1,486 research outputs found

    Semantic Localization and Mapping in Robot Vision

    Get PDF
    Integration of human semantics plays an increasing role in robotics tasks such as mapping, localization and detection. Increased use of semantics serves multiple purposes, including giving computers the ability to process and present data containing human meaningful concepts, allowing computers to employ human reasoning to accomplish tasks. This dissertation presents three solutions which incorporate semantics onto visual data in order to address these problems. First, on the problem of constructing topological maps from sequence of images. The proposed solution includes a novel image similarity score which uses dynamic programming to match images using both appearance and relative positions of local features simultaneously. An MRF is constructed to model the probability of loop-closures and a locally optimal labeling is found using Loopy-BP. The recovered loop closures are then used to generate a topological map. Results are presented on four urban sequences and one indoor sequence. The second system uses video and annotated maps to solve localization. Data association is achieved through detection of object classes, annotated in prior maps, rather than through detection of visual features. To avoid the caveats of object recognition, a new representation of query images is introduced consisting of a vector of detection scores for each object class. Using soft object detections, hypotheses about pose are refined through particle filtering. Experiments include both small office spaces, and a large open urban rail station with semantically ambiguous places. This approach showcases a representation that is both robust and can exploit the plethora of existing prior maps for GPS-denied environments while avoiding the data association problems encountered when matching point clouds or visual features. Finally, a purely vision-based approach for constructing semantic maps given camera pose and simple object exemplar images. Object response heatmaps are combined with known pose to back-project detection information onto the world. These update the world model, integrating information over time as the camera moves. The approach avoids making hard decisions on object recognition, and aggregates evidence about objects in the world coordinate system. These solutions simultaneously showcase the contribution of semantics in robotics and provide state of the art solutions to these fundamental problems

    Information-Theoretic Active Perception for Multi-Robot Teams

    Get PDF
    Multi-robot teams that intelligently gather information have the potential to transform industries as diverse as agriculture, space exploration, mining, environmental monitoring, search and rescue, and construction. Despite large amounts of research effort on active perception problems, there still remain significant challenges. In this thesis, we present a variety of information-theoretic control policies that enable teams of robots to efficiently estimate different quantities of interest. Although these policies are intractable in general, we develop a series of approximations that make them suitable for real time use. We begin by presenting a unified estimation and control scheme based on Shannon\u27s mutual information that lets small teams of robots equipped with range-only sensors track a single static target. By creating approximate representations, we substantially reduce the complexity of this approach, letting the team track a mobile target. We then scale this approach to larger teams that need to localize a large and unknown number of targets. We also examine information-theoretic control policies to autonomously construct 3D maps with ground and aerial robots. By using Cauchy-Schwarz quadratic mutual information, we show substantial computational improvements over similar information-theoretic measures. To map environments faster, we adopt a hierarchical planning approach which incorporates trajectory optimization so that robots can quickly determine feasible and locally optimal trajectories. Finally, we present a high-level planning algorithm that enables heterogeneous robots to cooperatively construct maps

    Environment and task modeling of long-term-autonomous service robots

    Get PDF
    Utilizing service robots in real-world tasks can significantly improve efficiency, productivity, and safety in various fields such as healthcare, hospitality, and transportation. However, integrating these robots into complex, human-populated environments for continuous use is a significant challenge. A key potential for addressing this challenge lies in long-term modeling capabilities to navigate, understand, and proactively exploit these environments for increased safety and better task performance. For example, robots may use this long-term knowledge of human activity to avoid crowded spaces when navigating or improve their human-centric services. This thesis proposes comprehensive approaches to improve the mapping, localization, and task fulfillment capabilities of service robots by leveraging multi-modal sensor information and (long- term) environment modeling. Learned environmental dynamics are actively exploited to improve the task performance of service robots. As a first contribution, a new long-term-autonomous service robot is presented, designed for both inside and outside buildings. The multi-modal sensor information provided by the robot forms the basis for subsequent methods to model human-centric environments and human activity. It is shown that utilizing multi-modal data for localization and mapping improves long-term robustness and map quality. This especially applies to environments of varying types, i.e., mixed indoor and outdoor or small-scale and large-scale areas. Another essential contribution is a regression model for spatio-temporal prediction of human activity. The model is based on long-term observations of humans by a mobile robot. It is demonstrated that the proposed model can effectively represent the distribution of detected people resulting from moving robots and enables proactive navigation planning. Such model predictions are then used to adapt the robot’s behavior by synthesizing a modular task control model. A reactive executive system based on behavior trees is introduced, which actively triggers recovery behaviors in the event of faults to improve the long-term autonomy. By explicitly addressing failures of robot software components and more advanced problems, it is shown that errors can be solved and potential human helpers can be found efficiently

    Outdoor navigation of mobile robots

    Get PDF
    AGVs in the manufacturing industry currently constitute the largest application area for mobile robots. Other applications have been gradually emerging, including various transporting tasks in demanding environments, such as mines or harbours. Most of the new potential applications require a free-ranging navigation system, which means that the path of a robot is no longer bound to follow a buried inductive cable. Moreover, changing the route of a robot or taking a new working area into use must be as effective as possible. These requirements set new challenges for the navigation systems of mobile robots. One of the basic methods of building a free ranging navigation system is to combine dead reckoning navigation with the detection of beacons at known locations. This approach is the backbone of the navigation systems in this study. The study describes research and development work in the area of mobile robotics including the applications in forestry, agriculture, mining, and transportation in a factory yard. The focus is on describing navigation sensors and methods for position and heading estimation by fusing dead reckoning and beacon detection information. A Kalman filter is typically used here for sensor fusion. Both cases of using either artificial or natural beacons have been covered. Artificial beacons used in the research and development projects include specially designed flat objects to be detected using a camera as the detection sensor, GPS satellite positioning system, and passive transponders buried in the ground along the route of a robot. The walls in a mine tunnel have been used as natural beacons. In this case, special attention has been paid to map building and using the map for positioning. The main contribution of the study is in describing the structure of a working navigation system, including positioning and position control. The navigation system for mining application, in particular, contains some unique features that provide an easy-to-use procedure for taking new production areas into use and making it possible to drive a heavy mining machine autonomously at speed comparable to an experienced human driver.reviewe

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    Distributed Robotic Vision for Calibration, Localisation, and Mapping

    Get PDF
    This dissertation explores distributed algorithms for calibration, localisation, and mapping in the context of a multi-robot network equipped with cameras and onboard processing, comparing against centralised alternatives where all data is transmitted to a singular external node on which processing occurs. With the rise of large-scale camera networks, and as low-cost on-board processing becomes increasingly feasible in robotics networks, distributed algorithms are becoming important for robustness and scalability. Standard solutions to multi-camera computer vision require the data from all nodes to be processed at a central node which represents a significant single point of failure and incurs infeasible communication costs. Distributed solutions solve these issues by spreading the work over the entire network, operating only on local calculations and direct communication with nearby neighbours. This research considers a framework for a distributed robotic vision platform for calibration, localisation, mapping tasks where three main stages are identified: an initialisation stage where calibration and localisation are performed in a distributed manner, a local tracking stage where visual odometry is performed without inter-robot communication, and a global mapping stage where global alignment and optimisation strategies are applied. In consideration of this framework, this research investigates how algorithms can be developed to produce fundamentally distributed solutions, designed to minimise computational complexity whilst maintaining excellent performance, and designed to operate effectively in the long term. Therefore, three primary objectives are sought aligning with these three stages

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Hybrid mapping for static and non-static indoor environments

    Get PDF
    Mención Internacional en el título de doctorIndoor environments populated by humans, such as houses, offices or universities, involve a great complexity due to the diversity of geometries and situations that they may present. Apart from the size of the environment, they can contain multiple rooms distributed into floors and corridors, repetitive structures and loops, and they can get as complicated as one can imagine. In addition, the structure and situations that the environment present may vary over time as objects could be moved, doors can be frequently opened or closed and places can be used for different purposes. Mobile robots need to solve these challenging situations in order to successfully operate in the environment. The main tools that a mobile robot has for dealing with these situations relate to navigation and perception and comprise mapping, localization, path planning and map adaptation. In this thesis, we try to address some of the open problems in robot navigation in non-static indoor environments. We focus on house-like environments as the work is framed into the HEROITEA research project that aims attention at helping elderly people with their everyday-life activities at their homes. This thesis contributes to HEROITEA with a complete robotic mapping system and map adaptation that grants safe navigation and understanding of the environment. Moreover, we provide localization and path planning strategies within the resulting map to further operate in the environment. The first problem tackled in this thesis is robot mapping in static indoor environments. We propose a hybrid mapping method that structures the information gathered from the environment into several maps. The hybrid map contains diverse knowledge of the environment such as its structure, the navigable and blocked paths, and semantic knowledge, such as the objects or scenes in the environment. All this information is separated into different components of the hybrid map that are interconnected so the system can, at any time, benefit from the information contained in every component. In addition to the conceptual conception of the hybrid map, we have also developed building procedures and an exploration algorithm to autonomous build the hybrid map. However, indoor environments populated by humans are far from being static as the environment may change over time. For this reason, the second problem tackled in this thesis is the adaptation of the map to non-static environments. We propose an object-based probabilistic map adaptation that calculates the likelihood of moving or remaining in its place for the different objects in the environment. Finally, a map is just a description of the environment whose importance is mostly related to how the map is used. In addition, map representations are more valuable as long as they offer a wider range of applications. Therefore, the third problem that we approach in this thesis is exploiting the intrinsic characteristics of the hybrid map in order to enhance the performance of localization and path planning methods. The particular objectives of these approaches are precision for robot localization and efficiency for path planning in terms of execution time and traveled distance. We evaluate our proposed methods in a diversity of simulated and real-world indoor environments. In this extensive evaluation, we show that hybrid maps can be efficiently built and maintained over time and they open up for new possibilities for localization and path planning. In this thesis, we show an increase in localization precision and robustness and an improvement in path planning performance. In sum, this thesis makes several contributions in the context of robot navigation in indoor environments, and especially in hybrid mapping. Hybrid maps offer higher efficiency during map building and other applications such as localization and path planning. In addition, we highlight the necessity of dealing with the dynamics of indoor environments and the benefits of combining topological, semantic and metric information to the autonomy of a mobile robot.Los entornos de interiores habitados por personas, como casas, oficinas o universidades, entrañan una gran complejidad por la diversidad de geometrías y situaciones que pueden ocurrir. Aparte de las diferencias en tamaño, estos entornos pueden contener muchas habitaciones organizadas en diferentes plantas o pasillos, pueden presentar estructuras repetitivas o bucles de tal forma que los entornos pueden llegar a ser tan complejos como uno se pueda imaginar. Además, la estructura y el estado del entorno pueden variar con el tiempo, ya que los objetos pueden moverse, las puertas pueden estar cerradas o abiertas y diferentes espacios pueden ser usados para diferentes propósitos. Los robots móviles necesitan resolver estas situaciones difíciles para poder funcionar de una forma satisfactoria. Las principales herramientas que tiene un robot móvil para manejar estas situaciones están relacionadas con la navegación y la percepción y comprenden el mapeado, la localización, la planificación de trayectorias y la adaptación del mapa. En esta tesis, abordamos algunos de los problemas sin resolver de la navegación de robots móviles en entornos de interiores no estáticos. Nos centramos en entornos tipo casa ya que este trabajo se enmarca en el proyecto de investigación HEROITEA que se enfoca en ayudar a personas ancianas en tareas cotidianas del hogar. Esta tesis contribuye al proyecto HEROITEA con un sistema completo de mapeado y adaptación del mapa que asegura una navegación segura y la comprensión del entorno. Además, aportamos métodos de localización y planificación de trayectorias usando el mapa construido para realizar nuevas tareas en el entorno. El primer problema que se aborda en esta tesis es el mapeado de entornos de interiores estáticos por parte de un robot. Proponemos un método de mapeado híbrido que estructura la información capturada en varios mapas. El mapa híbrido contiene información sobre la estructura del entorno, las trayectorias libres y bloqueadas y también incluye información semántica, como los objetos y escenas en el entorno. Toda esta información está separada en diferentes componentes del mapa híbrido que están interconectados de tal forma que el sistema puede beneficiarse en cualquier momento de la información contenida en cada componente. Además de la definición conceptual del mapa híbrido, hemos desarrollado unos procedimientos para construir el mapa y un algoritmo de exploración que permite que esta construcción se realice autónomamente. Sin embargo, los entornos de interiores habitados por personas están lejos de ser estáticos ya que pueden cambiar a lo largo del tiempo. Por esta razón, el segundo problema que intentamos solucionar en esta tesis es la adaptación del mapa para entornos no estáticos. Proponemos un método probabilístico de adaptación del mapa basado en objetos que calcula la probabilidad de que cada objeto en el entorno haya sido movido o permanezca en su posición anterior. Para terminar, un mapa es simplemente una descripción del entorno cuya importancia está principalmente relacionada con su uso. Por ello, los mapas más valiosos serán los que ofrezcan un rango mayor de aplicaciones. Para abordar este asunto, el tercer problema que intentamos solucionar es explotar las características intrínsecas del mapa híbrido para mejorar el desempeño de métodos de localización y de planificación de trayectorias usando el mapa híbrido. El objetivo principal de estos métodos es aumentar la precisión en la localización del robot y la eficiencia en la planificación de trayectorias en relación al tiempo de ejecución y la distancia recorrida. Hemos evaluado los métodos propuestos en una variedad de entornos de interiores simulados y reales. En esta extensa evaluación, mostramos que los mapas híbridos pueden construirse y mantenerse en el tiempo de forma eficiente y que dan lugar a nuevas posibilidades en cuanto a localización y planificación de trayectorias. En esta tesis, mostramos un aumento en la precisión y robustez en la localización y una mejora en el desempeño de la planificación de trayectorias. En resumen, esta tesis lleva a cabo diversas contribuciones en el ámbito de la navegación de robots móviles en entornos de interiores, y especialmente en mapeado híbrido. Los mapas híbridos ofrecen más eficiencia durante la construcción del mapa y en otras tareas como la localización y la planificación de trayectorias. Además, resaltamos la necesidad de tratar los cambios en entornos de interiores y los beneficios de combinar información topológica, semántica y métrica para la autonomía del robot.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Carlos Balaguer Bernaldo de Quirós.- Secretario: Javier González Jiménez.- Vocal: Nancy Marie Amat
    corecore