiplication gate (through the additions in between) but that is not the
case for the first and third multiplication gates.

r1(x) : r1(ω) = 0, r1(ω
2) = 0, r1(ω

3) = 0 as it is not a right input to any of
the gates.

o1(x) : o1(ω) = 0, o1(ω
2) = 0, o1(ω

3) = 0 as it is not an output to any of the
gates.

As it can be seen in Figure 3.2, these polynomials will be identical for the 2nd and
3rd element in c because even though they are inputs to different addition gates,
they all end up being left inputs to the second multiplication gate. The 4th and 5th

element are just a left and right input to the first gate respectively. The 6th and 7th

one are both right inputs to the third gate.

In the case of the 8th element the polynomials would be defined as:

l8(x) : l8(ω) = 0, l8(ω
2) = 0, l8(ω

3) = 1 as it is a left input to the third
multiplication gate.

r8(x) : r8(ω) = 0, r8(ω
2) = 1, r8(ω

3) = 0 because it is also a right input to
the second gate.

o8(x) : o8(ω) = 1, o8(ω
2) = 0, o8(ω

3) = 0 as it is the output of the first gate.

And finally the 9th and 10th elements are outputs of the second and third gate
respectively.

The value of the three selector polynomials assigned to every element of vector c at
ω, ω2 and ω3 can be found on Table 3.1. Once we have all the selector polynomials,
we will use them to define three polynomials for the whole circuit that will encode
all the operations in it:

L(x) =
∑10

i=1 ci × li(x)

R(x) =
∑10

i=1 ci × ri(x)

O(x) =
∑10

i=1 ci × oi(x)

4More information on that can be found in section 4.2.

16

3.2. Intuition of a proof’s structure

ω ω2 ω3 ω ω2 ω3 ω ω2 ω3

l1(x) 0 1 0 r1(x) 0 0 0 o1(x) 0 0 0
l2(x) 0 1 0 r2(x) 0 0 0 o2(x) 0 0 0
l3(x) 0 1 0 r3(x) 0 0 0 o3(x) 0 0 0
l4(x) 1 0 0 r4(x) 0 0 0 o4(x) 0 0 0
l5(x) 0 0 0 r5(x) 1 0 0 o5(x) 0 0 0
l6(x) 0 0 0 r6(x) 0 0 1 o6(x) 0 0 0
l7(x) 0 0 0 r7(x) 0 0 1 o7(x) 0 0 0
l8(x) 0 0 1 r8(x) 0 1 0 o8(x) 1 0 0
l9(x) 0 0 0 r9(x) 0 0 0 o9(x) 0 1 0
l10(x) 0 0 0 r10(x) 0 0 0 o10(x) 0 0 1

Table 3.1: Selector polynomials.

It can be easily seen that when evaluating any of the polynomials at the point
corresponding to any of the multiplication gates, we will get the expected value for
it. For instance, if we evaluate the polynomials at ω2:

L(ω2) =
10∑
i=1

ci × li(ω
2) = c1 + c2 + c3 = 2 + 5 + 4 = 11

R(ω2) =
10∑
i=1

ci × ri(ω
2) = c8 = 12

O(ω2) =
10∑
i=1

ci × oi(ω
2) = c9 = 132

which are the values expected for the 2nd gate.

3.2.3. Master and vanishing polynomial

Once we have all the selector polynomials and their coefficients, we define the
master polynomial as

p(x) := L(x)R(x)−O(x) = (
m∑
i=1

ci × li(x))× (
m∑
i=1

ci × ri(x))− (
m∑
i=1

ci × oi(x))

where m is the number of inputs and outputs of all the multiplication gates (the
size of vector c), in our case m = 10. The key fact of defining this polynomial is
that

p(ωi) = 0, ∀i ∈ {1, . . . , n}

where n is the number of multiplication gates, in the example n = 3. This is true
owing to the fact that in these points p(x) is essentially multiplying the inputs and

17

Chapter 3. Implementing Zero Knowledge with zk-SNARKs

subtracting the gate output. Therefore, the n powers of ω will be roots of p(x)
which will lead us to define a target or vanishing polynomial:

t(x) = (x− ω) · · · (x− ωn)

that exactly divides p(x) i.e. p(x) = t(x)h(x) for some h(x).

3.2.4. Quadratic Arithmetic Program

The last piece of the puzzle is the following claim which roughly states that:

The prover claims to know a witness
w such that C(x,w) = y.

⇐⇒ The prover claims to know a vector
c such that p(x) = t(x)h(x).

The simple idea of the proof would be to do something like this:

1. The verifier samples a random point γ, calculates t = t(γ) and gives γ to the
verifier.

2. The prover calculates h(x) = p(x)
t(x)

, computes p = p(γ), h = h(γ) and sends p
and h to the verifier.

3. The verifier checks that p = t · h and accepts if the equality holds.

This approach is based on the Schwartz-Zippel lemma which for our problem
states that given a value γ chosen at random uniformly from F, the probability that
t(γ) = α is d

|F| (where d is the degree of the polynomial).

Remark. Obviously, this construction has multiple issues, among them:

1. The prover could easily fake a proof because they can compute t. Hence they
can take a random value h and compute p = t · h, which will be accepted by
the verifier because the equality holds.

2. Additionally, even if the prover had a p(x) that truly satisfied the equality,
it could be obtained from sampling a random h(x) and computing p(x) =
t(x)h(x). This means that there is no enforcement that p(x) represents the
function we are computing.

In practice, these issues are solved by encrypting the polynomials and other values
used in the protocol. For the sake of brevity, we will refrain from delving into it.
Nonetheless, the construction used in [1] is thoroughly explained in [19] and even
though it is not the protocol we will use in this project, its reading can be very
useful to further understand the different issues that can emerge from this kind of
protocols.

This construction we have explained is a Quadratic Arithmetic Program (QAP),
whose definition was first implicitly found in [20] and is expressed in [1]:

18

3.2. Intuition of a proof’s structure

Definition 3.2.1 (Quadratic Arithmetic Program): A Quadratic Arith-
metic Program (QAP) Q over field F contains three sets of m+1 polynomials
L = {lk(x)}, R = {rk(x)}, O = {ok(x)} for k ∈ {0 . . .m}, and a target
polynomial t(x). Suppose f is a function that takes n elements of F as input
and outputs n′ elements of the same field, where N = n + n′ is the total of
I/O elements. Then, we say that Q computes f if:
(c1, · · · , cN) ∈ FN is a valid assignment of F’s inputs and outputs.

⇕
There exist coefficients (cN+1, · · · , cm) such that t(x) divides p(x), where

p(x) =

l0(x) +
m∑
k=1

ck · lk(x)

 ·
r0(x) +

m∑
k=1

ck · rk(x)


−

o0(x) +
m∑
k=1

ck · ok(x)


In other words, there must exist some polynomial h(x) such that p(x) =
h(x) · t(x). The size of Q is m. The degree of Q is deg(t(x)).

Observe that in the definition there are l0(x), r0(x), o0(x) polynomials which allow
us to have additive constants in the problem. See also that if we allow the selector
polynomials to evaluate to constants different from {0, 1} in the evaluation points
chosen for each gate, the system can also have multiplicative constants.

3.2.5. Rank-1 Constraint Satisfiability

There is another construction that is more suited for expressing the different con-
straints for the function and that can be easily transformed into a QAP. It is called
Rank-1 Constrain Satisfiability (R1CS) system and its definition is the fol-
lowing (found in [18]):

Definition 3.2.2 (Rank-1 Constraint Satisfiability): An R1CS system
over a finite field F is specified by a tuple CS = (n,Ng, Nw, {ai,bi, ci}i∈[Ng])
where n,Ng, Nw ∈ N, n ≤ Nw and ai, bi, ci ∈ FNw+1. The system CS is
satisfiable for a statement x ∈ Fn if there exists a witness w ∈ FNw such that

x = (w1, . . . , wn) and

[1 | wT] · ai ∗ [1 | wT] · bi = [1 | wT] · ci for all i ∈ [Ng]

We express this concept as CS(x,w) = 1 and we refer to n as the statement
size, Nw as the number of variables and Ng as the number of constraints.

19

Chapter 3. Implementing Zero Knowledge with zk-SNARKs

Observe that there is a 1 appended to the witness ([1 | wT]) in the last equation in
the definition. It has the purpose of allowing additive constants in the system, just
as the polynomials l0(x), r0(x), o0(x) did for the QAP.

Before creating the R1CS for the example, see that in our circuit 3.2 the computa-
tion can be summarized with:

c4 × c5 = c8

(c1 + c2 + c3)× c8 = c9

(c6 + c7)× c8 = c10

In this case n = Nw = 10 and Ng = 3 and the vectors from the R1CS system will be:

A =


1 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

a1 0 0 0 0 1 0 0 0 0 0 0
a2 0 1 1 1 0 0 0 0 0 0 0
a3 0 0 0 0 0 0 1 1 0 0 0



B =


1 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

b1 0 0 0 0 0 1 0 0 0 0 0
b2 0 0 0 0 0 0 0 0 1 0 0
b3 0 0 0 0 0 0 0 0 1 0 0



C =


1 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

c1 0 0 0 0 0 0 0 0 1 0 0
c2 0 0 0 0 0 0 0 0 0 1 0
c3 0 0 0 0 0 0 0 0 1 0 1



[
1
w

]
=



1 1
c1 2
c2 5
c3 4
c4 3
c5 4
c6 7
c7 2
c8 12
c9 132
c10 108



The reason we have expressed the vectors in matrices is because checking that the
system is satisfiable will be equivalent to cheking that the following equality holds:

A ·

[
1
w

]
∗B ·

[
1
w

]
− C ·

[
1
w

]
= 0

3.2.6. Linear PCPs

The kind of SNARKs that use the proof that we have described during this section
are based on Linear Probabilistic Checkable Proofs (PCPs). Informally, this
is the kind of proof that can be verified by checking just a few random bits of it.
The way to do this is by granting the verifier access to a linear oracle5 π : Fl → F
so that they can submit several queries and decide to accept or reject a statement
on an input x ([18]).

5An oracle can be thought of a “black box” capable of providing a solution given an instance
of a computational problem.

20

3.3. The protocol

For instance, it is possible to transform the QAP into a 4-query linear PCP. Recall
that in the original problem we have:

p(x) = (
m∑
i=1

ci × li(x))× (
m∑
i=1

ci × ri(x))− (
m∑
i=1

ci × oi(x)) = t(x)h(x)

To perform the verification of the proof, we choose a random value γ and define the
following vectors:

lγ = [l1(γ), . . . , lm(γ)]
T

rγ = [r1(γ), . . . , rm(γ)]
T

oγ = [o1(γ), . . . , om(γ)]
T

Γ = [1, γ, . . . , γm−1]T

Then, we can check the proof by making the following queries (shown in blue in the
equation) to the oracle:

(c · lγ)× (c · rγ)− (c · oγ) = t(γ)(h · Γ)

Note that the dot product between two vectors is a linear function and that the
verifier can easily compute t(γ).

Besides that, as it was said before, it is a bit more difficult to implement it so that
the prover can not fake a proof. To understand each implementation it is better to
check the original papers ([1], [6],[18]).

3.3. The protocol

Now that we have covered the fundamentals of zk-SNARKs, our attention will
be directed towards the protocol featured in the paper “Shorter and Faster Post-
Quantum Designated-Verifier zkSNARKs from Lattices” by Yuval Ishai, Hang Su
adn David J. Wu ([18]). Firstly, we will explain some of the protocol’s advantages
and drawbacks in comparison to other state-of-the-art protocols. Subsequently, we
will provide an overview of the three primary functions within the protocol.

3.3.1. Benefits and drawbacks

In recent years, there has been a substantial amount of research dedicated to ex-
ploring constructions based on various assumptions and optimizing both the asymp-
totic and practical efficiency of zkSNARKs. A potential concern for the future for
a significant portion of these new zk-SNARKs is that they rely on group-based or
pairing-based assumptions. Thus, they are insecure against quantum adversaries6.

6For example, Shor’s algorithm can be used to break some of these cryptographic schemes.

21

Chapter 3. Implementing Zero Knowledge with zk-SNARKs

The protocol we are exploring is based on the problem of Learning With Errors
(LWE) which essentially encrypts some secret values by adding some noise to them.
This problem comes from lattice-based cryptography and it is thought to be quan-
tum secure ([18]).

Another advantageous side of the protocol is the fact that it uses fields that use
modular arithmetic. This is an improvement with respect to other kinds of protocols
because for instance, multiplications on elliptic curves (used in [6] for example) are
more expensive.

This protocol is designated verifier, therefore, a proof can only convince the intended
party and not the general public. This can be seen as both a benefit and a drawback
depending on the applications. For blockchain applications, it would not work
because not everyone could verify the proof. But for e-mail signatures, the prover
might only want to convince the person they are sending the e-mail to, so that if
anyone else finds it, they will not be able to know that it was truly written by them.

Lattice-based protocols are relatively new and have not been as explored as others.
Thus, they are still slower than the ones based on pairing-based assumptions for
example. We think that they can be accelerated to become equal or better. In
the next section we will explain the algorithm and focus on the part we want to
accelerate.

3.3.2. Implementation

In the implementation of this SNARK there are three main parts: key generation,
proof generation and verification of the proof. As we will see, these will follow the
scheme explained in section 2.1.

Key generation

This is the part of the proof that is in charge of the setup. Note that it only needs
to happen once and then we can just execute the other two algorithms without
needing to run this one as well. Therefore, it will not be important to accelerate it.
We can see that the algorithm:

Setup(1λ, 1κ)→ (crs,st)

takes a security parameter λ and the system index κ as inputs. It outputs the
common reference string crs and the verification state st. The crs is generated
using a trusted setup and it is later used in the proof generation algorithm. The st
is used to verify the proof and it should be secret to the designated verifier.

Proof generation

The proof generation algorithm:

22

3.3. The protocol

Proof generation(crs, x, w)→ π

is the one that takes as inputs the public input x, the witness w and the common
reference string and then generates a proof. It is the costly step that we want to
accelerate, as it has some characteristics that make it ideal for it. We will see more
of this in the next chapter.

Verification

Finally, the verification step needs to output zero or one depending on the correct-
ness of the proof:

Verify(st, x, π)→ {0, 1}

The function takes the verification step, the public input and the proof as parame-
ters and outputs a bit that is 0 or 1.

23

Chapter 4

Hardware design

The purpose of this chapter will be to outline the problem we aim to address and
to present potential hardware solutions to tackle it.

4.1. Description of the problem

As it has been hinted throughout previous chapters, the problem we will focus
on is improving the proof generation time for zk-SNARKs and more concretely,
doing it for the protocol shown in [18]. To do so, in this chapter we will describe
some strategies to design the hardware for the critical parts of the proof generation
algorithm which collectively contribute to around 80% of the computation time for
the proof. The parts that we will study are the computation of the H polynomial
and a matrix vector multiplication.

4.1.1. Computing H polynomial

As we have seen in previous sections, computing the polynomial H(x) is one of the
fundamental parts of the proof. This is because the essence of the proof relies on a
simple divisibility check (see Section 3.2). To compute this polynomial and comply
with the protocol requirements it is needed to perform some polynomial operations
such as interpolation or evaluation.

In Figure 4.1 we can see how H is computed based on the representation coming
from R1CS. The most costly parts of this computation are the 7 NTTs (Number
Theoretic Transform) and INTTs (Inverse Number Theoretic Transform) which are
in charge of evaluating or interpolating a polynomial in an adequate set of points. In
Section 4.2 we will see how to implement them in hardware to make them efficient.
The other operations shown in the picture are scalar multiplications (M orange

24

4.2. Number Theoretic Transform

blocks), an element-wise product1 (x) and element-wise subtraction (-).

Figure 4.1: Diagram for the computation of the polynomial H during the proof
generation algorithm.

4.1.2. Matrix vector multiplication

Later on, in the code there is also another time-consuming step which mainly con-
sists on multiplying a matrix that is generated from a small seed with a vector that
comes from previous computations. This part is the one that might take longer to
compute in the algorithm with about 70% of running time.

Figure 4.2: Matrix-vector multiplication used in the proof generation algorithm.

4.2. Number Theoretic Transform

As we have seen in previous sections, the evaluation and interpolation of polynomials
are crucial steps in the algorithm. In this section we will introduce the Number
Theoretic Transform (NTT), which is a variant of the Fast Fourier Transform
in finite fields. It will allow us to compute costly polynomial operations in a more
efficient way. Later we will also introduce a way of accelerating it through hardware.

1Also called Hadamard product.

25

Chapter 4. Hardware design

4.2.1. Improving polynomial multiplication

Let F = Z/pZ be the field of the integers modulo a prime p, a = (a0, . . . , an−1) ∈ Fn

and b = (b0, . . . , bn−1) ∈ Fn. Then, we define the convolution of these two vectors
as2:

Definition 4.2.1 (Vector convolution): The convolution of two vectors a and
b is given by:

a⊗ b := (c0, . . . , c2n−2) where ck =
k∑

i=0

aibk−i, aj, bj = 0 for j < 0 or j ≥ n.

Note that one of the most direct applications of the convolution is polynomial
multiplication. Let A(x) :=

∑n−1
i=0 aix

i and B(x) :=
∑n−1

i=0 bix
i. Then

A(x)B(x) =

n−1∑
i=0

aix
i

n−1∑
i=0

bix
i

 =
n−1∑
i=0

n−1∑
j=0

aibjx
i+j =

=
2n−2∑
k=0

 k∑
i=0

aibk−i

xk =
2n−2∑
k=0

ckx
k =: C(x)

As shown above, the coefficients of the resulting polynomial are the elements of
a ⊗ b. The problem of using the convolution for polynomial multiplication is that
the algorithm is O(n2) which is too slow.

Before seeing how we can improve it, we will introduce some notation regarding
polynomial representation:

Coefficient representation It is the one we have been using until now, where
the polynomial is defined by the values that multiply the powers of x. To simplify
matters later, we will extend the coefficients with 0s until we haveN = 2t coefficients
such that n ≤ N :

A(x) =
N−1∑
i=0

aix
i, B(x) =

N−1∑
i=0

bix
i ai, bi = 0 ∀i ≥ n

Point-value representation We can also use the evaluation of the polynomi-
als at N points to represent them. Given α = (α0, . . . , αN−1) ∈ FN , the values
A(α0), . . . , A(αN−1) represent the polynomial A(x).

In Figure 4.3 we can see a diagram for polynomial multiplication. As we have said
before, the convolution has a complexity of O(N2) and it is trivial that the point-
wise multiplication is O(N). The interesting part comes with the evaluation and

2It comes from the definition of convolution for discrete functions.

26

4.2. Number Theoretic Transform

interpolation operations. They both can be computed in O(N logN) when choosing
adequate values for the point-value representation.

Coefficient representation
of c

Coefficient representation
of a and b

Point-value representation
of c

Point-value representation
of a and b

Convolution

Interpolation

Point-wise multiplication

Evaluation

Figure 4.3: Polynomial multiplication diagram.

4.2.2. Evaluation and interpolation using the Vandermonde
matrix

As we have hinted in previous sections, the evaluation points we will choose3 will be
powers of the primitive Nth root of unity in the corresponding field. In this case,
it is an ω ∈ F such that ωN ≡ 1 mod p. Therefore, we will take the evaluation
points defined as αi := ωi ∀i ∈ 0, . . . , N − 1.

Now we can define the Vandermonde matrix for ω:

MN,ω =


1 α0 · · · αN−1

0

1 α1 · · · αN−1
1

...
...

. . .
...

1 αN−1 · · · αN−1
N−1

 =


1 1 · · · 1
1 ω · · · ωN−1

...
...

. . .
...

1 ωN−1 · · · ω(N−1)(N−1)



We can evaluate the polynomial at N points by applying the matrix to the vector
of coefficients and similarly, we can also obtain the coefficients from applying the
inverse of the matrix to the vector of evaluated points:

Evaluation: (MN,ω · a)i = A(αi) = A(ωi)

Interpolation: (M−1
N,ω · C(α))i = ci

An interesting observation regarding the matrix is the following:

Proposition 1. M−1
N,ω = 1

N
MN,ωN−1

3Note that when doing multiplication through the alternative path instead of doing the convo-
lution means that we can choose whichever evaluation points we want because the final coefficient
representation will be independent of this choice.

27

Chapter 4. Hardware design

Proof. We want to prove that the equality 1
N
MN,ωN−1 ·MN,ω = IN holds.(

1

N
MN,ωN−1 ·MN,ω

)
i,j

=
1

N

N−1∑
k=0

(ωN−1)ikωjk =
1

N

N−1∑
k=0

(ωikN)ωk(j−i) =

=
1

N

N−1∑
k=0

ωk(j−i) =

{
1, if i = j

0, otherwise

where in the case i ̸= j we are using the geometric sum property:

1

N

N−1∑
k=0

ωk(j−i) =
1

N
· ω

N(j−i) − 1

ωj−i − 1
=

1

N
· 1− 1

ωj−i − 1
= 0

This property will make the inverse matrix easy to compute and will allow the
algorithms for interpolation and evaluation to be very similar.

4.2.3. The radix-2 DIT algorithm

Let’s now think about the algorithm for the evaluation. See that we can decompose
the step of evaluating a polynomial into:

A[0](x) := a0 + a2x+ a4x
2 + · · ·+ aN−2x

N
2
−1

A[1](x) := a1 + a3x+ a5x
2 + · · ·+ aN−1x

N
2
−1

 =⇒ A(x) = A[0](x2) + xA[1](x2)

which basically gives us a recursive case we can use in our program.

The algorithm given by this recursion is expressed in pseudo-code in Listing 4.1.
The function NTT takes as inputs the vector of N coefficients a and a value ω and
computes the evaluation of a at the powers of ω. As we have said, in this case ω
will be the Nth root of unity in F.

The steps of the algorithm are:

1. Base case: if N (which is equal to the size of a) is 1, the algorithm returns
a because the polynomial is just the constant term.

2. Otherwise we store the even coefficients of a into vector a[0] and the odd ones
into a[1].

3. Then, we call the NTT with vectors a[0] and a[1] with a value of ω2 and we store
it into c[0] and c[1] respectively. This means that c[i] = Ai(ω2) i ∈ {0, 1}.

4. We create a new vector c of N elements which will hold the result of the
function i.e. ci = A(ωi) i ∈ {0, . . . , N − 1}. Each element is obtained with

28

4.2. Number Theoretic Transform

linear combinations of c[0] and c[1] and some powers of ω which we will call
twiddle factors. More concretely, the code is using the following equalities:

A(ωk) = A[0](ω2k) + ωkA[1](ω2k)

A(ωk+N
2) = A[0](ω2kωN) + ωk+N

2 A[1](ω2kωN) = A[0](ω2k) + ωk+N
2 A[1](ω2k)

This last step is performed inside the for shown in the pseudocode.

NTT(a,ω) {

if (N==1) return a;

a[0] = (a0,a2 ,...,aN−2);

a[1] = (a1,a3 ,...,aN−1);

c[0] = NTT(a[0], ω2);

c[1] = NTT(a[1], ω2);

for (int k = 0; k ≤ N/2 - 1; ++k) {

ck = c
[0]
k + ωkc

[1]
k ;

ck+N/2 = c
[0]
k + ωk+N/2c

[1]
k ;

}

return c;

}

Listing 4.1: Pseudo-code for evaluating a at N powers of ω.

Therefore, we have an algorithm that allows us to evaluate a polynomial in adequate
points with a complexity of O(N logN)4. The algorithm for interpolation is very
similar to the one we have seen here (see Proposition 1). Thus, by looking at diagram
4.3 we now can do evaluation, interpolation and multiplication in O(N logN).

4.2.4. Generic algorithm

The algorithm described above corresponds to the simplest case of the Cooley-
Tukey algorithm[21], where in each recursive call we divide the NTT in two
smaller NTTs with half the size of the original one5. The more general case considers
splitting N = N1N2 and doing the following steps (see Figure 4.4):

1. Reorganize the elements of the coefficient vector into a N2 ×N1 matrix.

2. PerformN1 simultaneous NTTs with a vector size ofN2 (input data considered
as a N2 ×N1 matrix).

3. Multiply the resulting data, considered as a N2 × N1 matrix, by the corre-
sponding twiddle factors and transpose the resulting matrix into a N2 × N1

matrix.

4We will not see it here but it can be easily obtained by applying the master theorem for
analysis of algorithms.

5This is the reason we took N to be a power of 2.

29

Chapter 4. Hardware design

4. Perform N2 simultaneous N1-point NTTs on the resulting N1 ×N2 matrix.

Usually, N1 or N2 are a small value which we will call the radix. If N1 is the
radix we are performing a Decimation In Time (DIT) and otherwise, it is a
Decimation In Frequency (DIF). For example, in the previous code 4.1 we
were doing a radix-2 DIT.

a = [a0, a1, . . . , aN1N2−1]
Reorganize elements−−−−−−−−−−−→


↓ ↓
a0 . . . aN1−1

aN1 . . . a2N1−1
...

. . .
...

a(N2−1)N1 . . . aN2N1−1



N1 NTTs with ωN1−−−−−−−−−−→


c
[0]
0 . . . c

[N1−1]
0

c
[0]
1 . . . c

[N1−1]
1

...
. . .

...

c
[0]
N2−1 . . . c

[N1−1]
N2−1



Transpose +−−−−−−−−→
Twiddle factors


↓ ↓ ↓
c
[0]
0 c

[0]
1 . . . c

[0]
N2−1

c
[1]
0 ωc

[1]
1 . . . ωN2−1c

[1]
N2−1

...
...

. . .
...

c
[N1−1]
0 ωN1−1c

[N1−1]
1 . . . ω(N1−1)(N2−1)c

[N1−1]
N2−1



N2 NTTs with ωN2−−−−−−−−−−→


c0 . . . cN2−1

cN2 . . . c2N2−1
...

. . .
...

c(N1−1)N2 . . . cN1N2−1


Figure 4.4: Diagram for the NTT with an input vector of N = N1N2 elements.

For completeness, we are going to show the correctness of the twiddle factors found
in Figure 4.4 for the NTT:

Proposition 2. The twiddle factor that multiplies c
[k]
j after performing the first

NTT is ωjk.

Proof. We want to see that after performing the second NTT (which evaluates

vectors on powers of ωN2) on ωjkc
[k]
j , coefficient ciN2+j will have the evaluation of

30

4.2. Number Theoretic Transform

A in ωiN2+j. We will also use the fact that c
[k]
j is the result of performing an NTT

with ωN1 on the vector of coefficients a:

ciN2+j
?
=

N1−1∑
k=0

ωiN2k(ωjkc
[k]
j) =

N1−1∑
k=0

ω(iN2+j)k

N2−1∑
l=0

ωjlN1ak+lN1

Now, we use the fact that in F we have the identity ωN = ωN1N2 ≡ 1 mod p to add
some powers of ωN1N2 that do not alter the value of the previous equation:

N1−1∑
k=0

ω(iN2+j)k

N2−1∑
l=0

ωjlN1+liN1N2ak+lN1 =

N1−1∑
k=0

N2−1∑
l=0

ω(iN2+j)(k+lN1)ak+lN1

=

N2−1∑
l=0

N1−1∑
k=0

ω(iN2+j)(k+lN1)ak+lN1

And we finally do the following change of variable s = k + lN1 that gives us the
result we were looking for:

N1N2−1∑
s=0

ω(iN2+j)sas = A(ωiN2+j)

Therefore, we have seen that:

A(ωiN2+j) =: ciN2+j =

N1−1∑
k=0

ω(iN2+j)kc
[k]
j

where i = 0, . . . , N1 − 1 and j = 0, . . . , N2 − 1.

4.2.5. Hardware design

After giving all the mathematical background, we are now ready to design the
hardware implementation. The initial idea would be to just translate the code
given in Listing 4.1 into its hardware equivalent. This is the idea that is used in
the butterfly diagram6 shown in Figure 4.5.

In the picture we can see an 8-input NTT that uses the 2-radix recursive algorithm
by decomposing the problem into two N

2
= 4 NTTs. In hardware, the lines in the

figure would be translated into wires and on the ones that have a power of ω next to
them, we would add a multiplier to perform the operation. Then, we would follow
the exact same strategy to do the 4-point NTT, then the one with 2 elements and
finally the one with just 1 (the base case of the recursion).

6It is called butterfly diagram because its shape is thought to resemble a butterfly.

31

Chapter 4. Hardware design

a0

a2

a4

a6

a1

a3

a5

a7

N/2-point
NTT

N/2-point
NTT

c
[0]
0

c
[0]
1

c
[0]
2

c
[0]
3

c
[1]
0

c
[1]
1

c
[1]
2

c
[1]
3

c0 = A(ω0)

c1 = A(ω1)

c2 = A(ω2)

c3 = A(ω3)

c4 = A(ω4)

c5 = A(ω5)

c6 = A(ω6)

c7 = A(ω7)

ω0

ω1

ω2

ω3

ω4

ω5

ω6

ω7

Figure 4.5: Butterfly diagram for an 8-point NTT. Adapted from [22].

This is a very common implementation of the NTT. However, if the input size
gets too large, it is no longer feasible to implement it like this. One answer to
this problem was proposed in the paper FFTs in External or Hierarchical Memory
by David H. Bailey ([23]). It essentially consists on using the generic case of the
algorithm we showed in the previous section where instead of directly computing
the NTT it is split into 4 steps: perform N1 N2-point NTTs, multiply the results
by the corresponding twiddle factors, transpose it and compute N2 N1-point NTTs.

This implementation of the NTT was done in F1: A Fast and Programmable Ac-
celerator for Fully Homomorphic Encryption [24]. In the paper, the idea is to
implement an N -point NTT as a composition of smaller E element NTTs, where E
is the number of vector lanes in the accelerator. In Figure 4.6 there is an example
on how to implement a 16-point NTT by using 4-point NTTs (E = 4 and it is
analogous to using N1 = N2 = 4 in the previous section).

Figure 4.6: Four-step NTT datapath that uses 4-point NTTs to implement 16-point
NTTs. Adapted from [24].

32

4.2. Number Theoretic Transform

Even though this implementation of the NTT adds a multiplication (in red in Figure
4.6) to the algorithm, it has other advantages besides allowing bigger NTT sizes.
For one, it produces an ordered NTT but it also grants the option of performing an
INTT using the same pipeline by modifying the contents in the Twiddle SRAM as
explained in [24].

Another important unit in this pipeline is the one that is used for transposing a
matrix of size E × E. This unit can be implemented by using the identity:

[
A B
C D

]T

=

[
AT CT

BT DT

]

Then the idea is to have a quadrant-swap unit (left of Figure 4.7) of size K × K
that follows three steps, where each of them takes K/2 cycles. In cycle i:

1. First step: read A[i] and C[i] and store them in top[i] and bottom[i],
respectively.

2. Second step: read B[i] and D[i]. Activate the first swap MUX so that D[i]
is stored in top[i] and A[i] is outputed. Activate also the bypass line to
output B[i] as well.

3. Third step: output D[i] from top[i] and C[i] and activate the second swap
MUX so that they are correctly ordered (C[i] on top).

The benefits of using this design is that it is fully pipelined because steps 1 and 3
can be done in parallel and it can be used for all values of N by bypassing some of
the initial quadrant swaps (where N = G × E and with power-of-2 G < E). The
structure of the full unit for E = 8 can be found in Figure 4.7.

Figure 4.7: Transpose unit for an 8× 8 matrix (right) and its component quadrant-
swap unit (left). From [24].

33

Chapter 4. Hardware design

4.3. Matrix vector multiplication

The other costly step in the computation is a dense matrix vector multiplication.
One of the key facts is that the matrix is generated from a seed and, therefore, we
do not need to load it from memory. First we will explain the näıve way to do a
matrix-vector multiplication and then we are going to explain how to make it more
memory-friendly.

4.3.1. Näıve algorithm

Suppose we want to multiply a matrix A with size n×m by a vector b with length
m to obtain a new vector c of length n:

A · b =

 a0,0 · · · a0,m−1
...

. . .
...

an−1,0 · · · an−1,m−1

 ·
 b0

...
bm−1

 =

 a0,0b0 + · · ·+ a0,m−1bm−1
...

an−1,0b0 + · · ·+ an−1,m−1bm−1

 =: c

The coefficients of c can be computed as

ci =
m−1∑
j=0

ai,kbj

and that means that the intuitive algorithm to implement it would be the one
expressed in Listing 4.2.

MVM(A,b) {

n = nrows(A);

m = nrows(b);

vector c(n,0);

for (i = 0; i < n; ++i) {

for (j = 0; j < m; ++j) {

c[i] += A[i][j]*b[j];

}

}

return c;

}

Listing 4.2: Intuitive pseudo-code for computing a matrix vector multiplication.

Though this algorithm might be fine if n and m are small, it becomes a problem
with bigger computations. The reason for that is that the contents of the vector
and the matrix loaded from memory can be spilled if they occupy more space than
the one supplied by the registers or the cache used to hold these values. It also does
not benefit from the possibilities of having more than one core in the processor.
Therefore, the computation can be improved when taking the underlying hardware
into account.

34

4.3. Matrix vector multiplication

4.3.2. Tiling

To improve the performance of the pseudo-code seen before, we will rely on these
concepts:

Data reuse: it consists on efficiently using data that is already in a fast-
access level of the memory hierarchy (for example, the registers or the cache).
The issue with this kind of memories is that often they are not big enough
to hold all date necessary for the computation. Thus, the objective is to be
able to use the data as much as possible (following the code guidelines) before
returning it to memory to make space for other elements.

Data locality: data is typically retrieved from memory in groups or blocks
of elements. Hence, it is important to consider how is the data stored in
memory and strive to access consecutively the elements that are in the same
block (which is similar to element-wise data reuse but on a block level). This
approach minimizes the need to repeatedly retrieve the entire block from
memory.

Exploiting parallelism: in a processor there are often different cores or
functional units that can be used in parallel. To improve performance it is
key to have an adequate data distribution and load balancing among them.

In our case, the computation we are performing is a matrix vector where the matrix
is randomly generated from a seed. Therefore, the data we will need for the com-
putation are the elements from the vector and the seed to generate the matrix. We
will also need space to store the temporary multiplication results before returning
them to memory.

Observe that each element of the matrix only needs to be used once. Thus it is
not necessary to store the randomly generated value after its initial use. This is
not the case for the vector elements, as each one multiplies each value in a matrix
column. Consequently, the idea is to compute partial results of the resulting vector
c by computing the multiplication of a block or tile of k elements of vector b and its
corresponding A columns. This idea is conveyed in Figure 4.8, where the program
should first compute the result of multiplying the first k = 2 elements of vector b
by the first two columns of matrix A. Then, it should load the next k elements
of b (overwriting the previous ones if necessary, as they are no longer needed) and
accumulate the results of the new multiplication. By executing the program this
way, we would avoid unnecessarily reading the vector more than once.

Note also that by doing this it is also possible to distribute the computation between
several different cores/units. Each one would receive the computation of one or
more tiles and the only thing that it is needed to do at the end is to sum the results
coming from the different cores.

35

Chapter 4. Hardware design

Figure 4.8: Example of tiling in a matrix vector multiplication.

By doing these steps we would achieve a much better use of the resources available
because we would avoid unnecessary loads from memory and use all the cores/units
available.

As a curiosity, an example on how a program is coded influences the performance
of it is brought up in the article There’s plenty of room at the Top: What will drive
computer performance after Moore’s law? ([25]).In the article they compare the
performances obtained from running a code that computes a the multiplication of
two 4096-by-4096 matrices. First they show that by changing the programming
language used (Python, Java or C) we can get an execution time that is 47 times
faster. And not only that, an even more impressive gain can be obtained from tailor-
ing the code to the specific features of the hardware by using its 18 cores (version
4), exploiting the memory hierarchy (version 5), vectorizing the code (version 6)
and using the Intel’s special intructions (version 7). As it can be seen the absolute
speedup is incredible!

Figure 4.9: Speedups from performance engineering a program that multiplies two
4096-by-4096 matrices. Absolute speedup is time relative to Python, and relative
speedup, which is shown with an additional digit of precision, is time relative to the
preceding line. Fraction of peak is GFLOPS relative to the computer’s peak 835
GFLOPS. From [25].

What we have seen so far consists on correctly using the hardware resources by pro-
gramming the code correctly, the design of the hardware comes from the same ideas

36

4.3. Matrix vector multiplication

explained for software. Essentially, the only things needed for it would be (1) Some
circuitry to compute the matrix random elements7 and (2) Circuitry that is able to
compute matrix vector product. For the latter, the ideas explained before translate
to having units that can compute several MADD each cycle (multiplications from
different rows of the matrix can be done in parallel) and after k elements they have
a reduction operation where they add the results from the other units.

As there are not many dependencies in this computation, it is possible to achieve
a high utilization of the units and to fully parallelize it. The size of each block
would depend on the size of the circuits that would be used for the proof and on
the area allowed for the whole chip. There are some estimations on the time needed
to perform the proof generation at the end of the next section.

7This is computationally cheap as it uses a Pseudorandom function (PRF).

37

Chapter 5

Evaluation

An essential part of designing hardware (or making performance improvements in
a program) is having baselines to test it. Their purpose is allowing the comparison
with both the original performance and against work from other research.

In [18] they do have an proof-of-concept implementation of their protocol, but it
does not allow to input arithmetic circuits. Instead they just create a random
number of constraints in some field F and run the program. Because of that, in this
chapter we will talk about how to be able to have common arithmetic circuits as
an input to the protocol. There were two ideas for that:

Design a language to describe the circuit inputs and create the code to create
the constraints in the program.

Integrate jsnark ([26]), a library for building circuits for this type of SNARKs,
in the program.

Another thing that is also important for the evaluation is knowing the time and
area that would be needed for using an accelerator instead of just a CPU. This is
the reason why in Section 5.3 we do a back-of-the-envelope calculation of these two
parameters.

5.1. Arbitrary input circuits

The goal of this first approach was to be able to have arbitrary arithmetic circuits
as an input of the proof generated with the protocol explained in [18]. Here, we will
learn how to do it and we will start by describing the language used for the circuit
description. Then, we will explain the code needed to read and run the proof using
it, along with some problems there were during its implementation. Finally there
will be a description of several workloads, how they were obtained and transformed
to our language and some time results using a CPU.

38

5.1. Arbitrary input circuits

5.1.1. Circuit description

The operations we wanted to support for the circuit were addition and multiplica-
tion in field F and the boolean operations and, xor and inv. Also, we wanted to
differentiate between having a boolean or just a field element input. Evidently, the
language can be extended to incorporate more operations but these were the ones
needed for the tests we wanted to run. To implement each operation the syntax
was:

i input value idx

b boolean input value idx

AND idx1 idx2 idx res

XOR idx1 idx2 idx res

INV idx1 idx2 idx res

+ idx1 idx2 idx res

* idx1 idx2 idx res

The input operations i and b have two parameters: the value of the input and the
index of the wire it will be assigned to. The other operations (AND XOR, INV, + and
*) describe gates and have three parameters: the indices of the two wires entering
the gate and the index of the output wire.

5.1.2. Explaining the code

The original code from [18] can be found in the Github project lattice-zksnark
([27]). This code is constructed over libsnark ([28]), a c++ library for implement-
ing zk-SNARKs. In this library there are implementations of other zk-SNARKs
such as Groth16 ([6]) or Pinocchio ([1]).

One of the advantages of using this library is that it has two gadget libraries that
can be used for constructing R1CS instances out of modular gadget classes:

gadgetlib1: it is a low-level library that exposes all the features of the zk-
SNARKs. Its design is based on templates (which will be key afterwards) and
it is used for most of the constraint-building in libsnark, both internal and
in examples and applications

gadgetlib2: this is an alternative library that also allows constructing R1CS
instances. One of its advantages is that it is better documented than gadgetlib1
and it is also easier to use. On the other hand, it does not use templates and
fewer useful gadgets are provided.

The initial idea was to use gadgetlib2 because, as it was said before, it is much

39

Chapter 5. Evaluation

easier to use due to being better documented. However, the problem with it was
that the field used in every place of the code was hard-coded to it. Thus, as
libsnark is a library that is primarily meant to be used with elliptic curves, it was
not useful with our protocol, which uses the field of integers modulo a prime p. As
a consequence, the library used to program the code was chosen to be gadgetlib1.

The first step of the code was to read its description, which is essentially a sequence
of the instructions such as the ones described before. After this step, it is possible
to create the R1CS constraints. The class that holds all the information regarding
the constraints, its values and other similar information is the protoboard. To have
a good structure for the code, we created different gadgets extending the gadget

class from gadgetlib1. These gadgets facilitate the creation of the protoboard by
encapsulating the behaviour of each gate in it. For every gadget class it was needed
to have two functions defined:

generate r1cs constraints: its target is to create the R1CS constraint by
providing the variable indexes and coefficients accompanying each of them.
Recall that a constraint has the form of a× b = c, where a, b and c are linear
combinations of other variables in the system.

generate r1cs witness: this function is in charge of creating the witness
values from the input (which can be private).

template <typename FieldT >

MULT_gadget <FieldT >:: MULT_gadget(protoboard <FieldT > &pb ,

const pb_linear_combination <FieldT > &A,

const pb_linear_combination <FieldT > &B,

const pb_linear_combination <FieldT > &out ,

const std:: string &annotation_prefix) :

gadget <FieldT >(pb , annotation_prefix),

A(A),

B(B),

out(out) {}

template <typename FieldT >

void MULT_gadget <FieldT >:: generate_r1cs_constraints () {

/* out = A * B */

this ->pb.add_r1cs_constraint(r1cs_constraint <FieldT >(A, B, out),

FMT(this ->annotation_prefix , "out = A*B"));

}

template <typename FieldT >

void MULT_gadget <FieldT >:: generate_r1cs_witness () {

this ->pb.lc_val(out) = this ->pb.lc_val(A) * this ->pb.lc_val(B);

}

Listing 5.1: Code for creating a multiplication gadget.

40

5.1. Arbitrary input circuits

In Listing 5.1 we can see the code needed to create a multiplication gadget. In
the constructor class we can see the three elements holding the linear combina-
tions A, B and C and the protoboard we will associate the gadget with. In the
generate constraints function, we call the protoboard function that adds a
r1cs constraint. The constructor of this last class takes three linear combina-
tions and an annotation (which can be used in debugging). It interprets the three
elements just as we said before: the first linear combination multiplies the second
one and should be equal to the third. Finally, the value for the witness associated
to this constraint gets assigned in generate r1cs witness. This function calls
the evaluation of the variables A and B and assigns the value of its product to the
variable out.

For the other gadgets the procedure is quite similar to the one for the multiplication
gate. We will use the following constraints to create the other gates:

To impose that a value is boolean: A× (1− A) = 0

AND gate: A×B = out

XOR gate: 2A×B = A+B − out

INV gate: 1× (1− A) = out

Addition gate: 1× (A+B) = out

Even though there are other steps in the code that initialize parameters, check the
validity of the constraints and so on and so forth, what we have explained until now
are the key ones. After creating the protoboard, we can obtain the inputs needed
to call the function run r1cs lattice snark, which is the one that encapsulates
the procedures explained in [18] to generate a key, create a proof and verify it.

5.1.3. Workloads

Once we have the code working and it can be used to run proofs for simple arithmetic
circuits, it is time to find more interesting ones. In [29] there are examples of “Bristol
Fashion” circuits which are circuits that are given in the following format:

A line defining the number of gates and wires in the circuit.

The number of input values niv and then niv numbers defining the number of
input wires per input value.

The number of input values nov and then nov numbers defining the number
of input wires per input value.

The gates, given in topological order, defined by:

• Number of input wires.

• Number of output wires.

41

Chapter 5. Evaluation

• List of input wires

• List of output wires

• The gate operation (XOR, AND, INV, EQ, EQW or MAND)

Therefore, to use them it was necessary to first convert them to our own circuit
description language. As ours is more simple, it was only needed to remove the
unnecessary information and restructure the order followed in each line.

Even though there are more circuits in [29], the ones we were interested in were
SHA-2 and AES.

Secure Hash Algorithm 2

SHA-2 is a set of cryptographic hash functions that were designed by the National
Security Agency of the United States. The purpose of an n-bit hash function is to
map arbitrary length messages to n-bit hash values. In the context of cryptography,
they should also be one-way and collision-resistant, which means that it is difficult
to find a message that hashes to a specific hash value and it is also hard to find
two messages that hash to the same hash value. There are different hashes in the
SHA-2 family: SHA-256, SHA-384 and SHA-512 which provide 128, 256 and 192
bits of security respectively ([30]).

SHA-256 starts with a preprocessing step where the message is padded so that
the result is a multiple of 512 bits and then is split into 512-bit message blocks
M (1) . . .M (N). Then, each message block is processed one at a time using the
following equation:

H(i) = H(i−1) + CM(i)(H(i−1))

where C is the SHA-256 compression function and the addition is word-wise and
modulo 232. There is a fixed initial hash value H(0) that comes from the fractional
parts of the square roots of the first eigth primes. Therefore, the hash for the
message is H(N).

The circuits provided in [29] are simulating one step of this recursion, its inputs are
the 512-bits message and a 256-bits hash. The procedure explained is very similar
for SHA-384 and SHA-512 but changing the size of the message block among other
things. In Table 5.1 we can see the time spent generating a proof for both functions.

Function #constraints Polynomial H MVM Total proof time

SHA-256 139,264 0.2958 0.9654 1.5031
SHA-512 393,216 0.3249 2.6574 4.1030

Table 5.1: Computing time for SHA-2 functions expressed in seconds. The 3rd and
4th column refer to the time spent computing H and the matrix-vector multiplication
respectively. The results are obtained using 8 cores of an i5-8250U at 1.60GHz.

42

5.2. Integrating jsnark

Advanced Encryption Standard

AES, also known asRijndael, is a specification for the encryption of electronic data
([31]) established in 2001 by the US National Institute of Standards and Technology
(NIST). It is a symmetric cipher, which means that you need the same secret key
to encrypt a plaintext and decrypt its corresponding ciphertext. The key can be
128, 192 or 256 bits long. AES is also a block cipher as it operates on fixed-length
groups of bits, in this case, 128.

The algorithm consists on a sequence of 10, 12 or 14 rounds for a 128, 192 or 256
bit key. There is a different key for each round that is generated from the initial one
using a key schedule algorithm. The input for the algorithm are the 16 bytes of the
plaintext structured as a 4 × 4 matrix. Then, on each round, there are operations
that involve byte substitution, row shifting, matrix multiplication and additions of
the round key performed on the matrix. After the corresponding number of rounds,
the message is considered to be encrypted. Table 5.2 shows the results of generating
a proof for AES.

Function #constraints Polynomial H MVM Total proof time

AES-128 40,960 0.0772 0.2808 0.4530
AES-192 49,152 0.0857 0.3213 0.5103
AES-256 65,536 0.0567 0.6308 0.7966

Table 5.2: Computing time for AES functions expressed in seconds. The 3rd and 4th

column refer to the time spent computing H and the matrix-vector multiplication
respectively. The results are obtained using 8 cores of an i5-8250U at 1.60GHz.

5.2. Integrating jsnark

Another option to obtain workloads to use as benchmarks was using jsnark. It is
essentially a Java library made for building circuits for zk-SNARKs and is used to
create workloads in other papers such as PipeZK ([32]). This library is also based
on using gadgets and it uses libsnark as a backend but it has several advantages
with respect to just using gadgetlib1 and gadgetlib2. For starters, it already has
many circuits available that are ready to be used (and can be directly compared
with previous work). The other benefits come from the fact that it has some options
that allow to work at a higher level than gadgetlib1. For instance, it is not
needed to have two separate functions for the generation of the constraints and
witness for primitive operations. Also, there are other optimization techniques
applied that also allow canceling unneeded constraints. Therefore, integrating it
with lattice-zksnark seemed like a good way to get more workloads.

The integration was a little bit tricky because it relied on functions from gadgetlib2

and as we have said before, it is not useful for us because it uses elliptic curves

43

Chapter 5. Evaluation

instead of fields of integers modulo a prime. Thus, it was necessary to find its
analogous functions in gadgetlib1 (which uses templates) and modify the code
accordingly. It was also necessary to change some other functions that were imple-
mented having elliptic curves in mind so that it made sense with our fields. Lastly,
we also needed to prepare the parameters and inputs of the function running the
proof so that everything was correct and functional.

After integrating it, there were some of the circuits that the library came with that
could correctly be used with lattice-zksnark but it was not possible to run most
of them with it because the element sizes were too large for it (elliptic curves can
use more bits than the fields used in lattice-zksnark). Therefore, to fix it, it
would be necessary to modify either lattice-zksnark so that it accepts bigger
elements or the circuit generation so that it splits the constraints that are too big
into smaller ones. However, as for reasons that we will explain later we will not
probably continue with this protocol, it has not been modified.

Just for comparison though, one of the gadgets that did work was SHA-256. By
using jsnark, its size was greatly reduced from the one in the previous section as
the circuit is more optimized. The results of running it are in Table 5.3.

Function #constraints Polynomial H MVM Total proof time

SHA-256 32768 0.0429 0.2013 0.3036

Table 5.3: Computing time for SHA-256 using jsnark expressed in seconds. The
3rd and 4th column refer to the time spent computing H and the matrix-vector
multiplication respectively. The results are obtained using 8 cores of an i5-8250U
at 1.60GHz.

Nonetheless, even though there are some already created circuits that cannot be
used, jsnark is still a useful tool to create other kinds of circuits.

5.3. Estimated hardware results

Lastly, to decide if it is worth it to design hardware for this task, we will do a
back-of-the-envelope calculation of the computation time and area needed for it.
To do so, we will estimate the number of multiplies needed for the computation of a
function, in this case SHA-256 (the one used in the first code). We will focus on just
the two parts we saw before: the H polynomial computation and the matrix-vector
multiplication.

General estimation

For the computation of H, as we can see in Figure 5.1, we have the computation of
7 NTTs (there are also other operations but we will consider them to be negligible).

44

5.3. Estimated hardware results

As every NTT costs approximately N logN
2

multiplications, in the case of SHA-256
this will mean that we will have roughly 13.7 million multiplies for this first part.

Figure 5.1: Diagram for the computation of the polynomial H during the proof
generation algorithm with the size of the inputs to the NTTs.

For the matrix vector multiplication (see Figure 5.2), the size of the matrix is
(n + q) × (2 · #constraints), where n and q are parameters that depend on the
size of the plaintext modulo and the number of constraints among others. The n is
the degree of the LWE problem and it is closely related to the security we want to
achieve. The q corresponds to the number of queries needed to achieve soundness
in the protocol. In this case, they will need to be about n+ q = 4, 300. Therefore,
the number of multiplications needed will be about 598.8 million multiplies.

Figure 5.2: Diagram for the matrix-vector multiplication during the proof genera-
tion algorithm with the sizes of the elements.

In total, this will mean that we will have about 612.5 million multiplies in the code.
Then, we will assume that we have 100, 000 multipliers available that are always

45

Chapter 5. Evaluation

computing and that we can work at 1GHz. Therefore, the compute time for this
will be of:

612.5 million multiplies · 1 cycle

105 multiplies
· 1s

109 cycle
= 6.125µs

Thus, we could ideally accelerate the two critical parts of SHA-256 which originally
cost 0.9654+0.2958 = 1.2612s to just 6.125µs. Nonetheless, there were also 1.5031−
1.2612 = 0.2419s that were not from any of the two parts we have talked about
and therefore the compute time would be a bit higher, but it still is a significant
improvement from what we had at the beginning.

To estimate the area needed, we will use the fact that a multiplier at 12 nanometers
occupies 1, 250µm2 and we will use the approximation of 1MB ≈ 1mm2 for SRAM.
Then, we would need 100, 000 multipliers · 1250µm2 = 125mm2 for the multipliers.
We would need to load the inputs of the circuit as well as its description, the matrix
seed as well as some other information regarding the number of queries the user
makes. To load all of this, and have plenty of space, 50MB ≈ 50mm2 will be enough.
Thus, in total it would require at least 175mm2 for the parts we have described.

5.3.1. Memory bandwidth

Even though the results might seem quite good, there is a problem concerning the
memory bandwidth that we found at the end of the project. In the matrix-vector
multiplication there are some specific rows of the matrix that need to be provided
by the user, which for SHA-256 are of about 140MB1 This means that we would
need at least:

140MB

6.125µs
= 2.3× 1013B/s

But we are only able to provide a bandwidth of ≈ 1012B/s. Thus, this would be a
bottleneck in the program that would not allow us to make it compute-bound and
that would need to be fixed in order to provide a good acceleration of the function.

5.4. Final considerations

Even though it does seem possible to achieve and improve the performance of this
protocol by designing specific hardware for it, there are other factors that should
be taken into account. The most important one is that by using a designated
verifier setting we are losing many use cases where it would be useful to just be able
to publish a proof that anyone could verify (in blockchain systems for example).
Furthermore, these are precisely the cases where the proof needs to generated fast
because there might be users waiting on it so that they can plan their own actions.

1log(ciphertext modulus)∗ num queries ∗ 2#constraints = (114 * 35 * 2 * 140k) bits =
139.65MB.

46

5.4. Final considerations

It is for that reason that we consider that it would be better to change the direction
of this project in the near future so that we are able to work in a public verifier
setting. This does not mean that the ideas proposed were not useful. As there are
similarities between the zk-SNARKs protocols, it will probably still be possible to
accelerate the proof generation for them using an analogous procedure.

47

Chapter 6

Conclusions

Zero-knowledge proofs (ZKP) and verifiable computation (VC) are considered to
be very powerful tools in the field of privacy. They allow someone to prove that the
result of a computation is correct without needing to disclose some input values that
might be confidential. Among its multiple applications we can find cryptocurrencies,
nuclear disarmament or more curious ones such as fighting disinformation. The
latter is implemented by providing a proof that an image that might have been
modified by a newspaper comes from an original one that was taken in the place an
time specified by the article.

Zero-Knowledge Succint Non-Interactive Argument of Knowledge (zk-SNARKs) is a
group of different variants of a protocol that aims provide a practical implementation
for ZKP and VC. One of the main obstacles for using zk-SNARKs in real-world
applications is its slowness when generating a proof, which makes optimizing their
speed and efficiency a focal point of research efforts. Another concern that demands
attention in ongoing research is ensuring the post-quantum security of zk-SNARKs,
an issue that currently remains a vulnerability in numerous implementations.

Therfore, this thesis explores the protocol explained in Shorter and Faster Post-
Quantum Designated-Verifier zkSNARKs from Lattices ([18]) that, as the name
says, implements zk-SNARKS that use lattice-based cryptography, which is the-
oretically quantum safe. Furthermore, it operates within the designated verifier
setting, characterized by the fact that the proof can only convince the designated
party rather than being able to prove the statement to anyone. This might be a
drawback because it cannot be used for common applications (such as blockchains)
but there are other use cases for it (like electronic voting or digital signatures).

As mentioned earlier, the primary challenge associated with these implementations
lies in the slowness of proof generation. This is specially true with post-quantum
zk-SNARKs, as there has not been as much research on them. This is why in this
project we design hardware targeting the most time-consuming parts of the code:

48

firstly, a part that evaluates/interpolates polynomials by using Number Theoretic
Transforms (NTTs) and another that computes a dense matrix-vector multipli-
cation. In this work we describe the contents of these units and we provide an
approximation for time and area in the Evaluation chapter.

Finally, we also needed to have some baselines to be able to compare the new
changes. Firstly, we developed a program that enables us to input custom circuits
using our own simplified language, making the process more straightforward. Sec-
ondly, we integrated the jsnark library, originally designed for a different type of
zk-SNARKs, into our code. This integration allowed us to access another set of
already defined workloads.

After seeing the results of the time estimation using the proposed hardware, it seems
feasible to accelerate the proof generation for the chosen protocol. Nonetheless, it
might not be necessary to do it for this specific protocol because the cases that
require high speed are more likely to be found in procotols that use a public verifier
settting. This does not mean that the observation that it is possible to accelerate
it is not useful. As many other protocols share the same basic concepts, the ideas
explained throughout the project are still helpful, they just need to be applied to a
protocol that provides public verifiability.

49

Chapter 7

Future work

Regarding work to be done in the future, one line of work would be to continue
developing the hardware described in Chapter 4 of this project. This could be
done by fully designing an accelerator that allowed us to count the cycles it would
take depending on the size of the input, the field it is using and the security. The
more advanced version of this would be to design the hardware using a Hardware
Description Language (HDL) such as Verilog or VHDL. Doing this would give a
more precise approach to the resources needed to generate the proof, both time and
area-wise.

One of the things that could also be worth studying is another setup that uses public
verfiable computation (and is post-quantum safe) instead of designated verifier, as
we have seen in this project. This could be interesting because there are many
important applications (such as blockchains) that require that everyone is able to
verify that a proof is correct. There has been some work on this in the paper Lattice-
Based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Composable
published in 2022 ([33]). The main reason we did not work initially on that paper
is that it had more mathematical assumptions than the one we used, which is not
inherently negative, but can lead to future problems if one of them is proved to
be false. Another (more practical) reason for it is that the paper we worked with
had their code already implemented, which is very useful because it is not needed
to spend time developing it. Nonetheless, working on publicly verifiable SNARKs
can be a very valuable for many applications as it holds the potential to enhance
privacy and security in a wide range of fields.

Finally, before I began studying zero-knowledge concepts within this research group,
my initial focus was on Fully Homomorphic Encryption (FHE), which is another
area of research explored by our group. In a nutshell, FHE is a type of encryption
that allows the user to perform computations on encrypted data. The distinction
between Fully Homomorphic Encryption and Verifiable Computation lies in their
respective trust models. In FHE, you don’t need to trust the server with your

50

input data, as computations can be performed on encrypted data. On the other
hand, in VC, the concern is not about the input data but rather about ensuring the
correctness of the results provided by the server. Considering these differences, it
becomes intriguing to explore the potential synergy between FHE and VC, as their
combination could offer unique solutions that address both data privacy and result
integrity simultaneously.

51

Bibliography

[1] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly Practical Verifiable Computation. In 2013 IEEE Symposium on Security
and Privacy, pages 238–252, 2013.

[2] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In Advances in
Cryptology–CRYPTO 2010: 30th Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 15-19, 2010. Proceedings 30, pages 465–482. Springer,
2010.

[3] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complex-
ity of interactive proof-systems. In ACM Symposium on Theory of Computing,
pages 291–304, 1985.

[4] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cam-
bridge University Press, Cambridge, United Kingdom, 2001.

[5] Zkproof community reference [online]. https://zkproof.org/. [Acccessed:
2023].

[6] Jens Groth. On the size of pairing-based non-interactive arguments. In Ad-
vances in Cryptology–EUROCRYPT 2016: 35th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part II 35, pages 305–326. Springer,
2016.

[7] Jean-Jacques Quisquater et al. How to explain zero-knowledge protocols to
your children. In Gilles Brassard, editor, Advances in Cryptology — CRYPTO’
89 Proceedings, pages 628–631, New York, NY, 1990. Springer New York.

[8] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Conference on the theory and application
of cryptographic techniques, pages 186–194. Springer, 1986.

[9] Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, and Yupeng Zhang.
MOOC, zero knowledge proofs [online]. https://zk-learning.org/, 2023.
[Acccessed: 2023].

52

https://zkproof.org/
https://zk-learning.org/

Bibliography

[10] S. Goldwasser and Y.T. Kalai. On the (in)security of the fiat-shamir paradigm.
In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003.
Proceedings., pages 102–113, 2003.

[11] David Pointcheval and Jacques Stern. Security proofs for signature schemes.
In Ueli Maurer, editor, Advances in Cryptology — EUROCRYPT ’96, pages
387–398, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[12] Alexander Glaser, Boaz Barak, and Robert J Goldston. A zero-knowledge
protocol for nuclear warhead verification. Nature, 510(7506):497–502, 2014.

[13] Ben Fisch, Daniel Freund, and Moni Naor. Physical zero-knowledge proofs
of physical properties. In Advances in Cryptology–CRYPTO 2014: 34th An-
nual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part II 34, pages 313–336. Springer, 2014.

[14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
pages 459–474, 2014.

[15] Kenneth A Bamberger, Ran Canetti, Shafi Goldwasser, Rebecca Wexler, and
Evan J Zimmerman. Verification dilemmas in law and the promise of zero-
knowledge proofs. Berkeley Tech. LJ, 37:1, 2022.

[16] Jens Groth. Non-interactive zero-knowledge arguments for voting. In Applied
Cryptography and Network Security: Third International Conference, ACNS
2005, New York, NY, USA, June 7-10, 2005. Proceedings 3, pages 467–482.
Springer, 2005.

[17] Trisha Datta and Dan Boneh. Using zk proofs to
fight disinformation [online]. https://medium.com/@boneh/

using-zk-proofs-to-fight-disinformation-17e7d57fe52f. [Acccessed:
2023].

[18] Yuval Ishai, Hang Su, and David J. Wu. Shorter and faster post-quantum
designated-verifier zksnarks from lattices. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’21,
page 212–234, New York, NY, USA, 2021. Association for Computing Machin-
ery.

[19] Maksym Petkus. Why and how zk-snark works: Definitive explanation. arXiv
preprint arXiv:1906.07221, 2019.

[20] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct nizks without pcps. In Advances in
Cryptology–EUROCRYPT 2013: 32nd Annual International Conference on

53

https://medium.com/@boneh/using-zk-proofs-to-fight-disinformation-17e7d57fe52f
https://medium.com/@boneh/using-zk-proofs-to-fight-disinformation-17e7d57fe52f

Bibliography

the Theory and Applications of Cryptographic Techniques, Athens, Greece, May
26-30, 2013. Proceedings 32, pages 626–645. Springer, 2013.

[21] James W Cooley and John W Tukey. An algorithm for the machine calculation
of complex fourier series. Mathematics of computation, 19(90):297–301, 1965.

[22] Wikipedia, the free encyclopedia. Cooley-tukey fft algorithm [online]. https:
//commons.wikimedia.org/wiki/File:DIT-FFT-butterfly.svg, 2013. [Ac-
ccessed: 2023].

[23] David H Bailey. FFTs in external of hierarchical memory. In Proceedings of
the 1989 ACM/IEEE conference on Supercomputing, pages 234–242, 1989.

[24] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas,
Ronald Dreslinski, Christopher Peikert, and Daniel Sanchez. F1: A fast and
programmable accelerator for fully homomorphic encryption. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture, pages
238–252, 2021.

[25] Charles E Leiserson, Neil C Thompson, Joel S Emer, Bradley C Kuszmaul,
Butler W Lampson, Daniel Sanchez, and Tao B Schardl. There’s plenty of
room at the top: What will drive computer performance after moore’s law?
Science, 368(6495):eaam9744, 2020.

[26] Ahmed Kosba et al. jsnark: a library for building circuits for preprocessing zk-
snarks. [online]. https://github.com/akosba/jsnark/tree/master, 2022.
[Acccessed: 2023].

[27] Hang Su and David Wu. Lattice-based zksnarks over libsnark, 2021. [Acc-
cessed: 2023].

[28] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Shaul Kfir, Eran Tromer,
Madars Virza, Howard Wu, Michael Backes, Manuel Barbosa, Alexander
Chernyakhovsky, Dario Fiore, Jens Groth, Joshua A. Kroll, Shigeo MIT-
SUNARI, Aleksejs Popovs, Raphael Reischuk, and Tadanori TERUYA.
libsnark: a c++ library for zksnark proofs. https://github.com/

scipr-lab/libsnark#libsnark-a-c-library-for-zksnark-proofs, 2012-
2020. [Acccessed: 2023].

[29] David Archer, Victor Arribas Abril, Steve Lu, Pieter Maene, Nele Mertens,
Danilo Sijacic, and Nigel Smart. “Bristol Fashion” MPC Circuits [online].
https://homes.esat.kuleuven.be/~nsmart/MPC/. [Acccessed: 2023].

[30] Ethereum Improvement Proposals. Descriptions of SHA-256, SHA-384,
and SHA-512 [online]. https://eips.ethereum.org/assets/eip-2680/

sha256-384-512.pdf. [Acccessed: 2023].

54

https://commons.wikimedia.org/wiki/File:DIT-FFT-butterfly.svg
https://commons.wikimedia.org/wiki/File:DIT-FFT-butterfly.svg
https://github.com/akosba/jsnark/tree/master
https://github.com/scipr-lab/libsnark#libsnark-a-c-library-for-zksnark-proofs
https://github.com/scipr-lab/libsnark#libsnark-a-c-library-for-zksnark-proofs
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://eips.ethereum.org/assets/eip-2680/sha256-384-512.pdf
https://eips.ethereum.org/assets/eip-2680/sha256-384-512.pdf

Bibliography

[31] Morris J Dworkin, Elaine B Barker, James R Nechvatal, James Foti,
Lawrence E Bassham, E Roback, and James F Dray Jr. Advanced encryp-
tion standard (AES). 2001.

[32] Ye Zhang, Shuo Wang, Xian Zhang, Jiangbin Dong, Xingzhong Mao, Fan
Long, Cong Wang, Dong Zhou, Mingyu Gao, and Guangyu Sun. PipeZK:
Accelerating Zero-Knowledge Proof with a Pipelined Architecture. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pages 416–428, 2021.

[33] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and
Sri AravindaKrishnan Thyagarajan. Lattice-Based SNARKs: Publicly Veri-
fiable, Preprocessing, and Recursively Composable. In Yevgeniy Dodis and
Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, pages
102–132, Cham, 2022. Springer Nature Switzerland.

55

	Introduction
	Background and motivation
	Verifiable Computation (VC)
	Definition
	Public and designated verifier

	Zero Knowledge Proofs
	Definition
	Examples
	Interactivity of a proof
	Applications

	Implementing Zero Knowledge with zk-SNARKs
	Overview
	Intuition of a proof's structure
	Arithmetic circuit setup
	Selector polynomials
	Master and vanishing polynomial
	Quadratic Arithmetic Program
	Rank-1 Constraint Satisfiability
	Linear PCPs

	The protocol
	Benefits and drawbacks
	Implementation

	Hardware design
	Description of the problem
	Computing H polynomial
	Matrix vector multiplication

	Number Theoretic Transform
	Improving polynomial multiplication
	Evaluation and interpolation using the Vandermonde matrix
	The radix-2 DIT algorithm
	Generic algorithm
	Hardware design

	Matrix vector multiplication
	Naïve algorithm
	Tiling

	Evaluation
	Arbitrary input circuits
	Circuit description
	Explaining the code
	Workloads

	Integrating jsnark
	Estimated hardware results
	Memory bandwidth

	Final considerations

	Conclusions
	Future work
	Bibliography

