19 research outputs found

    Partially adaptive array signal processing with application to airborne radar

    Get PDF

    The power inversion adaptive array

    Get PDF
    After the brief review on adaptive array processing, three fairly separate topics on the power inversion adaptive array are treated in this thesis. The first topic is the behaviour of a narrowband array using the stochastic gradient descent algorithm, with the environment assumed to rotate at constant velocity in the sine domain. Conditions for steady state weight deviations and output power deterioration from optimal values due to the nonstationary environment are derived and are then used to determine the maximum scan rate of a radar side-lobe canceller. The second topic is the jamming rejection capability of a broadband array using tapped delay line processing. The results obtained are used for designing the tap spacing and number of taps of the delay lines as well as assessing, in terms of the number of variable weights, the relative advantage of the alternative broadband processing method using several narrowband array processors. The frequency distortions at various directions introduced by rejecting the jammers are also studied qualitatively. The third topic is the convergence behaviour of the broadband array when the stochastic gradient descent algorithm is employed. Comparison with the alternative broadband processing method is again given. A simple transformation pre-processor, independent of the external environment and capable of improving the convergence behaviour of using tapped delay line processing, is also derived

    Advances in integrating autonomy with acoustic communications for intelligent networks of marine robots

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2013Autonomous marine vehicles are increasingly used in clusters for an array of oceanographic tasks. The effectiveness of this collaboration is often limited by communications: throughput, latency, and ease of reconfiguration. This thesis argues that improved communication on intelligent marine robotic agents can be gained from acting on knowledge gained by improved awareness of the physical acoustic link and higher network layers by the AUV’s decision making software. This thesis presents a modular acoustic networking framework, realized through a C++ library called goby-acomms, to provide collaborating underwater vehicles with an efficient short-range single-hop network. goby-acomms is comprised of four components that provide: 1) losslessly compressed encoding of short messages; 2) a set of message queues that dynamically prioritize messages based both on overall importance and time sensitivity; 3) Time Division Multiple Access (TDMA) Medium Access Control (MAC) with automatic discovery; and 4) an abstract acoustic modem driver. Building on this networking framework, two approaches that use the vehicle’s “intelligence” to improve communications are presented. The first is a “non-disruptive” approach which is a novel technique for using state observers in conjunction with an entropy source encoder to enable highly compressed telemetry of autonomous underwater vehicle (AUV) position vectors. This system was analyzed on experimental data and implemented on a fielded vehicle. Using an adaptive probability distribution in combination with either of two state observer models, greater than 90% compression, relative to a 32-bit integer baseline, was achieved. The second approach is “disruptive,” as it changes the vehicle’s course to effect an improvement in the communications channel. A hybrid data- and model-based autonomous environmental adaptation framework is presented which allows autonomous underwater vehicles (AUVs) with acoustic sensors to follow a path which optimizes their ability to maintain connectivity with an acoustic contact for optimal sensing or communication.I wish to acknowledge the sponsors of this research for their generous support of my tuition, stipend, and research: the WHOI/MIT Joint Program, the MIT Presidential Fellowship, the Office of Naval Research (ONR) # N00014-08-1-0011, # N00014-08-1-0013, and the ONR PlusNet Program Graduate Fellowship, the Defense Advanced Research Projects Agency (DARPA) (Deep Sea Operations: Applied Physical Sciences (APS) Award # APS 11-15 3352-006, APS 11-15-3352-215 ST 2.6 and 2.7

    Reduced complexity adaptive filtering algorithms with applications to communications systems

    Get PDF
    This thesis develops new adaptive filtering algorithms suitable for communications applications with the aim of reducing the computational complexity of the implementation. Low computational complexity of the adaptive filtering algorithm can, for example, reduce the required power consumption of the implementation. A low power consumption is important in wireless applications, particularly at the mobile terminal side, where the physical size of the mobile terminal and long battery life are crucial. We focus on the implementation of two types of adaptive filters: linearly-constrained minimum-variance (LCMV) adaptive filters and conventional training-based adaptive filters. For LCMV adaptive filters, normalized data-reusing algorithms are proposed which can trade off convergence speed and computational complexity by varying the number of data-reuses in the coefficient update. Furthermore, we propose a transformation of the input signal to the LCMV adaptive filter, which properly reduces the dimension of the coefficient update. It is shown that transforming the input signal using successive Householder transformations renders a particularly efficient implementation. The approach allows any unconstrained adaptation algorithm to be applied to linearly constrained problems. In addition, a family of algorithms is proposed using the framework of set-membership filtering (SMF). These algorithms combine a bounded error specification on the adaptive filter with the concept of data-reusing. The resulting algorithms have low average computational complexity because coefficient update is not performed at each iteration. In addition, the adaptation algorithm can be adjusted to achieve a desired computational complexity by allowing a variable number of data-reuses for the filter update. Finally, we propose a framework combining sparse update in time with sparse update of filter coefficients. This type of partial-update (PU) adaptive filters are suitable for applications where the required order of the adaptive filter is conflicting with tight constraints for the processing power.reviewe

    Rapid Digital Architecture Design of Computationally Complex Algorithms

    Get PDF
    Traditional digital design techniques hardly keep up with the rising abundance of programmable circuitry found on recent Field-Programmable Gate Arrays. Therefore, the novel Rapid Data Type-Agnostic Digital Design Methodology (RDAM) elevates the design perspective of digital design engineers away from the register-transfer level to the algorithmic level. It is founded on the capabilities of High-Level Synthesis tools. By consequently working with data type-agnostic source codes, the RDAM brings significant simplifications to the fixed-point conversion of algorithms and the design of complex-valued architectures. Signal processing applications from the field of Compressed Sensing illustrate the efficacy of the RDAM in the context of multi-user wireless communications. For instance, a complex-valued digital architecture of Orthogonal Matching Pursuit with rank-1 updating has successfully been implemented and tested

    Bibliography of Lewis Research Center technical publications announced in 1993

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1993. All the publications were announced in the 1993 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    Large modular structures for adaptive beamforming and the Gram-Schmidt preprocessor

    No full text
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
    corecore