3,254 research outputs found

    Laser range data based semantic labeling of places

    Full text link
    Extending metric space representations of an environment with other high level information, such as semantic and topological representations enable a robotic device to efficiently operate in complex environments. This paper proposes a methodology for a robot to classify indoor environments into semantic categories. Classification task, using data collected from a laser range finder, is achieved by a machine learning approach based on the logistic regression algorithm. The classification is followed by a probabilistic temporal update of the semantic labels of places. The innovation here is that the new algorithm is able to classify parts of a single laser scan into different semantic labels rather than the conventional approach of gross categorization of locations based on the whole laser scan. We demonstrate the effectiveness of the algorithm using a data set available in the public domain. ©2010 IEEE

    Semantic grid map building

    Full text link
    Conventional Occupancy Grid (OG) map which contains occupied and unoccupied cells can be enhanced by incorporating semantic labels of places to build semantic grid map. Map with semantic information is more understandable to humans and hence can be used for efficient communication, leading to effective human robot interactions. This paper proposes a new approach that enables a robot to explore an indoor environment to build an occupancy grid map and then perform semantic labeling to generate a semantic grid map. Geometrical information is obtained by classifying the places into three different semantic classes based on data collected by a 2D laser range finder. Classification is achieved by implementing logistic regression as a multi-class classifier, and the results are combined in a probabilistic framework. Labeling accuracy is further improved by topological correction on robot position map which is an intermediate product, and also by outlier removal process on semantic grid map. Simulation on data collected in a university environment shows appealing results

    Supervised semantic labeling of places using information extracted from sensor data

    Get PDF
    Indoor environments can typically be divided into places with different functionalities like corridors, rooms or doorways. The ability to learn such semantic categories from sensor data enables a mobile robot to extend the representation of the environment facilitating interaction with humans. As an example, natural language terms like “corridor” or “room” can be used to communicate the position of the robot in a map in a more intuitive way. In this work, we first propose an approach based on supervised learning to classify the pose of a mobile robot into semantic classes. Our method uses AdaBoost to boost simple features extracted from sensor range data into a strong classifier. We present two main applications of this approach. Firstly, we show how our approach can be utilized by a moving robot for an online classification of the poses traversed along its path using a hidden Markov model. In this case we additionally use as features objects extracted from images. Secondly, we introduce an approach to learn topological maps from geometric maps by applying our semantic classification procedure in combination with a probabilistic relaxation method. Alternatively, we apply associative Markov networks to classify geometric maps and compare the results with a relaxation approach. Experimental results obtained in simulation and with real robots demonstrate the effectiveness of our approach in various indoor environments

    Semantic labeling of places using information extracted from laser and vision sensor data

    Get PDF
    Indoor environments can typically be divided into places with different functionalities like corridors, kitchens, offices, or seminar rooms. The ability to learn such semantic categories from sensor data enables a mobile robot to extend the representation of the environment facilitating the interaction withhumans. As an example, natural language terms like corridor or room can be used to communicate the position of the robot in a map in a more intuitive way. In this work, we firrst propose an approach based on supervised learning to classify the pose of a mobile robot into semantic classes. Our method uses AdaBoost to boost simple features extracted from range data and vision into a strong classifier. We present two main applications of this approach. Firstly, we show how our approach can be utilized by a moving robot for an online classification of the poses traversed along its path using a hidden Markov model. Secondly, we introduce an approach to learn topological maps from geometric maps by applying our semantic classification procedure in combination with a probabilistic relaxation procedure. We finally show how to apply associative Markov networks (AMNs) together with AdaBoost for classifying complete geometric maps. Experimental results obtained in simulation and with real robots demonstrate the effectiveness of our approach in various indoor environments

    Efficient exploration of unknown indoor environments using a team of mobile robots

    Get PDF
    Whenever multiple robots have to solve a common task, they need to coordinate their actions to carry out the task efficiently and to avoid interferences between individual robots. This is especially the case when considering the problem of exploring an unknown environment with a team of mobile robots. To achieve efficient terrain coverage with the sensors of the robots, one first needs to identify unknown areas in the environment. Second, one has to assign target locations to the individual robots so that they gather new and relevant information about the environment with their sensors. This assignment should lead to a distribution of the robots over the environment in a way that they avoid redundant work and do not interfere with each other by, for example, blocking their paths. In this paper, we address the problem of efficiently coordinating a large team of mobile robots. To better distribute the robots over the environment and to avoid redundant work, we take into account the type of place a potential target is located in (e.g., a corridor or a room). This knowledge allows us to improve the distribution of robots over the environment compared to approaches lacking this capability. To autonomously determine the type of a place, we apply a classifier learned using the AdaBoost algorithm. The resulting classifier takes laser range data as input and is able to classify the current location with high accuracy. We additionally use a hidden Markov model to consider the spatial dependencies between nearby locations. Our approach to incorporate the information about the type of places in the assignment process has been implemented and tested in different environments. The experiments illustrate that our system effectively distributes the robots over the environment and allows them to accomplish their mission faster compared to approaches that ignore the place labels

    Collective classification for labeling of places and objects in 2D and 3D range data

    Get PDF
    In this paper, we present an algorithm to identify types of places and objects from 2D and 3D laser range data obtained in indoor environments. Our approach is a combination of a collective classification method based on associative Markov networks together with an instance-based feature extraction using nearest neighbor. Additionally, we show how to select the best features needed to represent the objects and places, reducing the time needed for the learning and inference steps while maintaining high classification rates. Experimental results in real data demonstrate the effectiveness of our approach in indoor environments

    Semantic labeling of places

    Get PDF
    Indoor environments can typically be divided into places with different functionalities like corridors, kitchens, offices, or seminar rooms. We believe that such semantic information enables a mobile robot to more efficiently accomplish a variety of tasks such as human-robot interaction, path-planning, or localization. In this paper, we propose an approach to classify places in indoor environments into different categories. Our approach uses AdaBoost to boost simple features extracted from vision and laser range data. Furthermore,we apply a Hidden Markov Model to take spatial dependencies between robot poses into account and to increase the robustness of the classification. Our technique has been implemented and tested on real robots as well as in simulation. Experiments presented in this paper demonstrate that our approach can be utilized to robustly classify places into semantic categories

    Efficiently learning metric and topological maps with autonomous service robots

    Get PDF
    Models of the environment are needed for a wide range of robotic applications, from search and rescue to automated vacuum cleaning. Learning maps has therefore been a major research focus in the robotics community over the last decades. In general, one distinguishes between metric and topological maps. Metric maps model the environment based on grids or geometric representations whereas topological maps model the structure of the environment using a graph. The contribution of this paper is an approach that learns a metric as well as a topological map based on laser range data obtained with a mobile robot. Our approach consists of two steps. First, the robot solves the simultaneous localization and mapping problem using an efficient probabilistic filtering technique. In a second step, it acquires semantic information about the environment using machine learning techniques. This semantic information allows the robot to distinguish between different types of places like, e. g., corridors or rooms. This enables the robot to construct annotated metric as well as topological maps of the environment. All techniques have been implemented and thoroughly tested using real mobile robot in a variety of environments

    Knowledge Representation for Robots through Human-Robot Interaction

    Full text link
    The representation of the knowledge needed by a robot to perform complex tasks is restricted by the limitations of perception. One possible way of overcoming this situation and designing "knowledgeable" robots is to rely on the interaction with the user. We propose a multi-modal interaction framework that allows to effectively acquire knowledge about the environment where the robot operates. In particular, in this paper we present a rich representation framework that can be automatically built from the metric map annotated with the indications provided by the user. Such a representation, allows then the robot to ground complex referential expressions for motion commands and to devise topological navigation plans to achieve the target locations.Comment: Knowledge Representation and Reasoning in Robotics Workshop at ICLP 201
    corecore