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H I G H L I G H T S  

• The scale dependency of fluid flow and reactive solute transport parameters was discussed across scales. 
• A clear guideline was provided for selecting appropriate upscaling methods for practical applications. 
• Functions, assumptions, and limitations of deterministic and stochastic upscaling methods were addressed comparatively. 
• Critical insights into the scaling issues were prospected for modeling fluid flow in multi-scale subsurface systems.  
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A B S T R A C T   

Physical and biogeochemical heterogeneity dramatically impacts fluid flow and reactive solute transport be-
haviors in geological formations across scales. From micro pores to regional reservoirs, upscaling has been 
proven to be a valid approach to estimate large-scale parameters by using data measured at small scales. 
Upscaling has considerable practical importance in oil and gas production, energy storage, carbon geologic 
sequestration, contamination remediation, and nuclear waste disposal. This review covers, in a comprehensive 
manner, the upscaling approaches available in the literature and their applications on various processes, such as 
advection, dispersion, matrix diffusion, sorption, and chemical reactions. We enclose newly developed ap-
proaches and distinguish two main categories of upscaling methodologies, deterministic and stochastic. Volume 
averaging, one of the deterministic methods, has the advantage of upscaling different kinds of parameters and 
wide applications by requiring only a few assumptions with improved formulations. Stochastic analytical 
methods have been extensively developed but have limited impacts in practice due to their requirement for 
global statistical assumptions. With rapid improvements in computing power, numerical solutions have become 
more popular for upscaling. In order to tackle complex fluid flow and transport problems, the working principles 
and limitations of these methods are emphasized. Still, a large gap exists between the approach algorithms and 
real-world applications. To bridge the gap, an integrated upscaling framework is needed to incorporate in the 
current upscaling algorithms, uncertainty quantification techniques, data sciences, and artificial intelligence to 
acquire laboratory and field-scale measurements and validate the upscaled models and parameters with multi- 
scale observations in future geo-energy research.   
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1. Introduction 

Subsurface geological formations exhibit heterogeneous physical 
and chemical properties generated from dynamic geological [1], 
geochemical processes [2], and human activities [3] such as oil–gas-rock 
interactions. Heterogeneity is ubiquitous across all scales ranging from 
intra-granular pores and soil aggregatesto local and entire geological 
formations as shown in Fig. 1 [4]. At different scales, the major com-
ponents of formation heterogeneity consist of physical and chemical 
properties such as the pore geometry [5], pore and grain size [6], 
mineral composition [7], sediment layering [8], lithology [9], and 
fracture distribution [10]. How to handle the pervasive heterogeneity in 
large-scale natural geological media is one of the major barriers to a 
comprehensive understanding of fluid flow and mass transport to the 
majority of hydrogeologists [11]. Neglecting heterogeneity properties 
may thus cause biased estimations of the model parameters and struc-
tures and considerable uncertainty of prediction results [12]. 

Mathematical modeling is often the most important and efficient 
simulation method for fluid flow, solute transport, and other subsurface 
water–oil-gas interaction processes [13–15]. Accuracy in the estimation 
of model parameters may increase the reliability of model predictions 
[16], but in the presence of heterogeneity and associated preferential 
flow paths, physical flow and transport parameters, as well as 
geochemical reaction rates, are found to differ by orders of magnitude 
with increasing time or distance, often referred to as the “scale effect” 
[17]. As an illustration, it is a common mistake to predict contaminant 
or solute migration at a large-scale field site using dispersivity measured 
at a fine scale in the laboratory, but finding the actual dispersion range 
in the field is much larger than the predictions [18]. Ignoring the scale 
effect of transport parameters results in erroneous projections of mass 
transport, such as spreading rates or arrival times, leading to severe 
consequences for health risk assessments [19], extreme event pre-
dictions [20], and reactive mixing features [21]. 

If using high-resolution computational grids to compensate the field 
spatial variability [22], the computational costs are exceptionally high 
in solving millions of diverse, discretized equations over thousands of 
time steps [23]. The cost is even heavier in the context of sensitivity 
studies, inverse modeling, or Monte Carlo analyses, which require 
running the computer code multiple times [24]. Therefore, it is of 
fundamental and practical importance to accurately predict flow and 
transport behaviors at large scales based on an understanding of 

parameter variations at smaller scales with affordable computational 
costs [25]. The use of suitable methods in tackling this problem is 
referred to as “upscaling”. It is the process of replacing a heterogeneous 
domain with a homogeneous one, such that both produce the same response 
when acted upon by the same boundary conditions [26]. This process is 
illustrated in Fig. 2. The parameters in the fine model are often called 
“local” or “cell” parameters, while those in the coarse model are called 
“block” parameters. 

The upscaling issue covers a broad range of topics in different study 
areas, from academic studies to industry applications [27]. Generally 
speaking, upscaling has diverse practical applications in energy in-
dustries that involved numerical modeling of fluid flow and mass 
transport in porous media or geological formations, for example, the 
prediction of cumulative oil and gas production [28], design of 
enhanced oil recovery schemes in operation [29], safety assessment in 
nuclear waste disposal [30], flow behavior of supercritical carbon di-
oxide and its reactive transport with minerals in carbon dioxide 
sequestration [31], evaluation of hydrocarbons migration in oil shale 
reservoirs [32]. Upscaling investigations and applications are increas-
ingly common in the last 30 years, and the number of upscaling-related 
publications has increased exponentially, as shown in Fig. 3. 

According to Bierkens and Gaast [33], pore and continuum scales are 
often identified by different governing equations (Fig. 1). In pore-scale 
simulations, the Navier-Stokes/Boltzmann equations are solved 
directly or approximately in the pore spaces to obtain flow fields [34]. 
Correspondingly, the fluid flow on a continuous scale can be described 
with semi-empirical models, such as Darcy’s law. Therefore, the con-
tinuum scale is also called Darcy’s scale, and it may be divided into three 
spatial scales: laboratory, field-site, and regional scales [35]. The 
laboratory-scale includes regular flow cell, batch, column, and sandbox 
experiments from millimeters to meters. The field-site scale often refers 
to a formation domain where the site well tests or field tracer tests are 
conducted. On a regional scale, it indicates entire or major parts of 
aquifers with horizontal scales of the order of tens of kilometers, much 
larger than the formation thickness (tens to hundreds of meters), which 
can be characterized by geophysical data. Upscaling refers to the 
translation from a small scale to a larger one, for instance, from the pore 
scale (micro to millimeter) to the continuum scale, or from laboratory 
scale (centimeters) to the subsequent passage to the field and regional 
scale (kilometers). 

Following the establishment of the upscaling concept in porous 

Fig. 1. Illustration of the model and mea-
surement type variations at different scales 
with different measures. The fluid flow in the 
micro pore scale is often mapped by imaging 
approach and represented with N-S equation. 
The flow in the macro scale is primarily 
described with Darcy’s law and Fick’s law. 
Under some circumstances where Darcy’s 
Law or Fick’s Law do not fit, the alternate 
non-Darcy or non-Fickian expressions may 
be selected but as well established with an 
“averaged/homogenization” concept. The 
survey in the field scale mostly relys on the 
geophysical investigation or distributed 
monitoring wells. Note that the classification 
is not absolute, the methods can be utilized 
alternatively or coupled together in specific 
conditions.   
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media, many theoretical and computational methods have been devel-
oped [36]. Early efforts by Cushman [37] and Neuman [38] mainly used 
deterministic concepts to build large-scale hydraulic conductivity 
around assumed homogeneity within geological units. Sufficient data 
from site investigations are needed and the fine-scale information is then 
projected onto coarser-scale blocks of equal or unequal sizes explicitly. 
With technological developments for characterizing heterogeneity, a 
stochastic theory is developed by assuming heterogeneous property 
distributions as stationary, correlated, and random processes. The 
spatial probability distribution statistics of the block parameters are 
acquired from the statistical features of the smaller-scale parameters, 
which are assumed to compose a random field. It permits a coherent 
allocation of values at points where measurements have not been taken 
based on the values detected at measurement points. As a result, the 
stochastic approaches usually require available site-specific geological 
measurements to formulate statistical structures, and thus are not valid 
for media with a large spatial covariance. In the next step, concepts that 
visualize heterogeneity as nonstationary stochastic processes which 
have stationary increments (stochastic fractals and random walk) are 
considered. Recently, fractal theory, percolation theory, wavelet anal-
ysis, and artificial intelligence are gradually adopted in subsurface 
upscaling applications [39]. Furthermore, with the increase in model 
complexity involving biological and water–rock interactions, upscaling 

has also been extended to diffusion and sorption parameters represent-
ing biogeochemical properties in both porous and fractured media 
[40,41]. 

To understand the diverse upscaling approaches, many issues have 
been raised correspondingly. What are the functions, requirements, or 
limitations of the upscaling methods? How can reactive transport pa-
rameters, especially geochemical parameters, be upscaled? Are there 
successful modern approaches and techniques? All these issues have not 
been clearly addressed in previous studies. As a result, there are no clear 
guidelines yet on how to select appropriate methods when dealing with 
practical applications. Therefore, a comprehensive review that discusses 
the fundamental principles, applications, and limitations of these 
upscaling approaches is critical for providing a better understanding of 
upscaling concepts and approaches that have been developed over the 
past few decades, as well as its implications and future directions. The 
goal of this article is to integrate contemporary insights into the scaling 
issues associated with fluid flow and mass transport. In Section 2, we 
present the governing equations at the Darcy scale to analyze both 
fundamental physical processes and chemical reactions, discuss which 
parameters have scaling effects, and present the mechanisms involved. 
After establishing this framework, the primary upscaling approaches are 
separately presented with their mathematical formulations and practical 
applications. Section 3 demonstrates direct methods for upscaling hy-
draulic conductivity or permeability. Section 4 emphasizes the methods 
that can be applied to dispersivity and reactive parameters besides 
conductivity. Section 5 presents the principles and limitations of widely 
used stochastic methods. Section 6 discusses the issues associated with 
current upscaling algorithms, how to select appropriate implementation 
methods, and provides more useful insights into future work and 
challenges. 

2. Dynamics of water flow and solute transport and scale 
dependency of parameters 

2.1. Governing equation 

In porous media, the most extensively used governing equation for 
mass transport is the advection–dispersion equation (ADE). By assuming 
that net solute movement is represented by the combination of an 
advective component and a random diffusive component, the conven-
tional ADE derives the spatial and temporal solute concentration using 
the form [42]: 

R
∂C
∂t

=
∂

∂xi

(

Dij
∂C
∂xj

− uiC
)

+ rC (2.1)  

where C denotes the concentration of the solute, ui denotes velocity in 
direction i, xi is the spatial coordinate in direction i, and t is time. Dij 

Fig. 2. Conceptual model of upscaling “local” parameters on a fine scale to “block” parameters on a coarse scale. Upscaling is a mathematical methodology to 
estimate physical and chemical parameters/properties of geophysical models at larger scales from an understanding of the measurement of parameter values at 
smaller scales [24]. 

Fig. 3. Quantity of papers on the topic of upscaling during 1990–2020 from the 
web of science index; the number of published articles increased exponentially 
in the past 30 years. 
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denotes the hydrodynamic dispersion coefficient. R is the retardation 
factor and often accounts for adsorption and desorption. rC represents 
the gain or loss contributions from reactions with a reaction rate of r. 
The ADE is defined as the divergence of a vector field. Given a vector 
field (J) and a unit normal vector (n), the divergence represents the 
proportion of total flux across a closed surface (S) to a unit volume (V) 
within the surface when the volume is reduced to zero. 

∇⋅J ≡ lim
V→0

1
V

∫∫

S

J⋅ndS (2.2) 

The limit of the integral implies that the vector function J is smooth 
as V tends to zero. For solute transport, J represents solute flux, and thus 
the solute flux through a surface into a unit volume results in a specified 
value when the given volume is reduced. The solute is therefore assumed 
to travel through an equivalent porous medium with connected pore 
spaces or a network of connected fractures. The fluid is assumed to be 
incompressible and to have negligible viscosity under the assumption of 
Gaussian mixing. Variation in the solute flux is generally caused by 
either the impacts of mean velocity (i.e., advection) or velocity de-
viations (i.e., dispersion). Reducing the selected volume in Eq. (2.2) 
causes the velocity variations to vanish and the dispersive flux is reduced 
to zero [43]. Therefore, if we could obtain the detailed velocity distri-
bution at a fine enough scale, the advective transport would theoreti-
cally duplicate reality without considering dispersion. As the access to 
the complex macroscopic subsurface is limited, constituting one of the 
reasons for introducing dispersive transport to adjust and correct such 
calculations. 

The transportation of solutes with the bulk movement of a fluid can 
be described by the flow continuity equation and Darcy’s equation [45]: 

∇∙(ρu) + w = −
∂(nρ)

∂t
(2.3)  

u = −
K
n
∇h (2.4)  

where u represents the impact of micro-scale variability in the velocity 
field, K denotes the hydraulic conductivity tensor, n is the porosity of the 
porous medium, h is the hydraulic head, and w is the external sources 
and sinks. In the following sections, K is designated instead of K for a 
homogeneous fluid at the scale of V. The random movement of disper-
sion as dispersion coefficient tensor D can be expressed by two 
mechanisms: 

D = αu + D* (2.5)  

where α is dispersivity, and D* is the result of molecular diffusion due to 
concentration differences. The dispersivity is artificially separated into 
two components: a longitudinal component in the mean flow direction, 
and a transverse component in the orthogonal direction. The longitu-
dinal dispersivity (αL) controls the movement of the forefront of the 
solute plume, while the transverse dispersivity (αT) governs the trans-
verse spreading of the plume. 

2.2. Scale dependency of hydraulic conductivity 

From Eq. (2.3), the groundwater velocity field directly depends on K. 
Experiments with varying sediment and rock types have investigated the 
scale dependency of K with measurements in different scales. Generally, 
scale-related disparities in K for homogeneous media, such as quartz 
arenites or fine sand, are narrowly distributed and can be ignored [44]. 
The scale effect of K is mainly evidenced in varied heterogeneous media, 
including unconsolidated sediments, crystalline rocks, and fractured 
media [45]. The larger the scale of the experiment, or targeting volume, 
the higher the K it corresponds [46]. Consistent with these results, 
Neuman [38] indicated that “porous and fractured media appear to follow 
the same idealized scaling rule for both flow and transport, raising a question 

about the validity of many distinctions commonly drawn between such 
media.” 

Most prior studies on the scale effect of K compare small-scale lab-
oratory tests (i.e., permeameter tests) with medium- (i.e., slug tests) or 
large-scale (i.e., pumping tests) aquifer tests [47]. Though in some 
studies, the measurement scale is taken as the distance of the radius of 
influence, the measurement scale of K behavior is better expressed as the 
volume of the affected geological unit [48]. We collected the measured 
conductivity data from different sites in a variety of geologic media 
(Fig. 4). Generally, K slightly increases with increasing test radius when 
the characterized volume is larger than 1 m3 but has a wide-spreading 
range on a constant scale. For example, at a specified spatial scale (e. 
g., the field scale on the order of 102-103 m), K may vary by several 
orders of magnitude across multiple measurement scales (e.g., from 1 m3 

to 103 m or larger). At the micro-scale, no clear shift of K is observed 
with volume variation. Factors that influence the scale effect of K 
include the scale of investigation, the data acquisition technique, and 
the geological formation investigated [44]. Often, the quality of K esti-
mates differs based on the limitations of the measurement technology, 
and the values are not usually validated even though the scale effect can 
be mainly dependent on it. Although Fig. 4 shows that the conductivity 
measurements increase with scale, it is worth noting that large-scale 
measurements are usually used for sampling sedimentary facies assem-
blages with more coarse-grain facies, while small-scale (volume < 10− 3 

m3) measurements sample mainly individual facies with more fine-grain 
facies. Then, the small-scale measurements may neither include samples 
from the same facies as in the larger-scale samples that were measured 
nor include them in the correct proportions. Therefore, the left part 
(volume < 10− 3 m3) with more noises may be ignored from the scaling 
analysis of the hydraulic conductivity. 

2.3. Scale dependency of transport parameters 

2.3.1. Dispersivity 
Scale-dependent solute dispersion in saturated media is a well- 

known phenomenon that has been studied extensively using experi-
mental and numerical methods [53]. Dispersivity is not only dependent 
on physical factors, such as grain size and aquifer spatial scales, but also 
the variation of chemical interactions between the solution and the 
sediment [54]. The study of longitudinal dispersivity is more in-depth 
than transverse dispersivity. A series of laboratory and field tests con-
ducted on a scale ranging from 0.3 m to 8 m revealed that αL varied 
linearly with the mean travel distance from 0.035 cm to 50 cm [55]. 
Abgaze and Sharma [56] investigated dispersivity as scale increased 

Fig. 4. The hydraulic conductivity variation with increasing scale as expressed 
in volume from varied measurement techniques based on data in [49–52]. 
Different symbols represent the results from different test types. 

X. Zhang et al.                                                                                                                                                                                                                                   



Applied Energy 303 (2021) 117603

5

from 0.75 km up to 100 km; the field data typically ranged between 0.01 
m and 5500 m. Values in fractured and karst media appear to spread 
over a similar range [57]. Conversely, little transverse dispersivities 
were observed in other field experimental data, suggesting that there is a 
limited transverse spreading of contaminant plumes. Plots of dis-
persivity coefficients in porous and fractured media from previous 
studies show that longitudinal dispersivity tends to increase with scale 
(Fig. 5), typically ranging over 2–3 orders of magnitude. The number of 
collected data for αT is smaller than for αL, but its overall trend is similar 
to αL (Fig. 6). 

From the traditional view, solute concentration is strongly correlated 
with the velocity field in the advective-dispersion model, likely related 
to the wide array of velocity distributions induced by subsurface het-
erogeneity. Velocity is not equal at every point in flow space. At the 
microscopic scale, velocity is maximum along the centerline of each 
pore and is zero on the pore walls. The centerline velocity, as well as the 
spread of the velocity, differs across pores of varying sizes. At the same 
time, flow direction changes as the fluid traverses the convoluted paths 
of the pore structure. As the solutes travel farther, the spreading sphere 
increases, encountering increasing scales of heterogeneity. Increased 
variations in the velocity fields, therefore, lead to a broader distribution 
of travel times and a larger dispersivity. The introduction of a new 
arbitrary volume in Eq. (2.2) alters the first derivative of surface flux, 
and inaccuracies in porosity measurements produce errors in solute 
plume transport velocity measurements [58]. This is the main reason for 
discrepancies in dispersivities and the necessity to introduce scaled pa-
rameters to compensate for the ill-defined divergence in a continuously 
varied medium when using an ADE in the field. Thus, to some extent, the 
dispersion scale effect depends on the capacity of models to characterize 
the velocity field in porous media. If the models accurately quantify the 
velocity field distribution driven by heterogeneity, the scale effect may 
be negligible [59]. 

2.3.2. Diffusion coefficient 
Molecular diffusion is used to describe the irregular thermal motion 

of molecules. It is often ignored in large-scale solute transport where 
advection and dispersion are considered, but field studies have shown 
that, in low-flow systems, diffusion can be a significant transport process 
[62]. For instance, in natural or engineered barriers for waste disposal 
sites (i.e., compacted clays), molecular diffusion becomes the predom-
inant process in the transport of aqueous species [63]. The coefficient of 

molecular diffusion typically depends on the solute, but for common 
anions and cations, it generally varies between 10− 10 and 10− 11 m2 s− 1. 

For Fickian flow, the molar flux from diffusion is proportional to the 
gradient of concentration. The diffusion flux, Ni, can be expressed as 

Ni = − D*
i ∇Ci (2.6)  

where for a given species i, Ni represents the molar flux (mol m− 2 s− 1), Di 
is the molecular diffusion coefficient (m2 s− 1), and Ci is the solute con-
centration (mol m− 3). For dilute solutions with constant Di, Fick’s sec-
ond law is directly derived from the mass continuity equation. 

∂Ci

∂t
= D*

i ∇
2Ci (2.7) 

In practice, the matrix diffusion coefficient Dm is often used to 
represent diffusion in a matrix, which is expressed as Di in free water 
multiplied by matrix tortuosity. In fractured systems and karst aquifers, 
Dm is recognized as the main reason for the retarded transport of solute, 
which results from the retained solute within the matrix structure [64]. 
The effective mass transfer coefficient (CMT) is calculated to describe a 
given solute exchange rate between fractures and the rock matrix ma-
terial in modeling. It is related to the effective fracture aperture (b ), the 
effective matrix porosity (φ ), and the effective diffusion coefficient 
(D m) [65]. 

CMT =
φ̃

̅̅̅̅̅̅̅
D̃m

√

b
(2.8) 

The effective diffusion coefficient is often higher at the field scale 
(kilometer) than at laboratory scales and tends to increase with the 
testing scales [66]. In crystalline rock, Dm is at least three orders of 
magnitude higher at the kilometer scale than that measured in the 
laboratory. 

The need for an upscaled effective diffusion coefficient in such media 
is twofold: not only does diffusion spread solute through the slow- 
moving water, but preferential flow pathways created by the fracture 
network create a relatively large contact surface for water and solute to 
diffuse into the rock matrix [67]. Unfortunately, the magnitude and 
extent of small-scale fractures, which may greatly increase the area of 
the fracture-matrix interface, are barely represented in numerical 
models, which likely explains that the effective diffusion coefficients 
calculated from field data are relatively large [68]. Further, the rela-
tively large matrix porosity near the fracture-matrix interface has been 

Fig. 5. Distribution of longitudinal dispersivity αL across scales. The data is 
mainly collected from [60] and [61]. The circle sizes represent the data reli-
ability. The detailed information about the reliability criteria can be referred 
to [60]. 

Fig. 6. Distribution of transverse dispersivity αT across scales. The data is 
mainly collected from [60] and [61]. The circle sizes represent the data reli-
ability. The detailed information about the reliability criteria can be referred 
to [60]. 
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shown to enhance the effective matrix diffusion coefficient [69] and 
may be the product of complex fractures characterized by a thin fracture 
zone with several interconnected sub-fractures. The effective diffusion 
tensor for non-linear reactions with large rates relative to diffusion is a 
function of the reaction rate [70]. 

2.3.3. Sorption parameters 
As contaminants are transported in groundwater through an aquifer, 

their rate of movement may be less than the average flow rate of the 
groundwater. Sorption is a key process to slow down the contaminant 
migration in an aquifer. In this context, sorption refers to the removal of 
solute from the aqueous phase to a solid phase, as in a classical sorption 
isotherm batch experiment [71]. The process includes both adsorption, 
where the solute clings to an exterior solid surface, and absorption, 
where the solute clings to interior surfaces by diffusing into the porous 
solid. The measurement of a sorption isotherm until equilibrium is 
observed is used to quantify sorption. The partition coefficient, Kd, is one 
parameter that is used to describe the equilibrium ratio after a given 
reaction time between the amount of contaminant adsorbed per mass of 
the solid phase to the amount remaining in solution per solution volume. 
The measurement of Kd corresponds to a given ion under a specified 
experimental condition in a specified material and thus varies when the 
environmental conditions change. Consequently, the extrapolation of Kd 
obtained from a particular experimental setting to other adsorbents, 
adsorbates, or aqueous conditions like electrolyte concentrations and pH 
is infeasible [72]. 

Sorption can be described using any of the various forms of isotherms 
that have been proposed. The linear isotherm, which follows the same 
principle as Henry’s Law, is the simplest and is defined as S = KdC [73]. 
C is the concentration remaining in the solution (ML− 3) and S is the 
weight of the contaminant sorbed by the solid. Kd in the linear isotherm 
is the sorption coefficient (L3M), and here it is equivalent to the distri-
bution coefficient. In contrast, the sorption isotherm of some organic or 
inorganic contaminants exhibits nonlinear sorption, such as cadmium 
and trace elements desorption [74]. Other isotherms, including the 
Freundlich, Langmuir, and two-sites sorption isotherms, are introduced 
to describe such sorption properties [75]. In these cases, the sorption 
coefficient is not equal to the distribution coefficient. For example, in the 
Freundlich isotherm, S = Kf Cn (Kf is termed the Freundlich coefficient), 
Kd is equivalent to Kf Cn− 1. Though in some previous studies, the sorp-
tion isotherm concept overlaps with the distribution coefficient or 
partition coefficient, here, such terms are clarified to avoid confusing the 
reader. 

In practice, the retardation factor R is preferred in place of Kd to 
describe the delays associated with sorption/desorption [54]. Here, R is 
expressed as R = 1 + ρb/nKd, where ρb and n are the bulk density and the 
porosity of the medium, respectively. In ADE equations, directly 
multiplying R by the time-variant solute concentration better represents 
the solute transport at the field sites with low-permeability layers or 
zones (e.g., sandy aquifers or fractured rock) [76]. The sorption pa-
rameters described above (Kd and R) are also scale-dependent and have 
been addressed as reactive solutes in sediments [77]. The estimated 
effective retardation factors may either increase or decrease with dis-
tance [78] and are influenced by several factors, including: how the test 
hydraulic gradient is generated (natural or forced); how the parameters 
ln(K) and ln(Kd) are correlated (absence of correlation or negative 
correlated); how mean arrival times are determined; and what the 
calculation method used is (i.e., spatial moments, temporal moments). 
Field-scale retardation factors also exhibit time-dependency, even with 
simple linear equilibrium sorption [79], but such dependency is not the 
focus of discussion in this review. 

Sorption as well influences the migration and behavior of radionu-
clides in the subsurface. The scale dependency of uranium sorption/ 
desorption is crucial in the risk assessment of nuclide-contaminated sites 
and geological repository systems for un-reprocessed, spent nuclear fuel. 
The adsorption partition coefficients of uranium have been observed to 

fluctuate over several orders of magnitude between pH 7 and pH 9 in 
different minerals [80]. In-situ tracer experiments conducted at the Äspö 
Hard Rock Laboratory indicate that the radionuclide retention proper-
ties of fractured crystalline bedrock are three to four orders of magni-
tudes higher in the laboratory. 

2.4. Scale dependency of reaction rates 

2.4.1. Mineral reaction rates 
Mineral dissolution and precipitation is a crucial process in many 

earth and environmental processes, including rock and soil geochemical 
weathering [81]; global CO2 fixation and geological sequestration [8]; 
migration of heavy metals and radionuclides to the biosphere [82]; 
biogeochemical cycles [83]; and the release, transport, and remediation 
of mineral-bound contaminants [84]. As one of the most important and 
rapid mineral reactions in the subsurface [85], calcite dissolution is used 
as an example to illustrate the scale dependency of the reaction rate for a 
specific kinetic mineral reaction. Though the form of rate laws may vary 
for different mineral reactions, considering potential factors involved in 
the reaction rate calculations, the associated principles for calcite can be 
extrapolated to other mineral phases [86]. Three parallel reaction 
schemes are involved in the dissolution [87]:  

CaCO3(s) + H+⇌ Ca2++HCO3
−

CaCO3(s) + H2CO3*⇌ Ca2++2HCO3
−

CaCO3(s) ⇌ Ca2++CO3
2−

In the reaction, H+ is consumed, thereby releasing Ca2+ to the 
aqueous solution. The Transition State Theory can be used to describe 
the calcite dissolution rate [87]: 

rCaCO3 =
(

k1aH++k2aH2CO*
3
+k3

)(

1 −
IAP
Keq

)

(2.9)  

where rCaCO3 (mol m− 2 s− 1) is the microscopic calcite reaction rate 
(normalized to mineral surface area); k1, k2, and k3 (mol m− 2 s− 1) are the 
reaction rate constants with values of 0.89, 5.01 × 10− 4, and 6.6 × 10− 7 

mol m− 2 s− 1, respectively at 25 ℃; aH+ and aH2CO*
3
are the activities of H+

and H2CO3* (carbonic acid) in the aqueous phase, respectively; Keq is the 
equilibrium constant; and IAP is the ion activity product of the re-
actants/reaction products, defined as aCa2+aCO2−

3 
[87]. The reaction rate 

depends on pH under acidic conditions and becomes nearly constant 
above a pH of approximately 7. 

The mineral dissolution rates for various minerals have been broadly 
investigated in laboratory and field experiments. Laboratory research on 
the kinetics of mineral dissolution is mainly conducted with batch, well- 
mixed flow-through reactors and column experiments ranging from 
millimeter to meter scale [88]. When using Eq. (2.8) to calculate the 
mineral dissolution rate, both the composition of the solutions and the 
mineralogy of the soil are required. Conversely, weathering rates in the 
field are generally quantified based upon the observed mineral depletion 
fronts or the water chemistry, which is normalized on the mineral sur-
face area over meters to kilometers of the flow path of the water [89]. 
Dissolution rates can differ significantly in different mineral and solu-
tion systems, and fluctuate with measurement scales. Model predictions 
using laboratory rate constants are often inconsistent with measured 
mineral dissolution profiles [90], with laboratory-determined rates up 
to 4–5 orders of magnitude higher than the rates estimated from natural 
subsurface systems [91]. For instance, White et al. [92] reported that 
plagioclase dissolution rates computed from field data at Merced (10− 15 

to 10− 16 mol m− 2 s− 1) and Davis Run (10− 16 to 10− 17 mol m− 2 s− 1) were 
approximately four orders of magnitude lower than those estimated in 
the laboratory at pH 7. 

The main governing factors that contribute to mineral dissolution 
rates have been quantified using laboratory experiments, including flow 
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velocity, mineral composition, and column length [88]. When flow ve-
locity is raised by two orders of magnitude at the column scale, disso-
lution rates vary by more than two orders of magnitude. Further, 
dissolution rates in short columns are higher than those in long columns 
with the same mineral distribution under the same conditions of flow 
velocity [93]. From laboratory studies to field systems, the rate of 
mineral dissolution is affected by preferential flow paths associated with 
the heterogeneity, secondary mineral precipitation, contact between soil 
minerals and percolating solution, and the associated active mineral 
surface area [94,95]. The pH values may also vary with the mineral 
dissolution. Other possible factors, such as the saturation condition of 
reactive fluids or the age of reacting minerals, require further investi-
gation [96]. Additionally, hydrologic heterogeneity can complicate the 
time-dependent evolution of the rates of mineral dissolution as part of a 
long-term geochemical process [97]. 

2.4.2. Biochemical reaction rate 
In the past decade, biochemical reactions in groundwater have 

drawn increased attention owing to their environmental importance, 
particularly related to human health. Processes such as the mobilization 
and transport of toxic arsenic or microbially-mediated nitrogen cycling 
involve microorganisms that participate in biological attenuation or 
degradation of contaminants [98]. Indeed, contaminant degradation 
and removal from aquifers heavily depend upon bio-attenuation, 
particularly that of organic pollutants. Therefore, modeling biochem-
ical processes is critical for evaluating and predicting reactive solute 
transport and bioremediation strategies in the environment [99]. 

Commonly used kinetic models for characterization of biological 
decay reactions include zero-, first-, and second-order models, instan-
taneous reaction kinetics, and Monod or Michaelis-Menten reaction ki-
netics [100]. Under some conditions, the assumption of zero- and first- 
order kinetics is invalid, producing biased degradation rates. Consider-
able deviations of instantaneous reactions from kinetics are expected in 
the ‘near source’ and ‘initial period’ space–time region [11]. Although 
numerically more complex to implement, the Monod equation has 
become the most common empirical reaction model for simulating the 
growth of microorganisms, in particular for hydrogen-producing bac-
teria [101]. For a specific strain, the specific growth rate μ (h− 1) is 
related to the growth-limiting substrate concentration S (g/L) and is 
expressed as [102]: 

μ = μmax
S

KS + S
(2.10)  

where μmax represents the maximum specific growth rate, KS is the 
Monod half-saturation constant or substrate concentration with half of 
the μmax (g/L). This equation can be applied to several substrates. The 
variation for biomass X (g/L) and substrate S (g/L) concentrations with 
time in a batch bioreactor can be summarized by: 

dX
dt

= rX = μmax
S

KS + S
X (2.11)  

dS
dt

= rS = −
1

YS/X
μmax

S
KS + S

X (2.12)  

while YS/X is described as the mass of biomass decay in a unit mass of 
substrate (g/g). During solute transport modeling, the mass balance 
equation reactions can be coupled through source/sink terms in the 
reactive transport equation [103]. 

A variety of studies have investigated reaction rate discrepancies at 
different scales. The studies revealed that the time to reach chemical 
equilibrium, the degree of mixing, and the mass ratios of substrate 
saturation all vary between the laboratory and the field scale. The field- 
observed rates are often an order of magnitude lower than those 
observed within laboratory microcosms [104]. Thus, field models with 
laboratory-derived parameters generally overestimate mass transfer 

from biological reactions [105]. In the field, lower reaction rates (and 
therefore lower remediation efficiency) are attributed to the complex 
interactions among physical, chemical, and biological heterogeneities in 
two types. The intrinsic factors include spatial variations in microbial 
species, active bioavailability, and the distribution of biomass [106]. 
The extrinsic factors are those related to hydrological and microbial 
processes [107]. 

2.5. Equivalent parameter, effective and macroscopic parameter 

Three terms often appear to be related in the context of upscaled 
parameters: “equivalent” parameter, “effective” parameter, and 
“macroscopic” parameter. Consider a large domain that is discretized 
into blocks, and a specific parameter (e.g., K) is defined in each of them. 
When heterogeneity exists between the blocks, a bulk conductivity value 
may be defined that reproduces the overall behavior of the domain while 
still maintaining the local block behavior. A resulting upscaled param-
eter determined in this way is based on a macroscopic form of Darcy’s 
equation and is called an equivalent parameter. Equivalent parameters 
are thus related to a certain geometry and are spatial averages based 
upon a single realization. The determination of equivalent parameters is 
as well linked to the selection of boundary conditions. Some alternative 
definitions may be required to incorporate the effects of boundary 
conditions after putting the block back into the aquifer [108]. 
Contrarily, in heterogeneous media, the values of effective parameters 
represent the mean behavior via a set of realizations, which are based on 
the method of moments [109]. 

In addition, the part of heterogeneity that is not reflected in the 
model is as well accounted for in the macroscopic parameters. As a 
result, they are often adopted with the corresponded effective hydraulic 
conductivity [110]. The spatial and ensemble averages in stochastic 
modeling are interchangeable since the transport is ergodic, which im-
plies that the solute cloud can sample all the heterogeneous structures as 
it is far greater than the characteristic scale of heterogeneity. Therefore, 
the parameter definitions approach the same value for very large ge-
ometries under the assumption of ergodicity. In recent research studies, 
these terms are not clearly distinguished and are often treated as 
synonymous. 

3. Traditional and novel deterministic upscaling of K and k 

3.1. Spatial averaging in Darcy’s scale 

Spatial averaging is one of the most easily implemented concepts 
across Darcy’s scales. The conductivity of each block at a coarse scale is 
estimated as an average value over its enclosed high-resolution grid cells 
at finer scales. Power law averaging is a widely used method to calculate 
the parameters, expressed as [111]: 

KV =

(
1
V

∫

V
K(x)pdV

)1/p

(3.1)  

where V represents the block value and p is the power averaging expo-
nent, which is related to the permeability structure and bounded from 
− 1 to 1. For p = 1, the calculated parameter is equal to the arithmetic 
mean corresponding to flow parallel to a layered structure. For p = − 1, 
the parameter is equivalent to the harmonic mean associated with flow 
perpendicular to a layered structure. Eq. (3.1) yields the geometric mean 
when p approaches zero, which has been applied for finite blocks 
without much justification [112]. A fundamental part of the method is 
determining the scaling exponent p. The averaging with geometric, 
arithmetic, harmonic, harmonic-arithmetic, and arithmetic-harmonic 
means are tested and compared with different hydraulic conductivity 
settings, including uncorrelated and correlated, isotropic, and aniso-
tropic, and binary distributions [113]. The results showed that for all 
heterogeneous formations, no simple average is found to be valid. 
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Therefore, apart from being case-specific, the optimal exponent p is also 
a function of the heterogeneity characteristics as well as block shape and 
size [114]. Detailed numerical experiments are recommended to select 
the most appropriate p-value in practical applications. 

Note that the block conductivity is only related to the conductivity 
within the block in Eq. (3.1), which is referred to as a local technique. 
The local method assumes the hydraulic head difference to be additive 
explicitly as a scalar. Local upscaling only results in estimates of diag-
onal conductivity or permeability terms in isotropic direction and does 
not produce off-diagonal terms as it is treated as a scalar instead of a 
tensor. Another widely used local upscaling method is renormalization, 
which computes equivalent conductivity or transmissivity with an iter-
ative procedure [115]. From a computational point of view, it is one of 
the most efficient techniques, which is very cheap and can easily be 
implemented into a numerical code. 

Under a non-linear flow condition, local upscaling can be affected by 
the flow conditions within the block induced by boundary conditions. If 
the flux in the block is considered as a uniform flow, then the block 
conductivity can be expressed as [33]: 

KV =

∫

V
q(x)dx

/∫

V
∇h(x)dx (3.2)  

where q(x) and ∇h(x) are the flux and hydraulic head gradient at the 
measurement scale respectivity. 

Different from Eq. (3.1), the block conductivity in Eq. (3.2) depends 
not only on the local conductivity but also on the flow field, which in 
turn is recognized as a non-local or global technique. Global upscaling 
not only accounts for the heterogeneity inside the upscaled region but 
also incorporates the global impact from the entire domain. It is crucial 
to address the challenges associated with flow parameter upscaling, 
especially when establishing accurate boundary conditions. The 
boundary conditions describe the interactions between groundwater, 
surface water, and recharge, among others. The upscaled parameters 
directly depend on the assumptions that are made in relation to 
boundary conditions. Accordingly, inaccurate flux exchange across 
boundaries and the hydraulic head on a fine scale and a coarse scale, 
respectively, may introduce additional errors. These kinds of errors are 
critical relative to those introduced by inaccurate heterogeneity 
upscaling, and the reduction of such errors has been shown to improve 
upscaled models by up to 70% [116]. Therefore, when attempting to 
forecast groundwater heads, the accurate upscaling of boundary con-
ditions is significantly more important than hydraulic transmissivity. 
However, global upscaling is computationally expensive. In some cases, 
it is not feasible to solve the entire domain on fine scales due to excessive 
memory that is required [117]. 

Notably, Eqs. (3.1) and Eq. (3.2) are applied only in isotropic cases. It 
can be extended from isotropic formations to anisotropic ones to pro-
duce tensorial equivalent conductivity [118]. In the case of statistically 
anisotropic conductivities, elements of the upscaled conductivity tensors 
are computed by applying the averaging method in the three principal 
axes directions independently, given that their principal directions are 
known. In practice, especially in the field, most aquifers are assumed to 
be isotropic to reduce computing costs associated with upscaling. It is 
well-established that the errors generated from assumed isotropy are 
small compared to the total errors introduced by scaling [119]. 

3.2. Fractal geometry across scales 

Fractal geometry has elicited much interest in the field of natural 
science. The term fractal refers to any geometric object that possesses a 
fractal dimension greater than its topological dimension [120]. A crucial 
feature of a fractal structure is its scale independence, which makes 
upscaling an irrelevant but appealing challenge [121]. Porous and 
fractured media in nature are interconnected systems in which the dis-
tribution of pores or fractures might follow invariant property scaling 

and be treated as fractals [122]. Fractal geometry was adopted into the 
field of hydrogeology as early as the 1980s to describe the shape of 
irregular groundwater flow and transport paths in subsurface media by 
measuring their fractal dimension. The measure of a fractal parameter 
such as flow, M(L), is determined by the length scale, L, over a power- 
law scaling [123]. 

M(L) ∼ LDf (3.3)  

where M denotes the feature of an object, such as length, area, volume, 
or mass, and Df represents the fractal dimension. In porous media, the 
grain mass, pore volume, pore surface, the surface of rocks, fault length, 
velocity surface roughness, particle size, fragmentation, and connec-
tivity may all potentially follow a single fractal dimension similar to the 
form shown in Eq. (3.3) [124]. The fractal dimensions are often obtained 
from measurements within a limiting scale and have been collected for 
various soils and rocks in previous studies [125]. 

Diverse groundwater flow and transport variables can be obtained 
through fractal analysis. Based on the pore microstructures, it is feasible 
to upscale the hydraulic conductivity in porous media [126]. Various 
forms of fractal models are derived in terms of different effect factors 
[127]. Some of the equations are consistent with the Kozeny-Carman 
(KC) model, while others still require testing with precise observa-
tions. By defining a time- and space-dependent dispersivity in the form 
of a separable power-law, Su et al. [128] developed fractal equations for 
solute transport in saturated heterogeneous porous media. Wheatcraft 
and Tyler [129] approximated the dispersion in porous media as a set of 
fractal stream tubes and developed an expression for scale-dependent 
dispersivity with Lagrangian models. Meanwhile, O’Shaughnessy and 
Procaccia [130] proposed a generalization of the diffusion equation for 
Euclidean lattices in the absence of an advection term. The mineral 
dissolution rates associated with the roughness of solid surfaces were 
investigated to estimate the reaction rates within fractures [131]. Many 
researchers have found that isothermic adsorption is dependent upon 
the surface’s fractal dimension and thus endeavor to improve isothermal 
predictions. In such works, the fractal models are constructed through 
modification of the classic Langmuir or Freundlich isotherms, where the 
geometric characteristics of the solute are linked to surface roughness 
[132] or the amount of adsorbed mass [133]. Additionally, the results 
demonstrate power-law dependence in the effective reaction order with 
time, suggesting a need to investigate the temporal upscaling issue in the 
future. 

3.3. Wavelet transformations 

The wavelet transformations (WTs) method coarsens the computa-
tional grids by preserving the significant spatial distribution character-
izations of the parameter fields and averaging out those that have 
limited contributions to the flow pattern. Therefore, the grid resolution 
and the associated computing effort are drastically downsized without 
neglecting important information. The scaled model provides an overall 
acceptable description of the flow field and comparable results but with 
largely reduced computational cost [134]. Considering the spatially 
varied parameter K(x), the WT of K(x) is denoted as the wavelet detail 
coefficient, by [135] 

D(a, b) =
∫ ∞

− ∞
K(x)ψab(x)dx =

1̅
̅̅
a

√

∫ ∞

− ∞
K(x)ψ[(x − b)/a ]dx (3.4)  

where ψ(x) is called the mother wavelet, a is a rescaling parameter, and 
b is the translation of the wavelet. Varied forms of mother wavelet 
functions provide flexibility in capturing the spatially distributed fea-
tures of K(x). By evaluating the WT of K(x) using a shifted or rescaled 
wavelet, one can analyze the spatial distribution of K(x) at different 
length scales of interest. Moreover, numerous grid cells can be inte-
grated into one large block if they share proximate information of K(x) 
and without the need of a detailed expression in each cell. 
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In geoscience, D(a,b) contains information that is lost between two 
approximations of K(x) at two successive length scales. The reserved 
information at a fixed scale is given by a scaling function, φ(x). The 
wavelet approximate or wavelet scale coefficient is defined by 

S(a, b) =
∫ ∞

− ∞
K(x)ϕab(x)dx (3.5) 

In general, upscaling by the WT method is non-uniform. Therefore, 
an appropriate numerical approach suited for the unequal blocks in the 
geological model is needed. The numerical models could be established 
based on the analogy between electrical and currents. Another effective 
method is to reconstruct f(K) by computing its inverse WT after setting 
some of the scale and detail coefficients to zero. The effective perme-
abilities of the upscaled blocks then can be derived from the recon-
structed f(K). The difference between these two methods was found to be 
negligible by Rasaei and Sahimi [135]. 

The WT method has recursive properties, meaning that it can be 
repeatedly applied and compressed a set of data multiple times in the 
same region until an efficient coarsening has been conducted for 
generating the final upscaled grid. The WT method is ideally suited for 
the regions with unevenly distributed potentially high or low permeable 
sectors, which require non-uniform coarsening. The efficiency of the WT 
method increases as permeability distributions broaden, as well as the 
upscaled model accuracy [136]. For example, only a small fraction of 
preferential flow paths significantly contribute to flow through highly 
heterogeneous media. Therefore, the upscaling can focus on the prop-
erties where the preferential flow occurs. 

3.4. Physically-based methods in pore networks 

Percolation theory (PT) is a fundamental component of probability 
theory that presents phase transitions in all dimensions. Such transitions 
are termed critical phenomena [137], wherein the physical behavior of a 
system undergoes drastic changes near a particular point. In percolation 
theory, a porous medium is treated as a pore network (PN) consisting of 
pore throats and pore bodies to represent flow paths as well as flow 
resistance in porous media. With phase transition, PT allows developing 
formulations for flow and transport properties as functions of the scaling 
structure of their geometric features. Many percolation properties follow 
power laws in the vicinity of the so-called percolation threshold or 
critical percolation probability, pc. At this critical point, the system 
behavior changes significantly. The exponents in the power laws are 
independent of the porous medium morphology and are only dependent 
on the spatial dimension d as a universality class. In general, the number 
of finite clusters ns(p) in each site near pc follows the relation 

ns(p)∝s− τF[c(p)s], s→∞ (3.6)  

where τ represents a free exponent and F denotes a scaling function. 
Near the percolation threshold, c(p) is allowed to behave as a general 
power-law, c(p) ∝ |p-pc| 1/l, where l is another critical exponent [138]. 
For applying PT to upscaled permeability, Sahimi [139] summarized 
several intrinsic relationships of percolation exponents relevant to 
geometric properties near the pc. For example, the critical behavior of 
the permeability K of an infinite system is defined by 

K∝(p − pc)
k (3.7)  

where k is determined by k = ςk + (d − 2)ν. The system’s dimensionality 
is the sole determinant of the exponents. For a two-dimensional system, 
k ≈ 1.3 [140], while for a three-dimensional system, k ≈ 2 [141]. 
Therefore, the consistency of the power provides universal character-
ization to estimate the geometrical or physical properties of a medium, 
which is also its principal advantage [142]. It should be noted that 
percolation scaling applies only near the percolation threshold and that 
only the impact of spatial correlation information on pc is integrated into 
the upscaling of K [143]. 

The critical path analysis (CPA) is a physically-based analysis with 
similar concepts to PT. In the context of CPA upscaling of K at the pore 
scale, if the size of all the pores in a media is gradually decreased, the last 
pore that completes a connected path is considered the “critical” pore. 
The associated smallest conductivity corresponding to the critical pore 
size is assigned as critical conductivity, Kc. According to CPA, other 
pores smaller than the critical pore do not noticeably influence the 
upscaled value of K. The procedure can be adopted to upscale flow and 
transport at geological scales, and its application to upscaling at such 
scales provides a remarkably accurate, non-numerical solution appli-
cable in a wide range of circumstances. Further, if low-permeability 
zones are eliminated from the porous medium, CPA is reduced to a 
simple percolation system [23]. 

To implement CPA to model permeability in a porous medium, a 
relationship between specific pore shape and geometrical characteristics 
must be assumed. Katz and Thompson [144] estimated the permeability 
of rocks from the critical pore diameter and formation factor by 
presuming a linearly cylindrical pore diameter variation with its length. 
Bernabe and Bruderer [145] derived a similar expression of the satu-
rated hydraulic conductivity in the form: 

K =
r2

cF
(3.8)  

where r is a length related to pore geometry and c is a constant coeffi-
cient equal to 8. When calculating absolute permeability (k), c is instead 
equal to 226 [146]. Using Eq. (3.8) requires the determination of F, a 
formation factor that depends on electrical conductivity and gives the 
ratio of the fluid bulk conductivity to the rock conductivity (excluding 
surface conduction). The value of F may be estimated from mercury 
intrusion [146] or water expulsion porosimetry [147]. Therefore, the 
mode of the pore size distribution can be used to accurately determine r, 
which is crucial to CPA. Thompson [148] further tested the formula by 
applying mercury injection to sandstones, carbonates, and metamorphic 
rocks; estimated permeabilities matched well with measured perme-
abilities, with values spanning nearly eight orders of magnitude (from 
10− 3 to 105 darcy). 

Similarly, an estimation of k within a factor of two by utilizing CPA 
was shown by Ghanbarian et al. [149], compared to tight-gas sandstone 
measurements. Nonetheless, they used c = 53.5, in agreement with 
[150]. In a different study, Daigle [151] determined k in various types of 
rocks including clay-rich samples and carbonate by utilizing CPA with c 
= 32, and showed that the estimates of the CPA model match. They 
presumed that the power-law probability density function was obeyed 
by the pore size distribution and that there was a conformation between 
the formation factor and universal scaling from percolation theory. 
Friedman and Seaton [152] applied CPA to determine viscous (hy-
draulic) permeability in 3D pore networks, while Hunt and Gee [153] 
calculated the unsaturated hydraulic conductivity (KS) of soils with pore 
spaces compatible with a fractal description. The CPA method can be 
used to determine the relationships between other transport character-
izations, but not their absolute values (i.e., Knudsen apparent molecular 
and Knudsen diffusivities [152]). 

Compared to the other methods in this section, PT relatively has the 
potential to upscale the connectivity or effective medium approximation 
for transport properties [23]. It has been broadened and applied in 
upscaling a variety of parameters, including thermal conductivities, 
diffusion coefficients, the distribution of solute arrival time, sorption, 
and chemical reaction rates [154]. PT can as well be combined with 
other methodologies, which will be covered in the followed sections to 
analyze the upscaling of flow and transport parameters, such as 
continuous-time random walk, fractal laws, and effective medium the-
ories [154]. A specified model is often needed for each application of 
quantitative prediction of dispersion or the scaling of chemical reaction 
rates. However, detailed information about the porous medium is not 
crucial for facilitating a good experimental prediction, but instead, the 
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connectivity of the flow paths through the medium directly influences 
the PT parameters [155]. 

3.5. Machine learning with media images 

With the booming computing science industry, artificial intelligence 
(AI), which encompasses machine learning (ML) and deep learning (DL), 
has come out as a comprehensive and adaptive tool, reshaping industries 
and creating an environment for scientific advancement [156]. It also 
offers a distinct approach for modeling many phenomena involving 
porous and fractured media. The basic principle of ML is to predict 
unknown processes by constructing relationships between inputs and 
the associated outcomes [156]. Detailed information about this 
approach is depicted in numerous literature [157]. Despite its successful 
predictions of surface water, the applications of ML in hydrogeology are 
finite. Water Resources Research has recently published a new special 
issue on “Big Data & Machine Learning in Water Sciences: Recent 
Progress and Their Use in Advancing Science” [158]. Only limited pa-
pers are related to the application in groundwater and bounded in the 
surface soils. This is because the nature of ML requires big data to drive. 
High-frequency data in a large spatial area in surface water are more 
easily obtained and satellite data can be adopted. However, access to 
groundwater and geological data is constrained and extremely 
expensive. 

Currently, the application of ML in upscaling effective parameters is 
mainly to solve flow and transport properties that have relationships 
with the media morphology. The ML method is able to extract pivotal 
geometrical features from their images, and then estimate correspon-
dent transport parameters with image-based data [159]. Saxena et al. 
[160] used a convolutional neural network (CNN) to evaluate the 
effective permeability from their microstructures images. The successful 
application of CNN on the prediction of permeability provides valued 
cognizance in understanding the connection between permeabilities and 
geometric features [161]. The ML method has also been used to estimate 
the effective diffusivity of 2D porous media from structure images [162], 
and the application can be further extended to 3D images. Macroscopic 
permeability was derived by using both artificial neural network (ANN) 
and deep learning (DL) algorithms with 3D sandstone images [163]. 
Araya and Ghezzehei [164] developed ML-based pedo-transfer functions 
to simulate saturated hydraulic conductivity (Ks) over 18,000 soils. 
Meanwhile, the performance of four popular ML algorithms: support 
vector regression (SVR), K-nearest neighbors (KNN), boosted regression 
trees (BRT), and random forest (RF), have also been evaluated. The 
accuracy varied in each ML method, therefore, attentions need to be 
paid on implementing an appropriate algorithm with high efficiency, 
high accuracy, low constraints, and affordable computing cost from the 
ML pool. More applications of ML are as well found in recent literatures. 
Rao and Liu [165] proposed a 3D, deep convolutional neural network 
(CNN) to predict the effective material properties of representative 
volume elements (RVEs) with random spherical inclusions, and showed 
advantages over the conventional finite element based homogenization 
regarding uncertainty quantification, computational efficiency, and 
model transferability. Based upon a similar scheme, Andrianov and Nick 
[166] learned a set of parameters from fine-scale simulations to a coarse- 
scale grid block in a fracture geometry via a CNN. 

During implementation, several key steps are typically followed. 
First, porous images are used as input to generate a training database 
between porosity and effective conductivity or diffusivity, which can be 
obtained experimentally or numerically for porous or fractured media. A 
training model is then established and validated by using the dataset 
with an ML method in the next step. Finally, the trained model can be 
cast to predict the effective transport attributes of new porous media 
without repeating the training process. It has been shown that the fea-
tures extracted with ML are more accurate and efficient than geometric 
measurements and are unconstrained by human pre-conceptions. 
Furthermore, if new physical characteristics of porous media are 

found to influence effective permeability, it can easily be upgraded 
[163]. 

The disadvantage is always the effort to build the training re-
alizations. Gathering enough sizable images is expensive, especially for 
3D images from micro-CT scans. Though the DL method is popular and 
fancy, it is better to balance the two sides when adopting this method for 
real-world application. Meanwhile, the current methods are only valid 
for the scale we can sample and analyze (e.g., core scale), and imple-
menting the methods from core scale to field scale is still a challenge. 
Currently, DL is still in the initial “value discovery” phase in hydroge-
ology science. However, with improvements in subsurface real-time 
monitoring systems, DL could contribute to a wide spectrum of issues 
in the field by harnessing big data and ML through collaboration with 
computer scientists. 

4. Generalized theories for multiple parameters upscaling 

4.1. Homogenization theory 

Homogenization encompasses a very broad area and requires peri-
odic structures of porous media for parameters upscaling. Consider a 
macroscopic domain, it can be described as consisting of a collection of 
circular, periodic microscopic cells as shown in Fig. 7. In a periodic 
medium, the period size is much smaller than the medium sample size. 
Homogenization is the process of seeking an averaged formulation by 
describing the periodic array with an asymptotic analysis [167]. The 
selection of an appropriately small scaling parameter is one of the basic 
requirements for implementing the approach [168]. Generally, the ho-
mogenization theory applies to partial differential equations with 
rapidly fluctuating coefficients at various scales. 

For a porous medium, the ratio of the microscopic period × and 
macroscopic length y can be characterized as a spatial scale metric ε, 
where ε = x/y. From limit theory, homogenization upscaling seeks a 
slowly varying or constant coefficient to substitute the rapidly oscil-
lating coefficients in an asymptotic transition manner from microscopic 
to macroscopic scales as ε approaches zero. The upscaled coefficients at 
the coarse scale should meanwhile satisfy the initial differential equa-
tions [170]. For example, two-scale homogenization describes se-
quences of oscillating functions and proves the convergence of 
homogenization processes [167]. If any physical quantity Q is treated as 
a function of two spatial scales, x and y, it can be formally expanded as a 
power series with the small, dimensionless parameter ε as 

Q = Q0(x, y)+ εQ1(x, y)+ ε2Q2(x, y)+O
(
ε2) (4.1) 

As formulated, Q can represent many fluid flow properties, including 
velocity, diffusion, species concentration, and hydraulic head. The ho-
mogenization equation methods determine the equations on a larger 
scale from constituent equations of a given scale. The parameters are 
upscaled with equations simultaneously, which requires complicated 
mathematical derivation. This procedure requires deriving the equation 
for each specific problem, and various homogenization frameworks 
have thus been developed, including the energy method of Tartar [171]. 
Such frameworks are elegant in that they work for different kinds of 
disordered media, not just for periodic media [172]. 

Homogenization theory has been successfully applied to a wide va-
riety of groundwater flow and solute transport problems. Though nat-
ural porous media are not truly periodic, they can be approximated by 
neglecting variability at larger scales. Aside from upscaling, it has been 
adapted to solve the convection–diffusion equation, general nonlinear 
diffusion equations [173], two-phase flow including time scales [174], 
fluid flow in porous media with a nonlinear term of heat exchange in the 
boundary transmission conditions [175], slightly compressible subsur-
face physics [173], and adsorption–desorption processes [176]. In order 
to apply this in fractured media, an upscaled model was derived by 
Sahimi and Bruining [23] for vertically fractured reservoirs, including 
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relative permeabilities and capillary pressures with non-equilibrium 
effects. Further, it has been adapted to scale the bacterial-sized effec-
tive nutrient diffusion uptake as well as other microscale properties in 
accordance with first-order uptake kinetics through a locally periodic 
array of spherical bacteria. The flow in carbonate rocks consisting of 
complex geological structures like solution-collapse breccias and frac-
tures was described by Lopes et al. [177] by using a novel three-scale 
(micro, meso, macro) computational model. Their model was devel-
oped based on a homogenization procedure that was reiterated by the 
substitution of equivalent continua with computed properties from ho-
mogenization schemes that are self-consistent. 

Alongside the requirements for scale separation and geometry peri-
odicity, another two implicitly assembled assumptions are made when 
applying periodicity: stationarity of conditions and local equilibrium. 
Thus, while homogenization is valid to recover an asymptotic stationary 
macroscopic model, it is not reliable for processes with long transition 
times or lengths. For example, mixing has a long pre-asymptotic period, 
and thus homogenization might produce inaccurate results for evalu-
ating its initial variations. Compared to the spatial averaging method, 
which smooths and averages properties within a volume, homogeniza-
tion upscales by allowing the microscale approach to zero. An appealing 
feature of homogenization is that a closure scheme is not required to 
construct the transport equations at the macroscale, as is required for 
volume averaging [178]. Homogenization is not limited to generating 
emerging macroscopic equations but rather is a rigorous and robust 
analysis of the multiscale features of the model that should be recom-
mended in practical applications. 

4.2. Method of moments 

The method of moments is a statistical approach to estimate popu-
lation parameters, such as the mean or variance [179]. The method was 
initially introduced by Aris [180] and was extended by Horn [181]. In 
principle, if the population parameter estimates are equal to the mo-
ments of a sample, then the statistics of the sample can be estimated and 
replaced by the population moments in the equations. Therefore, the 
method can be used to estimate the field-scale/block effective hydraulic 
conductivity from the local conductivity. Different from estimating the 
block conductivity from average flow discharge and hydraulic gradient, 
the method of moments rather finds a block value that is equivalent to 
the spatial moments of the hydraulic head in the heterogeneous medium 
[182]. To implement the method of moments, the geological formation 
needs to be assumed to possess periodic hydrological and geochemical 
characteristics in all directions. The periodicity means that the associ-
ated parameters repeat themselves with a specified period, which is 
much smaller than the scale of the concerned domain. With the efforts of 
researchers, the results can now be expanded to more general cases, 

which will be discussed in a subsequent section. 
Macroscopic solute transport is governed by the mean velocity vector 

and dyadic dispersion coefficients. Expressions can be derived for these 
apparent coefficients by using the generalized Taylor-Aris dispersion. 
The application of the method of moments usually includes four steps. 
First, a governing partial differential equation needs to be formulated 
with a distribution of head or solute concentration ϕ(t, X), which is a 
function of time and space. For an unsteady flow through a 3D, confined, 
anisotropic, heterogeneous formation of a compressible matrix without 
sources or sinks, the governing equation is [183], 

S(X)
∂ϕ(t,X)

∂t
= ∇∙[K(X)∙∇ϕ(t,X)] (4.2) 

From the periodic assumption in space, a vector of spatial co-
ordinates X may be expressed as the sum of an unbounded global vari-
able and a bounded local variable [179], i.e., X=Xn + x, therefore, ϕ(t,
X)=ϕ(t,Xn,x). Second, the local spatial moments of the hydraulic head 
or the solute concentration can be defined as [183]: 

mp(t, x) =
∑

n
Xp

nϕ(t,Xn, x) (p = 0, 1, 2, ...) (4.3)  

where Σn denotes the triple summation 
∑∞

nx=− ∞
∑∞

n2=− ∞
∑∞

n3=− ∞ . Xp
nis a 

coordination-related term and known as a p-adic. The corresponding 
moments are determined by the value of p. For example, if p = 0, Xn = 1. 
The zeroth moment m0(t,x) is then the sum of the variables at all points 
of the domain with local coordinates x; for p = 1, Xn

1 is a 3D vector of 
coordinates indicating the origin of the nth unit element; for p = 2, Xn

2 is 
the second-order tensor whose ijth element is the product of the i and j 
element of Xn, and so on [184]. Correspondingly, the global moments 
are then defined as the integral of local moments over the local domain 
[183]. 

Mp(t) =
∫

V0

mp(t, x)d3x (p = 0.1, 2, ...) (4.4)  

where V0 denotes a unit element domain and d3x represents a differ-
ential volume in the unit element. Third, a governing equation in terms 
of the local moments as variables needs to be generated. This can be 
derived by multiplying Eq. (4.2) by Xp

n and summing them together with 
the overall unit elements, the result is the rate of change of the local 
moments, which reaches a steady state and equals zero [183]. The 
derived equation is expressed as, 

S(x)
∂mp(t, x)

∂t
= ∇∙

[
K(x)∙∇mp(t, x)

]
(4.5) 

Last, the zero-, first- and second-order global moments are obtained 
with the solution of the local moments since certain boundary 

Fig. 7. Spatially periodic models of porous media with a two-dimensional array of cylinders (revised based on da Silva et al. [169]).  
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conditions imposed at the surfaces of the unit element are satisfied by 
the local moments [185]. The zero-order moment (M0) is a scalar that 
characterizes the total change in the hydraulic head or solute concen-
tration. Here, it is also assumed that there is a gradually varying flow, 
which suggests that the hydraulic head fluctuations have a correlation 
length that is larger than that of the local hydraulic conductivity and 
specific storage fluctuations [186]. The first-order moment is a vector 
where the ratio M1/M0 represents the location of the centroid of the 
distribution and the second-order moment is the matrix of dyadic where 
M2/M0 indicates the mean square deviation of the distribution. By 
defining the effective parameters in terms of the global moments under 
local equilibrium conditions, we can finally have the expression of the 
effective asymptotic parameters [187], such as the macrodispersion in 
[179]. 

D* =
1
2

lim
t→∞

d
dt

(
M2

M0
−

M1M1

M2
0

)

(4.6) 

Kitanidis [188] derived general expressions for effective conductiv-
ity by solving the first spatial moment of the solute concentration in 
heterogeneous porous media with random time-invariant flow veloc-
ities. The expressions of macrodispersion of sorbing solutes are inves-
tigated, and it was found that a second term and a third term were 
integrated by the longitudinal macrodispersion, and these terms account 
for the effect of averaging the distribution coefficient and the first-order 
sorption rate in the equilibrium and kinetic sorption relation, separately 
[185]. Field formations exhibit recurrent geochemical characteristics 
which are not absolutely periodic, and as such, a porous medium that is 
assumed to be geochemically spatial and periodic may be criticized. 
Mathematically, it is beneficial, as it can be used to obtain expressions 
that are exact. Apart from the ease in representing spatial repetitiveness, 
the periodic model can also be used in the more general stationary case 
to obtain results as an intermediate step, as demonstrated by Kitanidis 
[189] for the hydraulic conductivity case. 

Schemes based on the method of moments have already been pro-
posed in the literature for formulating an effective equation and calcu-
lating the effective coefficients appearing therein to study the influence 
of multiple reactive processes on contaminant transport and fate across 
multiple scales [190]. Effective velocity, effective dispersion coefficient, 
and effective sorption rate at the macroscale are all investigated in the 
upscaled moment equation. Kitanidis [189] derived general expressions 
for effective conductivity by solving the first spatial moment of the so-
lute concentration in heterogeneous porous media with random, time- 
invariant flow velocities. The expressions of macrodispersion of sorb-
ing solutes are investigated and found the longitudinal macrodispersion 
integrates a second and a third term that represents the effect of distri-
bution coefficient averaging and the first-order sorption rate in the 
equilibrium and kinetic sorption relation, separately [185]. By modeling 
the periodic medium as a discrete graphical network, the method is 
applied to homogenize the resulting global equation to explicitly express 
the effective solute velocity, the effective first-order irreversible reaction 
rate constant, and the effective dispersivity dyadic [191]. 

Other processes, such as sorption and matrix transport, are further 
derived with the method of moments for coupled transport with reactive 
species [185]. Moment analysis is also adapted to characterize the dis-
tribution of active microbial biomass and contaminants in aquifers and 
to calculate the field scale Monod parameters through the inverse 
coupling method [192]. The restrictiveness of periodic boundary con-
ditions may be less intuitive and has been addressed in the companion 
paper through several examples and by comparison with other methods 
which make different assumptions [193]. However, the moment 
computation for arbitrarily heterogeneous media is not always well 
understood [194] and a considerable amount of data is needed for the 
calculation of concentration moments. For a more general case of sta-
tionary random porous media, Vikhansk [195] developed an extended 
method of moments that allows the calculation of moments beyond the 

classical second-order. The generated higher moments allow quantifying 
the deviations from the solution predicted by the advection–diffusion 
equation for averaged concentration. 

4.3. Volume averaging 

Volume averaging is a method to upscale a wide range of ground-
water flow and transport parameters, including conductivity, dis-
persivity, and reaction coefficients. The fundamental idea of volume 
averaging is to upscale the solute transport governing equations at the 
Darcy-scale in a closed volume [196]. Application of this method re-
quires the making of various assumptions. First, the heterogeneous 
reservoir is treated as a combination of multiple homogeneous parts (i. 
e., different regions for pores and solids, different facies for mineral 
types, or different phases for fluid and biofilm). Second, the hierarchical 
structure or relationship between the parts is already known, and the 
conventional mass balance equation can be written for each of the ho-
mogeneous parts. Third, the reservoirs are statistically stationary with 
no strong changes. This is because when putting the averaged volume 
back into the reservoir, the volume fractions of each facies within the 
averaging volume do not change. In this way, hierarchical transition 
probability theory can be used to express relationships between property 
structures at different scales, enabling the representation of scale- 
dependent parameters such as matrix diffusion coefficient, fracture 
aperture, reaction rate coefficients, and dispersivities as functions of 
spatial scale [197]. 

To implement the volume averaging method, superficial and 
intrinsic volume averaging operators are defined [198]: 

〈ψk〉 =
1
V

∫

Vk

ψkdV (4.7)  

〈ψk〉
k
=

1
Vk

∫

Vk

ψkdV (4.8) 

The relationship of the averaging operators and the volume fraction 
of the k-region can be depicted as: 

〈ψk〉
k
= εk〈ψk〉

k
, εk = Vk

/
V (4.9)  

where V andVk represent the total and k-region encompassed geomet-
rical spaces, respectively. ψk denotes any concerned variable in the k- 
region. In a multi-facies geological reservoir, k is the k-th facies region 
[199]. In a porous medium encompassing a solid matrix and a void, k 
represents the porous particle phase or fluid phase, separately [200]. In 
a porous medium colonized by biofilms that include biologically- 
mediated reactions, k represents the mass conservation in the fluid 
and the biofilm [201]. 

As the derivation of the upscaled model involves significant algebraic 
effort which varies from case to case and may discourage non-specialists, 
the interested reader is referred to the detailed mathematical develop-
ment in the above literature. The volume-averaged equation for trans-
port in porous media with mineral surfaces can be derived by applying 
the volume averaging operators to the advection and dispersion terms in 
the multi-regional groundwater flow and transport equation. To suc-
cessfully smooth the variable in space, the appropriate shape and size of 
the averaging volume need to be chosen carefully. Aguilar-Madera et al. 
[202] used the volume averaging method to estimate effective co-
efficients in a one-equation model for solute transport in heterogeneous 
reservoirs. The closure schemes which support the calculation of the 
effective coefficients for varied arrangements of lithologies and sedi-
ments are illustrated in detail in [199]. Notably, the method often 
generates an array of unknown variables in representative geometries. 
In a reservoir containing k well-defined geological facies: a number of k2 

for ordinary and crossed dispersive coefficients; k2 for conservative and 
non-conservative ordinary and crossed pseudo-velocity, respectively; k 
for pseudo-absorption coefficients; k + 1 for mass transfer coefficients; 
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and the mass interchange coefficients are introduced into the developed 
averaged equations. These effective coefficients can be interpreted by 
considering the geometrical distribution of facies and associated phys-
ical mechanics that interplay at a small scale [199]. If the representative 
geometries of the reservoir involve boundary-value problems, the 
effective coefficients need to be recalculated based on the realistic study 
region. 

The volume averaging technique with closure has been successfully 
used to determine the effective dispersion tensor for homogeneous [203] 
and heterogeneous [204] porous media. The applications for upscaling 
reactive transport processes involving bimolecular reactions are inves-
tigated from the laboratory to the field scale [196]. Two limitations, one 
associated with the determination of the increased coefficients and 
another with the solving of the boundary constrained model, largely 
hinder the application to the heterogeneous subsurface. The extension to 
reservoirs with more than three facies is theoretically derivable but 
overwhelmingly complex. The multi-facies equations will yield much 
more averaged equations and effective coefficients than the two-facies 
equation. Generally, validation requires simplified geological parame-
ters, such as lenticular and layered reservoirs [199] or reversible liner 
heterogeneous chemical reactions in an in-line arrangement of spheres 
[205]. 

The volume averaging operators may also be applied to the mass 
transfer coefficient. Leung et al. [194] assessed the scaling characteris-
tics of effective mass transfer coefficient for non-reactive solute trans-
port. Dai et al. [64] upscaled the diffusion coefficient for multimodal 
fractured heterogeneous rocks from the laboratory to the field scale. By 
considering the diffusion coefficient (Dm) as lumped and spatially 
random, they used the matrix porosity and fracture aperture to estimate 
the mass transfer between the fractures and the matrix. The scale 
dependence of Dm is related to heterogeneity in physical and chemical 
matrix properties both within and across matrix units. The spatial-scale 
dependence of the effective Dm can be derived by constructing a 
covariance function of ln(Dm) with heterogeneous matrix properties 
characterization, assuming that the variance is smaller than unity. At the 
field scale, the effective Dm is controlled by both the domain size and 
laboratory-scale ln(Dm) statistics (i.e., geometric mean, variance, and 
integral scale). Its value is larger than the geometric mean of ln(Dm) and 
increases with the integral scales. The algorithm may be simplified for 
unimodal and bimodal distributions and can be used to upscale other 
effective parameters (i.e., effective retardation factor, effective sorption 
coefficient) [206]. The drawback of this approach is that its application 
has been only tested with synthetic Monte Carlo simulations and has not 
yet been applied to experimental or site collected data. The next 
extension of the effort will be to validate the volume averaging method 
by using observed data, and to incorporate the influence of other pro-
cesses that influence mass transfer, such as spatial variations in aperture 
size and matrix porosity. 

5. Stochastic upscaling and implementations 

5.1. Classical stochastic formulations 

In deterministic methods, the accuracy and robustness of a model 
could be improved by incorporating all the available field character-
izations and fitting its results to the history observations. However, the 
uncertainties are still inhered in any geoscience modeling. A popular 
approach is to acknowledge the fact that the subsurface information 
cannot be completely acquired and uses a “process-based” model instead 
of a single realization to represent the uncertainties of a partially char-
acterized formation with geostatistically valid results [207]. In the sto-
chastic approach, the essential is to solve ensemble-average equations of 
flow and transport with macroscopic variables, such as porosity, con-
ductivity, and dispersivity. Theoretical analysis from both the Eulerian 
and Lagrangian perspectives have been developed to describe the 
spreading of solutes; see, some pioneered work by Gelha and Axness 

[208]. These theories lead to the derivation of effective large-scale pa-
rameters, which corresponds to the upscaling of parameters over 
different scales of interest. In applications, the two methods tend to be 
equivalent and give similar results [209]. 

5.1.1. Perturbation theory 
Calculations of the ensemble moments, whether in the spectral 

domain or the actual physical domain, are adaptations of the pertur-
bation theory. We will take the integral spectral method as an example 
to illustrate how the perturbation methods incorporate upscaling. The 
equation for the ensemble-average variables in the spectral perturbation 
method is developed in terms of a perturbation series expansion. It de-
composes a stationary random variable into two parts: a constant 
ensemble average (bracketed value) and random perturbations with a 
mean of zero (marked value) caused by variability in the parameter 
field. For transient solute transport through a heterogeneous medium, 
the pertinent variables, concentration, and velocity are then expressed 
as c=〈c〉+c’ and u=〈u〉+u’ [24]. Removing the reaction terms, the 
governing Eq. (5.1) for the mean concentration can be expressed as 
[210] (The accuracy of stochastic perturbation solutions to subsurface 
transport problems) 

∂〈C〉

∂t
+

∂〈ui〉〈C〉
∂t

−
∂

∂xi

(

Dij
∂〈C〉
∂xj

)

=
∂

∂xi
〈 − ui’C’〉 (5.1) 

The term 〈 − ui’C’〉 is the so-called “closure” covariance and reflects 
additional mass transport due to correlation between the fluctuations of 
concentration and specified velocity. It generates a macroscopic 
dispersion effect at a large scale and can be approximated with Gelhar 
and Axness [210], 

∂
∂xi

〈 − ui’C’〉 ≈
∂

∂xi

(

D*
ij
∂〈C〉

∂xj

)

(5.2) 

If the closure term is evaluated, which is the key for solving the 
averaged equation, the macrodispersion tensor Dij* then can be derived. 
With the ease of governing equations of concentration perturbations 
when average flow occurs in direction i = 1, Gelhar and Axness [210] 
showed Dij* is proportional to the absolute value of migration velocity, 
as for the local dispersion tensor. 

α*
L(t) = D*

L11

/

〈u1〉 =

∫
1 − exp( − b〈u1〉t)

γ2b

(

1 −
s2

1

s2

)2

SYY(s)ds (5.3)  

where b = 2πis1 + 4π2αLs1
2 + 4π2αT(s2

2 + s3
3) and s=(s1,s2,s3) are the 

Fourier coordinates. SYY expresses the spectral density of the log- 
permeability field. Eq. (5.3) defines the correlation between macro-
dispersivity and log-permeability fluctuations. SYY,CYY is the Fourier 
transform of the log-permeability covariance function. The relationship 
that exists between macrodispersivity log-permeability fluctuations is 
established by the Fourier transform. An analytical method was devel-
oped by Liao et al to approximate numerical solutions in a finite dif-
ference scheme with periodic boundary conditions for two-dimensional 
problems [211]. The method utilizes expansion techniques and Fourier 
analysis to create explicit formulas of the equivalent conductivity tensor, 
while heterogeneity and anisotropy of two-dimensional space together 
with the geometry of grid blocks are considered. 

Besides the truncation method, the closure term can as well be 
approximated by Gaussian [212], random Green’s function methods 
[213], second-order asymptotic expansion approach [214], and Taylor 
series methods [215]. Li et al. [216] compared these methods and 
showed similar expressions to the perturbation method. However, the 
closure covariances in the alternative methods depend on the known 
deterministic solution rather than the unknown ensemble mean. The 
perturbations relatively give better accuracy. Further, Li and 
McLaughlin [216] devised a new spectral approach that can handle 
nonstationarity but preserving the attractive features of spectral analysis 
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at the same time. Ginting [217] employed perturbation analysis to 
derive macro-diffusion. 

5.1.2. Lagrangian-based approach 
The Lagrangian-based transport model was initially introduced by 

Dagan [186] to carry out random simulations of solute spread in het-
erogeneous formations. It regards the solute as a set of indivisible par-
ticles which move through the heterogeneous formation driven by fluid 
convection and diffusion [25,218]. Early studies focused almost entirely 
on the spatial variation of permeability [53]. Similar to the perturbation 
theory, macrodispersivity can be characterized by the Lagrangian ve-
locity covariance. Rubin [219] developed the formulas for the univari-
ate and bivariate statistics of ln(k) for bimodal media. Later, the 
underlying sedimentary architecture was considered to assess the 
intrinsic natural variability in attributes affecting subsurface transport 
[8]. The spatial correlation structure in multimodal [220] and hierar-
chical multimodal frameworks have been developed [221]. The transfer 
probability is often needed in the framework to estimate the conditional 
probability of one reactive assemblage occurring at one location while 
the other reactive facies occur at a different location [197]. Then the 
solute transport distribution in space and time domains can be calcu-
lated by using analytical or numerical integration [222]. 

An advantage of particle-based methods is that they ignore the re-
strictions of the analytical methods. These approaches do not require 
any kind of functional form for the hydraulic properties or the spatial 
correlation of their structure, and ranges of variability have no re-
strictions. Lagrangian numerical schemes with local assumptions are 
flexible as well because the traditional global assumptions such as 
ergodicity, small global variance, stationarity, or single correlation scale 
are avoided. Though the assumption is not required here, the concept of 
covariance is still needed in the formulation. 

Considering a domain composed of N mutually exclusive facies 
defined by ln(k), the corresponding hierarchical (two levels) multimodal 
mean, variance, and spatial covariance of ln(k) for the whole domain are 
expressed as [223,224]: 

mY =
∑N

i=1
pimi (5.4)  

σ2
Y =

∑N

i=1
piσ2

i +
1
2
∑N

i=1

∑N

j∕=i
pipj

(
mi − mj

)2 (5.5)  

CY(h) =
∑N

i=1

∑N

j=1

{
Cij(h) + mimj

}
pitij(h) − m2

Y (5.6)  

where piand mi are the volume proportion and the mean ln(k) of facies i, 
respectively. Cij(h) is the spatial covariance within (for i = j) or across 
facies (for i∕=j). tij(h) is the conditional probability for the transition from 
facies i to facies j with lag distance h, expressed as: 

tij(h) =
pr
{

Ij(x + h) = 1
}

pr{Ii(x) = 1}
(5.7)  

where Ii(x) is the space random function (SRF), equal to 1 if facies type i 
at location x and otherwise equals to 0. 

The spatial correlation models developed here can include any 
number of hierarchical levels (more details available in [225;226]). To 
evaluate scale-dependent macrodispersivity, Dagan [35] and Rubin 
[219] calculated the velocity covariance as: 

ûij(K) = U2
1

(

δ1i −
kik1

k2

)(

δ1j −
kjk1

k2

)

ĈY(K)(i, j = 1,⋯, d) (5.8)  

where uij is the covariance of velocity between ith and jth facies, the 
circumflex denotes the Fourier transform operator, δ1i is the Kronecker 
delta, U1 is the mean velocity (here, the mean velocity direction is the x 
direction), k is the modulus of the vector K, and d denotes spatial 
dimension. 

By assuming that the solute particle velocity is approximated as first 

order, the macrodispersion tensor can be obtained by: 

Dij(t) =
∫ t

0
uij(U1t’)dt’ (5.9)  

where Dij are the macrodispersion coefficients in the longitudinal (i,j =
1), transverse (i,j = 2), and lateral directions (i,j = 3). 

The Lagrangian approach is attractive because it provides a realistic 
link between geological sedimentary data and solute transport behavior, 
which gives a better understanding of how the variability in physical 
and chemical properties at different scales impacts the solute behavior in 
whole porous or fractural media. The Lagrangian-based model also 
provides an effective way to address scale-dependent transport param-
eters [227]. It uses stochastic averaging to incorporate the effects of 
small-scale spatial variability on solute transport. To consider reactive 
solute transport undergoing equilibrium sorption within a unimodal 
porous media, Bellin et al. [228] extended Dagan’s classic solution for 
non-reactive solute transport by incorporating heterogeneity in chemi-
cal properties. Rajaram [229] then derived the analytical solution of the 
scale-dependent effective retardation for unimodal porous media by 
using the Lagrangian approach and gave an expression for the reactive 
solutes’ Lagrangian velocity and its covariance. 

To address the limitation of weak heterogeneity (as occurs when the 
global log conductivity variance (σ2

Y) is less than unity) associated with 
the first-order approximation, Cvetkovic et al. [230] developed 
physically-based transport models suitable for highly heterogeneous 
formations (σ2

Y = 16). Recently, many studies have focused on devel-
oping the spatial correlation structure in the multimodal [231] and hi-
erarchical multimodal frameworks [8] because it is more realistic when 
the correlation scale is neither single nor finite valued [2]. Deng et al. 
[232] extended the effective retardation developed by Rajaram [229] to 
hierarchical multimodal media. Based on their results, Soltanian et al. 
[233] formulated the reactive macrodispersivity within a hierarchical 
multimodal framework. The hierarchical multimodal Lagrangian-based 
transport model can incorporate the physical properties of the forma-
tion, such as volume proportion or mean length, to estimate the trans-
port parameters [234]. Since geological data is much more abundant 
than permeability measurements, a more accurate spatial correlation 
structure of permeability can be obtained [207]. Also, since the 
Lagrangian framework is suitable for stable numerical computation, the 
Lagrangian numerical method also avoids the traditional global as-
sumptions of the analytical method [235]. In the Lagrangian numerical 
framework, the assumptions are local (within the scale of computational 
grids), making it an effective tool to bridge the gap between lab-scale 
measurements and field-scale estimates of transport parameters. 

The Lagrangian particle-tracking and reaction method is a generated 
Lagrangian method that has been successfully used to quantify chemical 
heterogeneity in diffusion-controlled bimolecular reactions [236]. It is 
further extended to upscale Monod-type reactions in realistic field 
bioremediation experiments from column or batch scale experiments 
[237]. The gap between theory and practice that was proposed can be 
partially closed if user-friendly stochastic subsurface hydrology toolkits 
are developed [238,239]. Over the years, some toolkits have been pro-
grammed and tried to be extended to communities [240,241]. But the 
efficiency produced seems not quite evident and the applications are still 
on the way. 

5.2. Stochastic fractals 

The fractal geometry method deals mainly with the distribution of 
the media’s intrinsic characterizations or structure, such as pore prop-
erties. To expand the application of fractal theory to dynamic flow and 
transport processes in heterogeneous aquifers, time-series and spatial 
variations have been considered in the fractal with time as the inde-
pendent variable. Fractional Brownian motion (FBM) is a common sta-
tistical model that parsimoniously explains the expansion of 
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heterogeneity at all scales. Other correlation models include, but are not 
limited to, fractal dimensions, fractional Brownian noise, fractal tra-
jectories, Hurst coefficient models, Taylor random walks, and fractional 
Levy motions [242]. Using the concept of scale constancy, these models 
are capable of quantifying heterogeneous hydraulic properties in both 
space and time. 

Considering FBM as an example of a commonly used fractal model of 
heterogeneity, the FBM BH(t) is a statistically self-similar Gaussian 
process with respect to the Hurst exponent H (0 < H < 1), which decays 
as a power law [243]. The FBM is defined through its increments WH(t,s) 
= BH(t)-BH(s), which are normally distributed with N(0,(t-s)2H) but not 
independent. A one-dimensional FBM that passes through the origin (i. 
e., BH(0) = 0 at t = 0) can be expressed as the difference between the 
original notation of FBM and the value of the random function at t =
0 [244].  

where Γ is the Gamma function and B(s) represents a Brownian process 
that possesses zero mean and unit variance. The exponent H controls the 
correlation of the FBM function, and its value dictates the diffusion type 
manifested by the FBM process. The expression 0 < H < 1/2 corresponds 
to a negative correlation zone, which represents a subdiffusive or anti- 
persistent behavior. The value H = 1/2 indicates zero correlation, and 
represents a unique instance of Gaussian noise, random walk, or in-
crements of Brownian motion, which models Fickian diffusion. Positive 
correlation is given by 1/2 < H < 1, where the FBM models super-
diffusion, or persistent behavior [245]. 

E[BH(t)BH(s) ] =
1
2
{

t2H + s2H − (t − s)2H }
(5.11)  

〈
x2(t)

〉
= E

[
B2

H(t)
]
= t2H (5.12) 

The applications of FBM are broad. By assuming that the semi-
variogram of log hydraulic conductivity fluctuation is fractal, Neuman 
[38] developed a so-called “universal” scaling rule to upscale hydraulic 
conductivity and dispersivity. The derived upscaling equation can be 
applied to a wide range of scales and a broad class of geological media. 
The method can characterize one property as a single fractal geometry or 
may be extended to characterize the distribution of hydraulic conduc-
tivity with varied fractal dimensions in a multi-fractal system [246]. The 
work indicated that the variation of K is different from the character-
istics of monofractals, which are more heterogeneous at smaller scales 
than larger scales. 

For its application in Fickian-type diffusion, a time-dependent 
diffusion coefficient D(t) can be derived with the constant fractal 
diffusion coefficient DH, D(t) = 2HDH t2H− 1. Zhokh and Strizhak [247] 
developed a model to mimic the non-Fickian growth observed in field 
site plumes based on the fractal-like dispersive behavior of dispersing 
particles transported through subsurface porous media. Zhokh and 
Strizhak [248] developed and compared diffusion scaling equations 
based on time-fractional diffusion, the standard diffusion, and the FBM 
in a porous pellet, respectively, and found no significant discrepancies 
among the results. 

Rather than use the correlation of hydraulic conductivity, Nduny and 
Addison [249] extended the FBM to generate scale-dependent disper-
sion by assuming that the movement of water and dispersing solute 
particles are self-affine fractals. Agboola et al. [250] showed that the 
surface and volume of adsorbent particles might also have scale- 
invariant properties, and thus fractal behavior may be considered in 

the sorption process. The fractal description may also predict the reac-
tion rate by assuming that reaction rates are scale-dependent, as given in 
basalt weathering at a given length scale from BET scale reaction rate 
[251]. Groundwater flow and transport through various media can also 
be represented through the adaptation of the fractal concept. Lu et al. 
[252] developed a novel, fractional derivative of the advec-
tion–dispersion-reaction equation to simulate the first-order decay of 
nitrate in porous media. Concurrently, Nikan et al. [252] efficiently 
solved the fractal mobile-immobile transport model using a technique 
based on radial basis function-generated finite difference. 

5.3. Strengths and limitations of analytical and numerical solutions 

The attractiveness of the analytic method resides in its simplicity of 
using statistical characteristics to represent properties of a whole for-

mation. However, it is restricted by assumptions made that are needed to 
gain the well-posedness (closure) of the stochastic equations (see a 
discussion by Wood et al. [204]). The restrictive global assumptions are 
required because they are based on analytical tools such as Fourier 
analysis. Common assumptions include:  

(1) Ergodicity. This means a single scale of spatial correlation, or, at 
the other extreme, a continuous (fractal) correlation scale exists 
with a critical correlation range [253]. Meanwhile, the scale of 
plume motion is long compared to spatial correlation scales of 
heterogeneity. Therefore, in layered sediments or strata, the 
method is not quite effective;  

(2) Statistical stationarity. A lognormal or bi-variate distributed 
conductivity field that allows its entire probability density func-
tion is described with the first two moments;  

(3) The results are mostly valid for small variances where σ2
Y < 1 in 

spatial heterogeneity though some stochastic methods can be 
applied to relatively high values. The effective parameters could 
be greatly underestimated in high heterogeneous media;  

(4) Infinite or unbounded domain extent. This guarantees to produce 
the covariance or variogram between head/concentration and 
conductivity/transmissivity. The assumption is acceptable at 
distances far from the no-flow or constant boundaries, but not 
feasible for complex boundaries. 

In practice, the stochastic models are occasionally used in the 
modeling of tracer propagation in natural subsurfaces and laboratory 
columns and fit experimental data well. But as the above assumptions 
are in contradiction with the experiment settings, the results are not 
accurate enough to explain how the solute dispersion is affected by 
porous matrix structure or its sorptive properties. At last, detailed 
sedimentary statistical architecture data is always required to provide 
accurate quantification of spatial correlation structures [207]. In 
application, the data is often obtained through geophysical methods not 
easy, especially for high spatial resolution data. That is the reason why 
the field tests of such methods are only conducted in several sites, 
including Espanola Basin, New Mexico [254], and Borden site, Canada 
[255]. The extent to which the resolution of sedimentary architecture 
data affects the prediction accuracy was discussed in Dai et al. [207]. 

Besides characterizing the random parameter field with moments, 
we can obtain the full distribution directly with the numerical frame-
works. The numerical approach deploys Monte Carlo methods, Bayesian 

BH(t) =
1

Γ(H + 0.5)

(∫ 0

− ∞

[
(t − s)H− 1/2

− ( − s)H− 1/2
])

dB(s)+
∫ t

0
(s − H)

H− 1/2dB(s) (5.10)   
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and other conditioning methods, to simulate a large amount of re-
alizations to represent the uncertainties of the formation with geo-
statistically valid results [256]. The Monte Carlo methods may analyze 
the ensemble statistics of the head and concentration fields or solve the 
moment equations themselves [257]. The strength of the numerical 
method lies in its robustness in representing formation heterogeneities. 
The development of computing ability and capacity further extends its 
applications. 

5.4. Implementation of stochastic methods 

With the extensive achievements and “stochastic revolution” over 
the past 20 years, an enormous number of theoretical publications have 
been produced. However, practical applications of stochastic methods in 
the hydrological community to aquifer management still largely fall 
behind. Reasons for why there has been a low impact of stochastic 
subsurface hydrology on practice have been explored by Cirpka and 
Valocchi [258]. Efforts for commonly blamed shortcomings such as 
developing computational tools and training have been gradually made 
to minimize the gap between theories and applications and encourage 
the hydrologists to apply it regularly to aquifer modeling and manage-
ment. Liu et al. [259] developed a code MODFLOW-STO that attached 
the stochastic analysis to widely used codes MODFLOW-2000. Unfor-
tunately, as it needs large field-site data, a multidisciplinary effort 
involving geostatistical, stochastic, and involvement of numerical 
modelers, and real-world applications are still limited. 

In contrast, the analysis based on the concept of Monte Carlo analysis 
associated with the uncertainty analysis in groundwater management is 
widely adopted both in academia and industry. This partly benefits from 
the rich software or codes for sampling, and their flexibility of coupling 
with the modeling software partly benefits from the rapid development 
of computational capacity, which greatly reduces the cost for numerous 
model runs. 

6. Summary and future prospects 

With the understanding of the physical and chemical properties of 
subsurface systems, large-scale accurate estimations of effective pa-
rameters are needed for characterizing subsurface processes across 
different spatial scales. Significant and up-to-date approaches of 
upscaling flow and transport processes from lab to field scales are 
reviewed. There is certainly no universal agreement on which method is 
superior to the others. Different schemes/algorithms display varying 
degrees of rigor and sophistication. The comparisons of the various 
methods are quite rare in a general framework. Various points exist 
when considering the difficulty of acquiring porous media property 
distributions and the assumptions needed to perform valid analyses. 
Therefore, the choice of an appropriate method is always case- 
dependent. 

First, it is needed to characterize and identify the flow and transport 
mechanisms and the parameters involved in the model being addressed. 
Definitely, more choices are provided for upscaling conductivity or 
dispersivity than reactive geochemical parameters. The implementation 
of upscaling processes is relatively simpler for flow processes than for 
transport and reaction processes. If we intend to upscale reaction rates, 
the asymptotic and volume averaging methods are preferred. Therefore, 
the derivation of governing equations in field scale is inevitable. 

Second, the heterogeneity level and distribution properties do affect 
the choice of upscaling methods. If the formation heterogeneity is high 
with a large log permeability variance, the general stochastic method 
may not be applicable. But, in practice, the related requirements such as 
stationarity, ergodicity, mean uniform flow, and Gaussian distribution 
could often be substantially relaxed. A comparison can be conducted to 
check how the results deviated from the observations and whether they 
can be accepted for practical purposes. Wavelet analysis is a good choice 
for highly heterogeneous formations, especially when the hydraulic 

conductivity distribution has a wide range. If non-Fickian transport is 
obvious in the heterogeneous formation, the upscaled equations are 
better to capture the long-lasting solute transport tail. 

Third, the upgridding levels that the model supposes to be coarsened 
play a role in the model selection. The physically-based methods are 
favorable to highly disordered porous media, but so far, very few field 
application cases have been published yet. On the other hand, the fractal 
and machine learning methods have been extensively applied for pore- 
scale flow and transport problems such as porous structure character-
ization and permeability scaling. 

Forth, the quality and quantity of available data play an important 
role in the upscaling method selection. As discussed above, the con-
ventional standard field data are often too limited to provide sufficient 
geostatistical measurements needed for upscaling flow and transport 
parameters with stochastic methods. Solving the stochastic equations 
with time- or space-dependent parameters is an option to establish 
directly the quantitative relationship between the laboratory- and field- 
scale parameters. The target observations like hydraulic heads or con-
centrations are as well important for model calibration in the scale of 
interest. The lack of structure information of the subsurface formations 
sometimes can be compensated with large observations with parameter 
prior information or scenario analysis under a Monte Carlo scheme. 

In addition, an open question has been raised about if one can make 
so-called “deterministic” predictions in the modeling process, especially 
when considering the uncertainty or chaos generated in the upscaling 
process. Though limitations in the specific method often motivate many 
investigators to revert and employ conventional advection–dispersion 
equation approaches in practice for considering the natural heteroge-
neity, it can be marked that the simulations are intrinsically uncertain 
due to current economic and technical limitations. Instead of obtaining a 
perfectly accurate solution of a single realization that is likely not rep-
resented by real-world properties, probabilistic results with uncertainty 
quantification offer a new perspective to capture and characterize the 
subsurface heterogeneity. With the development of newer uncertainty 
quantification algorithms based on deep learning and big data tech-
niques, future subsurface characterizations would obtain more powerful 
computation resources and reliable parameter upscaling results. 

Although substantial advances have been achieved on upscaling 
method development in recent decades, there are still a couple of 
drawbacks or difficulties affecting the application of the upscaling 
methods. One of the most serious drawbacks or bottlenecks is the lack of 
sufficient multi-scale geological data for applying the upscaling algo-
rithms. New geophysical measurement technologies such as electrical 
resistivity, ground-penetrating radar, and passive seismic imaging all 
have potential in big data acquirement for subsurface characterization 
with much better resolutions. The artificial intelligence originated 
methods applied in geology with a big database would inspire more 
geophysical projects for property measurements at different scales. 

Another drawback is that though many analytical and numerical 
upscaling studies have been published, only a small number of field case 
applications are available for strictly validating these upscaling algo-
rithms. Without enough large-scale field observations for verification, it 
is hard to judge whether an upscaled parameter provides a good or bad 
prediction. It is worth conducting more field-scale transport experiments 
to verify the effectiveness and applicability of upscaling techniques and 
upscaled parameters. 

In conclusion, this study provides valuable insights for a better un-
derstanding of multiscale subsurface systems. With this review, people 
who are not familiar with upscaling concepts can have an initial un-
derstanding of subsurface scaling issues and start to apply upscaling 
techniques for solving practical geological and energy problems. Besides 
the upscaling methods described in this paper, approaches such as 
multiscale finite element methods, non-local multi-continuum method, 
and other methods that directly deal with upscaling are increasingly 
applied in the flow and transport processes. Although upscaling ap-
proaches have been studied for a few decades, they are generally 
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abstract, complex, and difficult to implement even for scientists who 
developed them. Currently, upscaling accuracy, flexibility, efficiency, 
and robustness need further verification and justification. These chal-
lenges provide great motivation for continued research into upscaling 
algorithms for effectively addressing fluid flow and transport processes 
in heterogeneous media. A generic integrated upscaling framework is 
needed to incorporate the current upscaling algorithms, uncertainty 
quantification techniques, data sciences, and artificial intelligence for 
further investigation to bridge the gap between upscaling algorithms 
and real-world applications for energy and environmental engineering 
in the future. 
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[121] Guéguen Y, Le Ravalec M, Ricard L. Upscaling: effective medium theory, 
numerical methods and the fractal dream. Pure Appl Geophys 2006;163(5–6): 
1175–92. 

[122] Xu P, Li C, Qiu S, Sasmito AP. A fractal network model for fractured porous 
media. Fractals 2016;24(02):1650018. 

[123] Mandelbrot BB. The fractal geometry of nature. New York: Freeman; 1983. 
[124] Molz FJ, Rajaram H, Lu S. Stochastic fractal-based models of heterogeneity in 

subsurface hydrology: Origins, applications, limitations, and future research 
questions. Rev Geophys 2004;42(1). 

[125] Velde B, Dubois J, Moore D, Touchard G. Fractal patterns of fractures in granites. 
Earth Planet Sci Lett 1991;104(1):25–35. 

[126] Yu Xu, Regenauer-Lieb K, Tian F-B. Effects of surface roughness and derivation of 
scaling laws on gas transport in coal using a fractal-based lattice Boltzmann 
method. Fuel 2020;259:116229. https://doi.org/10.1016/j.fuel.2019.116229. 

[127] Gimenez D, Perfect E, Rawls WJ, Pachepsky Y. Fractal models for predicting soil 
hydraulic properties: A review. Eng Geol 1997;48(3–4):161–83. 

[128] Su N, Sander GC, Liu F, Anh Vo, Barry DA. Similarity solutions for solute transport 
in fractal porous media using a time-and scale-dependent dispersivity. Appl Math 
Model 2005;29(9):852–70. 

[129] Wheatcraft SW, Tyler SW. An explanation of scale-dependent dispersivity in 
heterogeneous aquifers using concepts of fractal geometry. Water Resour Res 
1988;24(4):566–78. 

[130] O’Shaughnessy B, Procaccia I. Analytical Solutions for Diffusion on Fractal 
Objects. Physrevlett 1985;54(5):455–8. 

[131] Guarracino L, Rötting T, Carrera J. A fractal model to describe the evolution of 
multiphase flow properties during mineral dissolution. Adv Water Resour 2014; 
67:78–86. 

[132] Selmi T, Seffen M, Sammouda H, Mathieu S, Jagiello J, Celzard A, et al. Physical 
meaning of the parameters used in fractal kinetic and generalised adsorption 
models of Brouers-Sotolongo. Adsorption 2018;24(1):11–27. 
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