426 research outputs found

    Finding and Mitigating Geographic Vulnerabilities in Mission Critical Multi-Layer Networks

    Get PDF
    Title from PDF of title page, viewed on June 20, 2016Dissertation advisor: Cory BeardVitaIncludes bibliographical references (pages 232-257)Thesis(Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2016In Air Traffic Control (ATC), communications outages may lead to immediate loss of communications or radar contact with aircraft. In the short term, there may be safety related issues as important services including power systems, ATC, or communications for first responders during a disaster may be out of service. Significant financial damage from airline delays and cancellations may occur in the long term. This highlights the different types of impact that may occur after a disaster or other geographic event. The question is How do we evaluate and improve the ability of a mission-critical network to perform its mission during geographically correlated failures? To answer this question, we consider several large and small networks, including a multi-layer ATC Service Oriented Architecture (SOA) network known as SWIM. This research presents a number of tools to analyze and mitigate both long and short term geographic vulnerabilities in mission critical networks. To provide context for the tools, a disaster planning approach is presented that focuses on Resiliency Evaluation, Provisioning Demands, Topology Design, and Mitigation of Vulnerabilities. In the Resilience Evaluation, we propose a novel metric known as the Network Impact Resilience (NIR) metric and a reduced state based algorithm to compute the NIR known as the Self-Pruning Network State Generation (SP-NSG) algorithm. These tools not only evaluate the resiliency of a network with a variety of possible network tests, but they also identify geographic vulnerabilities. Related to the Demand Provisioning and Mitigation of Vulnerabilities, we present methods that focus on provisioning in preparation for rerouting of demands immediately following an event based on Service Level Agreements (SLA) and fast rerouting of demands around geographic vulnerabilities using Multi-Topology Routing (MTR). The Topology Design area focuses on adding nodes to improve topologies to be more resistant to geographic vulnerabilities. Additionally, a set of network performance tools are proposed for use with mission critical networks that can model at least up to 2nd order network delay statistics. The first is an extension of the Queueing Network Analyzer (QNA) to model multi-layer networks (and specifically SOA networks). The second is a network decomposition tool based on Linear Algebraic Queueing Theory (LAQT). This is one of the first extensive uses of LAQT for network modeling. Benefits, results, and limitations of both methods are described.Introduction -- SWIM Network - Air traffic Control example -- Performance analysis of mission critical multi-layer networks -- Evaluation of geographically correlated failures in multi-layer networks -- Provisioning and restoral of mission critical services for disaster resilience -- Topology improvements to avoid high impact geographic events -- Routing of mission critical services during disasters -- Conclusions and future research -- Appendix A. Pub/Sub simulation model description -- Appendix B. ME Random Number Generatio

    A Framework to Quantify Network Resilience and Survivability

    Get PDF
    The significance of resilient communication networks in the modern society is well established. Resilience and survivability mechanisms in current networks are limited and domain specific. Subsequently, the evaluation methods are either qualitative assessments or context-specific metrics. There is a need for rigorous quantitative evaluation of network resilience. We propose a service oriented framework to characterize resilience of networks to a number of faults and challenges at any abstraction level. This dissertation presents methods to quantify the operational state and the expected service of the network using functional metrics. We formalize resilience as transitions of the network state in a two-dimensional state space quantifying network characteristics, from which network service performance parameters can be derived. One dimension represents the network as normally operating, partially degraded, or severely degraded. The other dimension represents network service as acceptable, impaired, or unacceptable. Our goal is to initially understand how to characterize network resilience, and ultimately how to guide network design and engineering toward increased resilience. We apply the proposed framework to evaluate the resilience of the various topologies and routing protocols. Furthermore, we present several mechanisms to improve the resilience of the networks to various challenges

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial
    corecore