3,136 research outputs found

    Single-Event Upset Analysis and Protection in High Speed Circuits

    Get PDF
    The effect of single-event transients (SETs) (at a combinational node of a design) on the system reliability is becoming a big concern for ICs manufactured using advanced technologies. An SET at a node of combinational part may cause a transient pulse at the input of a flip-flop and consequently is latched in the flip-flop and generates a soft-error. When an SET conjoined with a transition at a node along a critical path of the combinational part of a design, a transient delay fault may occur at the input of a flip-flop. On the other hand, increasing pipeline depth and using low power techniques such as multi-level power supply, and multi-threshold transistor convert almost all paths in a circuit to critical ones. Thus, studying the behavior of the SET in these kinds of circuits needs special attention. This paper studies the dynamic behavior of a circuit with massive critical paths in the presence of an SET. We also propose a novel flip-flop architecture to mitigate the effects of such SETs in combinational circuits. Furthermore, the proposed architecture can tolerant a single event upset (SEU) caused by particle strike on the internal nodes of a flip-flo

    Vulnerability of CMOS image sensors in megajoule class laser harsh environment

    Get PDF
    CMOS image sensors (CIS) are promising candidates as part of optical imagers for the plasma diagnostics devoted to the study of fusion by inertial confinement. However, the harsh radiative environment of Megajoule Class Lasers threatens the performances of these optical sensors. In this paper, the vulnerability of CIS to the transient and mixed pulsed radiation environment associated with such facilities is investigated during an experiment at the OMEGA facility at the Laboratory for Laser Energetics (LLE), Rochester, NY, USA. The transient and permanent effects of the 14 MeV neutron pulse on CIS are presented. The behavior of the tested CIS shows that active pixel sensors (APS) exhibit a better hardness to this harsh environment than a CCD. A first order extrapolation of the reported results to the higher level of radiation expected for Megajoule Class Laser facilities (Laser Megajoule in France or National Ignition Facility in the USA) shows that temporarily saturated pixels due to transient neutron-induced single event effects will be the major issue for the development of radiation-tolerant plasma diagnostic instruments whereas the permanent degradation of the CIS related to displacement damage or total ionizing dose effects could be reduced by applying well known mitigation techniques

    Single Event Effect Hardening Designs in 65nm CMOS Bulk Technology

    Get PDF
    Radiation from terrestrial and space environments is a great danger to integrated circuits (ICs). A single particle from a radiation environment strikes semiconductor materials resulting in voltage and current perturbation, where errors are induced. This phenomenon is termed a Single Event Effect (SEE). With the shrinking of transistor size, charge sharing between adjacent devices leads to less effectiveness of current radiation hardening methods. Improving fault-tolerance of storage cells and logic gates in advanced technologies becomes urgent and important. A new Single Event Upset (SEU) tolerant latch is proposed based on a previous hardened Quatro design. Soft error analysis tools are used and results show that the critical charge of the proposed design is approximately 2 times higher than that of the reference design with negligible penalty in area, delay, and power consumption. A test chip containing the proposed flip-flop chains was designed and exposed to alpha particles as well as heavy ions. Radiation experimental results indicate that the soft error rates of the proposed design are greatly reduced when Linear Energy Transfer (LET) is lower than 4, which makes it a suitable candidate for ground-level high reliability applications. To improve radiation tolerance of combinational circuits, two combinational logic gates are proposed. One is a layout-based hardening Cascode Voltage Switch Logic (CVSL) and the other is a fault-tolerant differential dynamic logic. Results from a SEE simulation tool indicate that the proposed CVSL has a higher critical charge, less cross section, and shorter Single Event Transient (SET) pulses when compared with reference designs. Simulation results also reveal that the proposed differential dynamic logic significantly reduces the SEU rate compared to traditional dynamic logic, and has a higher critical charge and shorter SET pulses than reference hardened design

    SEU sensitivity and modeling using picosecond pulsed laser stimulation of a D Flip-Flop in 40 nm CMOS technology

    Get PDF
    International audience—This paper presents the design of a CMOS 40 nm D Flip-Flop cell and reports the laser fault sensitivity mapping both with experiments and simulation results. Theses studies are driven by the need to propose a simulation methodology based on laser/silicon interactions with a complex integrated circuit. In the security field, it is therefore mandatory to understand the behavior of sensitive devices like D Flip-Flops to laser stimulation. In previous works, Roscian et al., Sarafianos et al., Lacruche et al. or Courbon et al. studied the relations between the layout of cells, its different laser-sensitive areas and their associated fault model using laser pulse duration in the nanosecond range. In this paper, we report similar experiments carried out using a shorter laser pulse duration (30 ps instead of 50 ns). We also propose an upgrade of the simulation model they used to take into account laser pulse durations in the picosecond range on a logic gate composed of a large number of transistors for a recent CMOS technology (40 nm)

    STUDY OF SINGLE-EVENT EFFECTS ON DIGITAL SYSTEMS

    Get PDF
    Microelectronic devices and systems have been extensively utilized in a variety of radiation environments, ranging from the low-earth orbit to the ground level. A high-energy particle from such an environment may cause voltage/current transients, thereby inducing Single Event Effect (SEE) errors in an Integrated Circuit (IC). Ever since the first SEE error was reported in 1975, this community has made tremendous progress in investigating the mechanisms of SEE and exploring radiation tolerant techniques. However, as the IC technology advances, the existing hardening techniques have been rendered less effective because of the reduced spacing and charge sharing between devices. The Semiconductor Industry Association (SIA) roadmap has identified radiation-induced soft errors as the major threat to the reliable operation of electronic systems in the future. In digital systems, hardening techniques of their core components, such as latches, logic, and clock network, need to be addressed. Two single event tolerant latch designs taking advantage of feedback transistors are presented and evaluated in both single event resilience and overhead. These feedback transistors are turned OFF in the hold mode, thereby yielding a very large resistance. This, in turn, results in a larger feedback delay and higher single event tolerance. On the other hand, these extra transistors are turned ON when the cell is in the write mode. As a result, no significant write delay is introduced. Both designs demonstrate higher upset threshold and lower cross-section when compared to the reference cells. Dynamic logic circuits have intrinsic single event issues in each stage of the operations. The worst case occurs when the output is evaluated logic high, where the pull-up networks are turned OFF. In this case, the circuit fails to recover the output by pulling the output up to the supply rail. A capacitor added to the feedback path increases the node capacitance of the output and the feedback delay, thereby increasing the single event critical charge. Another differential structure that has two differential inputs and outputs eliminates single event upset issues at the expense of an increased number of transistors. Clock networks in advanced technology nodes may cause significant errors in an IC as the devices are more sensitive to single event strikes. Clock mesh is a widely used clocking scheme in a digital system. It was fabricated in a 28nm technology and evaluated through the use of heavy ions and laser irradiation experiments. Superior resistance to radiation strikes was demonstrated during these tests. In addition to mitigating single event issues by using hardened designs, built-in current sensors can be used to detect single event induced currents in the n-well and, if implemented, subsequently execute fault correction actions. These sensors were simulated and fabricated in a 28nm CMOS process. Simulation, as well as, experimental results, substantiates the validity of this sensor design. This manifests itself as an alternative to existing hardening techniques. In conclusion, this work investigates single event effects in digital systems, especially those in deep-submicron or advanced technology nodes. New hardened latch, dynamic logic, clock, and current sensor designs have been presented and evaluated. Through the use of these designs, the single event tolerance of a digital system can be achieved at the expense of varying overhead in terms of area, power, and delay

    Low-Cost Soft Error Robust Hardened D-Latch for CMOS Technology Circuit

    Get PDF
    In this paper, a Soft Error Hardened D-latch with improved performance is proposed, also featuring Single Event Upset (SEU) and Single Event Transient (SET) immunity. This novel D-latch can tolerate particles as charge injection in different internal nodes, as well as the input and output nodes. The performance of the new circuit has been assessed through different key parameters, such as power consumption, delay, Power-Delay Product (PDP) at various frequencies, voltage, temperature, and process variations. A set of simulations has been set up to benchmark the new proposed D-latch in comparison to previous D-latches, such as the Static D-latch, TPDICE-based D-latch, LSEH-1 and DICE D-latches. A comparison between these simulations proves that the proposed D-latch not only has a better immunity, but also features lower power consumption, delay, PDP, and area footprint. Moreover, the impact of temperature and process variations, such as aspect ratio (W/L) and threshold voltage transistor variability, on the proposed D-latch with regard to previous D-latches is investigated. Specifically, the delay and PDP of the proposed D-latch improves by 60.3% and 3.67%, respectively, when compared to the reference Static D-latch. Furthermore, the standard deviation of the threshold voltage transistor variability impact on the delay improved by 3.2%, while its impact on the power consumption improves by 9.1%. Finally, it is shown that the standard deviation of the (W/L) transistor variability on the power consumption is improved by 56.2%

    Study of radiation-tolerant integrated circuits for space applications

    Get PDF
    Integrated Circuits in space suffer from reliability problems due to the radiative surroundings. High energy particles can ionize the semiconductor and lead to single event effects. For digital systems, the transients can upset the logic values in the storage cells which are called single event upsets, or in the combinational logic circuits which are called single event transients. While for analog systems, the transient will introduce noises and change the operating point. The influence becomes more notable in advanced technologies, where devices are more susceptive to the perturbations due to the compact layout. Recently radiation-hardened-by-design has become an effective approach compared to that of modifying semiconductor processes. Hence it is used in this thesis project. Firstly, three elaborately designed radiation-tolerant registers are implemented. Then, two built-in testing circuits are introduced. They are used to detect and count the single event upsets in the registers during high-energy particle tests. The third part is the pulse width measurement circuit, which is designed for measuring the single event transient pulse width in combinational logic circuits. According to the simulations, transient pulse width ranging from 90.6ps to 2.53ns can be effectively measured. Finally, two frequently used cross-coupled LC tank voltage-controlled oscillators are studied to compare their radiation tolerances. Simulation results show that the direct power connection and transistors working in the deep saturation mode have positive influence toward the radiation tolerance. All of the circuit designs, simulations and analyses are based on STMicroelectronics CMOS 90 nm 7M2T General Process
    • …
    corecore