254 research outputs found

    Numerical studies of flow in porous media using an unstructured approach

    Get PDF
    Flow and transport in porous media is relevant to many areas of engineering and science including groundwater hydrology and the recovery of oil and gas. Porous materials are characterized by the unique shape and connectivity of the internal void structures which give rise to a large range in macroscopic transport properties. Historically an inability to accurately describe the internal pore-structure has prevented detailed study of the role of pore structure on transport. In recent decades however, the combination of high resolution imaging technologies with computational modeling has seen the development of fundamental pore-scale techniques for studying flow in porous media. Image-based pore-scale modeling of transport phenomena has become an important tool for understanding the complicated relationships between pore structure and measurable macroscopic properties, including permeability and formation factor. This has commonly been achieved by a network-based approach where the pore space is idealized as a series of pores connected by throats, or by a grid-based approach where the voxels of a 3D image represent structured quadrilateral elements or nodal locations. In this work however, image-based unstructured meshing techniques are used to represent voxelised pore spaces by grids comprising entirely of tetrahedral elements. These unstructured tetrahedral grids are used in finite element models to calculate permeability and formation factor. Solutions to the Stokes equations governing creeping, or Darcy flow, are used to validate the finite element approach employed in this work, and to assess the impact of different image-based unstructured meshing strategies on predicted permeability. Testing shows that solutions to the Stokes equations by a P2P1 tetrahedral element are significantly more accurate than solutions based on a P1P1 element, while permeability is shown to be sensitive to structural changes to the pore space induced by different meshing approaches. The modeling approach is also used to investigate the relationship of an electric and hydraulic definition of tortuosity to the Carman-Kozeny equation. The results of simulations using a number of computer generated porous structures indicate that an electrical tortuosity based on computed formation factor is well correlated with the tortuosity suggested by the Carman-Kozeny equation

    Microscale modeling of fluid flow in porous medium systems

    Get PDF
    Proper mathematical description of macroscopic porous medium flows is essential for the study of a wide range of subsurface contamination scenarios. Existing mathematical formulations, however, demonstrate inadequacies that preclude the accurate description of many systems. Multi-scale models developed using thermodynamically constrained averaging theory (TCAT) rigorously define macroscopic variables in terms of more well-understood microscopic counterparts, permitting detailed analysis of macroscopic model forms based on microscale simulation and experiment. Within this framework, the primary objectives of microscale modeling are to elucidate important physical mechanisms and to inform both the form of macroscale closure relations as well as associated parameter values. In order to meet these goals, numerical tools must include: (1) simulations that provide accurate microscopic solutions for physical phenomena in large, complex domains; (2) morphological analysis tools that can be used to upscale simulation results to larger scales as dictated by the associated theoretical framework. Development of a numerical toolbox for microscale porous medium studies is considered in line with these objectives, including both implementation and optimization strategies. High-performance implementations of the lattice Boltzmann method are developed to simulate one- and two-phase flows using several computing platforms. A modified marching cubes algorithm is developed to explicitly construct all entities in a two-phase system, including all interfaces between the fluid and solid phases in addition to the three phase contact curve. These entities serve as a numerical skeleton for upscaling multiphase porous medium simulation results to the macroscale. Based on these tools, development of macroscopic constitutive laws is illustrated for a special case of anisotropic flow in porous media. In this example, microscale simulation is used to demonstrate a limitation of existing macroscopic forms for cases in which the momentum resistance depends on the flow direction in addition to the orientation. A modified macroscopic form is proposed in order to properly account for this phenomenon

    Massiv parallele Simulation von Mehrphasen- und Mehrkomponentenströmungen unter Anwendung des Lattice Boltzmann Verfahrens

    Get PDF
    This thesis reflects the work mainly performed within the research project FIMOTUM focusing on the determination of transport properties and mechanisms in unsaturated media. The efficient simulation of single- and multiphase flows at the pore scale in highly resolved natural porous media is one of the major topics in this work. For this purpose a simulation kernel which is based on the lattice Boltzmann method (LBM) has been developed and extensively validated. The LBM presented utilizes the Multiple Relaxation Time (MRT) model and fluid/wall boundary conditions of second order accuracy. The model has also been extended to solve multiphase, advection/diffusion and thermal flow problems. Due to the application of an optimized collision model and corresponding boundary conditions, the covered parameter space and the stability of the method could be greatly enhanced. Hence, it was possible to perform simulations in complex geometries at a large scale (2E11+ DoF) which have been obtained with an unprecedented accuracy. A second target of this thesis was the design and implementation of a simulation kernel to perform massively parallel computations with high efficiency. In order to obtain accurate simulation results at reasonable computational effort, a novel grid generation procedure has been developed. The robust and flexible method is based on the decoupling of input geometry and the actual computational grid. It is therefore excellently suited for the grid generation based on natural porous media data sets obtained by CT- or X-ray methods. Aspects concerning the increasing difficulties in pre- and post-processing of large data sets are discussed. Furthermore, special issues in high performance computing environments are highlighted and a tool chain to visualize scientific data in photo-realistic representation is described.Die vorliegende Dissertation gibt im Wesentlichen die Arbeiten wieder, die im Rahmen des FIMOTUM Projektes durchgeführt worden sind, welches sich vornehmlich auf die Untersuchung von Transporteigenschaften in ungesättigten porösen Medien fokussierte. Hierfür wurde ein Software-Prototyp auf Basis der Gitter Boltzmann Methode (LBM) entwickelt und ausführlich validiert. Die vorgestellte LB-Methode basiert auf dem Multiple-Relaxation-Time (MRT) Modell und verwendet Fluid/Wand Randbedingungen mit einer Genauigkeit 2. Ordnung. Das beschriebene Modell wurde zudem für die Simulation von Mehrphasen-, Advektion/Diffusions- und Thermalen Problemen erweitert. Durch die Optimierung des Kollisionsmodells und der entsprechenden Randbedingungen konnte der nutzbare Parameterraum deutlich vergrößert werden, so dass Simulationen in komplexen Geometrien mit mehr als 2.0E+11 Freiheitsgraden möglich wurden. Ein zweites Ziel dieser Arbeit war die Implementierung eines effizienten und hochparallelen Software-Prototypen zur Simulation von fluiddynamischen Problemen. Um möglichst genaue Ergebnisse bei mäßigem Ressourceneinsatz zu erzielen, wurde ein neuartiger Gittergenerierungsprozess entwickelt. Dieses robuste und flexible Verfahren basiert auf der Entkopplung von Eingangsgeometrie und dem eigentlichen Rechengitter. Daher eignet sich dieser Gittergenerator hervorragend für die Erzeugung eines numerischen Gitters aus digitalen Datensätzen natürlicher poröser Medien, wie bspw. Tomographie-Scans. Desweiteren werden, neben allgemeinen Problemen des Hochleistungsrechnens, die zunehmenden Schwierigkeiten bei der Verarbeitung der ständig steigenden Datenmengen im Pre- und Postprocessing diskutiert. Weiterhin wird, unterstützend zur Ergebnisanalyse, eine Prozesskette für die Erzeugung von fotorealistischen Visualisierungen aus Simulationsdaten beschrieben

    Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport

    Get PDF
    AbstractPore network models have been applied widely for simulating a variety of different physical and chemical processes, including phase exchange, non-Newtonian displacement, non-Darcy flow, reactive transport and thermodynamically consistent oil layers. The realism of such modelling, i.e. the credibility of their predictions, depends to a large extent on the quality of the correspondence between the pore space of a given medium and the pore network constructed as its representation. The main experimental techniques for pore space characterisation, including direct imaging, mercury intrusion porosimetry and gas adsorption, are firstly summarised. A review of the main pore network construction techniques is then presented. Particular focus is given on how such constructions are adapted to the data from experimentally characterised pore systems. Current applications of pore network models are considered, with special emphasis on the effects of adsorption, dissolution and precipitation, as well as biomass growth, on transport coefficients. Pore network models are found to be a valuable tool for understanding and predicting meso-scale phenomena, linking single pore processes, where other techniques are more accurate, and the homogenised continuum porous media, used by engineering community

    Application of upscaling methods for fluid flow and mass transport in multi-scale heterogeneous media : A critical review

    Get PDF
    Physical and biogeochemical heterogeneity dramatically impacts fluid flow and reactive solute transport behaviors in geological formations across scales. From micro pores to regional reservoirs, upscaling has been proven to be a valid approach to estimate large-scale parameters by using data measured at small scales. Upscaling has considerable practical importance in oil and gas production, energy storage, carbon geologic sequestration, contamination remediation, and nuclear waste disposal. This review covers, in a comprehensive manner, the upscaling approaches available in the literature and their applications on various processes, such as advection, dispersion, matrix diffusion, sorption, and chemical reactions. We enclose newly developed approaches and distinguish two main categories of upscaling methodologies, deterministic and stochastic. Volume averaging, one of the deterministic methods, has the advantage of upscaling different kinds of parameters and wide applications by requiring only a few assumptions with improved formulations. Stochastic analytical methods have been extensively developed but have limited impacts in practice due to their requirement for global statistical assumptions. With rapid improvements in computing power, numerical solutions have become more popular for upscaling. In order to tackle complex fluid flow and transport problems, the working principles and limitations of these methods are emphasized. Still, a large gap exists between the approach algorithms and real-world applications. To bridge the gap, an integrated upscaling framework is needed to incorporate in the current upscaling algorithms, uncertainty quantification techniques, data sciences, and artificial intelligence to acquire laboratory and field-scale measurements and validate the upscaled models and parameters with multi-scale observations in future geo-energy research.© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)This work was jointly supported by the National Key Research and Development Program of China (No. 2018YFC1800900 ), National Natural Science Foundation of China (No: 41972249 , 41772253 , 51774136 ), the Program for Jilin University (JLU) Science and Technology Innovative Research Team (No. 2019TD-35 ), Graduate Innovation Fund of Jilin University (No: 101832020CX240 ), Natural Science Foundation of Hebei Province of China ( D2017508099 ), and the Program of Education Department of Hebei Province ( QN219320 ). Additional funding was provided by the Engineering Research Center of Geothermal Resources Development Technology and Equipment , Ministry of Education, China.fi=vertaisarvioitu|en=peerReviewed

    MATHICSE Technical Report : A quasi-optimal sparse grids procedure for groundwater flows

    Get PDF
    In this work we explore the extension of the quasi-optimal sparse grids method proposed in our previous work \On the optimal polynomial ap- proximation of stochastic PDEs by Galerkin and Collocation methods" to a Darcy problem where the permeability is modeled as a lognormal random field. We propose an explicit a-priori/a-posteriori procedure for the construc- tion of such quasi-optimal grid and show its effectivenenss on a numerical ex- ample. In this approach, the two main ingredients are an estimate of the decay of the Hermite coefficients of the solution an
    corecore