335 research outputs found

    Power Electronics Applications in Renewable Energy Systems

    Get PDF
    The renewable generation system is currently experiencing rapid growth in various power grids. The stability and dynamic response issues of power grids are receiving attention due to the increase in power electronics-based renewable energy. The main focus of this Special Issue is to provide solutions for power system planning and operation. Power electronics-based devices can offer new ancillary services to several industrial sectors. In order to fully include the capability of power conversion systems in the network integration of renewable generators, several studies should be carried out, including detailed studies of switching circuits, and comprehensive operating strategies for numerous devices, consisting of large-scale renewable generation clusters

    Analysis, Design and Control of a Modular Full-Si Converter Concept for Electric Vehicle Ultra-Fast Charging

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Design and Advanced Model Predictive Control of Wide Bandgap Based Power Converters

    Get PDF
    The field of power electronics (PE) is experiencing a revolution by harnessing the superior technical characteristics of wide-band gap (WBG) materials, namely Silicone Carbide (SiC) and Gallium Nitride (GaN). Semiconductor devices devised using WBG materials enable high temperature operation at reduced footprint, offer higher blocking voltages, and operate at much higher switching frequencies compared to conventional Silicon (Si) based counterpart. These characteristics are highly desirable as they allow converter designs for challenging applications such as more-electric-aircraft (MEA), electric vehicle (EV) power train, and the like. This dissertation presents designs of a WBG based power converters for a 1 MW, 1 MHz ultra-fast offboard EV charger, and 250 kW integrated modular motor drive (IMMD) for a MEA application. The goal of these designs is to demonstrate the superior power density and efficiency that are achievable by leveraging the power of SiC and GaN semiconductors. Ultra-fast EV charging is expected to alleviate the challenge of range anxiety , which is currently hindering the mass adoption of EVs in automotive market. The power converter design presented in the dissertation utilizes SiC MOSFETs embedded in a topology that is a modification of the conventional three-level (3L) active neutral-point clamped (ANPC) converter. A novel phase-shifted modulation scheme presented alongside the design allows converter operation at switching frequency of 1 MHz, thereby miniaturizing the grid-side filter to enhance the power density. IMMDs combine the power electronic drive and the electric machine into a single unit, and thus is an efficient solution to realize the electrification of aircraft. The IMMD design presented in the dissertation uses GaN devices embedded in a stacked modular full-bridge converter topology to individually drive each of the motor coils. Various issues and solutions, pertaining to paralleling of GaN devices to meet the high current requirements are also addressed in the thesis. Experimental prototypes of the SiC ultra-fast EV charger and GaN IMMD were built, and the results confirm the efficacy of the proposed designs. Model predictive control (MPC) is a nonlinear control technique that has been widely investigated for various power electronic applications in the past decade. MPC exploits the discrete nature of power converters to make control decisions using a cost function. The controller offers various advantages over, e.g., linear PI controllers in terms of fast dynamic response, identical performance at a reduced switching frequency, and ease of applicability to MIMO applications. This dissertation also investigates MPC for key power electronic applications, such as, grid-tied VSC with an LCL filter and multilevel VSI with an LC filter. By implementing high performance MPC controllers on WBG based power converters, it is possible to formulate designs capable of fast dynamic tracking, high power operation at reduced THD, and increased power density

    Design and Control of Electrically Excited Synchronous Machines for Vehicle Applications

    Get PDF
    Electrically excited synchronous machines (EESMs) are becoming an alternative to permanent magnet synchronous machines (PMSMs) in electric vehicles (EVs). This mainly attributes to the zero usage of rare-earth materials, as well as the ability to achieve high starting torque, the effectiveness to do field weakening and the flexibility to adjust power factor provided by EESMs. Furthermore, in case of converter failure at high speed, safety can be improved by shutting down the field current in EESMs. The purpose of this study is to investigate the potential application of EESMs in EVs. To achieve this aim, several topics are covered in this study. These topics are studied to confront the challenges before EESMs could become prevalent and to maximumly use the advantages of EESMs for EV applications. In control strategies, the challenge is to properly adjust the combination of stator and field currents so that high power factor and minimum copper losses can be achieved. To tackle this, control strategies are proposed so that reactive power consumption and total copper losses are minimized. With the proposed strategies, the output power is maximized along the torque-speed envelope and high efficiency in field-weakening is achieved. In dynamic current control, due to the magnetic couplings between field winding and stator winding, a current rise in one winding would induce an electromagnetic force (EMF) in the other. This introduces disturbances in dynamic current control. In this study, a current control algorithm is proposed to cancel the induced EMF and the disturbances are mitigated. In machine design, high starting torque and effective field weakening are expected to be achieved in the same EESM design. To realize this, some criteria need to be satisfied. These criteria are derived and integrated into the design procedure including multi-objective optimizations. A 48\ua0V EESM is prototyped during the study. In experimental verification, a torque density of 10 N\ub7m/L is achieved including cooling jacket. In field excitation, a contactless excitation technology is adopted, which leads to inaccessibility of the field winding. To realize precise control of field current in a closed loop, an estimation method of field current is proposed. Based on the estimation, closed-loop field current control is established. The field current reference is tracked within an error of 2% in experimental verifications. The cost of an EESM drive increases because of the additional converter used for field excitation. A technique is proposed in which the switching harmonics are extracted for field excitation. With this technique, both stator and field windings can be powered using only one inverter. From all the challenges tackled in this study, it can be concluded that the application of EESMs in EVs is feasible

    Data Center Power System Emulation and GaN-Based High-Efficiency Rectifier with Reactive Power Regulation

    Get PDF
    Data centers are indispensable for today\u27s computing and networking society, which has a considerable power consumption and significant impact on power system. Meanwhile, the average energy usage efficiency of data centers is still not high, leading to significant power loss and system cost. In this dissertation, effective methods are proposed to investigate the data center load characteristics, improve data center power usage efficiency, and reduce the system cost. First, a dynamic power model of a typical data center ac power system is proposed, which is complete and able to predict the data center\u27s dynamic performance. Also, a converter-based data center power emulator serving as an all-in-one load is developed. The power emulator has been verified experimentally in a regional network in the HTB. Dynamic performances during voltage sag events and server load variations are emulated and discussed. Then, a gallium nitride (GaN) based critical conduction mode (CRM) totem-pole power factor correction (PFC) rectifier is designed as the single-phase front-end rectifier to improve the data center power distribution efficiency. Zero voltage switching (ZVS) modulation with ZVS time margin is developed, and a digital variable ON-time control is employed. A hardware prototype of the PFC rectifier is built and demonstrated with high efficiency. To achieve low input current total harmonic distortion (iTHD), current distortion mechanisms are analyzed, and effective solutions for mitigating current distortion are proposed and validated with experiments. The idea of providing reactive power compensation with the rack-level GaN-based front-end rectifiers is proposed for data centers to reduce data center\u27s power loss and system cost. Full-range ZVS modulation is extended into non-unity PF condition and a GaN-based T-type totem-pole rectifier with reactive power control is proposed. A hardware prototype of the proposed rectifier is built and demonstrated experimentally with high power efficiency and flexible reactive power regulation. Experimental emulation of the whole data center system also validates the capability of reactive power compensation by the front-end rectifiers, which can also generate or consume more reactive power to achieve flexible PF regulation and help support the power system

    Integration of a High Speed Megawatt Class Induction Motor and High Frequency Variable Speed Drive System through Modeling and Simulation

    Get PDF
    With the prominence of high speed, MW class motor usage in various industries such as the petrochemical and natural gas sectors, advancements in related technologies allow for achievable benefits such as increased energy efficiency, compressed power density, and cost savings. A novel high frequency variable speed drive (VSD) and motor system is being developed by Clemson University and TECO-Westinghouse Motor Company through a Department of Energy (DOE) project. In order to test this prototype, a dynamometer setup is required, involving another induction motor, another motor drive, and a gearbox. The system is modeled and simulated through MATLAB/Simulink in order to predict system behavior, control propagation, and protection limits. Individual parts of the system are individually modeled and evaluated before integrating the entire system together in software. Simulation of the various components involve a plethora of parameters, settings, and topologies to be researched and analyzed. V/Hz is used as the control method for the motors involved in the system. Voltage sources are modeled to represent this method and output desired waveforms. Both speed and torque outputs on the machines are managed in specific manners to evaluate desired performance. Open loop and closed loop controls are explored and expressed through the results. An equation is given to relate the V/Hz setpoints of both high speed and low speed sides of the integrated system to conduct a full load test. Through these simulation efforts, actual system test procedures can be established and safety concerns can be assessed

    Power Quality Issues in Distributed Generation

    Get PDF
    This book deals with several selected aspects of electric power quality issues typically faced during grid integration processes of contemporary renewable energy sources. In subsequent chapters of this book the reader will be familiarized with the issues related to voltage and current harmonics and inter-harmonics generation and elimination, harmonic emission of switch-mode rectifiers, reactive power flow control in power system with non-linear loads, modeling and simulation of power quality issues in power grid, advanced algorithms used for estimating harmonic components, and new methods of measurement and analysis of real time accessible power quality related data

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering

    Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems

    Get PDF
    Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications

    Applications of Power Electronics:Volume 1

    Get PDF
    • …
    corecore