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Summary

The growing availability of computing power allows for the implementa-
tion of algorithms of increasing computational complexity. While this
is definitely true for general purpose computers, this also applies to the
very-large-scale integration (VLSI) design targeting Field-Programmable
Gate Arrays (FPGAs). Yet, traditional digital design techniques hardly
keep up with the pace of technological advancements and the rising
abundance of programmable circuitry found on such devices.

To this end, this work presents the novel Rapid Data Type-Agnostic
Digital Design Methodology (RDAM) to elevate the design perspective of
digital design engineers away from the register-transfer level to a higher
level of abstraction—the algorithmic level. The proposed methodology
is founded on the enormous capabilities of High-Level Synthesis (HLS),
which basically is a synthesis step to compile concurrently operating
VLSI architectures from sequentially coded algorithms specified, e.g., in
C++. By consequently working with data type-agnostic source codes, the
RDAM brings significant simplifications to the fixed-point conversion of
algorithms and the creation of complex-valued arithmetic.

Throughout this dissertation, signal processing applications from the
field of Compressed Sensing (CS) will illustrate the efficacy of the RDAM.
Algorithmic modifications and improvements are described to incorpor-
ate the notion of sparse-coded signals and their recovery in the context
of multi-user wireless communications in a wireless sensor network. For
instance, a complex-valued digital architecture for the Orthogonal Match-
ing Pursuit (OMP) algorithm with rank-1 updating has successfully been
implemented and tested, which can be utilised for the combined multi-
user wireless channel estimation and activity detection of sporadically
transmitting sensor nodes. Further, sparsity-regularised tree search al-
gorithms will be examined as well as the multi-user data frame detection
with a priori unknown user activities based on specifically designed user
codes derived from Zadoff-Chu sequences.
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Zusammenfassung

Die zunehmende Verfiigbarkeit von Rechenleistung erlaubt die Imple-
mentierung von immer rechenintensiveren Algorithmen. Dies trifft si-
cherlich auf Rechner im Allgemeinen zu, doch ebenso auch auf den Very-
Large-Scale-Integration (VLSI) Entwurf fiir Field-Programmable Gate
Arrays (FPGAs). Jedoch kénnen traditionelle Entwurfsmethoden kaum
Schritt halten mit der Geschwindigkeit technologischen Fortschritts und
der weiter wachsenden Verfiigbarkeit von programmierbarer Logik, die
solche Chips bieten.

Diese Arbeit prasentiert als Antwort darauf die Rapid Data Type-
Agnostic Digital Design Methodology (RDAM), um den Digitalentwurf
von der Register-Transfer-Ebene weg auf ein htheres Abstraktionsniveau
anzuheben — der algorithmischen Ebene. Die vorgeschlagene Methodik
ist auf der Leistungsfahigkeit von High-Level Synthesis (HLS) gegriindet,
was prinzipiell einen Syntheseschritt darstellt, der aus einem sequentiell
programmierten Algorithmus, z.B. mit C++, eine nebenldufige VLSI-
Architektur kompiliert. Aufgrund konsequent datentyp-agnostischer
Quellcodes fiihrt die RDAM zu deutlichen Vereinfachungen bei der Fest-
kommaarithmetik als auch bei komplexwertigen Berechnungen.

Signalverarbeitungsapplikationen aus dem Bereich des Compressed
Sensings (CS) dienen als Beispiel um die Effektivitdt der RDAM zu de-
monstrieren. Algorithmische Anpassungen und Verbesserungen binden
Ideen zur Mehrnutzer-Detektion diinn besetzter Signale in drahtlosen
Sensornetzwerken ein. Beispielsweise wurde eine komplexwertige Ar-
chitektur fiir Orthogonal Matching Pursuit (OMP) mit Rank-1 Updates
erfolgreich implementiert und getestet, die zur gemeinsamen Schétzung
von Nutzerkandlen und der Aktivitdt sporadisch sendender Sensorkno-
ten herangezogen werden kann. Auflerdem werden Baumsuchverfahren
untersucht, sowie eine Mehrnutzer-Rahmendetektion mit a priori unbe-
kannten Nutzeraktivititen basierend auf speziell entworfenen Zadoff-
Chu-Sequenzen.
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Chapter 1

Introduction and Motivation

Technological advancements in wireless communications in conjunction
with the increased availability of computing power lead to profound
changes in how things and human beings communicate with each other.
While mobile radio networks and mobile phones can already be found
almost everywhere on this globe, the number of communicating machines
is on the rise. This development is best described by concepts like the
Internet of Things (IoT) or Industry 4.0 [AIF*15; DH14].

However, the anticipated artificially intelligent, autonomously acting
and self-organising applications exhibit a principally different commu-
nication behaviour, called Machine-Type Communications (MTC), which
requires to re-think existing wireless communication schemes and net-
works.

Currently, efforts are made, therefore, to standardise the future fifth
generation of digital mobile networks (5G), also known as IMT-2020 by the
International Telecommunication Union (ITU) [BB17; 3GPP18]. It shall
encompass and support at least three different usage scenarios: massive
MTC, ultra-reliable low-latency communications and classical mobile
broadband services for human users. A couple of disruptive technologies
are being proposed to achieve this goal, e.g. millimetre waves together
with small cells, or very large multi-antenna multiple-input multiple-
output (MIMO) systems (also called Massive MIMO) together with beam
forming [And*14; Boc*14]. This will eventually lead to an improved
performance by an order of magnitude for link latency, single user data
throughput or the number of devices per area (see Fig. 1.1).

The enhanced bandwidth efficiency and flexibility to accommodate
various types of communication services naturally and inevitably result in
higher design complexity with regard to the signal processing algorithms
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Figure 1.1: The expected enhancement of key capabilities of 5G mo-
bile networks (IMT-2020) in comparison to LTE-Advanced (IMT-
Advanced) [BB17].

and digital hardware resources needed to enable such high-tech mobile
networks in the first place—the complexity increase from one generation
to another is a factor of about ten as [HJ09] observes.

Another area completely unrelated to wireless communications where
computationally complex algorithms are typically to be encountered are
data centres for cloud services offering machine learning with deep neural
networks or big data analytics [HM17]. Recently, Field-Programmable
Gate Arrays (FPGAs) have become employed in vast numbers in such
computing centres as a substantial workforce to speed up computations.

With potent digital circuitry on the one hand, and complex digital
signal processing algorithms and applications on the other hand, two
worlds come together here.

FPGAs are digital logic devices which operate inherently parallel and
concurrently; their programming follows the paradigm of digital hard-
ware design, traditionally with specialised hardware description lan-
guages (HDLs), namely VHDL and Verilog. In contrast, software to im-
plement algorithms is usually written with high-level languages (HLLs),



e.g. C/C++, which are sequential in nature. The OpenCL framework, for
instance, tries to exploit parallelisms and target heterogeneous comput-
ing systems such as graphics processing units (GPUs) or even FPGAs in
addition to central processing units (CPUs) [Khr17]. Major FPGA vendors
hence are eager to deploy tools for an easy transition from OpenCL to
HDL code.

In fact, there is quite a powerful concept involved between the two
antipodes of “software” and “hardware”: High-Level Synthesis (HLS).
HLS denotes the automatic generation or compilation of HDL code from
an HLL description. All commercially successful and functionally mature
tools support the family of C languages, i.e. C/C++ with support for
SystemC, to be precise.

This thesis, therefore, investigates how the capabilities of HLS can be
utilised for the creation of sophisticated digital architectures for complex
signal processing applications. It consists of two parts, as indicated by
its title “Rapid Digital Architecture Design of Computationally Complex
Algorithms”:

¢ Firstly, a novel design methodology, called the Rapid Data Type-
Agnostic Digital Design Methodology (RDAM), is proposed. It
accelerates digital design time and achieves great simplifications
with regard to the fixed-point conversion of algorithms and the
implementation of complex-valued operations. For instance, one
baseline fixed-point format can be applied throughout a digital
architecture, which is a rather astonishing result.

* And secondly, a wireless communications scenario supplies ex-
amples for computationally complex algorithms. It touches the
aforementioned topics such as IoI, Industry 4.0 or 5G. The assumed
communication system is a wireless sensor network (WSN) with
sporadically active sensor devices (or “users”), which exhibit MTC
behaviour. Ideas from the Compressed Sensing (CS) theory are
incorporated for a cross-layer optimisation to avoid signalling over-
head concerning user activities on higher layers of the protocol
stack. This in turn, however, requires the execution of rather com-
plex algorithms for signal recovery.



Chapter 1 Introduction and Motivation

1.1 Contributions to the State of the Art

Both parts of this thesis contain original contributions to the state of the
art in their respective fields of study.

1.1.1 Digital Architecture Design

The aforementioned observable increase in computational complexity
challenges traditional digital design flows. The technological evolution
and transistor integration densities scale quite well to accommodate this
growth in complexity, but the design capabilities of hardware engineers
do not, which is known as the productivity design gap [MS13].

One answer to this challenge certainly is HLS, which accelerates digital
architecture design by allowing hardware engineers to work on a higher
level of abstraction [Cou*09]. Instead of describing digital logic on the
behavioural register-transfer level (RTL), HLS elevates hardware design to
the algorithmic layer of the Gajski-Kuhn chart [GK83]. HLS is especially
well-suited for FPGAs as target devices, because they allow for fast design
and test cycles. Its capability to create even complicated architectures has
already been demonstrated [Con*11]. And to cite another example, an
application-specific integrated circuit (ASIC) developed with HLS for the
pre-coding and detection in a 128 x 8 Massive MIMO system has been
reported on in [Pral7].

This thesis introduces a novel design technique called the Rapid Data
Type-Agnostic Digital Design Methodology (RDAM), which drives design
abstraction even further by requiring data type-agnostic HLS design entry
source codes written in C++ to leverage the polymorphism of that pro-
gramming language. The concept of data type agnosticism (DTA) itself
is not new and has been applied by the Mathworks Fixed-Point Designer
for Matlab to switch between normal computations and fixed-point oper-
ation, with fixed-point objects being substituted for the default double-
precision floating-point data type; no code modifications are needed.
And following a different line of reasoning, namely to optimise synthesis
results, the HLS tutorial of Xilinx mentions that standard C types can be
updated in favour of specialised fixed-point types, requiring some code
modifications [Xil-UG871].

These elementary ideas are brought together by the RDAM which
produces a synergistic effect. Firstly, it eases fixed-point design and the
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conversion of algorithms to fixed-point arithmetic, especially with regard
to the proper sizing of the finite word lengths. Secondly, it also applies
to complex-valued algorithms and can map these to digital logic without
any additional manual design steps.

The RDAM has been described for the first time in [Kno*16c¢], where
Mathworks Matlab and Xilinx” HLS tool are additionally linked with
each other to allow for semi-automatic parametric sweeps to explore
the design space. That work also presents, to the best knowledge of the
author, the first digital design of the Approximate Conjugate Gradient
Pursuit (ACGP) algorithm [BDR12].

The RDAM was also applied to the well-known Orthogonal Matching
Pursuit (OMP), [TGO7]. The resulting digital design is compared with
other architectures taken from the literature [Kno*16a]. Furthermore,
rank updates to the QR matrix decomposition (QRD) as well as the Moore—
Penrose pseudoinverse were proposed to solve the least squares (LS)
optimisation problem within OMP. To the best knowledge of the author,
[Kno*16a] presents the first complex-valued digital architecture for OMP
as an important benefit of the RDAM.

1.1.2 Compressed Sensing in Wireless Communications

Following up on the seminal work of Candes, Donoho and others, Com-
pressed Sensing (CS) gained much attention in the signal processing
community [CT05a; Don06]. Basically, CS allows for the sub-sampling
of a signal below the classical Nyquist-Shannon sampling rate, if and
only if the signal of interest is sparse, either directly or in some basis
transform domain, e.g. the frequency domain. Hence, it was proposed to
incorporate the CS framework into communication applications where
sparsity is present, e.g. to exploit sporadic user activities in WSNs to
facilitate a joint activity and data estimation [TLL09].

In this work, three closely related tree search algorithms are modified
according to the CS sparsity constraint and explored with regard to their
detection performance. Results for optimal sparsity-aware Sphere De-
coding (SD) have been reported in [KWP12] and a digital design thereof
has been published in [Kno*17]. The observed run time behaviour of the
constrained algorithm led to the exploration of sparsity-aware Successive
Interference Cancellation (SIC) detection in [Kno*13]. The novel combin-
ation of SIC detection with Sorted QRD (SQRD), as it had been invented



Chapter 1 Introduction and Motivation

for the improved performance in multi-antenna MIMO communication
systems [Wiib*01], exhibits almost optimal detection performance. Al-
ternatively, the constrained K-Best algorithm was investigated in [Kno*14],
which constitutes a hardware-friendly trade-off between SIC and SD.

However, it became obvious that, for a practical technology demonstra-
tion with Software-Defined Radios (SDRs), the assumed sparsity within
the communication system can already (and needs to) be exploited during
user-specific channel equalisation [Kno*16b]. The cited work, therefore,
successfully applies OMP to the derived channel state information (CSI)
estimation problem.

Furthermore, the sparse activity pattern of the users in the WSN has
direct impact on the frame synchronisation of the received superim-
posed data frames of the active users. This was investigated in [Zed*17],
wherein a special multi-user synchronisation preamble is proposed. This
preamble is based on Zadoff-Chu sequences (ZCSs) and utilises their
ideal cyclic autocorrelation property to construct an orthogonal basis of
user-specific codes.

Starting with an idea for joint activity and symbol detection at the end
of the baseband signal processing chain of an (uncoded) digital wireless
transceiver, the above summarised incremental research steps brought
the notion of sparsity closer to the radio frequency (RF) front-end and
within reach for a practical implementation.

1.2 Outline

The following chapters are grouped into two parts, according to the two
areas of research this thesis contributes to.

The first part describes the fundamentals to motivate and explain the
novel RDAM in detail:

¢ Chapter 2 clarifies terminology with regard to “complexity” and
gives a brief introduction to contemporary HLS and how it evolved.
Alternative digital design techniques are compared and current
HLS tools examined for their support of the RDAM.

¢ Chapter 3 surveys various common data types for digital signal pro-
cessing applications and explains why data types can be abstracted
in general. Furthermore, the principal advantages and limitations
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of the RDAM are discussed. Its climax surely is Sec. 3.4, which lists
the necessary methodological design steps belonging to the RDAM.

¢ Chapter 4 describes the DTA and gives an in-depth illustration
thereof. It is further discussed how the RDAM applies to complex-
valued algorithms and how it abstracts and simplifies fixed-point
arithmetic. The chapter concludes with a section on function ap-
proximation to obtain optimised (fixed-point) HLS compilation
results for the implementation of mathematically complicated func-
tions, e.g. the square root or logarithm.

¢ Chapter 5 at the end of Part I lists and discusses synthesis results
for two design examples: a simple scalar vector product and OMP,
representing a computationally complex algorithm. It concludes
with a hardware-in-the-loop (HIL) simulation and embedded test
of the devised architectures.

Part II deals with CS and sparse coding in a WSN:

¢ Chapter 6 summarises the theoretical foundations of CS and ex-
plains the two steps involved: compressive measurement and re-
construction. A survey of algorithms for sparse signal recovery
is given. Afterwards, in Sec. 6.3, the CS framework is applied to
digital communication systems with regard to their particular con-
straints. A multi-user uplink in a WSN is described as a baseline
system model for the chapters to come.

* Chapter 7 presents sparsity-constrained tree search algorithms,
namely SD, K-Best and SIC, and evaluates their performance for
joint user activity and data detection.

e Chapter 8 shifts the attention to combined multi-user wireless chan-
nel and user activity estimation. An extended system model with
data frames is introduced to enable channel estimation and timing
synchronisation at the receiver, which takes sporadic activities of
the users into account.

Chapter 9 finally summarises and concludes this thesis.
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Chapter 2

Fundamentals of High-Level
Synthesis (HLS)

The Rapid Data Type-Agnostic Digital Design Methodology (RDAM),
which forms the essence of this work, is founded on the power of High-
Level Synthesis (HLS) tools.

The following therefore briefly sketches the idea of HLS before the
advantages and disadvantages of the added DTA are discussed in the
next chapter. This chapter furthermore motivates the need for an elevated
digital design perspective and also discusses some alternatives to HLS.
It will conclude with an overview of contemporary commercial and
academic HLS design tools.

2.1 Increasing Design Complexity as a Driver
for High-Level Synthesis

The design of faster and more bandwidth-efficient communication sys-
tems goes hand in hand with the development of more than ever soph-
isticated signal processing algorithms. This has direct impact on the
quantity of needed hardware resources for practical implementations.
For ASIC designs this translates to silicon area and for FPGA designs to
the number of utilised logic cells to create adders, multipliers, etc.

As [H]J09] formulates it, “the tremendous complexity increase from
one technology generation to its successor...is roughly a factor of ten [in
wireless communications,] while time-to-market has to be preserved for
the sake of competitiveness.” This statement directly addresses the central
problem which has to be solved—to increase design productivity and

11
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thereby enable digital hardware designs for complex signal processing
applications.

Before that can be elaborated in detail, it must be explained what
exactly “complex” digital architectures and algorithms are.

2.1.1 The Definition of Complexity

The word “complexity” has ambiguous meanings which makes it neces-
sary to clarify terminology within this dissertation.

2.1.1.1 Computational Complexity

First and foremost, there is the computational complexity which can be
expressed as the number of required arithmetic operations.

Although such a definition is short and clear, it is quite vague in practice.
For floating-point designs, there is the count of floating-point operations
(FLOPs) which is accurate as long as all computations are performed with
floating-point arithmetic. HLS explicitly supports and allows for floating-
point architectures (see Sec. 2.2), but even though, digital designs are
commonly created with fixed-point arithmetic for reasons of efficiency,
at least until nowadays. A FLOP count cannot represent actually needed
hardware resources for such systems, because not all arithmetic opera-
tions cause the same computational impact. A hardware multiplier is of
course larger than an adder, not to mention the square root operation
which would probably be implemented within a design of its own.

A very important part in digital signal processing applications play
multiply-and-accumulate operations (MACs), and modern FPGAs have
plentiful of DSP slices for those available. The Xilinx DSP48E1 slice of
the 7 series devices (shown in Fig. 2.1), e.g., consists of a full-custom 18
x 25 bit two’s-complement multiplier, a 48 bit accumulator and a power-
ful arithmetic logic unit (ALU) to compute ten different logic functions
of two operands and dual 24 bit additions or subtractions [Xil-UG479].
Therefore, most of the fixed-point arithmetic will preferably be mapped
to such DSP slices and, hence, the actual DSP slice count will constitute
a somewhat invariant and thus reliable estimate of the computational
complexity for digital FPGA designs.

The design examples presented in Sec. 5.2.4 will demonstrate that
the DSP slice utilisation is the only invariant figure between pre-RTL
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DSP48E1

post-adder

multiplier
P / logic unit
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Figure 2.1: Simplified block diagram highlighting the arithmetic capabil-
ities of the Xilinx DSP48E1 slice [Cro*14].

synthesis, i.e. the HLS estimate, and post-RTL synthesis with Xilinx
Vivado.

2.1.1.2 Algorithmic Complexity

The computational complexity is closely related to the algorithmic com-
plexity. The latter is well-defined and can be expressed by the so-called
big O notation, which classifies algorithms according to their run time or
memory storage requirements.

If these are expressed by functions f, g : N — R*, then

O(g(n)) = {f | Fc € R*,Fng € N,¥n > no: f(n) <c-g(n)}  (21)

formally defines the set O(g(n)), which contains all functions with a
growth rate less than g(n), [CLC09]. n is a parameter of the algorithm,
e.g. the size of an input vector or a list to be sorted. g(n) is an upper
bound scaled by some positive constant c¢. That means, the big O notation
makes only a case for the behaviour n — oo, i.e. it is an asymptotic upper
bound.

Depending on the choice of g, algorithms can be categorised into classes
of complexity. These are among others and in order of increasing growth
rate:

* constant complexity, i.e. no dependence on n, O(1),
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¢ logarithmic complexity, O(log(n)),

e linear complexity, O(n),

* polynomial complexity, O(n*) for some k > 0, and

e exponential complexity, O(k™), k > 0.

Concerning the digital design of algorithms, the limited availability of re-
sources has to be taken into account to judge upon feasibility. Algorithms
belonging to any class of complexity will of course be technically feasible
for a sufficiently small n, although n might be larger for smaller growth
rates. At all times the generally unknown constant c has to be factored in.

An exact count of arithmetic operations differs from the algorithmic
complexity such that it is a tight bound with known constant, at least
approximately. And it gives reliable information even for small n < ny.
The asymptotically tight bound is formally defined as

O(g(n)) ={f|3c1,c2 e R, Ing e N,Vn > ng :
0 <cig(n) < f(n) <cag(n)} . (2.2)

There are also an asymptotic lower bound €2(-) and asymptotically tight
upper/lower bounds, o(-) resp. w(-), [CLCO9].

2.1.1.3 Mathematical Complexity

The extension of the set of real numbers R by imaginary numbers with
the help of the imaginary unit j creates the set of complex numbers C.
Often, DSP applications make extensive use of complex numbers, e.g.
in wireless communications. If that is the case, the adjective “complex-
valued” will be used within this text. A complex-valued digital design
utilises complex numbers and complex-valued additions, multiplications,
etc., but can be fairly simple at the same time because it must not be a
computationally complex system.

Additionally, there are mathematically complex functions from the per-
spective of a fixed-point digital design. Such functions can very well
be real-valued but complicated to be computed with binary logic. The
square root or trigonometric functions are good examples, since their
implementation usually requires an algorithm of its own, e.g. the Co-
ordinate Rotation Digital Computer (CORDIC) [Vol59; Wal71].
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Figure 2.2: The productivity design gap [EMDO09].

2.1.2 The Productivity Design Gap

The technological evolution scales quite well to accommodate the above
mentioned growth in computational complexity. The famous Moore’s
law, that the number of transistors which can be integrated on a single
chip doubles every 18 months, has been valid for decades by now al-
though being questioned more frequently recently [M0065; M0oo98]. This
leads nonetheless to an increased transistor density on the die area and
the availability of more logic resources with every latest semiconductor
process technology node. Contemporary FPGAs thus can offer hundreds
(some even thousands) of dedicated DSP slices for the fast and efficient
implementation of MACs and other operations.

But the engineer’s design capabilities do not scale at the same rate.
This is called the productivity design gap and is illustrated in Fig. 2.2. In
contrast to the increasing technological capabilities according to Moore’s
law, the hardware design productivity increases only by a factor of 1.6
every 18 months [EMDQ9]. This leads to a gap which can only be closed
by improved design performance.

Recently, the pace of the technological development is slowing, because
the miniaturisation is approaching some physical limits and effects on the
nanometre scale lead to a decreased return of investment and rising costs.
Far from signaling an end to progress, this gradual “end of Moore’s law”
will open a new era in information technology as the focus of research
and development shifts from miniaturisation of long-established techno-
logies to the coordinated introduction of new devices, new integration
technologies, and new architectures for computing [TW17]. This will
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definitely have an impact on how devices and digital architectures are
going to be programmed and HLS will presumably play a part here as
well.

2.1.2.1 Design Entropy

In [MS13], the view has been advanced that the productivity design gap
is caused by the structure of an algorithm itself, which can be measured
in terms of what the authors call design entropy: the more irregular a
hardware architecture, the higher is the design entropy.

On the one hand, memories are highly regular structures and of low
entropy. Therefore, huge memories can be designed quickly and are
usually the first applications for the latest technology node. On the
other hand, general purpose processors, like CPUs, are examples for
high-entropy designs, because of their largely irregular structure of the
control logic, which consumes most of the chip area. Modern complex
signal processing algorithms with irregular data paths and much control
overhead, e.g. caused by loops or if-else branches, are of high entropy
and, hence, more difficult to design.

In order to overcome this productivity design gap, it was proposed to
introduce further tools into the design flow which are capable of auto-
mating certain implementation aspects, and especially shift the design
perspective to a higher, more abstract level [MS13]. In other words, the
coding of hardware architectures must be elevated to the algorithmic
layer—away from traditional HDLs and the RTL.

HLS does accelerate digital architecture design by allowing hardware
engineers to work on a higher level of abstraction, as desired.

2.2 A Short Historical Review

There has been a shift of meaning regarding the term “High-Level Syn-
thesis”. Whereas years ago this meant the possibility to synthesise behavi-
oural HDL code [GR94], in recent times it is understood as an automated
design compilation process that interprets an algorithmic description in
an HLL, like C/C++ or SystemC, and synthesises a synchronous RTL
description in an HDL [Cou*09].
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HLS tools have been in practice since the 1950s and attracted consid-
erable interest when early commercialisation efforts were made in the
last decades [Con*11]. The development and evolution of HLS tools can
roughly be divided into three generations [MS09].

* 1980s to early 1990s. First research was conducted on HLS but with
a failed commercialisation of such tools. RTL synthesis with HDLs
was upcoming and HLS tools required the users to learn obscure
design languages. The quality of results was poor.

® 1990s to early 2000s. Major companies like Synopsys, Cadence and
Mentor Graphics offered their tools and HLS was tried out by quite
anumber of users. However, this tool generation could not convince
out of several reasons. For example, HDLs were used as design
languages for HLS and thus competing with existing RTL synthesis
tools, obtained results were highly variable and hard to validate,
and simulation times were almost as long as with RTL synthesis.

® 2000s to 2010s. While some tools are still dataflow or DSP domain-
specific, most tools adopt C, C++ or SystemC as an HLL design
input. The quality of results is improved stemming from compiler-
based optimisations. Yet, a major impact made the rise of FPGAs,
which changed the measurement criteria for a good design. The
hardware architecture simply has to be fast enough and must fit
within its capacity when targeting an FPGA. Last but not least, the
increased computational complexity of signal processing applica-
tions had further raised the need for improved electronic system-
level (ESL) tools meanwhile.

Nowadays, the tools of the third generation have matured and are cap-
able not only to synthesise data paths but also control logic. The familiar
C programming language and its variants as design inputs accommodate
the skills of algorithm designers and embedded software engineers.

2.2.1 Contemporary Developments

There a two significant and game-changing developments taking place
currently [HM17]:

¢ HLS becomes integrated into even more abstract ESL tools. Xilinx,
e.g., sells the SDSoC tool which targets software development with
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custom hardware acceleration on a System-on-Chip (SoC). System-
level profiling identifies computationally intensive functions which
can then be implemented with HLS in programmable logic as hard-
ware accelerators. The integration into the SoC is automated to a
great extent.

¢ The Open Computing Language (OpenCL) framework maintained
by the Khronos Group finds support with HLS tool vendors [Khr17].
OpenCL is an interface based on C to program diverse parallel
computing devices, foremost GPUs. However it is not restricted
to GPU computing and targets heterogeneous architectures built
with FPGAs as well. Commercially supported is this, e.g., by Intel’s
FPGA SDK for OpenCL (formerly by Altera) and Xilinx” SDAccel.

Underlying these trends is the fact that these tools natively support
single-precision floating-point numbers compliant with the IEEE Stand-
ard 754 [IEEE-754], which will be discussed in detail later on in Sec. 3.2.1.1
for this reason. HLS is used to generate dedicated floating-point archi-
tectures which makes a seamless integration into software applications
possible.

Intel’s Arria and Stratix FPGAs even consist of hardened floating-point (!)
DSP slices [Alt14; Sin17] while Xilinx Vivado HLS (VHLS) maps such
floating-point operations to optimised soft cores consisting of a number
of DSP48ET slices, the exact number thereof depending on the respective
operation.

Because of this, FPGAs have already become a major workforce in
large-scale data centres for high-performance and cloud computing, e.g.
for deep learning or other machine learning applications [HM17].

2.3 The Basic Principles of High-Level
Synthesis

The classical design flow of complex digital signal processing applications
requires a hardware engineer to devise a detailed architecture that meets
system specifications, and then to manually code a RTL design in an
HDL, usually VHDL or Verilog. This is an iterative process indeed, and
often many design iterations are necessary. A minor re-design of the
architecture can lead to substantial changes of the RTL description.
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Figure 2.3: Architectural HLS compiler directives complement the design
abstraction of a high-level algorithmic description.

In contrast to this, the HLS-based digital design flow still needs an
algorithmic specification but the architectural design is vastly simpli-
fied and the following implementation with an HDL is fully automated.
Fig. 2.3 emphasises this fact as it will be explained below.

2.3.1 Inputs to an High-Level Synthesis Design

The HLS compiler commonly needs two inputs (Fig. 2.3a).

¢ The first input, of course, is the algorithm that is to be synthesised
and supposed to be supplied in an HLL. Throughout this work this
code is assumed to be a vanilla C++ source code. A considerable
number of HLS tools support the family of the C programming
languages (see Sec. 2.5). On the one hand, C++ lacks hardware-
related features, like the explicit timing of operations or fixed-point
data types. But on the other hand, the lack thereof leads to a design
abstraction—as intended.

* Some of those drawbacks can very well be mitigated by the second
input to the HLS compiler: The HLS synthesis process can be con-
trolled by compiler directives, also called pragmas. These directives
mainly influence the synthesised architecture. This endows the
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hardware engineer with an abstracted, qualitative control over the
architectural HLS output.

Nonetheless, hardware expertise is still necessary to generate efficient
digital architectures, as is the adherence to HLS coding guidelines.

Fig. 2.3b shows an excerpt of the Gajski-Kuhn Y chart, namely the
functional view only [GK83]. While the conventional design methodology
requires manual design steps from the top down to the RTL, the HLS
approach solely needs an untimed functional algorithmic specification
which of course has to be given in a supported input programming
language. The coding of synthesisable RTL code is completely automated
and architectural design decisions may or may not be constrained with a
small set of directives. The default optimisation of HLS compilers usually
is for minimal resource utilisation and sequential operation.

The iterative design process mentioned above is accelerated tremend-
ously because an HLS compiler can “mould” the desired algorithmic
functionality into an architecture, and generation of RTL code is a mat-
ter of minutes or even seconds. This makes a rapid design space ex-
ploration feasible (see Sec. 3.3.2), i.e. the same high-level algorithmic
specification can be reused and compiled for different implementation
technologies or changed constraints. Problem sizes and even data types
become configurable parameters. Additionally, the concept of a self-
checking and re-usable test bench as well as fast bit-accurate C-based
RTL simulations contribute to a rapid design time. The automated and
correct-by-construction synthesis process reduces the occurrence of low-
level implementation bugs that are routine in RTL codes, which improves
the overall design productivity significantly [Ren14].

The shift of the design perspective to a more abstract implementation
layer is often likened to the development of HLLs themselves: Today,
nobody would even think of programming a complex software applic-
ation solely by using assembly language [Cou*09]. The gain in coding
efficiency by HLLs outweighs the advantages of Assembler by far, such
that assembly code still exists but only in niche applications.

2.3.1.1 Coding Style Guidelines

The adherence to a suitable coding style is mandatory to obtain efficient
RTL designs. [FB10] puts it the following way:
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“One of the common misconceptions held by people is that
synthesizing hardware from C++ provides users the freedom
of expressing their algorithms using any style of C++ coding
that they desire. When designing using high-level C++ syn-
thesis, it is important to remember that we are still describing
hardware using C++, and a “poor” description can lead to a
sub-optimal RTL implementation.”

Probably the most severe limitation is that variables can only be alloc-
ated on the stack. Due to this restriction, the HLS tool can infer the needed
amount of registers to store their values, which is especially important
with regard to arrays, the sizes of which need to be fully determined
at compile time. The reason why variables cannot be allocated on the
heap memory (i.e. with the C/C++ commands malloc, calloc, free,
new or delete) is simple: There is no operating system to control dynamic
memory usage on an FPGA or ASIC.

Nonetheless, there are applications which require a variable sizing
of arrays or other parameters. A viable solution is to resort to function
and class templates. A template is instantiated with a set of constant
parameters, a process which is called specialisation. For instance, function
recursion is prohibited because the recursion depth is generally undefined
at compile time, however tail recursion with a templatised function and
additionally a tail specialisation for the final call is possible [Xil-UG902].

Further, data dependencies are potentially problematic and can lead to
performance bottlenecks. Hence, sometimes the order of computations
needs to be changed to allow for better parallelism. This requires manual
intervention to rewrite certain pieces of a source code, yet the HLS test
bench checks for—and therefore ensures—functional equivalence.

A significant benefit of HLS is its capability to generate RTL micro-
architectures of loop statements (for, while, do...while), but variable
loop bounds are to be avoided. It is highly recommendable that the
initialisation of the loop iterator is a constant, that the test condition is
against a constant, and that the iterator increment is a constant. This
allows for an efficient control logic with small bit widths since the value
range of the iterator can be determined during synthesis [FB10].

Additional details on other possible design optimisation are given,
e.g., in [FB10] and [Xil-UG902]. As a last remark, specialised HLS code
libraries are made available by the tool vendors for certain common
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problems, e.g. to efficiently compute non-trivial mathematical functions
or to solve linear algebra problems.

2.3.1.2 Directives for Architecture Design

Digital architecture design is certainly one of the greatest strengths of HLS
with regard to synchronous very-large-scale integration (VLSI) design.
There are directives to control basic properties of the generated micro-
architectures like area, latency or throughput. A fine-grained application
of directives is possible to the top-level function, named sub-functions,
variables and interfaces.

Figures of Merit Whereas area can be expressed in terms of Gate Equi-
valent (GE) for ASIC designs, it is impossible or at least unfair to reuse
this metric for FPGA designs, the reason being the largely heterogeneous
building blocks of them. Therefore, most works in the literature give
figures pertaining the utilisation of certain resources, as also recommen-
ded in [Xil-UG902]. Resource utilisation is usually stated as a quadruple
(BRAM, DSP, FF, LUT), where the abbreviations stand for Block RAM,
specialised DSP slices with hardware multipliers (e.g. DSP48E1 by Xilinx),
flip-flops and look-up tables, respectively.

Latency is the number of clock cycles from the first input to the first
valid output. And throughput can be computed as the inverse of the
number of cycles per data item. The clock cycles per data item differ
from the latency because digital designs are pipelined in general. In HLS
parlance, the “clock cycles per data item” is termed Initiation Interval (II)
and defined as the number of clock cycles before a function can accept
new input data and the next loop iteration is started. An Il = 1 means a
new loop iteration is started every clock cycle [Xil-UG902; FB10].

Architectural Equivalence Transforms Three basic equivalence trans-
forms can universally be applied to an algorithm of combinatorial com-
putations to improve latency and throughput or to exploit parallelism
[Kae08]:

* Decomposition of a function consisting of a number of calls to an
identical smaller sub-function, which can then be executed sequen-
tially with a smaller hardware footprint.
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Table 2.1: Selected directives of Xilinx Vivado HLS [Xil-UG902]

Directive Description

ALLOCATION Limits the number of resources such as DSP slices.
ARRAY_PARTITION Partitions an array into smaller arrays or registers.
DATA_PACK Aggregates multiple variables into a single word.
DATAFLOW Enables concurrent execution of functions or loops.
EXPRESSION_BALANCE Balances logic depth, e.g. to create adder trees.
INLINE Inlines a function and thus improves latency.
INTERFACE Specifies top-level RTL ports and protocols.
LATENCY Sets a latency constraint.

PIPELINE Enables function or loop pipelining.

RESOURCE Constraints a specific HLS library core to be used.
STREAM Declares an array to be implemented as FIFO.
UNROLL Unrolls loops fully or partially (replicates the body).

* Pipelining of operations to improve throughput by reducing com-
binatorial depth and by introducing parallelism.

* Replication of a functional entity to process several data elements
concurrently.

With regard to HLS, resource sharing is implicitly performed during
synthesis (see Sec. 2.3.3) and effectively identical to decomposition. It is
safe to assume that design C/C++ code is written maximally compact
and a repeatedly executed sub-function would definitely be called from
within a loop body with a single line of code. Since HLS keeps loops
rolled by default, i.e. a sequential architecture will be synthesised, fur-
ther decomposition is not possible. Hence, the main attention of HLS
architecture design is how to pipeline and replicate certain combinatorial
data paths with directives.

Exemplarily, Tab. 2.1 lists an excerpt of all HLS directives supported
by VHLS. An optimisation to begin with is pipelining to reduce latency
and increase throughput. The PIPELINING directive allows for an op-
tional parameter with a target II, and it can be applied to loops and
functions. Further, task-level parallelism can be exploited by specifying
the DATAFLOW directive: Normally, sequential statements are scheduled
sequentially, but with data flow optimisation they can be executed in
parallel as far as data dependencies permit. Loop unrolling by UNROLL
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replicates the loop body, and the directive allows for an optional factor to
partly unroll loops. This drastically increases throughput (and area). For
most designs, only the most inner loops become unrolled for a good area—
throughput trade-off. Nonetheless, unrolling often creates data access
bottlenecks with BRAM which has a single or dual port for read /write
operations. Therefore, this directive goes hand in hand with the partition-
ing of arrays into several BRAMs or even into registers each element to
increase data concurrency. Last but not least input-output (I/O) interface
options can be specified to the top-level function. This includes certain
handshake protocols or even Advanced Extensible Interface (AXI) buses
to integrate the generated Intellectual Property (IP) core into a SoC later
on.

Estimated Clock Frequency Additional constraints can be set to config-
ure resets and (target) clocks. Most importantly, VHLS can only estimate
the maximal operating frequency, because HLS resorts to a HLS com-
ponent library (for multiplications, additions, and so on) with expected
timing information depending on the configured target devices. The
C/C++ code is synthesised into an RTL code and then, again, by RTL
synthesis into a gate-level description. A timing margin is reserved for
the design steps to come including place and route.

2.3.2 C-Based Test Benches for Verification

The created hardware architecture is correct-by-construction and bit-
accurate C-based simulations of the RTL are possible with the C/C++ or
SystemC design files. However, verification generally is simulation-based
and formal equivalence checking is still a challenge [Ren14].

This leads to the notion of self-checking test benches. Some HLS tools
require a C/C++ test bench to be associated with each design which com-
pares the results with given or random inputs to the HLS-designed entity
against pre-computed values (“golden device”) or a software model.
The choice is with the designer what to check precisely for a successful
verification.

Even if later code changes are necessary, e.g. to rearrange the order
of computations or rewrite some loop constructs to enable further HLS
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compilation optimisations, the test bench ensures functional verification
as long as the test passes.

Most of the HLS tools integrate the functionality to generate RTL
test benches automatically from C test benches, which makes another
manual implementation step obsolete. VHLS, e.g., uses a C-to-RTL trans-
actor and generates besides Verilog and VHDL design files also a bit-
accurate and cycle-accurate SystemC RTL design to speed up simulation
times [Con*11]. Although formal equivalence checking is not yet solved
fully, the much wider simulation coverage of HLS and the possibility for
in-system simulations are especially helpful with FPGA hardware (HW)
targets.

This powerful test bench concept is utilised by the RDAM, as described
later, to ensure functionality even if data types change, e.g. during the
transition from floating-point to fixed-point arithmetic.

A modern paradigm of software engineering is test-driven develop-
ment. This means, that the test bench for functional verification is created
first, i.e. before the actual software. The software is then written until
the specified target functionality is met. Similarly, the HLS test bench can
test for a set of pre-defined verification requirements.

2.3.3 The High-Level Synthesis Compilation Process

Very good introductions into the internals of HLS compilation can be
found in [Cou*09; GR94; Ren14]. It is a research topic of its own and can,
therefore, only sketched briefly here.

The HLS compilation process consists of three main steps: compilation,
optimisation and RTL generation, as shown in Fig. 2.4 with shaded blocks.
A more detailed explanation of every step follows below.

1. The synthesis process always starts with the code compilation of the
design entry sources. This relies to a great extent on the capabilities
of the employed compiler. For C/C++ based designs this is the GNU
C Compiler of the GNU Compiler Compilation (GCC) or a C/C++
frontend (e.g. Clang) for the Low Level Virtual Machine (LLVM)
framework [Zho*16; Ren14]. This step includes code optimisations
such as constant folding, loop transformations or simply dead-code
elimination.
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Figure 2.4: The basic HLS compilation process [Cou*(09].
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To give an example, the modern LLVM framework consists of three
stages [LAO4; Lat12]. The first stage is the language frontend, which
transforms the input source code into an intermediate representa-
tion (IR), the LLVM assembly language. This is a static single as-
signment (SSA) representation that provides type safety, low-level
operations and flexibility. The second stage is the LLVM optim-
isation, i.e. all code optimisations are performed on the IR. And
the consecutive third stage, the backend, maps the IR onto the in-
struction set of the hardware target, e.g. an x86 or Advanced RISC
Machine (ARM) architecture.

The LLVM is well-suited for HLS due to this modular design. In
particular, the IR is fully bit-accurate and not limited to bit widths
of native C types which are multiples of 8 bits in alignment with
common micro-architectures. Code optimisations like memory
reuse, array partitioning, automatic loop unrolling and function
inlining can be exploited directly [Con*11].

. Data dependencies can be modelled formally with a data flow graph
(DFG) where nodes represent arithmetic operations and edges are
variables. To model control structures like if and switch state-
ments or loops, the DFG model is extended by a control graph
resulting in the control and data flow graph (CDFG). Edges within
a CDFG represent the control flow while nodes are either control
constructs or so-called basic blocks which contain DFG models.
Further optimisations are applied to exploit data parallelism within
basic blocks and inter-dependencies between these.

. Based on the formal CDFG model, allocation of resources is per-
formed. “Resources” are functional entities or storage units within
this context. For each (arithmetic) operation a component is selected
from the RTL component library. The allocation thereby depends
on the given design constraints and must satisfy those.

. Then, operations are scheduled. Variables of the DFGs must be
loaded and stored and operations take a certain amount of clock
cycles. This can either be resource-constrained or time-constrained.

. Consecutively, binding happens. It is not until then that functional
resources are mapped to actual hardware units as they are provided
by the target hardware platform (FPGA or ASIC). The binding task

27



Chapter 2 Fundamentals of High-Level Synthesis

assigns the operations and memory accesses within each clock cycle
to available units. A hardware unit will be shared and reused if
access to a functional resource is mutually exclusive.

6. As a last step, synthesisable RTL generation follows, usually with
a control and data path. A single or several finite state machines
(FSMs) control the inputs and outputs of the data paths within the
basic blocks. Also, I/O interface logic is added, e.g. for an AXI bus
or simpler handshaking protocols.

All these steps are executed automatically without further intervention
by the user apart from the boundary conditions set by the applied HLS
compiler directives. The amount of information about the synthesised
digital design which the compiler outputs depends on the very HLS tool
used, but is in any way critical in identifying design bottlenecks and thus
obtaining increased performance with another design iteration.

2.4 Alternative Digital Design Techniques

HLS is not the only solution to cope with increased digital design com-
plexity. Competing alternatives are graphical tools, and extensions to
traditional HDLs can also improve design efficiency.

2.4.1 Hardware Description Languages

The two most widespread HDLs are Verilog, specified as IEEE Standard
1364 [IEEE-1364], and VHDL, specified as IEEE Standard 1076 [IEEE-
1076]. There is still support to write structural RTL code, but even in
the early 1990s behavioural RTL synthesis had already been introduced,
as mentioned above in Sec. 2.2. Behavioural RTL synthesis is able to
infer logic and can therefore be considered to be an abstraction step of its
own. The capabilities depend on the respective synthesis tools but have
steadily improved since then.

An advantage of HLS is the simplicity with which algorithmic para-
meters can be changed, like constant sizes or even data types. This is
possible with HDLs as well albeit requiring more time to write. Common
to Verilog and VHDL are so-called generics. In Verilog, the line

parameter PARAMETER_NAME = VALUE;
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defines a constant with the help of the parameter keyword. This could
be used for varying input sizes or fixed-point word lengths, and can later
be changed and also passed on to instantiated modules. A parameter of
a module can be set by the syntax

#(.PARAMETER_NAME (VALUE)) ;

after instantiation. Alike, VHDL allows to define generic constants and
generic types with the generic and generic map keywords during entity
declaration resp. component instantiation.

Additionally, VHDL supports generic packages. This is at the heart
of the predefined standard packages, foremost the fixed_generic_pkg
for fixed-point arithmetic and math_complex for complex-valued math-
ematical operations [Ash(08]. However, some functionalities have only
been introduced with the latest revision of the standard in 2008, and its
adoption by behavioural synthesis tools has been slow.

Therefore the well-known HDLs can offer basic generic functionality
as required by the RDAM, but nonetheless the usual disadvantages ap-
ply. On the RTL level, design space exploration, especially regarding the
exploration of different degrees of parallelisms, is slow and error-prone
due to the needed number of changed lines of code. In every case, the im-
plementation quality depends on the skills of the digital design engineer
as it is the case with HLS.

In conclusion, the intentional input abstraction with an HLL speeds
up design time for highly flexible digital architectures with HLS. The
compiler has to fill in for the missing fine-grained control over the details
of hardware design.

2.4.2 Graphical Programming Languages

Another solution being proposed to the hardware design productivity
challenge are graphical programming languages. To begin with, National
Instruments offers the possibility to program their FPGA products with
LabVIEW graphically. Then there is Mathworks Simulink as a standalone
product or in conjunction with another tool, which can either be Xilinx’
Vivado System Generator for DSP or the Altera DSP Builder Advanced
Blockset which Intel markets now under the name DSP Builder for FPGAs.

The Simulink-based tools offer a library of functional blocks which
can be utilised to create DSP algorithms. The DSP blocks are modelled
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and written in C and have hand-crafted and optimised RTL architectures
associated with them. Hence, the quality of results is quite good by
design. A major strength of these tools is the convenient support for
fixed-point data types with varying bit widths and easy functional design
verification.

Nonetheless, common to these tools are the limitations of the graphical
design entry. It is mostly data flow oriented and the overview suffers for
large designs. When it comes to architectural changes, e.g. exploiting
parallelisms, the graphs have to be remodelled substantially, which is
time-consuming and tedious. Furthermore and most importantly, the
graphical programming languages are non-standardised and subject to
change from version to version to come.

These disadvantages are HLS’s advantages. Not only are C program-
ming languages well standardised, but also the RTL output in VHDL,
Verilog or as a packed IP core in the IP-XACT format is standardised [Xil-
UG902]. The architectural design is vastly simplified by a handful of
compiler directives and does not require any code modifications most of
the time.

2.5 An Overview of Current High-Level
Synthesis Tools

The market for HLS tools is steadily changing. Some tools had originated
with academic research and were then bought and advertised commer-
cially, often accompanied by a product name change. Others have been
discontinued. [Mee*12; Nan*16; RJ16] comprehensively survey, list and
compare known HLS tools.

Selected tools will be mentioned below, which are multi-domain and
can synthesise American National Standards Institute (ANSI) C and
possibly C++ or SystemC code. Tab. 2.2 gives an overview over these
tools and judges their qualification with respect to the RDAM. All tools
do support some kind of DTA either founded in the polymorphism
and object orientation of C++/SystemC or, as a baseline, the typedef
keyword of all C dialects. (More on this later in Chap. 4.) However, there
are differences regarding the availability of floating-point (floating-point)
or fixed-point (fixed-point) data types.
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From the perspective of the RDAM, all HLS tools which support C++
(and thence SystemC) as input language and furthermore floating-point
and fixed-point data types are well-suited. The fixed-point conversion
of algorithms is optional to the RDAM and can still be applied partly
if fixed-point types are missing, as it will be explained in Chap. 3. The
floating-point validation and verification step of the C/C++ sources codes
can be achieved with any C/C++ compiler although the methodological
flow becomes easier if that is performed from within the HLS tool and
test bench. Hence, Tab. 2.2 prints the RDAM tool support in brackets if it
is with such limitations only.

2.5.1 Commercial Tools

The following paragraphs are in alphabetical order of the HLS tool name.

Mentor Graphics acquired from Calypto Design Systems the HLS tool
Catapult-C in 2011, now named Catapult High-Level Synthesis. Originally
it targeted ASIC hardware development only but has gained support
for FPGAs meanwhile as well. It accepts C, C++ and SystemC inputs
and also ships with a library for custom bit width fixed-point data types,
ac_fixed and ac_int, called Algorithmic C types [FB10].

In 2015, the FPGA manufacturer Altera was bought by the Intel Cor-
poration, which accompanied the takeover of their HLS tools. Intel now
offers the HLS Compiler and OpenCL SDK targeting their FPGAs, the
flagships being the Stratix devices. Some FPGAs are SoCs as well, in-
tegrating an ARM hard processor. Furthermore, the Arria 10 has up to
about 1.500 hardened single-precision floating-point multipliers/adders
besides up to 3.000 18 x 19 bits hardware multipliers. Hence, the Intel
HLS Compiler, which builds upon the GNU C Compiler, targets floating-
point development (only). It offers graphical inspection of the CDFGs for
analysis [Int17].

The latest addition to the family of commercial HLS tools is LegUp 5.0
by LegUp Computing Inc. It is a commercial spin-off from the academic
LegUp tool by the University of Toronto and targets FPGAs of every
vendor [Can™11].

Cadence bought the Forte Cynthesizer and integrated it with its own
C-to-Silicon Compiler into Stratus High-Level Synthesis. It supports the
design process from SystemC transaction level modeling (TLM) simu-
lations down to the gate level. There is library support for IEEE-754
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floating-point data types and their bit-accurate simulation, even with an
arbitrary partitioning into mantissa and exponent bits [Cad15].

Synopsys offers the Synphony C Compiler. It allows for performance
optimisations with loop unrolling or pipelining and supports fixed-point
data types, whereas floating-point types are not supported [Nan*16].
Once also Synphony High-Level Synthesis was offered as a product
to compile RTL designs from Mathworks Matlab M code [Syn], but it
appears that it has been discontinued or partly integrated into other
products as it has happened with the very similar Xilinx AccelDSP
[Mee*12].

Xilinx Vivado HLS has got a pretty long history: It started off as xPilot
by the University of California, Los Angeles (UCLA) [Con*06], and had
then been licensed as AutoPilot by AutoESL until 2011, when that com-
pany was bought by Xilinx. They marketed the product as Vivado ESL
until it was re-branded as Vivado HLS and integrated into the Vivado
Design Suite. In this text it is abbreviated as VHLS to distinguish between
HLS as a methodology and VHLS as a tool. VHLS is now based on the
LLVM [Con*11]. And it includes a complete design environment to ana-
lyse the architectural optimisations by directives, to perform bit-accurate
C-based simulations, RTL co-simulation and IP packaging. The tool ships
with several libraries, e.g. for linear algebra and OpenCL support. There
is also a ready-to-use C-level CORDIC implementation. SystemC'’s fixed-
point types are re-implemented as “arbitrary precision” types named
ap_fixed and ap_int [Xil-UG902].

Xilinx VHLS is top-ranked in surveys regarding the quality of results
and feature set of the tool [Mee*12; Nan*16]. Therefore, VHLS is utilised
throughout this dissertation if not stated otherwise.

2.5.2 Academic Tools

Academic HLS tools can compete with commercial tools regarding the
quality of results, albeit commercial compilers support more features
and are more robust in general [Nan*16]. A recent survey can be found
in [R]16]. With respect to the RDAM, every academic HLS tool exhibits
some limitations.

Bambu is part of the PandA project at the Politecnico di Milano [PF13].
It is written in C++ but supports only C as design entry language. Bambu
leverages the GCC C Compiler optimisations for HLS and targets FPGAs
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of the major vendors but is not limited to FPGA designs. It particular, it
supports the dynamic resolution of memory addresses and floating-point
arithmetic with the help of the FloPoCo library. Bambu does synthesise
C++ code (unofficially) but cannot generate any timing results in that
case. If used in conjunction with the ac_fixed and ac_int data types,
fixed-point designs are possible.

GAUT from the Université de Bretagne Occidentale is, in contrast to all
other tools being mentioned here, domain-specific for DSP applications.
It takes as input a C or C++ description of the algorithm to be synthesised
whereby the Algorithmic C class library from Mentor Graphics can be
used [Cou*08]. The generated architecture consists of three parts: a
processing unit (i.e. the datapath and controlling FSM), a memory unit
and a communication and interface unit. It also generates a test bench for
validating the equivalence between the behavioural description and the
RTL output. GAUT is currently being rewritten and support for advanced
data types like ac_fixed, ac_int is momentarily unavailable because
operator clustering is not yet implemented.

KiwiC from the University of Cambridge is unique in its design entry
HLL which is C# [SGO08]. It allows the programmer to use parallel con-
structs such as events and threads that are closer to hardware concepts
than classical software constructs [Nan*16]. Due to the polymorphism of
C#, the data type-agnostic programming style of the RDAM is supported
although dedicated fixed-point data types are missing.

LegUp is the HLS tool developed at the University of Toronto and
available for download in version 4.0 [Can*11]. It is based on the LLVM
compiler framework and benefits from its flexibility. LegUp can either
compile a digital hardware design or a hybrid processor—accelerator
system. The input language is C. A unique feature is its ability to compile
parallel software threads into parallel-operating hardware. The quality
of results can compete with commercial tools, and last but not least, this
may have been the reason why this academic tool was commercialised
recently (see above). Arbitrary-precision floating-point data types are
supported, but fixed-point types are not.

Personal correspondence between Philippe Coussy and Babar Khan.
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Chapter 3

The Rapid Data Type-Agnostic
Digital Design Methodology

The Rapid Data Type-Agnostic Digital Design Methodology (RDAM)
builds upon the powerful HLS tools available today. This fact alone could
already account for the “rapid” development times. Even so, design time
is additionally improved because of the data type agnosticism (DTA).

This chapter, therefore, justifies why it is reasonable to abstract data
types and which benefits arise. To this end, applicable floating-point
and fixed-point binary number formats are surveyed and commonalities
highlighted. An important conclusion will be that every binary number
encoding, including any floating-point format, has a limited numerical
precision and a representable number range, and can, within certain con-
straints, be exchanged with each other. Further, the scope of application
of the RDAM is discussed and limitations juxtaposed with its advantages,
especially concerning the resulting capability for enlarged design space
exploration. This chapter concludes with a concise step-by-step summary
of the methodological design flow in Sec. 3.4.

3.1 A First Observation on Algorithm
Development
Algorithms are commonly devised or derived mathematically and can

therefore be elegantly described in mathematical language.

Without loss of generality it might be assumed for the time being that a
signal processing algorithm operates on the field of real numbers. Then,

35



Chapter 3 The Rapid Data Type-Agnostic Digital Design Methodology

many implementation steps (synthesis steps according to Gajski [GK83])
follow until a working gate-level digital circuitry is obtained.

Generally, a first step is a numerical software implementation with
single-precision or double-precision floating-point data types. Usually
either powerful numerical software packages, e.g. Mathworks’” Matlab,
Waterloo’s Maple or Wolfram’s Mathematica, or the C programming
language are utilised for this purpose.

For traditional RTL digital designs, the next synthesis step is the fixed-
point conversion of the algorithm. A digital architecture has to be devised
and described in an HDL. Yet, every effort is spent to model the mathemat-
ical behaviour of the algorithm invariantly, i.e. during the top-down digital
design flow data types will change—but not the algorithm itself. Phrased
differently: The mathematical definition is per se data type-agnostic.

3.2 Binary Number Systems and Their
Deficiencies

Even though the precision of numerical floating-point simulations might
be fairly good and sometimes appear to be almost perfect, each and
every binary number system for machine computations is a bad or a worse
approximation of real numbers only. Generally speaking, any number
encoded by k bits long sequence can represent 2¢ code points, which is
far less than infinity—the cardinality of the set of real numbers.

An overview and classification of the data types used or mentioned
within this dissertation gives Fig. 3.1. There are various ways to encode
numeric values in a bit pattern, which belong either to the class of floating-
point or integer/fixed-point numbers.

3.2.1 Floating-Point Data Types

Floating-point data types generally do not represent numerical values
exactly, although their current omnipresence in computer science may
lead to a certain unawareness of this insight [Gol91]. In fact, every bin-
ary floating-point system can only encode rational numbers (Q) and is
incapable of expressing irrational numbers, since the denominator is
always a power of 2 [Gus15]. Nonetheless, however, they do offer a huge
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Figure 3.1: Every binary number system is an approximation to the real
numbers either belonging to the class of floating-point or fixed-point
types, whereby the latter is modelled by integers.

‘ double

half ‘

dynamic range, following the ideas of the scientific notation to span the
interval between small values on an atomic scale and large numbers on
an astronomical scale.

Floating-point systems have a base (or radix) $, which is for binary
systems = 2, and a precision of p significant digits. A floating-point
number z is represented by

z=(-1)°-m-p° (3.1

where s € {0, 1} is the sign bit, m is the significand (sometimes also called
mantissa) of p digits given in radix 3 (for 5 = 2 these are bits) and e is the
exponent. It is the exponent which allows the radix point to float to the
left (e < 0) or to the right (e > 0). Furthermore there are the parameters
emin and emayx to floating-point numbers which define the range of the
integer e as emin < € < emax. In general, every floating-point number
system F C Q C R is well-defined by the tuple (5, p, €max; €min), [Hig02].

It is important to understand that floating-point systems encode num-
bers in a sign-magnitude format and that the representable values are
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Sign Biased Exponent Normalised Significand
sl & | T |
1 bit w bit t bit

Figure 3.2: The bit string interchange encoding of floating-point numbers
as defined by the IEEE Standard 754.

not equally spaced, except for the special case of subnormal numbers
(see below).

3.2.1.1 The IEEE Standard 754

Historically, there have been various floating-point number systems res-
ulting in incompatibilities between computing machines. In fact, this
had been the very reason for the standardisation process leading up to
the current IEEE Standard 754 [IEEE-754]. It does not only define binary
(and decimal) floating-point formats of different degrees of precision
but also rounding rules and requirements for the computation of certain
arithmetic operations to reduce the accumulation and propagation of
rounding errors.

The IEEE standard defines emin = 1 — emax. The exponent e can thus
be encoded by w = [1d(2emax)] bits. Furthermore, the standard defines
bit string encodings as interchange formats and exploits two techniques
to store two bits implicitly.

Firstly, e is stored as the (unsigned) biased exponent £ = e + emax
and therefore avoids saving the otherwise necessary sign bit to represent
negative exponent values.

Secondly, the significand dy.d1ds . . . dj, is stored as a normalised num-
ber where dy # 0, i.e. for a binary system 1.dod; . .. d;. Please note that
the leading high bit must not be stored and is, therefore, a “hidden bit”.
The standard differentiates for this reason between “precision bits” p
and the size of the “trailing significand field” ¢t = p — 1, which actually
becomes stored in memory. An added benefit of normalisation is that
it leads to a unique mapping between numbers and their floating-point
encodings—the downside of it being the impossibility to represent the
zero. That is why the all-zeroes and all-ones exponent bit patterns are
reserved for special purposes by the IEEE standard.
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Table 3.1: Properties of floating-point (floating-point) numbers as defined
by the IEEE Standard 754 [Mol17].

Parameter Floating-Point Format

half single double quadruple
IEEE-754 Name binaryl6  binary32 binary64 binary128
Size k/bit 16 32 64 128
Precision p/bit 11 24 53 113
Max. Exponent  emax 15 127 1023 16383
Significand t/bit 10 23 52 112
Exponent Bits ~ ¢/bit 5 8 11 15
Decimal Digits 3.31 7.22 15.95 34.02
Machine Epsilon ¢ 9.8x10™*  12x107 22x107**  1.9x107*
Overflow Level 65504 3.4x10%  1.8x10°%®  1.2x10%*
Underflow Level 6.1x107° 1.2x107%® 22x1073%  3.4x1074%%
Min. Subnormal 6.0x107% 14x107% 49x1073%*  6.5x1079%

Fig. 3.2 shows the exact arrangement of the sign bit, biased exponent
bit field and the trailing significand field. The parameters can be taken
from Tab. 3.1 which lists the most relevant floating-point formats defined
within the standard. The single and double types are available in the C
programming languages as float and double, whereas the other types
require the utilisation of specialised libraries. All parameters listed in
the table can be derived from p and epay.

Accuracy of Arithmetic Operations The unit in the last place (ULP)
quantifies the spacing between two consecutive floating-point numbers,
i.e. when the least significant digit of the significand changes by one unit;
for 8 = 2 this is a bit flip of the least significant bit (LSB). This, however,
is numerically not a constant since the size of the represented interval
scales with the exponent of the number.

Nonetheless, ULP can be upper-bounded by machine epsilon €. The
largest spacing of floating-point numbers is between 1.0 and . e is
defined as the spacing within this interval,

e=pP =00 =gt (32)
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which characterises the attainable precision with that particular floating-
point format [Hig02]. In Mathworks Matlab, e.g., this quantity is available
to the programmer as eps [Mol17].

Closely related to ¢, and of greater importance for numerical analysis,
is the unit roundoff u for which

u= e (3.3)
holds [Hig02]. Every real number z lying in the range of F can be ap-
proximated by an element of F with a relative error no larger than u, i.e.
the number either becomes rounded up or rounded down to the closest
representable code point !. That quantisation may be described by the
operator Q,, {-} with regard to the number system A denoted by the
index. Then, if € R lies within the range of F it is [Hig02]

Qr{z}t=2(1+9), |J<u. (3.4)

The IEEE standard requires every addition, multiplication, division
and even square root operation to be correct within u. This is the standard
model of floating-point arithmetic and can mathematically be described
as

Qr {zoyt=(zoy)(1+0), [d]<u, (3.5)

with z,y € F and o being one of the just mentioned arithmetic operations
in infix notation [Hig02]. This accuracy is even attainable for a fused
multiply-add operation, z - y & 2.

In other words, every result of an arithmetic operation becomes roun-
ded to the nearest floating-point number. Tab. 3.1 states the average
number of correct decimal digits, which equates to p log(/3) if the floating-
point number is converted to a decimal. However, 9 or 17 decimal digits
are required to recover a single-precision resp. double-precision floating-
point number uniquely [Gol91].

Because of the one-half pre-factor, there are competing definitions of machine epsilon in
the literature. [Gol91] defines machine epsilon to be equal with the unit roundoff as
11—
u=e¢= 3P,
2
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Number Range and Subnormal Numbers The range of floating-point
numbers is given, in general, by

UFL = ﬁEmin—l < |Z| < 5emax(1 _ 5-1’) = OQFL (36)

for z € F, [Hig02]. The left bound is also called the underflow level
(UFL) and the right bound the overflow level (OFL). Note, that the UFL is
well above zero and, hence, the zero itself is not within the representable
number range.

For this reason, the IEEE standard reserves two exponent values for
special purposes. The all-zero bit pattern of the exponent encodes either
+0 or —0 if the significand is zero, depending on the sign bit. The specified
behaviour for values below UFL is a “flush to zero”. Furthermore, the all-
ones exponent bit string encodes positive or negative infinity (significand
is zero) or not a numbers (NaNs) (significand is non-zero), which are the
results of invalid operations, e.g. the division by zero.

An important extension specified by the 2008 IEEE standard 754 are sub-
normal numbers (formerly called denormal numbers). They are encoded
by the all-zero exponent pattern and a non-zero significand. However,
the implementation thereof is optional for IEEE-compliant floating-point
hardware [Gus15].

Subnormal numbers extend the number range and fill the gap between
zero and the UFL. They have the minimum exponent and their equidistant
spacing is 3°m»~1. They are not normalised (the hidden bit is ignored)
and therefore with a digit less of precision. In fact, subnormals are
nothing other than fixed-point numbers and enable a “gradual underflow”
instead of a flush-to-zero behaviour. The smallest subnormal magnitude
is Bemin—1 . ¢ (see Tab. 3.1).

3.2.1.2 The Universal Number Format

Although not directly used for this thesis, the Universal Number (unum)
format is an interesting extension of the floating-point formats discussed
within the previous section. A recommendable reading is the book by
Gustafson, who is a major proponent of this number system [Gus15].
Number rounding is absolutely avoided by unums. Instead, a ubit
is introduced which determines whether the unum corresponds to an
exact number (u = 0) or an interval between consecutive exact unums
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Figure 3.3: The unum bit string encoding [Gus15].

(u = 1); see Fig. 3.3. In this sense, unums cover the entire real number
line without any gaps, including —oo and +o0 [Gus15]. Computations
are performed with a kind of interval arithmetic, providing the guarantee
that the resulting interval contains the exact solution.

The unum system is a variable-width storage format for both the sig-
nificand (fraction) and exponent, and can therefore be tuned in its nu-
merical accuracy to the demands of the application. The bit width of
the exponent, e, and the fraction, f,, are stored in two additional fields,
as indicated in Fig. 3.3. The triple (u, e, f5) forms the so-called utag,
which describes the “environment” of the unum. A utag of e; = 4bit and
fs = 7bit would encompass all IEEE floating-point formats, including
quadruple-precision.

Being a superset to traditional floating-point formats, unums inherit
the advantages of floating-point numbers, like the representable number
range, precision and subnormal numbers. [Gus15] argues that most of
the computations can be performed with less than 32 bits, as it is the case
with single-precision IEEE floating-point numbers. However, varying
bit string lengths would make a redesign of traditional memory storage
architectures mandatory. Additionally, the resizing of the exponent and
fraction bit fields incurs an increased hardware complexity penalty.

As of today, unums solely play a role in academic research, yet their
intriguing properties make them an interesting object of study; and since
modern HLS tools are able to synthesise floating-point arithmetic, sup-
port for unum computing could be induced by properly designed C/C++
libraries. This, in turn, means that the proposed RDAM can support
unums at least theoretically.

A first work on digital designs with unums created with HLS has been
published recently [Hou*17].
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Sign Exponent Mantissa
5] e | m |
1 bit w bit t bit

Figure 3.4: The bit string encoding of the LNS with a logarithmic man-
tissa.

3.2.1.3 The Logarithmic Number System

A number format that will be utilised later on for some computations is
the Logarithmic Number System (LNS). The fundamental ideas of the
LNS date back to the seminal paper of Mitchell in 1962 [Mit62; Rus14].

The bit string representation of a number in the LNS is quite similar to
a floating-point number, whereby the important and sole difference is
the logarithmically scaled significand, then called mantissa (see Fig. 3.4).
Mostly, the employed logarithm is the logarithmus dualis (or binary logar-
ithm), denoted as 1d(-). However, variations to the bit string encoding and
the number format itself exist since the LNS is not standardised [SA75;
Has*05].

The value of a real number v, given in the LNS by (s, e, m), can be
obtained by
v=(-1)%-2".2° (3.7)

whereby e is an integer exponent and m the normalised (fractional) man-
tissa. Because of the exponent, the binary point floats and thus the LNS
has a large dynamic range like common floating-point numbers. For
number format conversion, the functions

LOG(z) =1d(z+1),and (3.8a)
ALOG(z) =27 -1 (3.8b)
with a bijective mapping [0,1] — [0,1] are needed. Obviously, x =

ALOG(LOG(z)) = z holds. The notable contribution of [Mit62] is the
approximation ld(z + 1) ~ x.

The greatest advantage of logarithmically scaled numbers is that logar-
ithmic identities can be exploited for the simplification of certain arith-
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Table 3.2: Properties of different integer and fixed-point number formats.

Type Format Minimum Maximum Quantisation
Unsigned integer ~ w bit 0 2% -1 (2°=)1
Sign-magnitude w bit —(vt—1) 2wt -1 1
Two’s complement  Q(m,0) —2m 2m —1 1
Fixed-point Q(m,n) —2m 2m_27" 27"
Fractional Q Q(0,n) -1 1-27" 27"

metic operations. Especially it is

logs(wy) = logg(z) + logg(y) , (3.9a)
logg (z/y) = logg(z) —logs(y) , and (3.9b)
log (2%) = dlogs() , (3.9¢c)

for any real-valued base 8 and numbers «, y. Hence, the multiplication
and division can be reduced with the help of the LNS to a simpler addition
and subtraction, resp. The exponentiation becomes a multiplication
within the logarithmic domain and for the special case of a square root
this boils down to a multiplication with a factor of 1/2 which can be
realised by a simple bit shift in binary arithmetic.

Nonetheless, the application of the LNS requires the evaluation of the
conversion functions LOG and ALOG in (3.8). A low-complexity solution
and application example will be given in Sec. 4.4.3, page 72, later.

3.2.2 Integer and Fixed-Point Numbers

With regard to digital signal processing, integer or fixed-point arithmetic
is of paramount importance since it allows for simpler digital circuits
and, hence, more efficient hardware architectures. This derives from
the fixed position of the radix (i.e. binary) point, which does not need
to be aligned first during computations. Consequently, all integer and
fixed-point numbers are equidistantly spaced along the number line.
An introduction to fixed-point number representations can be found,
e.g., in [Par10]. The most common way to represent a numeric value
with a bit string is the binary weighted number system. Each bit position
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Sign  Integer Part Fractional Part
EI | / |
1 bit m bit n bit

Figure 3.5: Bit string encodings of integer and fixed-point formats.

is assigned a specific weight, which is a power of two. Still, there are
several possibilities to encode a numeric value number into a bit string
depending on the particular weights assigned to each bit position, as
listed in Tab. 3.2. The upper half of the table lists integer formats, whereas
the lower half lists fixed-point formats. The Q format will be explained
in detail below in Sec. 3.2.2.2. Fig. 3.6 illustrates the integer encodings for
w = 3 bit.

The general bit string encoding of a fixed-point number is illustrated
in Fig. 3.5. The total bit width is

w=m+n+1, (3.10)

whereby m is the number of the integer bits (excluding the sign bit) and
n is the number of fractional bits. For integer types, the fractional part
vanishes (n = 0), whereas for the purely fractional format, it is the integer
part which vanishes (m = 0). Unsigned numbers do not have a sign bit.

To represent negative values, the most significant bit (MSB) is used as
sign bit. This opens up two alternative encoding possibilities: First, the
sign bit can be interpreted independently of the remaining bits, giving
the sign-magnitude encoding. This leads to a double representation of
the zero as 40 and —0. Alternatively, a negative weight of —2™ can be
attached to the sign bit, resulting in the well-known two’s complement
representation. The decimal value of a binary fixed-point number in
two’s complement is

m—1 —1
v=—dp2"+ > di2 4+ Y dp2t (3.11)
=0 f=—n

This formula consists of two distinct sums to emphasise the contributions
of the integer and fractional parts, although it could be combined in one
term.
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111 000 001 7 0 1 -3 +0 1 -1 0 1
101 100 011 5 4 3 -1 -0 3 -3 4 3

(a) (b) (c) (d)

Figure 3.6: Number circles for different integer encodings of the 3 bit
words shown in (a): (b) unsigned, (c) sign-magnitude, and (d) two’s
complement.

3.2.2.1 Properties of Fixed-Point Numbers

Since fixed-point numbers are of finite word length as floating-point
numbers are, they share some properties, like limited ranges or number
rounding, albeit with distinct differences due to the fixed position of the
radix point.

Position of the Binary Point To begin with, the position of the binary
point is not encoded within the bit string. For floating-point numbers this
is transparently handled by a floating-point ALU. In contrast to this, at
every stage of a fixed-point digital architecture there is a specific Q format
associated with each numerical bit string, which is not accessible for
computations. Therefore, the digital designer must keep track of changes
to the radix point position during arithmetic operations.

As it is the case with floating-point numbers, fixed-point numbers
represent rational numbers only. Solely the numerator is stored; and the
denominator, which must be a power of two in binary systems, is not
stored, since the position of the radix point is implicit.

Range and Scaling Contrary to the straight number line of real num-
bers, fixed-point numbers form a number circle due to the finite word
length and the unavailability of a scaling exponent. Fig. 3.6a shows all
possible 3 bit words. The results of arithmetic operations can easily over-
flow and typically wrap around in that case, which leads to totally wrong
results. To give an illustration: The addition 1115 + 1, = 1000, gives
000, after casting the result to 3 bit again. This wrapping occurs whether
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the numeric value is encoded as unsigned natural number (Fig. 3.6b), as
a number in sign-magnitude format (Fig. 3.6c) or as two’s complement
number (Fig. 3.6d). Hence, the representable number range is very lim-
ited and the designer must ensure that the expected input and output
values fit into the representable number range of the chosen format (see
Tab. 3.2).

A common technique is called scaling, which basically is a (repeated)
left or right shift of the binary sequence. This corresponds to a division
resp. multiplication by two. Sign extension is necessary for numbers
given in two’s complement, i.e. the former MSB must be copied to the
new leading digits if right-shifted.

Overflow and Underflow Handling If an overflow occurs, i.e. the res-
ult of an operation is above the maximal or below the minimal repres-
entable value, the overflow bit cannot be stored and the number wraps
around—a behaviour highly undesired in signal processing. It does not
only cause a low signal-to-noise ratio (SNR) or a highly corrupted sig-
nal, it can also destabilise recursive digital filters due to the introduced
non-linearity [KK06]. Hence, overflows must be avoided at all costs.

This effect can be mitigated by saturation overflow handling, i.e. the
value is clipped to the maximal or minimal value, but this requires an
additional condition to be tested for and, therefore, increases the digital
logic overhead. Solely sufficient spare bits, i.e. a range extension of
the fixed-point number format to accommodate the result, can prevent
overflows in the first place.

On the other hand, underflows can occur during arithmetic operations.
A simple truncation of a number in two’s complement rounds to the
closest representable number in the direction of negative infinity. Other
rounding methods are, among others and in increasing order of complex-
ity: round-to-zero, round-to-nearest and convergent rounding. The latter
is statistically the best, since the only unbiased method.

Underflows are not as detrimental as overflows unless very small mag-
nitudes become rounded identically equal to zero, which might lead to
unexpected side effects when subsequent conditional statements test for
Zero.
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Accuracy and Quantisation Noise The quantisation step A between
two consecutive representable numbers, i.e. ULP in floating-point par-
lance, is given by the weight assigned to the LSB, which is exactly A =
27", Other than with floating-point formats, A is constant because fixed-
point numbers are equidistant within the representable range. For in-
stance, A is for 16 bit and 32 bit numbers in fractional Q format 3.1x10~°
resp. 4.6x107%, which is equivalent to 4.2 resp. 9.3 decimal digits on
average. When compared to machine epsilon in Tab. 3.1 on page 39,
same-length fixed-point numbers provide better accuracy.

Within the context of digital signal processing, the average effect of
rounding is commonly referred to as quantisation noise. It acts as an
intrinsic noise source which degenerates the SNR [KKO06]. For a signed
integer or fixed-point number of w bits and uniformly distributed input
data within the range of the number format, the power of the quantisation
error is
9—(w—1)

12 7
which is a well-known result [Kam08]. Note, that the numerator is
identical to A for a fixed-point number given in fractional Q format. This,
of course, makes a couple of idealistic assumptions and can, therefore,
only be a first order approximation.

2

o} = (3.12)

3.2.2.2 The Q Format

The partition of the total word length into an integer part of m bits and
a fractional part of n bits can be denoted with the help of the so-called
Q format as Q(m, n). This notation has been introduced by Texas Instru-
ments in their DSP Library Programmer’s Reference, e.g. [Tex00].

Because of its importance to signal processing applications, the Q format
commonly denotes signed fixed-point numbers in two’s complement.
Hence, there is always a sign bit which is not counted as part of the
integer part m. The total bit width of a Q(m, n) number is w = m+n+ 1.
The important special case of an all-fractional number Q(0, ) is also
known by the shorthand notation Qn. A fixed-point number in Q15 has
a word length of 16 bit for example.

Yet, the Q format itself is not standardised and variations of it can be
found within the literature. Sometimes, the sign bit is counted as part
of m requiring m > 1; or the triplet (s, m,n) is given, with s € {0,1} to
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" o

denote the existence of a sign bit. Alternatively, prefixed letters “s” or “u
are used for signed respectively unsigned numbers, e.g. “u0.15".

The Q format as defined here and used within this document unam-
biguously defines how a bit string has to be interpreted, and the notation
makes it easier for the designer to keep track of changes during arithmetic
operations.

Sizing of the Integer and Fractional Parts If a bound M > 0 is known
such that |a| < M, then [1d(M)] + 1 bits are required for a signed integer
encoding, whereby [-] denotes rounding up to the next integer. Addi-
tionally, [1d(1/p)] fractional bits are required for a target quantisation
step A < p, which follows directly from the definition of A. For instance,
to meet a numerical precision of p = 1x1073, 10 fractional bits need to
be provided.

Consequently, the minimally required Q format for a (closed) interval
[-M, M] with a target precision p is

ae[-MM,A<p = acQUON]NA1/P]).  (313)

Note, if the open interval (—M, M) is sufficient, i.e. |a| < M is strictly
less, one integer bit can be spared.

Arithmetic Operations To retain full precision during arithmetic oper-
ations, the Q format of the result needs to be sized sufficiently.

Tab. 3.3 lists several operations, the formats of the operands and the
formats of the results. These apply to numbers in two’s complement as it
is implied by the Q notation. Proofs of these laws can be found in App. A.

The significance of the all-fractional Q format Qn stems from its prop-
erties regarding multiplications. Qn can represent numbers from the
interval [—1, 1) and multiplication results are ensured to lie within this
interval again, apart from the corner case —1 - (—1) = 1. Consequently,
the utilisation of this fractional format is recommendable, because inter-
mediate scaling stages can be omitted which eases fixed-point design a lot.
Since many computer architectures are aligned with boundaries being
multiples of 8 bit (i.e. bytes), the Q15 format is frequently utilised. The
multiplication of two such numbers, Q15 - Q15, maps to Q30 according
to Tab. 3.3, which can be stored in a 32 bit wide register. If the result is
truncated again to 16 bit, most probably an underflow will occur, i.e. a

49



Chapter 3 The Rapid Data Type-Agnostic Digital Design Methodology

Table 3.3: Resulting Q formats of basic arithmetic operations.

Description Operation Result

Left Shift Q(m,n) < k Q(m —k,n+k)

Right Shift Q(m,n) >k Q(m+k,n—k)

Addition/Subtraction  Q(m1,n1) + Q(m2,n2) Q(max(mi,ms2) + 1,
max(ni,n2))

k-fold Add./Sub. >i—1 Q(m,n) Q(m + Nd(k)],n)
Multiplication Q(m1,n1) - Q(mz,n2)  Q(m1 + ma2,n1 + n2)
Reciprocal 1/Q(m,n) Q(n,m)

Division Q(m1,n1)/Q(m2,n2) (TTZ1 + na2,n1 + ma)
Square Root® Q(m,n) Q([m/21, 1d(1/p)1)

¢ The number of fractional bits of the output format can be chosen arbitrarily, but in
order to avoid a loss in precision p the choice for at least n fractional bits is recommend-
able (see App. A.1.6).

precision loss. This, however, is less critical than an overflow, though
undesirable as well.

3.2.3 Discussion

The above explanations of floating-point and fixed-point data types high-
light common characteristics these number representations share.

Both categories of formats are inexact because of rounding issues due
to finite word lengths. The remarkably huge number range which is
covered by floating-point types, while offering substantial precision at the
same time, makes them the number one choice for algorithm design and
analysis. If HLS is employed, this also carries over to digital architecture
design as long as there are plentiful hardware resources available. The
latest HLS tools do support floating-point data types for synthesis (see
Sec. 2.2.1). Keeping floating-point arithmetic even for digital architecture
design can minimise implementation loss.

Basically, the pros and cons of fixed versus floating-point designs
presented in [I096] are still valid. Existing design constraints may require
a fixed-point conversion step, namely energy consumption, resource util-
isation (area) or the speed of computations to meet timing specifications.
In that case, fixed-point numbers are the preferred choice, because of
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the relatively simple integer arithmetic. But the non-recurring costs of
development also need to be factored in, which are higher for fixed-point
designs. Because all of the bits of a fixed-point number contribute to
the accuracy of the format, there are niche applications where fixed-
point arithmetic can yield better accuracy than same-sized floating-point
numbers.

Concerning fixed-point design, the most critical issue is the limited
number range. Yet, statistics of the input data are often known and
binary scaling can be applied to reduce magnitudes such that the data
are representable by a fractional Q format. Subsequently, the rules to
Q format changes, as set forth in Tab. 3.3 on page 50, can be followed to
track the radix point and perform computations with desired precision.
This approach could be described as pseudo floating-point arithmetic,
since the position of the binary point does change from operation to
operation, although it is known and fixed at every stage of the process.
Furthermore, the bit width of fixed-point data types is arbitrarily tunable
for the requirements of the signal processing application.

To summarise the above: As long as the magnitudes of the data are
restricted to a known interval, floating-point and fixed-point arithmetic
are quite similar in their behaviour. This can be exploited to simplify the
design flow with HLS.

The observation of [Kae08, page 64] is noteworthy:

“The effort for finding a good compromise between numerical
accuracy and hardware efficiency is often underestimated.”

A holistic approach to top-down algorithm implementation should, there-
fore, encompass all these aspects. This is certainly true for the proposed
RDAM.

3.3 The Principal Idea of the RDAM

In Sec. 3.1, it has been recognised that conceptual algorithm design and
analyses are usually performed with double-precision floating-point data
types. An exchange for single-precision or half-precision data types is
unavoidable and mandatory to make the design entry C++ code suitable
for HLS (double-precision is not supported or incurs heavy resource
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utilisation penalty). Apart from that, a fixed-point conversion step must
take place if design constraints dictate.

Therefore, the basic principle of the RDAM is to solely work with one
algorithmic description which captures the mathematical structure but
is agnostic towards data types. Throughout the implementation process
the very same generic source code of the algorithm at hand will be used
for each and every design step, just with exchanged parametrisations for
data types. To express this in more informal language, the RDAM is a
design flow “from complex math to fixed-point hardware in no time”.

3.3.1 Advantages

The baseline data type-agnostic algorithmic description effectuates sev-
eral advantages:

* Code reusability is pronounced. A single C++ source code is reused
for simulation and implementation. Neither must the algorithm
be ported to another programming language, nor are additional
validation steps needed due to such re-implementations.

¢ The DTA augments the design space exploration capabilities with a
new dimension “data type” which translates to a tunable numerical
accuracy (see Sec. 3.3.2).

¢ The methodology also applies to complex-valued algorithms (see
Sec. 4.2).

¢ Digital designs operating with fast and resource-efficient fixed-
point numbers can be obtained without much overhead (see Sec. 4.3).
The fixed-point conversion step is simplified.

¢ All the advantages of HLS benefit this methodology, namely the
abstracted design perspective, the resulting rapid architecture cre-
ation and the test benches for speedy functional verification.

Recapitulating the above, all elements in the name Rapid Data Type-
Agnostic Digital Design Methodology are accounted for. Itis “rapid” because
the elevated design perspective of HLS accelerates the design time and
eliminates the need for RTL coding; the progression to fixed-point arith-
metic is simplified. It is “data type-agnostic” since the complete top-down
design flow is based on a single source code exhibiting this feature. It is
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“digital” because it targets the synthesis of digital logic circuitry. And it
is a “design methodology” which can systematically be applied to and
followed along with every algorithm, in the sense of the original greek
word methodos.

3.3.2 Augmented Design Space Exploration

As it has already been mentioned, a major advantage of HLS is its abil-
ity for better design space exploration because of the higher level of
abstraction [GR94].

Of key interest are the powerful HLS compiler directives to adjust the
degree of parallelism of an architecture. VHLS, e.g., supports the explor-
ation of different architectures, called “solutions”, out-of-the-box [Xil-
UGY902]. While all solutions are based on exactly the same source code,
each has a unique set of directives associated with it.

Although architecture design and analysis is at the heart of HLS, it
is, however, not trivial with VHLS to explore the influence of other al-
gorithmic parameters. Most importantly, many algorithms have a specific
problem size, e.g. the size of a Fast Fourier Transform (FFT) or the length
of some input vectors to a function. Such parameters are usually defined
in preprocessor macros or as constants, but VHLS does not offer the
possibility to change hard-coded values or to compare synthesis results
for variations of these.

As schematically shown in Fig. 3.7, a tool chain has been developed
which links VHLS and Mathworks Matlab [Kno*16c]. Shell scripts are
used to set up an environment which accepts certain user inputs, makes
automated calls to both tools in background and stores results. The tool
chain helps in rapid architecture evaluation and design of algorithms by
exploring different dimensions of the design space, namely

e architectural alternatives,
e different problem sizes, and,

¢ data types,

the latter thanks to the DTA of the RDAM. Possible data types supported
by the proposed DTA are floating-point or fixed-point number formats,
either real-valued or complex-valued. In addition to that, further HLS

53



Chapter 3 The Rapid Data Type-Agnostic Digital Design Methodology

.cpp file
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Figure 3.7: A link between Matlab and VHLS enables bit-accurate sim-
ulations which can be integrated into a model for verification and
validation purposes [Kno*16c].

parameters could be varied, e.g. the target device or target clock fre-
quency.

A data model in Matlab generates a configurable number of inputs
and expected outputs to the HLS design at hand, e.g. random vectors, to
supply simulation stimuli for verification and test purposes.

The average numerical accuracy of the HLS results, as well as other
user-defined metrics, can then be compared, evaluated and averaged
over many simulation runs. Hence, the numerical accuracy measured at
an output interface can be taken into account during the design process,
e.g. expressed by the normalised mean squared error (NMSE) which is
defined as

NMSE(x, ) = (3.14)
with x being an approximation to x. This is inspired by the ideas of
approximate computing, where loosened accuracy constraints open up
the possibility for the development of simpler, more hardware-efficient
designs (see Sec. 4.4). This endows the designer with another option for
trade-off.

Besides classical hardware design metrics—like resource utilisation,
energy consumption, latency or data throughput—the numerical accur-
acy can serve as an additional figure of merit. Fig. 3.8 illustrates this
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Figure 3.8: Resource utilisation for varying fixed-point word length,
which is a configurable parameter with the proposed methodology.
This allows for an optimal and hardware-efficient trade-off between
resource utilisation (here: DSP slice count) and achieved numerical
accuracy (here: NMSE), [Kno*16c].

fact [Kno*16c]. It shows a parametric sweep of the fixed-point word
length (abscissa) used as a baseline data type employed for the imple-
mentation of the ACGP algorithm [BD08; BDR12], and compares the
evaluated numerical accuracy of the output vector with the resource
utilisation of the HLS synthesis result. Asking for minimal area, a word
length of 18 bits would be the Pareto-optimal choice if an NMSE of 1x 10~
is tolerable.

Further details on the specifics of the implementation can be found
in [Kno*16c]. Note, however, that a single baseline fixed-point format
was used throughout the whole architecture and necessary Q format
conversions were handled automatically to a great extent by specialised
C++ data types.

3.3.3 Prerequisites and Limitations

Although hardware design gains some kind of a “software feeling” be-
cause of HLS, nonetheless deepened hardware expertise is still needed
to create efficient architectures. In particular, the concept of concurrency
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need to be well understood to identify portions of the sequential design
entry code which can be computed in parallel.

The RDAM is not restricted to domain-specific applications. It allows
for the implementation of all algorithms in general which are expressed by
C++ code. Hence, the realisation of computationally intensive algorithms
is possible, consisting of control logic as well as optimised data paths.

Implicit to HLS is the limitation to synchronous logic synthesis. Asyn-
chronous designs are, therefore, out of the scope of the RDAM.

Furthermore, the RDAM mainly targets FPGAs. FPGAs offer rapid
design cycles and in-system tests [Con*11]. VLSI designs for ASICs are
possible as well, though not covered within this thesis.

3.3.3.1 Prior Algorithmic Transformations

Not every mathematical algorithm is suited for hardware implementation
in the first place. Mathematically equivalent algorithmic transformations
are often required beforehand to tailor it accordingly and facilitate imple-
mentation.

Basically, there a two main points which must be taken into considera-
tion:

¢ The algorithm might contain complicated mathematical functions
which defy a simple and fast mapping to MAC operations.

Code libraries with explicit support for HLS provided by the tool
vendors help a lot. Xilinx, e.g., supplies ready-to-use solutions for
trigonometric and transcendental functions and a CORDIC imple-
mentation [Xil-UG902].

Alternatively, polynomial function approximations and look-up
tables could be utilised (see Sec. 4.4).

® Sub-algorithms are needed to perform certain computational tasks.

This is evident in the case of QRD, which can be performed either by
Householder reflections, (modified) Gram-Schmidt orthogonalisa-
tion, or Given’s rotations—each having pros and cons [GV13]. The
choice of a procedure for implementation lies with the engineer.

A design example which illustrates both points will be given in Sec. 5.2.
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3.3.3.2 The Subset of Synthesisable Code

The RDAM solely supports C++ as design entry programming language.
This is inherited from the support of the HLS tools and the mechanisms of
the language utilised for data type abstraction (see Sec. 2.5 and 4.1.2). Sys-
temC, which is in fact a class library to C++, can be used partly, foremost
with regard to the provided fixed-point data types.

After the mathematical functional specification has been mapped to an
algorithmic equivalent ready for implementation, another limitation of
HLS has to be considered, namely that HLS tools synthesise a reasonable
subset of the C/C++ languages only.

Most importantly, there is no operating system for memory manage-
ment on FPGAs or ASICs. That makes it mandatory to code the HLS
design with static memory allocations to obtain well-defined register or
vector sizes at compile time. Although the exact sizes must be known at
compile time and cannot change later, i.e. a runtime configuration is not
possible, sizes may be configurable (but constant) parameters.

The designer has to adhere to the HLS coding style guide of the HLS
tool as outlined in Sec. 2.3.1.1. This could necessitate the rewriting of
non-synthesisable existing C++ code. The associated HLS test bench,
however, helps to ensure functional equivalence.

3.4 Methodological Design Flow

In conclusion of this chapter, the methodological design flow of the
Rapid Data Type-Agnostic Digital Design Methodology (RDAM) can be
summarised as follows:

1. Apply equivalent algorithmic transformations to the algorithm at
hand to reduce computational complexity or facilitate implementa-
tion in the first place.

2. Create a purely data type-agnostic C++ source code for HLS design
entry. (This will be explained in detail in Chap. 4.)

3. Verify and validate the C++ code with parametrisation for floating-
point accuracy against a possibly existing algorithmic model in,
e.g., Mathworks Matlab.
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4. (Optional.) Exchange data type parametrisations for fixed-point
arithmetic to obtain resource-efficient and fast designs. A self-
checking HLS test bench automatically ensures and guarantees
functional validity.

5. Evaluate architectural design options and the resulting numerical

accuracies using the extensive design space exploration capabilities
of HLS with added DTA.

6. Synthesise and package the design as an IP core for implementation
with the HLS tool of choice.

Some aspects of this top-down design flow will be described in further
detail below. Also, some improvements will be proposed to smoothen
this process and overcome certain shortcomings of the HLS tools.
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Chapter 4

Data Type Agnosticism for
High-Level Synthesis

At the heart of the RDAM are data type-agnostic design sources. This,
however, is not a novel concept in itself. In fact, it is a consequent ex-
ploitation of the polymorphisms, which an object-oriented programming
language, like C++, offers.

The basic idea of DTA for HLS was derived from the Fixed-Point De-
signer, which can be acquired as an additional toolbox to Mathworks Mat-
lab. It defines the fi object to model fixed-point numbers; and existing m-
code functions, i.e. functions written in Matlab’s own object-oriented pro-
gramming language, can be called either with standard double-precision
floating-point numbers or with £i objects as function arguments. Extens-
ive configuration possibilities exist to influence the fixed-point number
formats and their arithmetic behaviour. In other words, the data type of
the function arguments switches between floating-point or fixed-point
operation.

Likewise, [Cro*14] mentions as an incidental remark that floating-
point data types (data types) can be used for functional verification of
HLS design sources and later be exchanged for fixed-point data types.
The RDAM builds upon these ideas and develops them into a mature
design methodology to span the complete top-down design flow from
the mathematical specification down to the register-transfer level.

Within this chapter, the DTA used by the RDAM is explained and
exemplified by a small design example. Afterwards, its significance
to complex-valued and fixed-point designs is discussed. The chapter
will conclude with a section on function approximations to facilitate
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fixed-point arithmetic even for mathematically complex expressions in
connection with HLS.

4.1 Data Type-Agnostic Design Sources

The DTA for HLS heavily relies on the capabilities of the C++ program-
ming language, i.e. the different types of polymorphism. This is also
supported by a couple of HLS tools, as listed in Tab. 2.2 (on page 31).

The RDAM proposes to keep the algorithmic description of the C++
source code generic with regard to data types. This can be achieved
with the help of the typedef keyword. In other words, the design entry
source code shall exclusively make use of custom-declared data types. This
offers the advantage that data type definitions can easily be exchanged
thereafter.

To allow for a more fine-grained control, several specialised typedef
declarations can be made according to the use case, e.g. data_t for data
elements, io_t for I/O interfacing, accum_t for counters and accumulat-
ors, etc.

The following section will provide an illustrative example.

4.1.1 Example Source Codes

Listing 4.1 is a small data type-agnostic code example which implements
a sum of squares to illustrate the RDAM. Note, nowhere in this code
listing do occur standard C++ data types. Furthermore, data might be
complex-valued.

The custom data type declarations have to be specified. These are
to be found within the included header file listed in Listing 4.2, where
a preprocessor macro definition DATATYPE is used to select a specific
parametrisation. Parameters to the algorithms are defined as well, e.g.
in line 9 of the header file for the length of the input vectors. Thus, all
vector sizes are known at compile time and, hence, fit for HLS.

The cpp and h files together are the product of Step 2 of the RDAM
(see page 57).

In Sec. 3.1 it has been observed that data types do change during the
top-down hardware design of an algorithm, but not the mathematical
behaviour of the algorithm itself. Thus, the data type-agnostic code
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Code Listing 4.1: The data type-agnostic HLS design file
correlation.cpp implementing a (squared) scalar vector product.

1 #include "correlation.h" // custom data types, sizes

s result_t correlation( data_t al[N], data_t b[N] )
< {

5 accum_t sum = O0;
6 for( counter_t n = 0; n < N; ++n )

7 {
s sum += conj( aln]l ) * bl[nl;
}

10 return sum;

can now be parametrised for code verification and validation, follow-
ing Step 3 of the RDAM. To accomplish this, all custom data types are
defined as floating-point variables (double) or, where appropriate, as
signed /unsigned integer variables (int or alike).

Subsequently, Step 4 of the RDAM will introduce fixed-point numbers
into the design, if desired. These can efficiently be implemented with
the help of the SystemC classes sc_int and sc_fixed or their unsigned
variants. In connection with the RDAM, the sc_fixed class is of greatest
importance and especially well-suited. This will be discussed in further
detail in Sec. 4.3.

The example continues with the design space exploration according to
Step 5 of the RDAM in Sec. 5.1 (page 75).

4.1.2 Employed C++ Mechanisms

The polymorphisms of the C++ design language bring the DTA to life.
There are mainly two key mechanisms at work.

® C++ allows for operator overloading, i.e. operators can be extended
in their definition but keep their meaning. To illustrate this with a
tiny example, even the simple assignment

std::complex< float > z = 3.0; // 3.0 + 0.0i
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Code Listing 4.2: Header file correlation.h defining all custom data
types and other algorithmic parameters.

+ #ifndef CORRELATION_H
> #define CORRELATION_H

<« // include data type classes
s #include <complex>
s #include <ap_fixed.h>

s // algorithmic parameters
o #define N 32
1o #define ACCURACY_THRESHOLD 1le-2

2 // data type definitions and selection
12 #define DATATYPE 1
12 typedef unsigned char counter_t;

1 #if DATATYPE == 0

i // float

s typedef float data_t;

v typedef float result_t;

20 typedef float accum_t;

21

22 #elif DATATYPE == 1

23 // std::complex<float>

2 typedef std::complex<float> data_t;
s typedef std::complex<float> result_t;
2 typedef std::complex<float> accum_t;
27 using std::conj;

20 #elif DATATYPE == 2

20 // fixed-point like C’s short

31 typedef ap_fixed<16, 3> data_t;

22 typedef ap_fixed<16, 3> result_t;
3 typedef ap_fixed<16, 3> accum_t;

35 #elif DATATYPE == 3

% // std::complex< ap_fixed<W,I,Q,0> >

7 typedef std::complex< ap_fixed<18, 4, AP_RND,
AP_SAT> > data_t;
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Code Listing 4.2 (cont.): Header file correlation.h.

typedef std::complex< ap_fixed<18, 4, AP_RND,
AP_SAT> > result_t;

o typedef std::complex< ap_fixed<18, 4, AP_RND,

AP_SAT> > accum_t;
using std::conj;

#elif DATATYPE ==

#else

s #error "Define data type"

#endif // DATATYPE

// fallback for complex<float> to float
template <class T> T conj(T x) { return x; }

. #endif // CORRELATION_H

is internally overloaded by the std: : complex class to initialise the
real part as well as the imaginary part of z.

¢ Class and function templates allow for generic data structures not

only with constant parameters but also with arbitrary data types,
i.e. templates are inherently data type-agnostic. For example,

template <typename T>

Tmin ( T x, Ty ) {

return x <y ? x : y;

b
defines a templatised function min which can be applied to every
data type T that supports the relational operator “<”. This is per
default the case for all integer and real number types. The compiler
checks the existence of the required overloads.

Additionally, preprocessor macros allow for a conditional compilation
of source codes. They are common to C and all derived dialects. In
Listing 4.2, the DATATYPE macro was used to switch between data type
definitions. Nonetheless, such macros circumvent the semantic checks of
the compiler and are therefore more prone to coding errors.
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The application of the RDAM brings simplifications to at least two do-
mains which traditionally require additional design time and deepened
hardware expertise: complex-valued data paths and fixed-point design.
These topics will be addressed in the following sections.

4.2 The Application to Complex-Valued
Designs

The function conj() in Listing 4.1, line 8, implies a complex-valued
operation of the code, because the complex conjugate is simply undefined
for real numbers. It is imported into the namespace for complex-valued
data type parametrisations within the header file, e.g. for the case of the
complex-valued single-precision floating-point data type in Listing 4.2,
line 27.

Since the field of complex numbers is a superset to real numbers, it is
advisable, with regard to the RDAM, to create source code for the most
general case, i.e. complex numbers. This might be viewed as a defect to a
truly agnostic source code, but, however, at minimal cost compared to
the potential gain in design time.

The complex class of the C++ Standard Library (namespace std) is
supported for synthesis, e.g. by VHLS amongst other tools. Data type
agnosticism mandates that every called function must be well-defined for
the complex-valued case std: : complex<T> as well as the real-valued case
T, with T denoting any C++ data type. However, if the code is compiled
for real-valued operation, the static functions of the complex class are
undefined and must be made known to the compiler. This can quickly be
accomplished by a graceful fallback strategy which redefines the function
for every real-valued data type with an empty function body.

For example, the fallback solution for the std: :conj () function can
be implemented with a single line of code, as shown in Listing 4.2, in
line 49. Similar functions could be added for other static function mem-
bers of std::complex, if needed. The implemented fallback function
immediately returns, skipping conjugacy, and is well-defined for every
compilation with a real-valued data type parametrisation of the design
code. The compiler will remove such additional function calls during the
optimisation stage, and thus no penalty whatsoever is incurred.
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The relational operator “<”, mentioned in the previous section, could
be overloaded and extended in its definition to apply to the magnitude
of complex numbers, which normally have no natural ordering. Alike,
the complex class implements complex addition, multiplication, division,
etc., which are well-defined operations.

As a side note: One complex-valued multiplication normally consists
of four real-valued multiplications and two real-valued additions/sub-
tractions. A designer can opt, however, to apply Gauss’ complex multi-
plication formula to reduce the number of multiplications to three while
increasing the number of additions/subtractions to five [Knu02]. This
could be implemented by another function template. Thereby a shift
between design resources is possible, e.g. if the utilisation count of DSP
slices with dedicated hardware multipliers is a critical design constraint.

Altogether, the proposed RDAM can automate even the otherwise
necessary rewriting of complex-valued code with real-valued entities, i.e.
it encapsulates the real-value decomposition (RVD) of complex-valued
operations. An exemplary application of this feature is presented in
Sec. 5.2.

4.3 The Abstraction of Fixed-Point Design

In order to obtain a slim digital hardware with small area footprint or
faster execution times, computations should certainly be performed in a
fixed-point data format (see the discussion in Sec. 3.2.3). Hence, the trans-
ition from floating-point to fixed-point arithmetic is explicitly supported
by the RDAM as an optional step.

As it is the case for complex-valued data items, classes for fixed-point
numbers encapsulate specialised functionality to a great extent.

The sc_fixed class of SystemC, mentioned above in Sec. 4.1.1, is es-
sential for the RDAM. It does not only support arbitrary bit widths of
Q format fixed-point numbers (see Sec. 3.2.2.2), but also provides over-
loaded binary, arithmetic and relational operators as well as conversion
methods. The alignment of the fractional parts is automated and fixed-
point multiplication intricacies, therefore, transparently handled, cleanly
encapsulated by the object-oriented programming paradigm. Further-
more, options concerning number rounding and saturation arithmetic
are available.
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Basically, a sc_fixed variable can be declared from a template with
a quintuple (W, I,Q, O, N), where W is the word length in bits, I the
number of bits for the integer part including the sign bit if applicable (i.e.
W — I bits are for the fractional part), @ is a flag to control quantisation
(rounding modes), O is a flag to control overflows (e.g. saturation or
wrapping) and N defines the number of saturation bits in overflow wrap
modes.

Hence, sc_fixed is a most versatile class and it subsumes the func-
tionality of C++ standard integer types and SystemC’s sc_int as special
cases. If parametrised correspondingly, the added functional capacity
does not incur any performance penalties to the HLS results.

Some HLS tools introduce their own fixed-point classes derived from
sc_fixed. These are Xilinx” Vivado HLS (VHLS) (the class prefix being
ap instead of sc) or Mentor Graphics’ Catapult-C (class prefix ac). These
derived classes basically are functionally equivalent, but additionally
ensure consistent bit-accurate RTL simulations with C++ and improved
synthesis results [Xil-UG902; FB10].

4.3.1 Unavoidable Manual Intervention

With regard to the proposed design methodology, manual intervention
by the designer is necessary at least twice.

Firstly, the magnitudes of the data must fit into the representable num-
ber interval. A common and simple technique to perform this is the
binary scaling of the inputs. As long as the data are properly scaled,
which can be tested from within the HLS test bench, the specialised
fixed-point classes can, from there on, take care of the intricacies of fixed-
point arithmetic, especially the tracking of the Q format changes (see
Sec. 3.2.2.2).

Secondly, overflows must be avoided by defining fixed-point data types
with large enough bit widths. A single baseline definition will rarely
be sufficient for a large design, which motivates the introduction of ad-
ditional types with more bits for intermediate computations at higher
precisions until the final result might be type casted to less bits again.

To utilise a baseline bit width and a larger bit width for intermediate
computations is a general design recommendation. The source code
examples in Listings 4.1 and 4.2 make use of three custom-declared data
types data_t, accum_t and result_t for this reason. (The example is,
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however, plain and simple enough not to require this degree of fine tuning.
The definitions of these three types are identical and given for didactic
purposes only.)

4.3.2 Quick Test-Driven Dimensioning of the Fixed-Point
Word Lengths

Test-driven development normally applies to software engineering where
verification tests are written first and then implementation follows until
all tests are successfully fulfilled. Since HLS provides kind of a software
feeling to hardware design, it naturally occurs to reuse this concept to
validate the overall functionality of the resulting fixed-point design.

The self-checking nature of the HLS test bench associated with each
HLS project inherently supports this concept. It indicates if a chosen
fixed-point number format leads to correct results and meets the specified
requirements, foremost with regard to overall numerical accuracy. Please
note line 10 in Listing 4.2 where a numerical accuracy threshold is defined.
It is up to the user to interpret its meaning. In the given example, it is a
minimally required NMSE of the result for the test. The actual numerical
accuracy can be better though.

The last but most important issue related to fixed-point designs is the
choice of the word lengths. Here, the efficacy of the augmented design
space exploration according to Sec. 3.3.2 can be harnessed by the RDAM.
Varying fixed-point bit widths w = m + n and Q formats Q(m, n) can be
explored simply by changing the number of integer and/or fractional
bits of the typedef declarations within the header file. These changes
will be propagated throughout the whole design.

The numerical performance of the algorithm can quickly be assessed
with the help of the bit-accurate HLS test bench and it allows for a trade-
off between numerical accuracy and hardware resource utilisation. As
mentioned earlier, a design choice can be made which is Pareto-optimal
(see Fig. 3.8 on page 55).

The design abstraction of the RDAM may not lead to the most efficient
design and is therefore rather applicable to rapid prototyping purposes.
But still, a fixed-point design can successfully be created

1. with far less time spent on implementation details and

2. with ensured overall functionality and known numerical accuracy.
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That the results of the proposed methodology can indeed very well
compete with hand-crafted RTL designs will be shown in Chap. 5.

4.4 Function Approximations to Improve HLS
Results

Sophisticated signal processing applications often require the compu-
tation of mathematically complex operations. Many algorithms can el-
egantly be expressed with the help of linear algebra and that usually
includes vector normalisations, matrix factorisations, singular value de-
compositions (SVDs), etc. Yet, only additions, subtractions or multiplica-
tions are straightforward to implement in a fixed-point digital hardware.
Every effort is generally spent to avoid the computation of full divisions.
Other non-trivial functions are, to name a few, In(z), exp(z), 1/, \/x or
1/Vx.

For this reason amongst others, Step 1 of the proposed methodology
are algorithmic transformations to evade such difficult operations. Even
s0, this might not always be possible.

Modern FPGAs are also optimised for floating-point designs, as men-
tioned above in Sec. 2.2.1. This applies to the HLS tools as well. To give
an example, VHLS will fall back to floating-point computations if a math-
ematical expression cannot be evaluated in conjunction with fixed-point
data types.

Specialised HLS libraries are available for a couple of non-trivial math-
ematical functions. The Unified CORDIC algorithm is very often the
method of choice for trigonometric and transcendental functions [And98].
This necessitates a complete reimplementation of the CORDIC for HLS,
which is available as a C++ library in VHLS for example. Nonetheless,
the iterative digit-by-digit operation of the CORDIC introduces some
latency into the design.

If a specialised fixed-point library is not available (or the design sources
make no use of it), however, VHLS will insert a fixed-to-floating-point
conversion, perform the calculations with single-precision float, and
then convert the results back to the specified fixed-point data types. The
advantage is obvious: The HLS compiler can synthesise a design for
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Figure 4.1: Three polynomial approximations of In(xz) are compared with
each other. The ordinate tells the number of correct bits of the approx-
imation.

almost every expression—but the latency introduced hereby is by no
means negligible.

An alternative way to overcome this bottleneck are function approxim-
ations because they can efficiently be mapped onto the available resource
blocks of an FPGA and also work in conjunction with fixed-point arith-
metic.

4.4.1 Polynomial Function Approximation

A simple way to approximate a function f : X — ) where X, C Ris to
use a polynomial

T
fr(z)=> aa' (4.1)
t=0

of a certain degree T'. The advantage of polynomials is their easy to com-
pute nature with MAC operations, which are readily available on FPGAs.
The quality of the approximation can be adjusted by the degree. Prefer-
able are piecewise smooth functions, but even if there are discontinuities
a case differentiation or segmentation can lead to quite acceptable results.
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Table 4.1: Synthesis results for the conversion function to and from the
LNS with Q15 fixed-point numbers.

Function Sec. Cycles DSP FF LUT Accuracy

LOG 441 4 4 121 72 55x107°
ALOG 441 3 3 83 51 3.8x107°
LOG 442 3 1 182 1619 6.1x107°
ALOG 442 4 1 283 2059 6.1x107°

There are several possibilities to determine the polynomial coefficients
ag; to name a few [Mul06]:

¢ LS linear regression,
¢ Chebychev approximation, or

¢ Lagrangian interpolation.

All these methods are compared in Fig. 4.1 for f : [1,exp(1)] — [0,1], 2 —
In(z). The domain of the function is split into 4 equispaced segments,
each being approximated by a polynomial of order 7" = 4. The difference
between the approximation f and the original function is expressed by
the logarithmus dualis, i.e. the absolute value of ordinate tells the number
of correct bits of the approximation. In this case, 16 correct bits and more
can be achieved.

The quality of the approximation can be tuned by the order of the
polynomials 7" or the number of segments .S. Then, S(T + 1) coefficients
have to be computed. This can be carried out at compile time of the HLS
synthesis process or beforehand by some mathematical numerical soft-
ware package, like Mathworks Matlab. In either case, the coefficients will
be stored in a static array in C++, which is recognised as read-only by
HLS and thus implemented as a read-only memory (ROM).

The evaluation for a specific input value x will first look-up the coeffi-
cients of the corresponding segment (comparator and multiplexer) and
then compute f(z) with MACs. The area-latency trade-off can be steered
by HLS directives. For a sequential architecture and bit widths of up to
18 bits a single DSP slice will be utilised.
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Tab. 4.1 lists synthesis results for the LNS conversion functions LOG
and ALOG, given in (3.8), Sec. 3.2.1.3. The top half shows the results for
polynomial approximations of 4-th resp. 3-rd order and no segmentation,
as described within this section. The stated accuracy is the mean abso-
lute deviation from the ground truth (computed with double-precision
floating-point accuracy) over the domain of the functions. The utilised
fixed-point number format is Q15, i.e. 16 bit wide integer arithmetic. The
other given synthesis results apply to a Xilinx Zyng-7 (XC7Z020CLG484-
1) and 100 MHz target operation frequency. DSP, FF and LUT denote
DSP48 slices, flip-flops and look-up tables, respectively. The latency is
expressed in clock cycles.

It can be concluded that polynomial approximations are an efficient
solution to enhance HLS synthesis. The evaluation of (4.1) is simple
to implement with C++ (a loop with a single line loop body), even for
fixed-point arithmetic using the specialised classes introduced above.

4.4.2 Piecewise-Linear Function Approximation

Non-Uniform Piecewise-Linear Function Approximation (NPA) is an-
other very efficient means to implement elementary functions, as presen-
ted in [RLP13].

The original function f is approximated by a number of consecutive,
linear segments in the form of f; = oz + 5;, where o; and 3; are the gradi-
ent and offset of the i-th segment. To achieve a certain target accuracy, the
number of segments is adjustable. The segmentation is non-uniform and
whenever a segment fails to meet the required quality of approximation,
it is divided into two half-sized segments. The accuracy test is continued
recursively until all generated segments fulfil the target accuracy. This
creates a binary search tree of varying depth.

The evaluation for a specific input value z is a case differentiation to
determine the applicable interval based on the most significant bits of the
input (because of the binary search), followed by a single MAC operation.
Hence, the generated architecture mainly consists of multiplexers and a
ROM to store the « coefficients and 3 offsets. Again, the segmentation
and the determination of the corresponding coefficients of the NPA can
be performed at compile time, or included as precomputed constants in
a C++ header file.
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The bottom half of Tab. 4.1 lists synthesis results for the LNS conversion
with the help of NPA. The LOG and ALOG functions were approximated
by 43 resp. 51 linear segments. A C++ header file was automatically
generated and two functions compute the conversion to and from the LNS.
These can be included in any HLS design requiring such a conversion.

In conclusion, the NPA is very resource-efficient concerning the number
of utilised DSP slices. The multiplexer structure, implemented as if-
clauses in C++, and the somewhat greater number of segments requires
a larger ROM to store all coefficients, hence the increased LUT count
compared to the previously presented method.

4.4.3 Application of the Logarithmic Number System

A third alternative to implement functions other than MAC operations is
to perform these calculations directly within the LNS (see Sec. 3.2.1.3).
This exploits the logarithmic identities and reduces multiplication, divi-
sion, exponentiation and the square root to addition, subtraction, multi-
plication and a bit shift, respectively.

The LNS is, therefore, especially useful for mathematical expressions,
which consist of divisions or exponentiations. The computation takes
place in three steps:

1. Conversion of the fixed-point number to the LNS with the LOG
function.

2. Perform complexity-reduced arithmetic operations within the LNS.

3. Conversion of the result back to the original Q format by ALOG.
To illustrate this process, the reciprocal square root

INVSQRT () = % (4.2)

shall serve as example. Due to the application of the LNS, the actual
sequence of computations is

INVSQRT(z) = ALOG (LOG(1) — (LOG(z) > 1)) .  (4.3)

Here, >> denotes a bit shift to the right in infix notation. LOG(1) is a
constant and evaluates to one, see (3.8a) on page 43. The latency and
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Table 4.2: Synthesis results for the reciprocal square root operation.

Type Eq. Format Cycles DSP FF LUT Accuracy

Normal (42) double 70 0 5815 7167 —
Normal (42) float 37 0 1903 2950 —
LNS 43) Q(6,13) 11 2 591 4688 7.5x107°

numerical accuracy of the INVSQRT function is primarily influenced by
the LNS conversion functions.

A working HLS implementation of the INVSQRT function was created
following the outlined 3-step process. The LNS conversion was per-
formed NPA-based, with the accuracies and FPGA utilisation footprints
as stated in Tab. 4.1. The digital synthesis results of the overall design for
INVSQRT are given in Tab. 4.2. The inverse square root can be computed
with two DSP slices in 11 clock cycles only. The mean accuracy over
the domain of definition is 7.5x10™> compared against a floating-point
software model. The application of the LNS and NPA is recommendable,
because otherwise VHLS will infer costly double-precision floating-point
arithmetic for the code expression 1/sqrt (x), which takes 6.4 times the
cycles to compute. The analysis perspective of the VHLS tool breaks this
down into 6 cycles for signed integer to floating-point conversion and
31 cycles each for both, the square root and consecutive division, opera-
tions. Nonetheless, even the floating-point variant is synthesisable and a
manual rewriting to target single-precision floating-point computations
would pose a meet-in-the-middle solution.

Still, the introduction of the LNS, together with the previously dis-
cussed conversion functions, is the only way to speed up the design
further and to allow for an all-fixed-point operation. To the proposed
RDAM, the LNS or one of the presented function approximations are
turnkey-ready building blocks which can be applied if design constraints
necessitate such measures.
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Chapter 5

Design Examples with the Rapid
Data Type-Agnostic Digital
Design Methodology

Two example algorithms will be implemented along the lines of the
RDAM in the following to emphasise some aspects concerning the meth-
odological advantages or implementation-specific issues as they have
been discussed theoretically so far.

A first, small-sized computation of a scalar vector product, which
basically is a sum of squares, practically explores the—due to the DTA—
enlarged design space. A RDAM design recommendation pertaining
suitable data types will be substantiated.

Thereupon, Orthogonal Matching Pursuit (OMP) represents the case
of a computationally complex algorithm. All steps of the RDAM will
carefully be considered, in addition to the proposal of a novel algorithmic
transformation with complete rank-1 updating of the nested LS optimisa-
tion step. The first design example will constitute an integral part of the
OMP architecture. Finally, the obtained IP core will be tested with HIL
simulations.

Further applications of the RDAM can be found in Part II of this thesis,
namely a Sphere Decoder (Sec. 7.2.1.2) and a Neyman—Pearson frame
detector (Sec. 8.3.2).

5.1 Example 1: The Scalar Vector Product

As afirstintroductory example, the computation of a scalar vector product
(also known as inner product or dot product) shall function as a toy prob-
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lem. This basically continues the data type-agnostic source code example
given in Sec. 4.1.1 and complements its discussion with a complete evalu-
ation of the design space for several data types.

5.1.1 The Algorithm

On the system level of the Gajski-Kuhn chart, the functional view is the
mathematical specification given as

¢c=(ab), (5.1)

with a, b being two vectors of the same length V. Note, that this equation
is itself agnostic to the fact whether a, b are complex-valued or real-
valued. If a,b € C, itis ¢ = af’b, or, expressed with scalar entities,

N
c=Y a} by. (5.2)
n=1

If otherwise real-valued, the Hermitian (-)* becomes a transposition ()7,

the sole difference being the complex conjugation of the elements of a.
The scalar product basically constitutes a sequence of N MACs.

The data type-agnostic HLS design source code implementing (5.2)
according to Step 2 of the proposed RDAM (see page 57) is the code in
Listings 4.1 and 4.2.

5.1.2 Design Space Exploration with Various Data Types

Moving on, Steps 3 and 4 of the RDAM succeed: floating-point and fixed-
point data type parametrisations. The examined data types were the
following:

¢ 32bit single-precision floating-point float,

¢ 16bit half-precision floating-point half, which ships with Xilinx
VHLS as a specialised library,

* 16bit C++'s integer short,

¢ Xilinx” arbitrary bit width integer types ap_int, and
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e Xilinx’ re-implementation of the sc_fixed fixed-point data type,
ap_fixed.

Additionally, each of these data types was used in conjunction with
complex-valued types (see Sec. 4.2) as T, namely

® std::complex<T>, as it is part of the C++ Standard Library, and
® hls::x_complex<T>, which again is a re-implementation by Xilinx.

5.1.2.1 Discussion of the Synthesis Results

Xilinx VHLS (version 2014.2) was employed for synthesis and design
space exploration targeting the FPGA fabric of a Zyng-7020. The HLS
code was synthesised without any explicit directives given to the com-
piler, i.e. the default optimisation for minimal resource utilisation has
automatically been applied.

Tab. 5.1 compactly lists all important synthesis results and performance
metrics generated by the test bench. N was set to 10, which explains that
the total latency, measured in cycles at 100 MHz target design frequency,
is 10 times the loop latency (plus one cycle to check the loop condition).
Resource utilisation is given as the quadruple (BRAM, DSP, FF, LUT),
where the column for is omitted since none was instantiated.

Also, some data type parametrisations (rows) are omitted because al-
most identical results were measured. This is true for all hls: :x_complex
cases compared to std: : complex as well as for the C++ integer short in
Q(2, 13) in comparison to ap_fixed<16,3>. The asterisk denotes cases in
which saturation overflow handling and number rounding to-the-nearest
were enabled.

Numerical Accuracy The achieved numerical accuracy (mean and stand-
ard deviation) is averaged over 100 simulation runs and compared against
a golden software model with double floating-point precision. Since the
input data are randomly generated, the correlation result is subject to
variations and data type-specific impairments, e.g. underflows.

Notably, all measured accuracies are close to what is maximally attain-
able per data type. For instance, machine epsilon for float is 1.2x1077
(see Tab. 3.1) which agrees very well with the measured numbers!. Sim-

1Note, machine epsilon is a worst-case bound of the actual floating-point precision ULP.
Therefore the measured accuracy can be even slightly better.
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Table 5.1: Resource utilisation and performance figures of a scalar vector product for various data types.

Datatype Resource Utilisation Latency Performance Metrics
K T Q(m,n) DSP FF LUT Loop Total M/s Accuracy

(I) R float — 5 628 806 16 161 1.2 (5.844.9)x10°®
(2) C float — 16 1670 2450 25 251 0.8 (1.5+0.9)x1077
(3 R half — could not be synthesised (4.4+4.5)x10™
(4) C half — could not be synthesised (1.140.7)x 1072
®4) R ap_fixed Q(2,13) 1 29 43 4 41 49 (5.841.9)x10™*
(6) R ap_int Q(2,15) 1 31 47 4 41 49 (1.540.6)x10™
(7) R ap_fixed”™ Q(2,15) 1 108 216 10 101 20 (2942.4)x107°
8 C ap_fixed®™ Q(3,14) 4 347 499 13 131 1.5 (9.845.1)x107°
(9) C ap_fixed Q(3,14) 4 141 102 6 61 33 (4.5+1.4)x10™
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ilarly, the fixed-point quantisation step is A = 2715 ~ 3.1x107° for 15
fractional bits, which is, e.g., on par with the measured result for the
real-valued ap_fixed* case.

Observations on Floating-Point Parametrisations Tab. 5.1 gives re-
source utilisations for the float data type. In fact, VHLS is tuned to
efficiently map floating-point arithmetic onto the resource blocks of an
FPGA. The reasoning behind this behaviour is simple: Recent FPGAs
provide plentiful resources, in particular a large number of DSP slices.
Therefore, area might not be the most critical constraint, but design time
instead [Con™11]. As mentioned earlier, Intel’s ArrialQ and Stratix10
FPGAs even offer hardened circuitry for single-precision floating-point
operations [Sin17].

Staying with floating-point numbers eliminates the need for a care-
ful fixed-point conversion of the algorithm (compare Sec. 4.3) and thus
speeds up the design time. Not every signal processing application, how-
ever, requires the accuracy of 32 bit word lengths. Hence, the simplified
development process is an advantage dearly bought with a significantly
increased area utilisation.

The half-precision floating-point data type half poses a comprom-
ise between hardware overhead and the just mentioned benefits. As
stated in Tab. 5.1, RTL synthesis was defective in VHLS for this data type
parametrisation. Nonetheless, C compilation functioned and accuracy
measurement could be obtained.

A Note on Integer Data Types The data type-agnostic code in List-
ing 4.1 does not support integer types (here: short or ap_int), because
these types require code modifications to manually take care of bit shifts
according to the Q format.

Just for this examination, additional helper macros had been inserted
which were only defined for the above mentioned integer data type cases
to facilitate multiplication with fractional bits, foremost the needed bit
shift left by 13 bit to align the result to Q(2, 13) again. This highlights the
efficacy of the sc_fixed class which automates this fixed-point multiplic-
ation transparently to the designer and without any additional coding
overhead.
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Figure 5.1: Performance evaluation for a data type-agnostic HLS design
of a scalar vector product (length 10). The examined data types are
listed in Tab. 5.1.

Based on this observation, it is recommendable to exclude support for
integer types, but instead create truly agnostic code, without any data type-
specific special cases whatsoever, for a target subset of data types only:
especially, but not limited to, float, ap_fixed, and std: : complex<T>.

Throughput Versus Numerical Accuracy The performance metrics of
the numbered cases in Tab. 5.1 are compared in Fig. 5.1, which plots the
achieved mean numerical accuracy against the data throughput of the
HLS designs.

High throughput can be obtained with fixed-point numbers, whereby a
longer word length leads to improved numerical accuracy. This again can
additionally be improved by enabling saturation overflow handling and
number rounding, but only at the cost of significantly increased latencies.
Best accuracy is offered by single-precision floating-point computations,
of course. The half-precision floating-point numbers perform worse than
fixed-point numbers of same size. Even if this reduced-size floating-
point format might allow to avoid fixed-point design issues, the ease
of use of the RDAM renders fixed-point designs favourable. The same
observations equally apply to the complex-valued cases.
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5.2 Example 2: Orthogonal Matching Pursuit -
A Computationally Complex Algorithm

The next design example shall demonstrate that it is possible to implement
even complex, heterogeneous algorithms with the proposed RDAM. The
algorithm of choice is OMP, [TGO07]. All of the discussed points in the
previous chapters will find an application herein.

OMP is a greedy algorithm best known for its applications to Com-
pressed Sensing (CS), which will be explained in Chap. 6 later. There
is also a recent application to sparse multi-user channel estimation in a
wireless communications network [Kno*16b], which can only be facilit-
ated if the output architecture allows for real-time operation. OMP makes
frequent use of linear algebra operations and, hence, is parallelisable to
some extent but contains a lot of control structure as well. Therefore, the
OMP constitutes a fitting subject of study in the context of HLS.

The OMP algorithm was introduced by Tropp and Gilbert in 2007 as a
greedy algorithm for the recovery of a sparse vector from random linear
measurements. In a nutshell, the CS system model is

b= Ax, (5.3)

where A is the M x N random CS measurement matrix, b the meas-
urement vector and x the sparse vector to be recovered. x is said to be
k-sparse if it only contains k£ non-zero entries or, in other words, the
lo-pseudo norm is ||x||o = k. Hence, the problem size can easily be stated
as a triplet (M, N, k), where k < M < N. Note, that (5.3) can be either
real-valued or complex-valued. A must fulfil certain conditions, but
these are satisfied with high probability when its entries are drawn from
a random process, e.g. a Gaussian one. Then, OMP can reliably recover
x with O(kIn N) random linear measurements [TGO07].

The algorithm is restated as pseudocode in Alg. 5.1. The residual r is
initialised with the measurement vector b. The OMP recovers a k-sparse
vector iteratively in k iterations, with ¢ as the loop counter. The loop body
mainly consists of three consecutive computational steps (or kernels),
each dependent on the previous one:

1. correlation and selection,

2. LS orthogonalisation, and
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Algorithm 5.1: Pseudocode of Orthogonal Matching Pursuit (OMP) ac-
cording to Tropp and Gilbert [TGO07].

+ function OMP( b, A k)

2 r—b;x<—0,A+0 > initialisation
3 fort=1,...,kdo
A+ AU (argmaxy [(Ag, 1)) > correlation
X\ ¢ argming, ||b — Axxally > least squares
r<b—Axx, > residual
7 return x

3. residual update.

Firstly, one column of A is selected that is most strongly correlated with
the residual r, and the set A is augmented by the index A of the chosen
column (line 4). A is the index set of all indices that have been chosen so
far and identifies the non-zero locations (support set), also called atoms,
of the sparse result vector x. Next, a LS step is computed in line 5 on
a reduced system of equations. A, is a M x ¢t matrix composed of all
selected columns, and x, denotes a vector of length t. An equivalent
formulation of line 5 would be

xy = Alb, (5.4)

whereby (-)* denotes the Moore-Penrose pseudoinverse. The last step
within the loop is the update of the residual.

5.2.1 A Survey of Related Works

A substantial body of research on the digital hardware design of OMP
has already been published [SS10; SM12; BRA12; Bai*12; RAA12; SM13;
Rab*15; Kno*16a]. Although there are some ASIC designs, most of the
literature focuses on FPGAs as target platform. A comparative overview
of FPGA designs is given in Tab. 5.2, including some own results, which
have been published first in [Kno*16a].

Various possibilities were proposed to solve the LS problem. Some
works rely on a Cholesky decomposition in order to avoid the square
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root operation [BRA12; Rab*15]. In [TG07], a QRD was used within each
iteration. [SS10] proposed an updating modified Gram-Schmidt process
for the loop iterations and an alternative Cholesky decomposition for
the second stage. However, the computation of a Gram—-Schmidt process
results in a QRD for free, and the pseudoinverse can then efficiently be
computed by

xa = Atb = (AYAL) T ASD (5.5)
= (R"Q"QR)'RQ"b=R"'Q"b. (5.6

This was realised by Bai et al., who computed an incremental QRD during
the first stage and used back substitution for the second stage to obtain
R ! in order to solve the LS problem [Bai*12].

[SM13] introduces a threshold operation to accelerate the matrix-vector
correlation leading to an incomplete and suboptimal but computationally
efficient atom selection. Hence, the results cannot be compared directly.

Most notably, a couple of works implement the OMP substantially
differently [SS10; SM12; Bai*12; SM13], compared to the original one
published by Tropp and Gilbert [TG07], as pointed out in [Rab*15]. The
former is referred to as the two-stage variant of OMP within this doc-
ument (see Tab. 5.2). According to the classical OMP, a LS step is to
be solved within each iteration of the embracing loop. This ensures or-
thogonality between A, and the updated residual r (Alg. 5.1, line 6).
Septimus and Steinberg proposed in [SS10] to partition the OMP into two
consecutive stages, of which the first iteratively selects the sparse support
and only the second performs a LS solution over that support. Instead of
lines 5 and 6, a Gram—Schmidt orthogonalisation process of A, is used
to obtain an updated Q matrix of which only the latest column, Q,,, is
of further interest. Then, the residual is updated recursively by

ry =141 — Q) QT 1. (5.7)

Note, that Q;QY is the outer matrix product (dyadic product). And not
until after the loop but before line 7 in Alg. 5.1, a LS solution is computed
with xy = AXb, only once.

The question arises, whether these two OMP variants are equivalent
or not [Rab*15]. This is especially true because [SS10] omits any proof or
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derivation of their fundamentally different formulation. However, it can
be shown that these are indeed functionally equivalent, as follows.

Proof of the Algorithmic Equivalence Between Classical and Two-Stage OMP.

Let A be the matrix of selected columns of A. Since the cardinality of
A increases with each iteration by one, its dimensionality is M x ¢, with
t=1,...,k. Qand R are the products of the Gram-Schmidt orthogonal-
isation process of A,, and as the latter increases in size with each loop

iteration, so do Q and R,
QR =A,. (5.8)

Furtheritis x, = A{b = R71Q”b as stated above in (5.6). Now, Tropp’s
and Gilbert’s residual update is given by [TG07]

r, =b — Axxs, with xp = Afb, (5.9)

whereas Septimus’ and Seinberg’s residual update strategy is [S510]
rp=ri1—QQiri1=1-QQf)r. (5.10)
To show the equivalence of (5.9) and (5.10), Egs. (5.6) and (5.8) can be

inserted into (5.9):
r; =b— AyAfb= (Inrxm — ArAY) b
=(I-QRR'Q")b= (I-QQ")b. (5.11)

The first two iterations according to (5.10) are

ri=(I-QiQf)ro=(I-QiQ{)b, and (5.12)
(I-QQ7) (I-QQ)b

I-QQ] - Q:Q] +Q:Q]Q:Q] )b

(I-Q:Qf —Q2Q7)b, (5.13)

ra
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considering the orthogonality of the columns of Q, (Q;, Q;) = 0,Vi,j,i #
j. Hence, after the ¢-th iteration it is

ro=(I1-QQf - Q:Q] ---— Q.Q/)b (5.14)
t

=(I-> QQf)b=(I-QQ")b, (5.15)
/=1

which is identical to (5.11) for every iteration ¢.

Therefore, the classical OMP by Tropp and Gilbert and the two-stage
OMP by Septimus and Steinberg are indeed formally equivalent. Based
on the same residual, they will always select the same support set and
return the same solution after the LS step. However, numerical rounding
errors accumulate differently. ]

Most of the cited VLSI designs were coded manually in an HDL, prob-
ably using generic expressions for different problem sizes, e.g. in [SM12].
It is noteworthy that some works already acknowledged the need for
higher design abstraction. The results in [BRA12; Rab*15] were obtained
with Matlab Simulink in conjunction with Xilinx System Generator, which
basically is a graphical, model-based hardware description approach. A
first implementation of OMP with HLS was reported on in [RAA12],
where VHLS was used as well; but unfortunately, the authors did not
state any details whatsoever on the problem sizes, synthesised architec-
ture or algorithmic method to compute the LS problem.

5.2.2 Algorithmic Transformation with Rank-1 Updating

In this section, two significant modifications to the method of computa-
tion of the OMP will be described. These are applicable to classical and
two-stage OMP alike, although the following explanations are restricted
to the classical variant.

e Firstly, rank-1 updates to the QRD and additionally to the pseu-
doinverse are proposed. Modified Gram-Schmidt (MGS) is chosen
because it is the only QRD algorithm which offers the possibility
for iterative updating, is numerically stable enough and can be
parallelised nicely for big matrices.

86



5.2 Example 2: OMP — A Computationally Complex Algorithm

¢ And secondly, the mathematically non-trivial operations for di-
gital circuitry of MGS, namely division and square root, are to be
performed within the logarithmic domain (LNS).

These constitute the algorithmic transformations according to Step 1 of
the RDAM (see Sec. 3.4).

Not only can the QRD be updated iteratively; the same applies to the
computation of the pseudoinverse as well. The LS solution based on
QRD requires the inversion of R as stated above in (5.6). Since OMP adds
another column to A, during each iteration (rank-1 update), Q and R
grow by a column to the right as well, while the updated R keeps its
upper-triangular structure of course. If the QRD is complex-valued, so
will be Q and R, but the main diagonal of R, diag(R.), is real-valued in
either case. Now, block matrix inversion gives us [PP12]

A B[ s ~S~'BD-! (5.16)
C D -D-'Cs™' D'+D'CST'BD ']’ ‘
where S is the Schur complement of D being defined as
S=A-BD!C. (5.17)

Here, A is the upper triangular matrix of the previous iteration of size
(t—1) x (t—1), which is extended by another column vector of length ¢, i.e.
B becomes a column vector, D becomes a real-valued scalar d, and, due
to the triangular structure, it is C = 0, (;_1), which is a row of zeroes.
Therefore, (5.16) can be simplified to

A b]" [A! —A-'b/d

o =l T ©19

Only a single real-valued division is necessary per iteration to compute
1/d, which can then be multiplied ¢ — 1 times to the vector —A ~'b. This
division, though, has already been computed during the updating of the
Q matrix and is still available for the rank-1 update of R~1.
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Eq. (5.18) becomes

HR-! [(t_l)R r}l {(t_l)R_l —=DR™ . r/ry
t

. (5.19
0 Ty O1x¢—1 1/ry (5-19)

when the R matrix at hand is inserted. To clarify the notation, the upper
left index denotes the iteration index, e.g. *"YR~! is the inverse matrix
computed during the previous iteration. Obviously, only a further matrix-
vector multiplication "V R ~'r of reduced rank ¢ — 1 scaled by ¢ := 1/ry
is needed to obtain (VR ~!. This matrix-vector product is computationally
cheap compared to a complete upper triangular matrix inversion with a
full back substitution.

Only a single reciprocal square root operation per iteration ¢ is required
for ¢, which is computed by the INVSQRT function in (4.3) with the help
of the LNS as described in Sec. 4.4.3. Furthermore it is

11
lall V=

in conjunction with Eq. (5.1) for a vector q when = = (q, q) such that
I¢ql| = 1. Differently put, the first RDAM design example of Sec. 5.1 is not
only a toy problem but it is reused and applied here to the computation
of x for the normalisation step of the QRD.

¢ (5.20)

The complete LS algorithm with rank-1 updating is given in Alg. 5.2,
which updates Q and R~! iteratively. This fits nicely into the OMP al-
gorithm in Alg. 5.1 as a replacement of line 5, since the for-loop over
t =1, ..., k embraces this update step. It may not be overlooked, that R
does not need to be stored; solely the update vector r and ¢ are of further
interest.

This proposed algorithmic transformation yields a flatter loop hier-
archy and eventually leads to improved HLS implementation results.

The consecutive processing steps within each loop iteration are schem-
atically shown in Fig. 5.2. QRD and back substitution both necessitate
aloop overallt =1, ..., k, if calculated consecutively, nested within an
outer loop over the same index for atom selection. Such nested loop
hierarchies increase the HLS design complexity. Therefore, it is good
practice to flatten loops either by the application of directives or, even
better, by a modified but functionally equivalent design entry source
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Algorithm 5.2: Least squares estimation based on QR matrix decomposi-
tion with rank-1 updating.

. function LS-UPDATE( ¢~V Q,*~DR~! A,,b)

2 r < 0t><1
3 q < A.)\
4 forj=1,...,t—1do > orthogonalisation
r; « (7VQ;,q)
6 q<q—r;-7DQ;
7 ¢+ 1/|lall > normalisation factor
WQ« [t-VQ (4] > update
9 OR-1 o (t-HR-1 _(C-DR-1.p. ¢
O1xt—1 ¢
0 xXp e ORTL.QH b > least squares

1 return x,, W Q, WR~!

for t=1,..,k: for t=1,..k: for t=1,..,k:
Correlation Correlation Correlation
Least Squares for t=1,...,k: Rank-1 QRD
Residual QRD Rank-1 Inverse
for t =1,..., k: Residual
Backsubstitut.
Residual

Figure 5.2: The OMP loop body consists of three main steps (left). How-
ever, the QRD and back substitution iterate over the same loop index k
as the OMP itself to compute the LS solution (middle). Rank-1 updating
therefore flattens the hierarchical loop structure (right).
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code, i.e. algorithmic modifications. Rank-1 updating to the QRD and
the following pseudoinverse, eliminates the need for these nested loops.

5.2.3 High-Level Synthesis Results

The OMP algorithm including the modifications discussed above was
implemented with VHLS following the coding principles and guidelines
set forth in [Xil-UG902]. All synthesis results given in this section target
a Xilinx Virtex-7 FPGA (XC7VX690-2) at 100 MHz clock frequency, if not
stated otherwise. The decision in favour of a Virtex device was made
with respect to a better comparability to other published results.

The C++ source code was written with parametrised static memory
allocations and verified against an existing Mathworks Matlab functional
model of OMP for double-precision floating-point data types. This con-
stitutes Step 2 and 3 according to the RDAM. Complex-valued operation
was realised as explained in Sec. 4.2. The OMP problem size (M, N, k) is
in the following, if not stated otherwise, a (32,128, 5) setup with Q(3,14)
baseline fixed-point precision to match the architecture of the DSP slices.
To define an 18 bit word length maximally exploits the 18 bit multiplier
inputs while at the same time avoiding DSP slice chaining (please com-
pare the conclusions on Fig. 3.8 in Sec. 3.3.2). The double-sized Q(7, 28)
format was employed for selected MACs to improve numerical accuracy.
That is Step 4 according to the RDAM.

Fig. 5.3 shows the synthesis results for four different sets of HLS com-
piler directives:

(a) A design with minimal resource utilisation, which is the default op-
timisation of VHLS (“unoptimised” with regard to the exploitation
of parallelisms).

(b) The correlation and selection step is completely parallelised, i.e.
the number of DSP slices is mainly influenced by M and it takes N
cycles to compute Afr.

(c) The previous design but additionally almost all loops are pipelined.
This yields a fair trade-off between resource utilisation and compu-
tation time.

(d) A design with all second-level loops unrolled and thus highly par-
allelised.
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Figure 5.3: Resource utilisation of four different architectures from unop-
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In Fig. 5.4, the impact of different data types is compared for architec-
ture (c). “fixed-point” denotes the above mentioned Q(3, 14) format and
“fixed-point*” the same but with saturation arithmetic and number round-
ing enabled. These typical DSP features improve the NMSE a little from
1.4x1077 to 1.8x107%. The synthesised single-precision floating-point
design (“float”) yields an NMSE of 1.3x107!2. However, the resource
utilisation is inefficient compared to the gain in accuracy.

The right side of Fig. 5.4 shows results for the complex-valued data type
parametrisations. Aside from floating-point case, the complex-valued
designs consume about twice the resources. This is consistent with the
expected outcome as it could be derived from a RVD. Either way, all
synthesised architectures do not exceed the capacity of the target FPGA.

Further details of selected synthesis products are given in Tab. 5.2, on
page 83. In summary, the synthesised digital architectures can compete
with existing works. A real-valued OMP of size (32,128, 5) can be com-
puted within 10.7 ps or 16.9 ps, depending on the degree of parallelism.
This is comparable to the results given in [BRA12]. The same can be
said about the resource utilisation, although VHLS obviously favours
distributed random access memory (RAM) over BRAM without addi-
tional constraints (directives). The complex-valued digital architecture
of OMP is with 17.1 ps almost as fast as the real-valued one. This design
is, to the best knowledge of the authors, the first complex-valued digital
architecture for OMP, and thus can cannot be compared to other works.

This concludes the design space exploration according to Step 5 of the
RDAM, and IP core generation and packaging for implementation follow
(Step 6).

5.2.4 System-on-Chip Integration and Testing

After successful RTL co-simulation with VHLS, the above presented OMP
design was packaged for a specific parametrisation as an IP core in the
industry standard IP-XACT format using the export functionality. The
HLS design was configured for a (32, 128, 5) problem size with the real-
valued Q(3, 14) fixed-point baseline data type. The targeted FPGA was
a Xilinx Zyng-7 type XC7Z020 with speed grade “-1”7, and the system
clock of the programmable logic was 100 MHz. For communication with
the processing system, an AXI Lite interface was instantiated which
comprises the inputs x, b, A, and the output %.
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Ethernet
Interface Processing . AXI
System AUT
Programmable Logic
Matlab Workstation Xilinx Zynq on ZedBoard

Figure 5.6: Testing an algorithm under test in a hardware-in-the-loop
simulation on a AvNet .

A full SoC design was created with Xilinx Vivado, using the IP Integ-
rator, which is a graphical approach to instantiate the processing system
of the Zynq and add peripherals with interconnections by AXI buses.
It consists, basically, of the Zynq processing system, the OMP IP core
named OMPRank1Static and a Xilinx AXI Timer to measure the execution
time. The remaining blocks were automatically added by IP Integrator;
they are purposed to handle a system reset and to connect the OMP and
timer as slaves to the AXI Lite bus of the SoC. Fig. 5.5 shows the resulting
block design schematic. The following sections will discuss two different
deployments of this SoC design.

5.2.4.1 Ethernet-Based Hardware-in-the-Loop Simulations with
Matlab

The first application was a HIL simulation with an Avnet ZedBoard,
which is a small prototyping platform featuring a Xilinx Zyng-7 with a
bunch of peripherals. The general setup is shown in Fig. 5.6. The SoC
design with the OMPRank1Static IP core as AUT is programmed into the
FPGA and controlled by a software written in C on the processing system,
which indeed is an ARM Cortex-A9 dual core processor and powerful
enough to run an embedded Linux system.

On the other end is a Mathworks Matlab workstation as test vector
generator installed. A function called hil_sim.maccepts matrices, vectors
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Code Listing 5.1: An exemplary HIL simulation with the Matlab script
ranklomp_hilsim.m.

1m = 32; n = 128; k = b;

> [A, b] = csmodel(m, n, k, ’real’);
s x = omp(A, b, k);

2+ x_hat = hil_sim(’Matrix’, b, A);

s NMSE = norm(x - x_hat)~2 / norm(x)~2

Table 5.3: Resource utilisation before and after RTL synthesis

Description BRAM DSP FF LUT
HLS estimate (with AXI Lite) 70 130 19900 25968
SoC design (post RTL synthesis) 35 130 11573 13997
PYNQ hardware overlay (Sec. 5.2.4.2) 35 130 5702 13899

or scalar variables as inputs and transfers the data via Ethernet using
the unofficial pnet Matlab toolbox [Ryd08] to a small listening server
application running on the Linux system. The example Matlab test bench
in Listing 5.1 shows how random test data is generated by a Matlab
function csmodel, which returns a CS system matrix A and a compressive
measurement vector b, and then forwarded to the HIL framework. The
numerical accuracy is evaluated by the NMSE as defined in Eq. (3.14).

Test data items can be transferred by hil_sim.m one by one for a single
execution of the AUT or in batch mode for hundreds of executions in
sequence. Data can be any type (complex-valued, real-valued, floating-
point or integers) and any size (matrix, vector or scalar). The server ap-
plication configures the AUT and copies the input data into the memory-
mapped registers of the IP core via the AXI Lite interface for a single
execution; but direct memory access (DMA) has not been employed to
keep the system small and simple. The OMP core emits an interrupt
after termination, and in the following, the server application reads the
returned output vector from memory-mapped registers, and packs it for
Ethernet transfer to Matlab again.

The resource utilisation estimation by VHLS of the OMPRank1Static
core with the described parametrisation is given in Tab. 5.3. Note, this
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design includes in contrast to the one given in Tab. 5.2 on page 83 an AXI
Lite interface and meets timing requirements for operation at 100 MHz.
After IP core integration, the full Vivado SoC design was synthesised into
a bitstream file to program the FPGA and a configuration file to set up
the processing system. A comparison between the VHLS and post-RTL
synthesis results clearly reveals that VHLS estimates resource utilisation
pessimistically. Eventually all given figures, except for the DSP48 slice
count, are lower than anticipated by 40 to 50 %. This behaviour of VHLS
is obviously intentional to ensure functionality throughout the remaining
top-down implementation flow.

The total power dissipation was stated by Vivado to be 2.13 W, which
divides into 421 mW (19.8 %) for the OMPRank1Static core, 1529 mW
(71.8 %) for the processing system and 180 mW (8.4 %) into remaining
FPGA logic (AXI Timer, clock tree, etc.).

The HIL simulation with the integrated IP core was designed for func-
tionality, not speed. Hence, one execution of the OMPRank1Static core
was measured to take 32.0 ps. The performance loss can be explained
by the added bus interface and extra time needed to copy data to and
from the memory-mapped registers. Generally, data movement within a
processor architecture incurs the highest performance penalties. Nonethe-
less, however, the evaluated numerical accuracy matches the expected
NMSE of 1.4x1077. All measurements were averaged over 1000 HIL
simulations.

In conclusion, the HIL test setup can remarkably prove the functional
correctness of the HLS design and especially the efficacy of the RDAM
with regard to design space exploration, DTA and the simplifications to
fixed-point arithmetic with target numerical accuracies.

5.2.4.2 Hardware Overlay for Xilinx PYNQ

The HIL framework of the previous section required a lot of software
engineering to create the server application and to integrate a specialised
device driver for the OMP IP core into the Linux kernel. A novel approach
to circumvent such manual engineering is taken by Xilinx” open-source
project PYNQ, which is short for “Python productivity for Zynq” [Xil18].
A first development board is the Xilinx PYNQ-Z1, which comes with the
same XC7Z020 device as the ZedBoard.
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PYNQ is a Linux-based framework which runs on the processing sys-
tem and includes a full Python programming environment as well as
a web server. A developer can connect with a local Ethernet connec-
tion to this server and work with Jupyter notebooks, i.e. small self-
documenting Python scripts—edited, controlled and executed from the
web frontend [Pro18].

The original innovation, however, is that the programmable logic
(FPGA part of the Zynq) can be re-configured at run time by loading
so-called hardware overlays. A hardware overlay consists of a bitstream
file and a configuration Tcl script. The PYNQ framework transparently
handles this reconfiguration and integration of all necessary drivers into
the Linux kernel. Firstly, it is possible to build a library of easy-to-reuse
hardware designs; and secondly, it is possible use this environment for
HIL simulations given the powerful capabilities of the Python HLL and
its extensions, e.g. by the NumPy package [Dev18].

The very same SoC design of Fig. 5.5 with the OMPRank1Static IP core
was employed to create a hardware overlay for PYNQ. From a Jupyter
notebook it can be loaded and instantiated with two lines of code:

+ from pynq import Overlay

> hw_overlay = Overlay(’0MPRankiStatic.bit?’)

The resource utilisation of the hardware overlay is given in Tab. 5.3 and
is in accordance with the expected utilisation results of the previous
Sec. 5.2.4.1. A Jupyter notebook was created which generated random
test data according to the CS model, performed fixed-point conversion
from floating-point to Q(3, 14), and handled data transfer to and from the
hardware overlay with the high-level Python application programming
interface (API). This concludes the successful verification with PYNQ.
The PYNQ framework, therefore, is a simple and fast way for test-
ing embedded hardware designs created with the RDAM. Not only is
re-usability pronounced, but also the deployment to a wider audience
is improved, because of the open-source idea of PYNQ and the open-
source community around Python in general. Instead of complex Vivado
projects containing numerous files, only a few files (bitstream, IP core
configuration Tcl file, and Python test script) have to be shared.
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Chapter 6

Principles of Compressed
Sensing (CS)

Conventional DSP always assumes signals that are sampled according
to the famous Shannon-Nyquist sampling theorem. A band-limited
signal must be sampled at a rate f; which is at least twice the maximum
frequency f. of the signal, fs > 2f.. Aside from the bandwidth limitation,
the bandwidth being B = 2f., the Shannon-Nyquist theorem makes no
further assumptions about the signal. This is different for Compressed
Sensing (CS), also called Compressive Sampling sometimes.

CS introduces the notion of sparsity as a further constraint, that the
signal of interest can be represented by very few non-zero coefficients in
some transform basis. The actually sampled time-domain signal need
not be sparse itself, but can be sampled at a significantly lower rate,
fs < f.. In other words, CS is a sampling framework where a certain
signal structure is concealed behind an obvious sampled truth. Only the
application of mathematical rigour allows for the recovery of the signal
of interest.

In this chapter, the origins and theoretical principles of CS will be
outlined and the sampling framework explained. Then, a survey of al-
gorithms for signal recovery will follow. The concluding section will
describe the application of CS to the field of digital wireless communic-
ations and a communications system model which forms the baseline
setup for the chapters to come.

101



Chapter 6 Principles of Compressed Sensing

6.1 The Compressed Sensing Framework

The very first ideas of CS date back to the observations of Candeés et al.
published in 2006. They found that exact signal reconstruction is possible
even with highly incomplete frequency information, provided the time-
domain signal is sparse [CRT06a]. A more general mathematical treatise
on the foundations of CS is given in [Don06]. Furthermore, concise
theoretical summaries can be found in [Bar07; CWO08; JV11; EK12].

Broadly speaking, the measurement step of CS could be subsumed
under the umbrella of methods for analogue-to-information conversions.
What is quite similar is Vetterli et al.’s approach who introduce a finite
rate of innovation based on a parametric description of the to-be-sampled
signal, which is potentially significantly lower than Nyquist rate [VMBO2].
Nonetheless, the sampling kernel has to match the signal structure, which
is different and, hence, advantageous for CS: the compressive measure-
ment is non-adaptive to the signal of interest—solely transform sparsity
is a requirement [Don06].

6.1.1 Sparsity and Transform Coding

Any signal x € RY can be expressed with the help of an orthonormal
basis ¥ € RV*V,

U=[ ... Py 6.1)

in another domain, such that

N
X=Y th,s, =Vs. (6.2)
n=1

Clearly, x and s are equivalent representations of the same signal. Yet, ¥
can very well be a sparsifying basis, i.e. s is a sparse signal while x is not.
Usually a vector is said to be sparse if it only contains very few non-zero
entries. Let the number of non-zeroes be £, then sparsity implies that
k/N <0.5.

A signal can be exactly or approximately sparse. Often, this is ex-
pressed by the {y-pseudonorm, formally defined as

Isllo = [supp()| = [{n | sn # O} |- (63)

102



6.1 The Compressed Sensing Framework

It returns the number of non-zero elements of s, or, expressed differently,
the cardinality of the support of x. supp(x) is the set of positional indices
of the non-zero elements. Strictly speaking, s is now said to be k-sparse
if it has up to k non-zero entries, or

Isllp < k- (6.4)

Alternatively, s can be approximately sparse if it is compressible, i.e. the
magnitudes of coefficients sorted in descending order obey a power law
decay.

The {y-pseudonorm is, in fact, not a norm, because it does not satisfy
the triangle inequality. Notwithstanding, it is often falsely seen as the
generalised case p — 0 of the /£, vector norm

N v
1%, = (Z |a:np> , p>1. (6.5)
n=1

The two special cases for p = 2, the Euclidean norm, and especially for
p=1,
x[ly = x| + ...+ |zn], (6.6)

are of utmost importance to CS.

6.1.2 The Measurement Matrix

CS generalises the term “sampling” to a set of linear or compressive
measurements. Information about the signal x is obtained by linear
functionals

Ym = (P X), m=1 ..M, (6.7)

which essentially constitutes correlations of x with all ¢,,,, [CWO08]. Note,
x is a vector of IV already discretised values. The measurement vectors
©,, € RY can be assembled as rows of the M x N measurement matrix
T

e=[p ... oul, 6:8)

and, hence, it is
y = Px. (6.9)
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The linear projections onto the M/-dimensional subspace must fulfil cer-
tain conditions. The measurement matrix ® must be properly designed
for a stable embedding of the information content of x in y. There are
several mathematical concepts in the literature to capture this idea.

To begin with, the coherence between ® and the sparsifying transform
basis ¥ measures the largest correlation between the rows of ® and the
columns of ¥, [Bar07]. CS requires incoherence between these matrices.
A very important result is that random matrices are largely incoherent
with any fixed basis ¥. Hence, elements of ® can be drawn independent
and identically distributed (i.i.d.) from any subgaussian random distribu-
tion, e.g. Gaussian or Bernoulli. Without loss of generality, the columns
of ® can be normalised.

Another concept is the Null Space Property for noise-free measure-
ments [CDDO08], but more versatile is the Restricted Isometry Property
(RIP) because it is applicable to noisy measurements [CT05a; CRT06a;
Bar*08]. Let S be a k-sparse support set taken from the integers [1, N].
Written as a lower index to a matrix or vector, a set selects only the
columns respectively entries indicated by the elementsin S, i.e. ssis a
vector of length k and ®s is an M x k matrix. A matrix ® satisfies the
RIP of order £ if there exists a constant ¢, € [0, 1] such that

(1= 63 [lss|l2 < || @sss|l2 < (1+6) [Iss]l3 (6.10)

holds for all sets S with |S| < k. This property essentially requires that
every set of columns with cardinality less than k approximately behaves
like an orthonormal system, as [CRT06b] states. [Bar*08] proves that
random matrices fulfil the RIP with overwhelmingly high probability. Ex-
pressed differently, the RIP ensures that CS measurements are isometric,
or length-preserving, in every k-dimensional subspace.

6.1.3 The Compressed Sensing System Model

The CS framework basically consists of two consecutive computational
steps: compressive measurement and algorithmic signal recovery.

As [Don06] puts it, the measurement can be described as the application
of an information operator I : RY +— RM that samples M pieces of
information about x. Hereby M < N must hold to be a compressive
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measurement. Later, an unspecified algorithm A : RM — R¥ offers an
approximate reconstruction of x.

The complete (noiseless) CS system model is, therefore,
y =®x =P¥s = 0Os, (6.11)

with the CS measurement (6.9) and the transform basis in (6.1). @ = ®W¥
is the CS system matrix and the aforementioned information operator
I. Furthermore, itis k < M < N. The ratio M/N < 1 is the sub-
sampling factor and k/N < 0.5 the sparsity ratio. CS is also robust
against noise. [CRT06b] showed that stable signal recovery is possible
for noise-corrupted measurements

y=0Os+1z, (6.12)

where z is a stochastic or deterministic unknown error term.

The direct recovery of x from the compressive linear measurements
(Ym), m = 1,..., M in (6.9) is an ill-posed problem, since only A/ known
values are available for N unknowns (underdetermined system of equa-
tions). Taking the sparse coding of x as in (6.2) into account, is, however,
game-changing.

If the locations of the k-sparse support set were known a priori, the
original signal could be recovered easily, because it would degenerate to a
common least squares problem and more measurements than unknowns
would be available. Given the knowledge of S, y = ®gss is uniquely
solvable, but even so, this assumption contradicts the nonadaptivity of
CS signal acquisition. Hence, CS recovery demands a combined support
and data estimation.

As pointed out in [Bar(07], classical compressive signal encoding, e.g.
in image compression, requires the computation of the full basis trans-
form after Nyquist-rate sampling, and subsequently identifies the most
relevant coefficients while discarding the others.

In contrast to this, the CS measurement itself does not require any
knowledge about the transform basis ¥ which simplifies the process.
Furthermore, the M < N compressive measurements can be taken dir-
ectly at a reduced rate by a factor of M/N.
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6.1.4 Signal Recovery

The CS framework is asymmetric compared to traditional compression
techniques based on transform coding. Only for signal reconstruction is
knowledge about the sparsifying transform basis mandatory.

The ultimate goal would be to recover the sparsest possible represent-
ation of a signal, i.e. to solve the optimisation problem [Don06; Bar(07;
JV11]

min [[s||, subjectto Os=y (6.13)

with regard to an ideally sparse signal expressed by the {y-pseudonorm
in (6.3). This, however, is known to be an NP-complete combinatorial
problem, since it would require an exhaustive search over all (]I\Cf ) possible
support sets for a k-sparse signal. Sometimes this problem is also called
Best Subset Selection.

CS experienced its breakthrough because it had been discovered that
the above problem can be relaxed to a convex optimisation problem called
Basis Pursuit (BP) [CDS01; CT05a]. The ¢y-pseudonorm is replaced by the
{1-norm, and it becomes

min [|s||; subjectto Os=y. (6.14)

This problem and the problem in (6.13) are equivalent for a k-sparse
signal if © fulfils the RIP. Similarly, signal recovery is possible for noisy
measurements according to the model in (6.12), [CRT06b]. The solution
is obtained by a convex quadratic optimisation problem known as Basis
Pursuit Denoising (BPDN),

min ||s|, subjectto [y —®s|, <e¢. (6.15)

e € RY is a parameter and should be chosen such that |z, < ¢, [JV11].
An alternative formulation of BPDN is the Langrangian form,

. . 2
§ = arg min ly —©sl5+ Alsl|; - (6.16)

with the Langrange multiplier . The Euclidean norm of z = |y — ®s||
is squared to be differentiable [JV11]. This corresponds to the Least
Absolute Shrinkage and Selection Operator (LASSO) by Tibshirani [Tib96].
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(If the signal of interest is the non-sparse x, it can be obtained from the
estimated § by applying (6.2).)

In conclusion, every sparse signal can be recovered from noiseless or
noisy CS measurements if the CS system matrix is RIP-fulfilling. This, in
turn, is the case with very high probability for all random measurement
matrices, as mentioned earlier.

Successful signal reconstruction is largely dependent on the number of
measurements and the sparsity level. Analytically derived guarantees can
be found in the literature [CT05a]. With overwhelming probability, a ran-
dom sensing matrix obeys the RIP provided that M ~ klog(N), [CWO08].

Alternatively, numerical simulations can demonstrate effective recov-
ery for a certain setting (k, M, N, ®, ¥). Donoho-Tanner phase transition
diagrams map the two-dimensional parameter space k/M over M /N and
divide it into two regions for successful and unsuccessful signal recov-
ery [DT09].

6.2 Algorithms for Compressed Sensing Signal
Recovery

As stated above, all sparsely representable signals can be recovered from
CS measurements by solving either the BP or BPDN optimisation problem.
However, (6.14) resp. (6.15) are optimisation principles, not algorithms.

In order to algorithmically obtain numerical solutions to these prob-
lems, hundreds of algorithms have been proposed within the literature
so far, and a quite comprehensive list can be found, e.g., in [Car18; EK12].
Basically, these can be grouped into convex optimisation algorithms,
greedy algorithms and thresholding algorithms, whereby only the first
group returns optimal solutions.

6.2.1 Convex Optimisation Solvers

It lies in the nature of CS that convex optimisation is the method of choice
to solve the signal recovery problem, because of the convex relaxation of
the objective function (see previous section).

[CDS01] derives that BP can be rewritten as a linear program (LP) and,
thus, efficiently be solved by polynomial-time algorithms. The same
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is true for BPDN, which can be reformulated as a second-order cone
program (SOCP).

Modern convex optimisation solvers use interior-point methods to
obtain numerical solutions [BV04]. Common to these is that the interme-
diate solutions of each iteration follow along a central path within the
interior of the multidimensional convex polytope, until the global op-
timum is found at the boundary of it. The projection of the N-dimensional
but k-sparse ¢;-norm ball onto an M/-dimensional subspace by the CS
system matrix © creates this convex polytope.

There are implementations of algorithms for Mathworks Matlab avail-
able, e.g. the ¢;-MAGIC toolbox by Candés and Romberg [CR05]. For
the LP associated with BP, the primal-dual algorithm is used, taken
from [BV04]. The SOCP for BPDN is implemented with the log-barrier
method. Both implementations effectively solve the Newton steps within
each iteration by the Conjugate Gradient (CG) method.

Another Matlab toolbox worth noting is CVX [GB17]. It is a modelling
language based on Matlab for convex optimisation programs. Basically,
it is only a frontend to a solver, which is SDPT3 (default) or SeDuMi. It
does support non-differentiable objective functions like the ¢;-norm. To
give an illustrative example, the CVX program for the BPDN problem
in (6.15) would look like:

1 cvx_begin
2 variable s(N)
minimize ( norm(s, 1) );
a subject to
norm(y - THETA * s) < epsilon

s cvx_end
The variables y, THETA and epsilon have to be defined beforehand of
course.

Given the CS recovery guarantees and proven equivalence to the infeas-
ible £y-minimisation, ¢;-minimisation returns mathematically optimal
and exact solutions. Furthermore, the interior point methods for solving
convex optimisation programs feature polynomial time complexity in
O(M?N?3/%), albeit with a very large constant [BV04]. Therefore, they
are not well-suited for hardware implementations.

At that level of abstraction, algorithms are devised for mathematical
teasibility and functionality but without efficient hardware implement-
ations in mind. The presence of computationally complex mathemat-
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Algorithm 6.1: Matching Pursuit [MZ93].

. function MP(y,®, k)
r—y;s<0
fort=1,...,kdo

4 c+ 0Ty > correlation
A« argmaxy |cg| > selection
Sy < S\ + e > update
rr—0jc, > residual

return §

ical operations like matrix factorisations, matrix inverses, vector norms,
etc. are the general case. Even if such problems might be tackled, the
large dimensions CS usually deals with pose another challenge to digital
hardware design. For these reasons, suboptimal algorithms have been
proposed which solve BP and BPDN approximately.

6.2.2 Greedy Algorithms

Greedy algorithms get their name from the way they estimate the support
of the sparse vectors: greedily. That is, atom after atom is selected without
revising that decision. A review of greedy algorithms can be found in
[NTV08; BD08; EK12]. For the sake of brevity, only some algorithms can
be mentioned here.

The simplest greedy algorithm is Matching Pursuit (MP), [MZ93]. It
recovers a signal x accurately if it can be described fully by elements of a
dictionary, i.e. © for a CS system. The solution vector 8 is k-sparse. MP
iterates k times and selects during each iteration the atom with index
A which has the largest correlation magnitude to the residual, which
matches best. Afterwards, the residual is updated. Nonetheless, however,
it is possible that MP selects already selected atoms again.

Orthogonal Matching Pursuit (OMP) improves on this aspect by introdu-
cing a LS orthogonalisation step. It was first published in [PRK93] and
applied to CS in [TGO7]. The pseudocode is listed in Alg. 5.1 on page 82
with the minor difference in notation that x is meant to be the sparse s in
the transform domain. Like MP, OMP selects one atom per iteration but
computes the optimal signal approximation with the so far selected atoms
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in the sense of minimal residual energy. Due to this orthogonalisation,
atoms will never be re-selected and the end result s will have exactly
k non-zero entries. More details on hardware architectures for OMP
can be found in Sec. 5.2. Signal recovery with OMP is fast compared to
¢1-minimisation and features an algorithmic complexity of O(kM N). Yet,
this recovery guarantee is only proven for fixed signal and measurement
matrix constellations [NTV08].

Hence, Regularised Orthogonal Matching Pursuit (ROMP) has been de-
veloped which is the first algorithm with a sparse recovery guarantee for
all sensing matrices satisfying the RIP. It was superseded by Compressive
Sampling Matching Pursuit (CoSaMP). Both algorithms select multiple
atoms at once and augment the already selected support set accordingly;
CoSaMP additionally introduces a pruning step to be able to discard
wrongly selected indices later on [NTVO0S].

Gradient Pursuit (GP) algorithms are conceptually slightly different
but still very similar to MP-type algorithms [BDO08]. Line 6.1 in Alg. 6.1
is replaced for GP by directional updates

§8+ad, (6.17)

where q is the step size and d the update direction (vector), which have to
be computed beforehand during each iteration. MP and OMP are special
cases for certain choices of a, d.

6.2.3 Thresholding Algorithms

Another family of suboptimal algorithms for CS signal recovery are
thresholding algorithms [EK12]. Instead of explicitly selecting atoms,
these algorithms operate with a threshold which enforces sparsity, i.e.
values below a certain threshold are set to zero.

Alg. 6.2 lists Iterative Hard Thresholding (IHT), [BD09]. The for-loop iter-
ates until a stopping criterion is met, e.g. a previously specified maximal
number of iterations tmax. Hy(-) is the threshold operator which returns a
k-sparse vector, retaining only the k elements of largest magnitude. ©”'r
is the update direction with step size y to control convergence.

Alternatively, a scalar soft threshold operator 7¢(-) can be employed
which, if applied to a vector, sets all values below a real parameter 6 to
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Algorithm 6.2: Iterative Hard Thresholding [BD09].

. function IHT(y, ©, k, i)
r—y;s<0
fort =1,..., tmax do

. S+ Hrk (x + u@Tr) > hard threshold
r<y—0s > residual
6 return §

Algorithm 6.3: Approximate Message Passing [DMMO09; Mae*12].

. function AMP(y,®, )
r<y;s<0
fort =1,...,tnax do

s w

0 Aliell, /M

§— np(x+0OTr) > soft threshold

r—y—0s+r|s|,/M > residual
return §

zero and reduces the others in magnitude. It is defined as

u—0 u>40
no(w)=<cu+60 u<-—0 (6.18)
0 else

and a replacement of H;, with 1y gives Iterative Soft Thresholding (IST).
This algorithm, though, is slow in convergence.

A significantly improved soft-thresholding algorithm is Approximate
Message Passing (AMP), which is derived from message passing on graph-
ical models [DMMO09]. The pseudocode is given in Alg. 6.3. Within each
iteration, the parameter ¢ is updated. It scales with the residual error, a
regularisation parameter A and M, the number of compressive measure-
ments. This update strategy is taken from [Mae*12], which presents a
VLSI implementation of AMP. Critical to the success of AMP is the resid-
ual update prescription with the added term r ||S||, /M. The residual is
not only dependent on the current sparse signal estimate s but also on the
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residual information of the previous iteration. This leads to an improved
noise suppression, and optimally tuned AMP has a formal mean squared
error (MSE) evolving to zero exponentially fast, if recovery is possible in
the first place. AMP is the only algorithm discussed here which manages
to empirically approach the performance of ¢;-minimisation with respect
to the Donoho-Tanner phase transition [DMMO09].

The greatest advantage of thresholding-type algorithms is their ap-
plicability to very large recovery problems where ¢;-minimisation might
already be infeasible. They require matrix-vector multiplications with ®
and ®” and have an algorithmic complexity of O(M N) per iteration, if
©® is unstructured [BD09].

6.2.4 Discussion

As the previous explanations clearly show, /;-minimisation constitutes
the gold standard for CS signal recovery. Ready-to-use software imple-
mentations exist, and they are certainly powerful tools for a mathematical
numerical analysis. Notably, only the measurement vector y and the CS
system matrix @ are inputs to BP, which is a very important property of
¢;-minimisation. A priori knowledge of the underlying sparsity k/N is
not required, nor are other parameters. ¢;-minimisation methods, how-
ever, do not come off very well with regard to hardware friendliness or
total run time.

Therefore, many algorithms have been proposed which solve the recov-
ery problem approximatively. Greedy algorithms feature a deterministic
run time (fixed number of iterations) and a correlation-based atom selec-
tion. OMP improves on MP, and CoSaMP improves on OMP, yet OMP
only requires three inputs y, ©, k and is thus easy to configure. Further-
more, mathematically proven recovery guarantees exist. These factors
explain the huge popularity of OMP.

For very large recovery problems though, e.g. in image processing, IHT
and its relatives become preferential because of their simpler structure.
They do not need LS computations, but typically require hundreds of loop
iterations instead. And depending on the application, a suitable stopping
criterion must be found. Additional algorithmic parameters for the soft
threshold or the step size are necessary for a successful application.
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Every algorithm discussed so far operates on a value continuum. If
further constraints are imposed on x, alternatives arise. This will be part
of the following sections.
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6.3 The Application of Compressed Sensing to
Wireless Communications

Although the major milestones in CS research have been reached some
years ago, the development of the CS framework raised the awareness
for sparse codings in many areas of research, which still persists. One
particular area with lots of applications is communications theory.

Examples for communication application are direction of arrival (DoA)
estimation of radar waves, spectrum monitoring for cognitive radios or
sparse channel estimation in Massive MIMO systems, just to name a few.
Another possibility, which is being discussed among other concepts, is
Sparse-Coded Multiple Access (SCMA) for the realisation of the so-called
IoT in future 5G mobile networks [Nik*14]. A precursor to this idea is
the wireless communications scenario outlined in the following.

6.3.1 A Multi-User Uplink in a Wireless Sensor Network

In the remainder of this dissertation, a multi-user uplink scenario within
a wireless sensor network (WSN), as depicted in Fig. 6.1, shall serve as
a baseline communication application. It resembles the currently dis-
cussed ideas for massive MTC in future mobile networks in many ways. In
contrast to human-driven network traffic for speech or video signal trans-
missions, which usually are continuous data streams of comparatively
high data rates, MTC assumes a large amount of “users”, i.e. machines,
which transmit information intermittently or sporadically with small
packet sizes [LCL11].

According to the IEEE 801.15.4 standard, such a wireless data link
could be achieved by using the Direct Sequence Spread Spectrum (DSSS)
technique to transmit over the physical channel with a CSMA with col-
lision avoidance (CSMA-CA) medium access protocol [IEEE-802]. This
does, however, not allow for simultaneous transmission of multiple users.
Generally, traditional multi-user communication is incapable of differ-
entiating between active and inactive users. Transmission activity must
be made known beforehand, requiring additional signalling overhead
on upper layers of the OSI/ISO reference model, especially the Medium
Access Control (MAC) layer [ITU-X.200].

114



6.3 The Application of CS to Wireless Communications

@
@
Q\\\ Q///

@* o

A

e

NS
O

@

) 0 @

Figure 6.1: A wireless sensor network (WSN) in star topology with a cent-
ral data aggregation node. The sensor nodes transmit data sporadically,
therefore only a subset is simultaneously active.

Given the multi-user uplink setting, the canonical linear input-output
model in symbol clock is [Ver98; Kiih(06]

y=Tx+n, (6.19)

where x is the multi-user transmit signal, z,, being the n-th user’s data
symbol (n = 1, ..., N), T € CM*N a matrix comprising all channel effects
(multi-user access scheme, slow and fast channel fadings, path losses,
etc.), y the superimposed received signal, and n an additive noise vector
with its elements drawn from a circularly-symmetric complex white
Gaussian noise process. Details on these entities will be explained below.

Please note the similarity to the noisy CS system model equation (6.12).
This suggests a disruptive, novel approach to communication systems if
sparsity as a property can be introduced into the transmit vector x.

It can.

6.3.2 The Introduction of Artificial Sparsity

CS is applicable to systems where the signal of interest is sparse or can
be described with an orthogonal basis transform by a sparse coefficient
vector (see Eq.(6.2) on page 102). Often, sparsity is a naturally occurring
property of signals, such as in images or videos.
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Nonetheless, though, it also possible to create artificially sparse sig-
nals. With regard to the above described WSN, this can be realised by
modelling inactive nodes as active but transmitting a symbol devoid of
information [ZG09; TLL09].

Active users in the classical sense transmit information-carrying sym-
bols taken from a digital modulation alphabet .A. Usually this is a 2°-
ary Phase-Shift Keying (PSK) or Quarternary Amplitude Modulation
(QAM) signal constellation, e.g. for Binary Phase-Shift Keying (BPSK) it
is ABPSK = {1 1}. The obvious choice for the symbol devoid of informa-
tion is the zero symbol. Then, the modulation alphabet can be augmented
to Ao by a constellation point at the origin (zero) of the complex plane,

Ay = Au{0}. (6.20)

The notation is chosen here in analogy to the set of natural numbers
including the zero, commonly denoted as Ny. The multi-user transmit
vector x in (6.19) is therefore a vector in AY': if the majority of sensor
nodes are inactive, this vector is sparse. The non-zero positions of x, i.e.
supp(x), signify active transmission of the corresponding users. Most
noteworthy;,

Ixll, = lIxll, = lxlo (6.21)

holds for all constant modulus signal constellations, namely for every
PSK and furthermore for the Quarternary Phase-Shift Keying (QPSK)
alphabet [TLL09]. Constant modulus implies that every symbol has the
same magnitude, or |a;| = 1 Va; € A.

6.3.2.1 User Activity Probabilities

In a real-world scenario, user activities are random. Therefore, let p, be
the activity probability (data transmission probability) of a user. Then,
the user’s activity implicitly follows a Bernoulli distribution with the
discrete probability mass function (PMF)

Pr(2nl) = px (j2nl) = {1 ~Pa |o1=0 (6.22)

Pa; |z| # 0 .
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Figure 6.2: The gross symbol error rate (GSER) as a figure of merit ac-
counts for user activities within the detection problem.

With regard to the zero-augmented signal constellation Ay it is

1 — DPas, Tp = 0
Pr(z,) = W) = , 6.23
I'(I ) pbx (.1' ) {pa/Qba T # O ( )

where 2° is the modulation order which equates to the cardinality of the
set of constellation points |A|. In the following, a homogeneous activity
model is adopted, i.e. all users within the WSN are active with the same
probability p,, although an extension to inhomogeneous user activities
is easily possible.

Signal detection, i.e. the estimation of % from the received symbol
vector y such that || X — x|| — 0, must be executed with respect to user
activities. Given the PMF (6.22) and the fact that xz,, € A, there are
pa N active users on average and the multi-user transmission vector x is
paN-sparse (see (6.4)).

Additionally, it follows from (6.23) that transmit symbols taken from
Ay are not uniformly distributed. Hence, optimal signal detection must
incorporate this knowledge of the a priori statistics to maximise the
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a posteriori probabilities, i.e. perform maximum a posteriori (MAP)
detection.

Fig. 6.2 emphasises the fact that the classical bit error rate (BER) is
not suited as detection metric since it neglects user activities; a priori
transmission activity and subsequent correct activity detection are im-
plicitly assumed. Hence, the detection quality will be measured in the
following by the GSER as a figure of merit. This will be plotted over the
SNR whereby the relationship between E}, /Ny and SNR is given (in linear
scale) by [Kno*13]

SNR SNR
Ey/Ny = = . 6.24
N0 = 5D b (62

One could further define error events for false active and false inactive
detections as in [Mon*12]. This requires that these error classes be given
a weighting of their severity which in turn necessitates additional as-
sumptions about the underlying communication system. For the sake of
simplicity, this differentiation is omitted here since the GSER as a neutral
figure of merit does encompass all error classes (symbol detection errors,
false active detections and false inactive detections). This is depicted as
cloudy boxes in Fig. 6.2.

6.3.3 Complex-Valued Compressed Sensing

All explanations on CS assumed real-valued entities so far. The funda-
mental papers actually do not make any remarks on a complex-valued use
case. However, the mathematical formulations of the CS framework as
well as of the algorithms for signal recovery naturally extend to complex
numbers [Par*17].

Nonetheless, complex-valued arithmetic operations have to be decom-
posed into real-valued ones. In particular, an equation of the form

y = Ab (6.25)

can be decomposed, as differentiated in [WP12], by two kinds of RVDs:
either by the Block-Wise Real-Value Decomposition (BRVD) or by the
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Element-Wise Real-Value Decomposition (ERVD). For the following con-
siderations, let

Re{A} —Im{A}

RVD(A) = |1 fA}  Re{A}

(6.26)
be the real-value decomposition operator, which can be applied to a

matrix A € CM*N . This includes the corner cases of A being a vector or
scalar.

6.3.3.1 Block-Wise Real-Value Decomposition

A first work on complex-valued CS for the DoA detection of radar signals,
[End10], proposed to apply the well-known BRVD. The BRVD of (6.25) is

RVD(y) = RVD(A) RVD(b) (6.27)

and results in

(8D -[eidd e e

where the second columns of the decomposed y and b have been deleted
for being redundant. Note, the dimensions of the vectors and the matrix
have doubled. Additionally and of utmost importance, the real parts and
their corresponding imaginary parts become decoupled. If these are not
independent of each other, further optimisation constraints for successful
signal reconstruction are necessary [YKM12].

With regard to the mentioned radar detection, a list of various possib-
ilities to enforce a smooth phase is given in [End10; YKM12]. And with
respect to the detection of a zero-augmented digital modulation alphabet
Ap it has to be taken into account that real and imaginary parts have to
be detected jointly as zero or non-zero.

The concept of (arbitrary) jointly sparse signals has first been intro-
duced in [Dua*05]. Here, the complex-valued signal could basically be
seen as two independent real-valued signals with common locations
of the non-zero elements, and, hence, two equivalent real-valued CS
problems are obtained [Par*17].
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6.3.3.2 Element-Wise Real-Value Decomposition

Alternative to the above block-wise RVD is the element-wise RVD, the
latter being inherent to complex numbers. It has already been remarked
in Sec. 4.2 that a complex-valued multiplication can be computed by four
real-valued multiplications and two real-valued additions/subtractions.
Let z = u - v be a complex-valued multiplication. Re-interpreted as a
two-dimensional real vector, the first dimension being the real part and
the second dimension the imaginary part, this multiplication can be
formulated in matrix notation as

(EEED = [EE}Z{ _Pf?{g}] (Eﬁ Eﬁ) . (6.29)

Note, this equation is identical to (6.27) when restricted to complex-valued

scalars only.

Hence, in [AA09] the RVD operation was applied element-wise to all
entities. This leads to the ERVD of (6.25) given by

Re {y1} Re {z1}
Im {yl} RVD(CLH) e RVD(CllN) Im {.1‘1}
: = : : : . (6:30)
Re {yM} RVD(G]Ml) RVD(G,MN) Re {ZL’N}
Im {yar} Im{zn}

It is obvious how this ERVD can be applied to the CS model (6.11). In
connection with the RDAM, this element-wise decomposition is per-
formed transparently to the designer by the utilisation of specialised
complex-valued data types (see Sec. 4.2).

Thus, the complex-valued problems can very well be solved by CS, as
they arise, e.g., when PSK or QAM signal constellations are employed
with modulation order 2°, b > 1.

Since the ERVD is implicit—unlike the BRVD—additional optimisation
constraints are not required. For instance, the {y-pseudonorm (6.3) is
well-defined in the complex case; if the magnitude of a complex scalar
becomes zero, real and imaginary parts vanish together.
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Figure 6.3: Multiple sensor nodes in a time-synchronous DS-CDMA sys-
tem transmit spread data symbols sporadically and simultaneously.
The data aggregation node receives the superposition of the transmit
signals in order to perform for multi-user detection with regard to data
and activities.

6.3.4 Code-Division Multiple Access for Multi-User
Communications

A time-synchronous Direct Sequence CDMA (DS-CDMA) system will
be assumed further to enable true multi-user communication. This over-
comes the deficit of the IEEE Standard 802.15.4 and DSSS not to support
concurrent data transmissions of multiple users, as mentioned in Sec. 6.3.1
above. In fact, the spread spectrum technique is the foundation of every
CDMA system as well.

Fig. 6.3 shows such a communication system schematically. Multiple
sensor nodes time-synchronously transmit constant-modulus data sym-
bols over a wireless channel. This system model setup follows the ideas
set forth in [ZG09; TLL09; ZG11].

Each symbol z,, € Ay is spread with a user-specific spreading code
c,, of length N, being a complex-valued series in general. The resulting
scalar multiplication results in Ny chips x, - (¢ )n, k = 1, ..., N5, which are
transmitted over a wireless channel modelled by a linear time-invariant
(LTT) impulse response h,, of length L;, chips.
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A very important requirement for CDMA systems to function is that
user-specific code sequences must be orthogonal to each other, or formally

(ci,c;) =clle; =0 Vi#jandi,j=1,..,N. (6.31)

If the user codes, without loss of generality, are normalised to ||c, ||, = 1,
n =1,..., N, and written as columns of a code matrix C as

C = [cl cN] , (6.32)

they form an orthonormal transform basis, and it follows C#C = 1.
Depending on the application, it might be sufficient to demand quasi-
orthogonality, (c;,c;) ~ 0. For example: In case of an imperfect syn-
chronisation of the symbol clock, quasi-orthogonal pseudo-noise (PN)
sequences perform better than strictly orthogonal (but unsynchronised)
Walsh-Hadamard codes with regard to multi-user interference and inter-
symbol interference (ISI), because of statistically lower cross-correlations.
For this reason, classical CDMA systems are often built based on PN
sequences and cannot be fully loaded, i.e. N < N, to still allow for a
successful multi-user detection.

The transmission of the spread user symbols over the wireless fading
channels h,, can formally be described by the so-called signatures s,, of
each user [Kiih06]. The signatures are the convolution product

s, =h, xc,, (6.33)

of length N, + L), — 1, and the operator * denotes convolution of two one-
dimensional signals. With regard to the n-th user only, the non-circular
convolution of two time-limited discrete signals is given by

sli] = Y hlkleli —k] i=1,..,Ny+Lp—1. (6.34)

Alternatively, the convolution operation can be expressed by the discrete-
time convolution matrix H,, of dimensions N + L;, — 1 x N, which is
of Toeplitz structure. Then, s,, = H,,c,,.
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Analogously to (6.32), the signatures can be assembled as columns of
a matrix, the signatures matrix

S = [Sl Sy - SN] € CNsHLn=1xN (635)

Hence, the central data aggregation node of the assumed WSN setup,
Sec. 6.3.1, receives under consideration of (6.19) the chip-clock signal

y=Sx+n (6.36)
= [H1C1 HNCN] X+n. (6.37)

Just as a reminder, x € A} is ideally sparse and n is complex additive
white Gaussian noise (AWGN) with variance o2.

6.3.5 The Compressed Sensing Estimation Problem

The wireless CDMA multi-user uplink described in the previous sections
fulfils all requirements to qualify as a CS problem:

* Sparsity. The multi-user transmit vector x € A is sparse.

¢ Transform Basis. The transform basis ¥ of (6.1), normally causing
sparsification, is simply the identity matrix I, because x is already
ideally sparse.

® Measurement Matrix. The CS measurement matrix ®, Eq. (6.8),
corresponds to T in (6.19) in general. Thus, the CS system matrix
is ® = ¥ = S for the above application.

* Restricted Isometry Property. C is constructed by the user spread-
ing codes, which can be drawn from any subgaussian random
distribution. Therefore, the RIP is fulfilled with high probability
(w.h.p.), see Sec. 6.1.2.

This carries over to S due to its construction rule in (6.35). Each
Sy, 1s a convolution product (6.34), i.e. each sample of it is in fact a
linear combination of random variables. The distribution of the s;’s
is certainly nontrivial to analyse. However, let the elements of c,, be
ii.d. normally distributed with zero mean and unit variance, and
assume the user-specific channel coefficients to be constants. Then,
every s; is a weighted sum of L; normal distributions, which in
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turn results in a normal distribution with zero mean and variance
0% = |hi|* + ... + |hr, %, apart from edge effects due to the non-
circular nature of the convolution. Since each user has its own
random channel realisation and signatures are thus i.i.d. as well,
S will fulfill the RIP w.h.p., too. For more complicated random
distributions the central limit theorem is applicable, although in
general the CS detection performance can also be evaluated with
numerical simulations for a specific setup.

For the symbol detection problem, two cases have to be differentiated:

¢ The underdetermined system of equations (M < N)

124

This truly constitutes a CS system, since ® performs only M com-
pressive measurements of N transmitted user symbols. Here, the
knowledge about the sparse multi-user transmit vector is critical
to a successful detection, hence, it could be called an optimisation
problem with sparsity exploitation.

The communication system is overloaded in the classical sense,
which renders it resource-efficient. Signal recovery must be per-
formed with ¢;-minimisation or alternative CS algorithms.

The overdetermined system of equations (1/ > N)

Classical CDMA systems are overdetermined to facilitate multi-
user symbol detection or to employ strictly orthogonal codes, like
Walsh-Hadamard sequences. Hence, M = N, + L, —1 > N, i.e.
more measurements than unknowns are available.

This is by no means “compressive” in nature, nonetheless the signal
features the sparsity property. Hence, symbol detection can be
performed with sparsity awareness. Consequently, the multi-user
communication system can be overloaded with a factor 1/p, > 1
such that effectively up to N/p, users can potentially be supported.
Symbol detection becomes a regression problem solvable by /-
minimisation (least squares) regularised by the sparse coding. Since
M > N and S being (approximately) orthogonal or even unitary
with normalised columns, the Gram matrix S S has full rank and
the inverse problem is well-conditioned.
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6.3.5.1 The Finite-Alphabet Constraint

Note, the symbols of multi-user transmit vector, x € Ay, are drawn ran-
domly from a finite set of PSK constellation points with a PMF according
to (6.23). The cardinality of this set is |.Ay|, but more importantly A is
not convex because it is discrete set. Therefore, CS recovery with BPDN
is not directly applicable, yet there are two possibilities to overcome this
issue.

Until now, all CS signal recovery algorithms discussed in Sec. 6.2 op-
erate on real numbers, a value continuum. Thus, the non-convex Ag
could be relaxed to a convex set. The convex hull conv(Af))PSK) to the
zero-augmented QPSK constellation, e.g., is a square with v/2 side length.
This technique is therefore called box relaxation. ¢;-minimisation can be
applied, and subsequently the recovered signal x € C can be quantised
with respect to Ay, X = Q 4, {X}.

Alternatively, a different class of algorithms from integer optimisation
theory can directly account for the finite-alphabet constraint, as will be
shown later. These solve the {y-regularised LS recovery problem

% = arg min_|ly — Tx|[5 + X ||, - (6.38)
xeAY

The authors of [ZG11] call this Sparsity MAP (S-MAP) detection. The
factor S\(Am Pa,0n) is determined by the prior knowledge about the
source data and is a function of the signal constellation, user activity
probability and noise power. A precise derivation will be given in Sec. 7.1.

The constant-modulus assumption, i.e. all symbols of the modulation
alphabet have the same magnitude, allows to substitute |x|lo = |x||3
according to (6.21) in Sec. 6.3.2, [TLL09]. Then, the regularisation term
can be included into the LS metric [Kno*14]. The hereby reformulated
minimisation problem becomes

x = arg min |y — Tx|3 + [|[VX - x||3 (6.39)
xe Al
y T i
= i — 6.40
S [ RNE R
= arg min |y — Tx||?. 6.41
& i, 5 - T3 (641
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Naturally, this increases the dimensions of § and T to a (M + N) vector
and a (M + N) x N regularised matrix, respectively. T contains activity
information as well as the wireless communication channel T. If A > 0
holds, T has full rank. However, solving (6.41) may lead to numerical
difficulties when X approaches zero.

Since the model application is a low-rate WSN, the assumption of con-
stant modulus signal constellations is sensible. This includes the 4-QAM
and all PSK modulations. The consideration of higher order QAM mod-
ulations is not within the scope of this thesis. A simple approximative
approach would be to normalise A by the expected value, i.e. mean power,
of the employed finite alphabet symbols. For more developed theories the
reader is referred, e.g., to [LL16], where a multistage (hierarchical) binary
encoding based on 4-QAM is proposed in connection with a channel
encoder, or to [Ais*15], where the 2° constellation symbols are mapped
onto one-hot coded binary vectors of length 2°. [LML17] follows the ap-
proach mentioned above to apply a BRVD and a relaxed ¢;-minimisation
with consecutive quantisation to the finite alphabet.

In conclusion, Eq. (6.38) and (6.41) constitute a joint multi-user symbol
and activity detection on the physical layer (PHY) of the ISO/OSI model,
when translated to communications parlance. This will be the subject of
the following chapter.
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Chapter 7

Sparsity-Aware Symbol
Detection with Tree Search
Algorithms

Based upon the previously described multi-user uplink scenario ina WSN
with sporadically active sensor nodes, this chapter discusses adaptations
of tree search algorithms to take advantage of the system-inherent sparsity
with faithfulness to the finite-alphabet constraint.

There are, at least, two remarkable points to observe: Firstly, a joint data
and activity detection renders additional activity signalling overhead
on higher protocol layers beforehand obsolete (see Sec. 6.3.1). This is an
efficient cross-layer approach, which spans the PHY and MAC layers.
Secondly, the CDMA system can be overloaded such that the average
number of active users, p, N, equals the spreading factor N,—the number
of total users, i.e. active and inactive, is larger than N;. This increased
support for more sensor nodes is desirable with regard to the IoT.

The general ideas on this sparse communications scenario have been
laid out and discussed in [ZG09; TLL09]. Following from the a priori
distribution of transmit symbols, the optimal receiver will maximise the
a posteriori probability. This necessitates the solving of the joint data
and activity detection problem (6.38). Below, three closely related tree
search algorithms will be adapted to the problem at hand, namely SD in
Sec. 7.2.1, K-Best in Sec. 7.2.2 and SIC in Sec. 7.2.3. Publications related to
these are [KWP12], [Kno*14] and [Kno*13], respectively.
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7.1 Joint Data and Activity Detection

A MAP decoding criterion can be derived from the a priori knowledge
of the stochastic distribution of transmit symbols (6.23) and the system
model (6.36) [KWP12]. Here, the derivation is given for PSK symbol
alphabets of any modulation order, and not restricted to real-valued
BPSK.

Generally speaking, every MAP detector finds the event with maximal
probability given a certain observation,

% = arg max Pr(x|y), (7.1)
xe7’0N

i.e. evaluating the conditional probability Pr(x|y) for each possible trans-
mit vector x € A}’ and selecting the most probable. With Bayes’ rule this
can be rewritten as

X = arg max «(y) - Pr(x), 7.2
g max py| (y) - Pr(x) (7.2)

where Pr(x) is the a priori probability of the transmit hypothesis x. For
uniformly distributed elements of x, this prior would become a constant
and fall out of the maximisation problem, thus leading to maximum
likelihood (ML) detection. For statistically i.i.d. transmit symbols z,, the
prior can be calculated as

N

Pr(x) = [] Pr(an) = (1 = pa) V" I¥lo - (po /1A *le (73)

n=1

according to the PMF in (6.23).

Note, that py x(y) in (7.2) is the conditional probability on a specific
x. Normally, this term can only be evaluated with an exhaustive search
over all |A4o|V possibilities for x, yet SD is an efficient solution to this
problem. Further, the measurements in y are realisations of a random
process Y. However, the system model (6.36) itself is deterministic (CSI
assumed) and the only randomness originates in the additive thermal
noise, being modelled as AWGN. The probability density function (PDF)
of a complex-valued circularly-symmetric and zero-mean white Gaussian
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2

random variable with power o, is

1 2, 9
p() = s exp (3 /o) (7.4)
Next, n can be substituted with the re-arranged system model in chip-

clock y — Tx, Eq. (6.36), to describe py|x(y). Inserting this into Eq. (7.2)
leads to

x€AY oy, n

. 1 ly — Tx|l3
X = arg max 7)N exp [ ————=—= +In(Pr(x)) | , (7.5)
o

where the a priori probability Pr(x) was lifted into the exponent. This
expression can be greatly simplified by omitting constant pre-factors and
considering the strictly monotonic behaviour of the exponential function,
such that

X = arg max — ly — Tx||§ + 02 In(Pr(x)) . (7.6)

0

The natural logarithm of the prior is

In(Pr(x)) = (N = |Ix/[o) (1 = pa) + [Ix[lo In(pa/|Al])
= —Ixllo (In(1 = pa) — In(pa/IA]) + N In(1 - pa)
= = Allxllp + Nn(1 = pa) (7.7)

with

= (o) 79

This parameter is the ratio of the two transmit hypotheses for inactivity
and activity, that any symbol from A is transmitted. Note, solely the first
term in (7.7) is a function of x.

Putting the pieces together and exchanging the maximisation by a
minimisation to remove the minus signs results in the S-MAP detector

% = arg min_|ly — Tx|[5 + 02X 1]y - (7.9)
xe Al

The argument of the arg min-operation constitutes a regularised distance
metric Dsmap(y,x). In respect thereof, A > 0 must hold, which is the
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case as long as p, < |A|/(|A] +1), e.g. for BPSK p, < 2/3. This, however,
essentially means that every sparse signal fulfils this condition. Oth-
erwise, the tuning parameter \ is usually chosen with cross-validation
techniques as a function of the sizes M and N; here, it is directly coupled
with the user activity factor p,, [ZG11]. The cost function due to regular-
isation in (7.9) penalises non-sparse transmit hypotheses. Its impact is
moderated by the noise power.

7.1.1 Correlation-Based Detection in Symbol-Clock

The optimal receiver of a multi-user CDMA signal in symbol-clock is
a correlator, as it can be derived from the (quasi)-orthogonality con-
straint (6.31), [Kiih06]. This equates to a left-multiplication of the chip-
clock model (6.36) with S to take the user-specific channel realisations
into account. Of course, this step requires CSI at the receiver, which is
assumed in the following if not stated otherwise.

The system symbol-clock I/O relation is, therefore,

r=S"y =818x+8%n. (7.10)
=Ax+n, (7.11)

with A being the Gram matrix S”S € CV*¥, and of full rank if M > N,
as it is the case for classical multi-user systems. Since the receiver com-
putes the correlation, A is a quadratic positively semi-definite correlation
matrix. Afterwards, symbol detection will be executed with regard to r.

In fact, the noise term 1 is correlated, leading to coloured noise with
covariance matrix ®,, = E{STnn’S} = ¢2S#S. This violates the
white noise assumption (7.4), and for an improved symbol detection a
pre-whitening (de-correlation) filter P is needed [Ver98]. With filtering,
Eq. (7.10) becomes

r, = Pr=PS¥Sx +n,,, (7.12)

with n,, = PS#n being additive white noise again, indicated by the
index “w”. The derivation of P will be subject of Sec. 7.2.3.1.

Given the underdetermined case of M < N, it will be rank(A) = M.
Hence, further regularisation of the system of equations, like in (6.41), is
needed.
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7.2 Sparsity-Regularised Tree Search
Algorithms

Generally, integer least squares (ILS) problems are defined on the set
of integer numbers Z. The search space is the N-dimensional integer
lattice Z or a finite subset D C Z". SD is known to solve this class of
optimisation problems [DEC03; HV05]. Hence, SD can be adapted to
solve the S-MAP detection problem (7.9) as well (D = AY').

SD is the obvious choice of an algorithm. It is guaranteed to find
the optimal solution on average in polynomial time, though it is also
theoretically upper-bounded to terminate with exponential time com-
plexity only [HV05]. Suboptimal, complexity-reduced variants like K-
Best [Won*02], or relatively simple SIC, can provide feasible alternatives
[Bur06; Wiib06]. A common prerequisite for these tree search algorithms
is a QRD of the system matrix to transform the linear system of equa-
tions into a triangular structure. The search metric has to be regularised
according to the sparsity constraint.

SIC and K-Best detection are closely related to SD. SD performs a
depth-first search. The search tree has N levels, and after processing
exactly N nodes, a first solution is found. In case the search radius has
not been restricted previously, this intermediate solution equates to the
SIC detection result. However, SD can revise its solution until all other
possibilities are excluded. For this reason, SD finds the global optimum.
K-Best performs a breadth-first search while progressing unidirectionally
within the search tree. At each level, the K best hypotheses are retained
and all others dismissed. K is a tuning parameter: for K — oo, K-Best
detection equates to optimal SD, whereas for K = 1, it degenerates to
SIC.

7.2.1 Sphere Decoding

The most prominent application of SD in communications theory so far
has been symbol detection in multi-antenna (MIMO) systems [Bur06;
Wiib06; Wiel2]. Several configuration alternatives of the algorithm are
discussed in the cited works. A brief overview is also given in [Kno*17].

There are applications of SD to underdetermined systems of equations,
foremost to mention the Generalised Sphere Decoder (GSD) [DABO00;

131



Chapter 7 Sparsity-Aware Symbol Detection with Tree Search Algorithms

CTO5b]. For a sparsity-constrained setup, the underdetermined case was
examined in [Mon17]. Given any M x N system matrix with M < N, SD
will still find the optimal solution, albeit it will resort to an exhaustive
search of the (N — M) upper layers and looses as such its polynomial
complexity and becomes infeasible.

Hence, practical applications of SD are only found with respect to
an overdetermined setting. For instance, the regularisation according
to Eq. (6.41) results in an overdetermined system of equations again.
Sparsity-aware detection significantly reduces the run time complexity
of SD [BV14], as it will also be shown in the following.

7.2.1.1 Mode of Operation

To enable SD, the discretised search space has to be transformed into a
search tree beforehand, which is accomplished by triangularisation of
the system of equations. Starting with the S-MAP metric in (7.9),

Dsaiap(r, x) = ||r — Ax|3 4+ o2\ x|, (7.13)

the matrix A of size M x N with M > N is QR factorised such that
A = QR. Itis sufficient to consider the skinny QRD here, i.e. Q is a
M x N unitary matrix of rank N, and Risa N x N upper-triangular matrix
with real-valued entries on the main diagonal [GV13]. Left-multiplying

Q* to the ML part in (7. al|, = llall,,
hence
Dsnap(F,x) = [[F — Rx|l5 + o2 A |x]|g . (7.14)
with ¥ = Qr of length N.
In scalar notation the S-M AP metric reads
Dsmar = Z dy (7, x (™) (7.15)
with the partial metric
N 2
dp (), x(")) = |Fp — Z Fxy| + 02Nz, (7.16)
l=n
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The notation x*) denotes the partial vector (¢ ... = N)T composed
out of the N-dimensional x, i.e. the first n — 1 elements are removed.
dn (%) x(®)) shall be named the n-th partial distance (PD) and the sum
DY = Zf,v:n d, partial accumulated distance (PAD). Therefore, the PDs
and PADs are functions of partial vectors, and the PADs can be calculated
recursively by

DY =D +d,, (7.17)

given the starting condition DY 11 =0.

The search tree consists of N levels, the root node being at the top.
The SD algorithm begins its search at the root node on level N and
then descends within the search tree. Each node has |.Ay| child nodes
or symbol transmit hypotheses. Associated with each hypothesis is a
cost metric, the PD. “Processing a node” means evaluating the |.4q| PDs
d,(z,), Yz, € Ay. Subsequently, the PDs are accumulated as in (7.17) to
the metric associated with the parent node, which is the PAD D}, ;.

The fundamental idea of SD, and the reason for its efficacy, is tree
pruning to discard large subtrees on the basis of the sphere constraint (SC),
which is a real-valued parameter ¢ > 0. Only such transmit hypotheses
are considered which are within the {y-regularised hypersphere formed
by the S-MAP metric and the diameter p. All valid solution candidates x
have to fulfil Dsmap < 0. This works, because the inequality D}Y > D, ,
holds for all v, which in turn holds because A > 0 and (7.13) being,
therefore, a convex metric. Consequently, there is a monotonicity between
the PADs,

Dy <Dy_y <--- < DY = Dsyar < 0. (7.18)

If a node at level v already violates the SC, so will all child nodes of the
complete subtree: it can be excluded safely from the search.

The SC can be initialised with ¢ < co. Then, SD will start processing
the root node and selecting the child with minimal PAD. Then again, move
on to process the chosen node, and so on, until a leaf node is reached.
The followed path from the root to the first leaf node being reached
corresponds exactly to the SIC detection result, as already mentioned.
The candidate vector x with least S-MAP metric is chosen as intermediate
solution and the SC is updated, ¢ - Dsmap(F,%). Until now, no tree
pruning happened due to the initialisation of ¢ with infinity. Thus, SD
ascends again within the search tree comparing all so far computed PADs
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against the shrunk p. As soon as a still valid node is found, the search
direction will switch again, and the node will be processed and followed
along until either another leaf node with a better solution candidate will
be found or the SC becomes violated. Hence, SD is non-deterministic in
its behaviour and tree traversal. The search is continued until the whole
tree is pruned and a single solution, the global optimum, is left as final
detection result x.

The above explanations assume a “best-first” search, also called Schnorr-
Euchner candidate enumeration, i.e. the hypothesis with the least PAD
is followed first [SE94]. This implies some kind of an intelligent choice
of the best hypothesis or, if feasible, an exhaustive search over all |.Ag|
possible symbol hypotheses per node with subsequent (partial) sorting.
Although this incurs additional computational complexity, it reduces the
run time of SD considerably.

7.2.1.2 An RDAM-Based Sphere Detector

There is quite a number of options to adapt SD to a given application. A
list of eight points was compiled in [Kno*17]:

1. The problem size which is given by the dimensions of the system
matrix on which QRD is applied.

2. The search space which is given by a set of discrete values, e.g. a
lattice formed by integers Z, Gaussian integers Z[i] (i.e. complex
integer numbers) or a finite alphabet, like a digital modulation
constellation.

3. The cost function depends on the application. For instance, the
MAP detection metric (7.13) includes the ¢y-pseudonorm regular-
isation, whereas ML detection, e.g. in classical non-sparse multi-
antenna MIMO systems, would only be with regard to ||r — Ang.

4. The SC update strategy, can be non-updating, i.e. a fixed initial-
ised value, or updating, i.e. the radius shrinks every time a better
intermediate solution is found.

5. The search strategy can be depth-first (a.k.a. Fincke-Pohst enumer-
ation) or best-first (a.k.a. Schnorr-Euchner enumeration).

6. Norm approximations can be applied to reduce computational
complexity, e.g. the ¢, norm could be replaced by the simpler ¢;
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Figure 7.1: Detection performance of a sparsity-aware SD created with
the RDAM [Kno*14]. See the main text for details.

norm, deliberately trading a degradation in detection performance
with improved data throughput.

7. The data type used for implementation.

8. The mathematical complexity of the data, being either complex-
valued or real-valued.

With all these options in mind, a baseline functional SD design was
created following the RDAM as outlined in Chap. 3. Special attention
was paid to three issues: fixed-point design, RVD of complex-valued
operations, and norm approximation. The highly parametrisable HLS
design was then adapted to two application scenarios, one being a clas-
sical ML detector in a 4 x 4 multi-antenna MIMO system, the other being
the above S-MAP detector. The following will discuss results for the latter
case briefly.

Zero-augmented BPSK symbols taken from ABPK of N users were
spread with random Bernoulli sequences of length A, and the user
channel impulse responses were modelled by four i.i.d. Rayleigh fading
coefficients. The activity probability was set to p, = 0.2. Fig. 7.1a com-
pares the GSER performance of the HLS-based SD in single-precision
floating-point accuracy. The influence of the ¢; norm was investigated,
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Table 7.1: HLS results of the SD built with the RDAM [Kno*14].

Data Type Setup Time Resource Utilisation

C (M,N) ¢, nms BRAM DSP FF LUT
double (16,16) ¢ 1.787 20 67 2296 7059
float (16,16) ¢ 1.634 6 48 1941 5136
ap_fixed  (16,16) {2 0.754 5 31 1558 3567
double (16,16) &1 1.547 20 67 2228 7017
float (16,16) ¢1  0.982 6 23 1930 1219
ap_fixed  (16,16) ¢1 0.406 5 17 1497 2214
double (32,20) ¢ 1557 20 67 2245 6977
float (32,20) ¢4 0976 6 23 1948 4063
ap_fixed  (32,20) ¢ 0417 5 17 1506 2343

inspired by [Bur06]; the exchange of ¢, for ¢; is motivated by a signi-
ficantly simpler computational complexity. A moderate loss in GSER
performance of about 2 dB is observable. The communication is uncoded,
and with further channel coding this SNR loss becomes less pronounced.
On the other hand, the reduction in complexity yields a 54 % faster and
smaller design, in terms of the DSP slices count (see Tab. 7.1).

Concerning the fixed-point conversion step, the optimal partitioning
of the w = 18 bits word lengths into integer and fractional parts was
found by a parametric sweep. The SD design was tested for Q formats
Q(w — 1 — f, f), with f being the number of fractional bits. Fig. 7.1b
shows the GSER detection performance for an increasing f. Small frac-
tional length (f < 7) exhibit insufficient numerical precision and un-
derflows degrade the detection performance. With increasing f, the
GSER approaches the floating-point detector and nearly achieves it for
f = 8,...,13 bits. Increasing f further leads to a severe performance
collapse due to overflows (not shown).

Hence, the Q(9, 8) was chosen as a baseline fixed-point format for all
computations throughout the design, and only selected accumulation
operations are executed with higher precision and later reduced again to
this word length.

Table 7.1 lists synthesis results for three configurations. Firstly, a sys-
tem with N = M = 16 was investigated, i.e. the CDMA system is
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Figure 7.2: The {y-regularised sparsity-aware Sphere Decoding performs
significantly better than ML detection [KWP12].

critically loaded. The metric is computed as in (7.13). The fixed-point
design considerably reduces the number of utilised DSP slices without
a deterioration in detection performance. Double-precision offers no
advantages over single-precision floating-point, but can also successfully
be synthesised. Secondly, (M, N) = (32, 20) was chosen for an overde-
termined system, with and without /; norm approximation. Note, the
computational complexity is mostly with the per-node processing (PD
evaluation and sorting, SC testing). The SD iterates until termination
and processes a single node per iteration. Since its run time is variable,
Tab. 7.1 states the per-node computation time. However, an increased
problem size only increases the run time complexity of the SD algorithm
but not the per-node computational complexity. Therefore the resource
utilisation count is about the same for both cases, (16, 16) and (32, 20).

7.2.1.3 Sparsity-MAP Run Time Complexity

In [KWP12] is has been shown, that the penalisation due to the sparsity
constraint in (7.13) has a strong impact.

Fig.7.2 compares the ML SD with the SSMAP SD and a variant with non-
convex distance metric (S-MAP*). The latter leads to a virtually reduced
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search sphere but is only approximative in nature, since it might happen
that the global optimum becomes pruned. Nonetheless, the Fig. 7.2a
shows the improved detection performance because of ¢, regularisation.
Fig. 7.2b shows the measured average run time complexity of the three
examined algorithmic variants expressed by the number of processed
nodes. This is reciprocal to the data throughput of SD.

Monte Carlo simulations were performed fora N = 10 users, synchron-
ous CDMA system over a two-tap Rayleigh fading channels with AWGN,
as described earlier. Binary PN codes of length N, = 127 were used as
spreading sequences, and the modulation alphabet was zero-augmented
QPSK.

It is noteworthy that for low SNRs the GSER of the S-SMAP SD ap-
proaches p, asymptotically. Hence, the S-MAP decoding scheme itself
constitutes a rather conservative estimator the larger the noise power
gets: all data symbols then tend to be estimated as zeroes. Furthermore,
no significant quality degradation from optimal to approximative S-MAP
SD can be observed. This is a surprising result, since Fig. 7.2b clearly
shows that non-convex SD almost always terminates after processing the
minimial number of N nodes. Usually, this is the well-known property
of SIC detection. Hence, by intentionally violating the ideal check of the
SC, many improbable transmit hypotheses can be dismissed early, thus
reducing decoding complexity but without notable loss of quality. Op-
timal S-MAP SD has a somewhat reduced run time complexity compared
to ML detection, which becomes less the less active users are. This can
be explained with its preference for the zero symbol.

A similar conclusion is drawn in [BV14]. Sparsity-aware decoding
allows for aggressive tree pruning although the per-node computational
complexity is slightly increased. This is beneficial overall. The authors
also propose to initialise the SC by a sparse solution obtained by a re-
laxed ¢; problem with by OMP to reduce the number of processed nodes
further.

The significantly improved detection and run time performances of
sparsity-aware SD bring up the question whether further complexity-
reduced SIC or K-Best estimation can facilitate sparsity-constrained multi-
user detection. This is the subject of the following sections.
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7.2.2 K-Best Detection

K-Best detection can be interpreted as a trade-off between SD and SIC
with an adjustable parameter K which determines performance and
complexity of the detector.

The algorithm sacrifices optimality but for large values of the parameter
K it is able to achieve near optimal performance. It performs a breadth-
first search, and only retains those K hypotheses, or search paths, with
the smallest associated PD per iteration. Thus, the algorithm operates on
the search tree unidirectionally, which leads to a deterministic run time
and constant throughput. Hence, K-Best is better suited for hardware
implementations and can be pipelined nicely [Won*02].

In [Kno*14], K-Best detection is modified to approximately solve the
finite-alphabet CS problem (6.38). Note, in contrast to the previous sec-
tion and SD, the following results are obtained in an underdetermined
setting without a correlation receiver, i.e. multi-user symbol detection is
performed directly on the measured chip-clock receive signal. N = 20
users transmit zero-augmented BPSK with activity probability p, = 0.2
over an AWGN channel to a central data aggregation node. Spreading is
applied as well, although with shorter sequences of length A/ = 10. This
time, the random spreading sequences are i.i.d. drawn from a zero-mean
Gaussian distribution. This system is clearly underdetermined, as the
ratio of observations to nodes is 1/2.

7.2.2.1 Pre-Processing Steps

To improve K-Best performance, two additional preprocessing steps are
introduced.

Firstly, the M x N system matrix T is regularised as in (6.41). This
incorporates the prior information into the ML detection metric while
transforming the system of equations into an (M + N) x N system de-
scribed by T. Hence, the optimisation problem differs from known K-Best
implementations only in the zero augmentation of the modulation al-
phabet. A third PD has to be evaluated for z,, = 0 in addition to the two
hypotheses for x,, = —1 or z, = +1. This naturally affects the sorting
afterwards as well.

Secondly, instead of a regular QRD, a SQRD is applied [Wiib*01].
SQRD permutes the detection order heuristically such that data of nodes
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Figure 7.3: K-Best estimation is able to detect a sparse multi-user signal
from underdetermined measurements, even if user activities are not
exactly known [Kno*14]. The parameter K is given for each plot line.

with a high post-detection SNR are estimated first. T is factorised such
that R
T = QRII, (7.19)

where IT is a permutation matrix, which determines the ordering of the
subsequent detection. Eq. (6.41) becomes with SQRD

Xx=arg min |[ly — RIx|3, (7.20)

xE(AgPSK)N

where y = QT'y. R is an upper-triangular matrix of size N x N and has
full rank as long as A > 0 holds.

7.2.2.2 Numerical Simulation Results

Fig. 7.3a shows the GSER over the zero-augmented BPSK symbol al-
phabet ASPK = {0, —1,1}. Sparse K-Best detection without SQRD as
pre-processing (dashed lines) cannot achieve the S-MAP performance
of S-MAP SD, which is used as a benchmark. It can be seen that K-Best
detection with very low K results in huge performance losses. Increas-
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ing K to higher values reduces the loss, and with K = 16 the gap to
optimal performance is small in the mid-SNR range. At higher SNR
values, K-Best detection shows an error floor behaviour which is due to
the limited coverage of the search within the search tree. In contrast to
this, the S-MAP SD detector can achieve better performance but only
with non-deterministic throughput and latency.

The sparsity-aware symbol detection relies on the correct knowledge
of the user activity p, at the receiver, which can be derived from long
term statistics, for example. Even if there is a mismatch between true
and assumed activity probability, K-Best is able to correctly estimate the
multi-user detection problem. This is shown in Fig. 7.3b. The mismatch
A, is modelled to be uniformly random A, ~ U (—Ap max, Ap max), i€
the node activity probability in the system is p = p, + A,, where p, is
the activity probability assumed at the detector and p is the true activity
probability of the transmit nodes. The plot shows the performance of
K-Best detection averaged over 10 000 model realisations. The results are
similar to the previous ones without activity mismatch, but a performance
loss is observable (for SSMAP as well). However, even for K = 8 it is still
possible to achieve a GSER < 10~2. Therefore, it can be concluded that
K-Best detection is, to some extent, robust against parameter mismatch.

7.2.2.3 Complexity Analysis

Setting K = 16 results in a computational complexity of N - K -|Ay| = 960
processed hypotheses for K-Best decoding, which is still feasible from
a practical perspective. In comparison, the computational complexity
of S-MAP detection is not fixed with a worst case upper bounded of

|A0|N ~ 3.5 - 10°, which is prohibitively high.
The algorithmic complexity of the K-Best algorithm is

CkBest = O{N(K|AO|Cpm + Csort)} ) (721)

with Cp, modelling the necessary operations for the partial metric com-
putations and Cso¢ the complexity of the sorting algorithm [Kno*14].
Further, these complexities can be assessed as

Cpm ~ N2, (7.22)
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and, if Odd-Even Mergesort is employed,
Csort ~ K‘Ao| logQ(K|A0|) . (7.23)

Consequently, K-Best detection is of polynomial complexity in the number
of users (O(N?)), and scales merely log-linearly with the number of search
paths K. Since only the smallest K partial path metrics are of interest
in subsequent processing, a completely sorted list of all metrics is not
required. Hence, the sorting could be simplified algorithmically if a
digital modulation of higher modulation order is employed.
Summarising the above, K-Best detection works with a reasonably low
K even for underdetermined systems: it can achieve good symbol error
rate performance with a complexity far less than S-MAP detection and is
robust against unpredictable changes of user activities in the system.

7.2.3 Successive Interference Cancellation

The astonishingly low run time complexity of the sparsity-aware MAP
detection above raised the question whether low-complexity alternat-
ives to SD could also be utilised. It is well-known that SIC with proper
pre-processing, such as sorting, is a viable candidate for a suboptimal
approach. As it turns out, a pre-whitening filter is, nonetheless, critical
to successful detection [Kno*13].

SIC features the lowest computational complexity of the three tree
search algorithms discussed here. Its run time and throughput is constant,
and, hence, a potential hardware implementation could be pipelined.

Algorithm 7.1 lists the pseudocode of Sparsity-Aware Successive Inter-
ference Cancellation (SA-SIC). It requires knowledge of the pre-whitened
received vector r,,, the CSI (expressed by R of the QRD and 02), and the
system-specific global activity parameter p,.

7.2.3.1 Efficiently Combined Sorted QR Decomposition and
Pre-Whitening

Given the overdetermined system model and the correlation receiver as
described in Sec. 7.1.1, the CDMA system model according to (7.10) in
symbol clock is

r=S"8x+Sn, (7.24)
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Algorithm 7.1: Sparsity-Aware Successive Interference Cancellation

. function SA-SIC(r,,,R,0,,p4 )
X<+ 0
A 20'721 log((l - pa)/(pa/|~’4|))
4 forn«+ N,...,1do

z Z;V:n 41 iy > residual
forall z € Ay do > symbol hypotheses
dy < (Pwn — Tan® — 2)% + Nz|
Tp < argminyze 4, dy > decision
9 return x

where the signatures of the users are the columns of S. Therefore, the
noise is coloured.

To achieve improved detection performance on a pre-whitened system
model, only the inverse of a triangular matrix R is needed additionally,
and SIC can subsequently be executed on the permuted symbol vector
ITx. S is factorised by SQRD such that S = QRII, with IT as permuta-
tion matrix for sorting. By the way, IT” I = TITI* = T holds for any
permutation matrix. Then, the optimal pre-whitening filter P is given
by [Kno*13]

P=R1I. (7.25)

To clarify notation, (-) = is a shorthand for ((-)~!) "= (™) ~! The task
of this pre-whitening filter P is twofold. Firstly, the filter de-correlates
the noise prior to the application of a detector. Secondly;, filtering with P
leads to a sorted triangular system description which allows for optimised
successive detection.

The pre-whitening filter diagonalises the symbol clock noise covariance
matrix at the output of the filter as

®, . =o-PSHspl (7.26a)
= >R I (QRID)” QRIT (R—HH)H (7.26b)
= 2RANMYREQIQRITIT? R (7.26¢)
=01, (7.26d)

143



Chapter 7 Sparsity-Aware Symbol Detection with Tree Search Algorithms

Moreover, the application of (7.25) to the system description in (7.12)
automatically leads to a triangular system of equations, as it is

r, = PS"Sx +n, (7.27a)
= R Y11 (QRIT)” QRIIx + n,, (7.27b)
= R 7TImm?RrR” Q" QRIIx + n, (7.27¢)
= RIIX +n,. (7.27d)

As just proven, n,, is a vector containing uncorrelated white Gaussian
noise samples with variance o2, and R is the sorted upper-triangular
system matrix ensuring optimised successive detection of the permuted
source vector IIx.

Additionally, the matrix inversion in (7.25) is computationally cheap,
because an upper-triangular matrix can be easily inverted by back sub-
stitution. Another advantage is that the SQRD only has to be updated
when the underlying channel matrix S changes (time variance), which is
quite suitable for a hardware realization. QRD and SQRD share the same
algorithmic complexity of O(N?), although the constant is a bit larger
for the latter since it requires heuristic sorting [Wiib06]. Therefore, the
additionally necessary computational effort for SQRD is small and the
gain in performance comes almost for free.

7.2.3.2 Detection Performance

The described system model was simulated for two scenarios. The first
setup is an overdetermined system with N = 20 transmitting nodes, or
users, and with a CDMA spreading sequence length of N, = 32 (random
Bernoulli). The second setup is a fully-loaded CDMA system with N =
N, = 16. The wireless channels are modelled by 4-tap Rayleigh fading
impulse responses. The GSER is evaluated over the zero-augmented
BPSK symbol alphabet AEPK, and the per-node activity probability is
homogeneously p, = 0.2.

Fig. 7.4 plots the GSER over the channel quality expressed by E;, /Ny.
Optimal performance is achieved by a S-MAP SD with pre-whitening
filter (SD*). A performance with nearly constant degradation is achieved
by the SA-SIC without sorting but with pre-whitening, denoted as SA-
SIC™. SA-SIC with pre-whitening and sorting, SA-SIC*"*, converges with
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Figure 7.4: SA-SIC detection in an overdetermined setup with
floating-point accuracy. Pre-whitening and sorting improves detec-
tion [Kno*13].

the performance of S-MAP detection at high SNR. Note, the application
of sorting as pre-processing makes no difference for the GSER result of
SD, since it will always find the globally optimal S-MAP solution.

Fig. 7.5 shows the measured input statistics of the pre-whitened r,, ,,
v = 1,..., N. Unsurprisingly, the distribution resembles a Gauss curve,
which is in fact a superposition of several normal distributions, according
to the PDF of the received samples 7, ,,

PRy, (Tww) = Z Pr(z) N(p =x,0,), (7.28)

VrcAg

when we assume perfect CSL. Fig. 7.5a highlights an interval between
dash-dotted lines, which signifies the number range of the fractional
Q format. The lesser the channel quality, the more probable higher mag-
nitudes are, which leads to overflows. To fit r,, , with high probability
into a Qn fixed-point representation, the data has to be scaled at least
with f = 1/2 or better f = 1/4, which is algorithmically nothing else
than an efficient bit shift to the right by one respectively two bit locations.
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Figure 7.5: Measured input statistics of the elements of the pre-whitened
vector r,, in linear scale (a) and in logarithmic scale with respect to the
binary fixed-point representation (b), [Kno*13].

Fig. 7.5b shows a histogram of the same distribution but scaled by the
logarithmus dualis. Each bin of the histogram corresponds to one bit
position of a binary number. On the left are the MSBs and on the right the
LSBs. Values to the left of the dash-dotted line are outside the number
range of any fractional Q format. For higher SNRs, the dynamic range
becomes larger, which, in turn, makes greater bit widths necessary. After
a sufficient binary scaling, i.e. bit shifts to the right by at least one or two
bit positions, the dynamic range of the input data fits w.h.p. into 16 bits
wordlength, which enables almost lossless fixed-point arithmetic.

This is verified in Fig. 7.6 which plots the GSER over SNR for SIC after
fixed-point conversion. For high SNR values the FXP SA-SIC runs into
an error floor. Notably, the GSER does not really improve for larger bit
widths than Q9 at the same scaling factor 1/2. SA-SIC** Q11 denotes an
additional simulation with a scaling factor of 1/4 and clearly improved
GSER, which emphasises the necessity of a sufficiently dimensioned
scaling as long as the dynamic range of the data allows for it. The plot
also shows that 8 bit quantisation is a feasible low-complexity choice,
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Figure 7.6: Performance of fixed-point SA-SIC detection for a fully-loaded
CDMA system of 16 users [Kno*13].

with GSER better than 1073 for high SNRs, which could be improved
further with channel coding techniques.

7.3 Discussion

Tree search algorithms solve the joint estimation problem of user activities
and data with a finite-alphabet constraint. Hence, the ideas of CS could
profitably be applied to a wireless communication system with a sparse
communication behaviour of the sensor nodes.

SD represents the optimal detection benchmark, because it is guaran-
teed to find the globally optimal solution vector to the S-MAP criterion.
With regard to its run time complexity, however, SD is by no means
the first choice, although it has been shown that the sparsity constraint
reduces it considerably.

Alternatively, {o-regularised K-Best and SIC detections have been dis-
cussed. These are able to achieve acceptable GSERs, if some preprocessing
steps are performed. Common to both algorithms was the application
of the SQRD, which heuristically permutes the detection order of the
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users. This reduces decision errors and their propagation which oth-
erwise severely deteriorates detection. A pre-whitening filter further
improves GSER performance, if a correlation receiver is part of the setup.
Most notably, K-Best is also able to recover a multi-user transmit vector
from compressive measurements.

After all, a joint multi-user activity and data estimation is possible. The
algorithms throughout this chapter, however, require the knowledge of
certain parameters, foremost CSI. But how can CSI be obtained at the
receiver if users transmit intermittently without prior activity signalling?
The following chapter will provide an answer.
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Chapter 8

Joint Multi-User Activity and
Channel Estimation

The previous chapter adapted finite-alphabet tree search algorithms to
a novel joint activity and data detection at the multi-user receiver, or
data aggregation node, on the PHY layer. All the time, perfect CSI at
the receiver has been assumed, but for practical implementations, CSI
has to be estimated to enable channel equalisation and phase-coherent
reception of data symbols.

It is practically impossible to reliably estimate user-specific channels,
activity and data symbols simultaneously [SBD13]. Hence, the parti-
tioning of this problem into a joint multi-user activity and channel es-
timation followed by a classical non-sparse data detection is a viable
solution [Kno*16b].

In this chapter, the ideas and results from [Kno*16b] are presented.
User-specific code sequences will be utilised to form a multi-user pilot sig-
nal to facilitate a pilot-based channel estimation. Additionally to random
Gaussian sequences, ZCSs will be investigated, which promise good per-
formance because of their favourable autocorrelation properties [ZF05].

User activities and channel impulse responses can mathematically
be written as a vector, which is either sparse or block-sparse, depend-
ing on whether there are frequency-flat or frequency-selective fading
channels, respectively. However, detection algorithms may not be ar-
bitrarily complex with respect to a potential implementation. For this
reason, the detection performance of relatively simple OMP [TG07], and
its variant for block-sparse signals, Block Orthogonal Matching Pursuit
(BOMP) [EKB10], will be investigated.
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8.1 System Model

Basically, all explanations given so far about the wirless uplink in a WSN
with sporadically transmitting users stay valid (see Sec. 6.3.1 and follow-
ing). The detector has probabilistic, but not instantaneous, knowledge
about the user activities, i.e. p, is known by the receiver.

Other than before, a data frame is assumed, which consists of a pre-
amble, containing multi-user pilots, and payload, containing data. In the
following, no further assumptions are made about the payload. Yet, it is
assumed that all active users begin transmission synchronously at the
same time instance.

Each user is assigned a specific pilot code sequence of length N,,. The
user-specific pilot sequences become superimposed due to the simultan-
eous channel accesses, similar to a DS-CDMA system. The mathematical
system description in the following is with respect to the pilot preamble
only.

The system model in symbol clock can summarised by
y=C,Ha+n=C,h+n, (8.1)

where y is the received signal vector and n denotes AWGN with zero
mean and variance o2.

The multi-user vector a € {0, 1}V defines the activity pattern of the N
sensor nodes during a frame and its n-th entry, a,,, corresponds to the
activity of node n. A transmitter is modelled as inactive if a,, = 0, or
active if a,, = 1, i.e. the user-specific pilot code sequence is transmitted.
If p, is sufficiently small, a is a sparse vector containing a considerable
number of zero symbols.

Each user transmits its pilot sequence c,, € C™» over a unique wire-
less channel impulse response h,,, a column vector of length L. This
corresponds to a convolution, and for the product

CpH = [Cl * h1 s+ CN ¥ hN] (82)

150



8.1 System Model

holds. With the help of the convolution matrix, ¢,, * h,, = C,h,, Eq. (8.2)
can alternatively be written as

h; 0
0 hy

where C,, is the horizontal, or row-wise, concatenation of the convolution
matrices C,, and H is a block-diagonal matrix of the channels h,,, with
n=1,.,N.C,isN,+ L—1x LNand His LN x N.

In high data rate CDMA systems, the channel impulse responses are
sparse such that multipath propagation delays are distributed over a
couple of echoes, usually appearing in clusters [Kam08]. However, MTC
is assumed to be of low data rate. Hence, it can be justified to model
frequency-selective channels with only a few, non-sparse channel coef-
ficients, all i.i.d. Rayleigh. If the transmission is of very low data rate,
occupying only a narrow bandwidth, the fading becomes frequency-flat,
ie. L=1.

Of special interest is the product

aq h1
h=Ha= : , (8.4)

a Nh N
with h € CV being the stacked vector of all user channel impulse re-
sponses multiplied with the activity of the corresponding users. h is like

a a sparse vector, yet it is further block-sparse with N, = p, N blocks of
non-zero elements of length L.

Generally, a vector x of IV equally sized blocks can be defined as

T
X= |21 g Tay1 - Tod - B(N—1)a - TN (8.5)
———

xT[1] xT[2] xT[N]

whereby x[¢| denotes or selects the ¢/-th block of length d. If only & blocks
contain non-zero elements, this vector is said to be k-block-sparse, or
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mathematically
N
> 1(x[ll2) = lIxllz0 < &, (8.6)
=1

with I(-) being the indicator function [EKB10]. The index notation of
the norm || - ||2,0 denotes ideal block sparsity in an £y-pseudonorm sense,
whereby for a particular block the Euclidean norm is utilised to judge if
all elements belonging to it are zero. The employed indicator function

can be defined as
1 z#0
I(z) = . 8.7
(@) {0 " 67)

In other words, I(||x[¢]||2) returns one if the ¢-th block contains a non-
zero value. A deepened study of block-sparse signal recovery via convex
optimisation and with some generalisations to the block lengths can be
found in [EV12].

8.1.1 Zadoff-Chu Sequences as Pilots

For a good multi-user interference cancellation, the chosen user-specific
code sequences should preferably be quasi-orthogonal, i.e. (c;,c;) ~ 0,
i # j; in other words, should have good cross-correlation properties. Fur-
thermore, their length IV, should be small to save bandwidth for payload
data. Random zero-mean complex Gaussian sequences are employed
as pilot codes because they have been shown to facilitate a better user
separation compared to traditional PN sequences [AMRO09].

Additionally, ZCSs promise a good performance as well, because they
are so-called CAZAC sequences, which means “constant amplitude and
zero autocorrelation” [ZF05; Chu72]. Good autocorrelation properties
means that the autocorrelation function (ACF) of the periodic sequence
is zero except at multiples of the period, where the ACF has a single
maximum which equates to the energy of the sequence.

Mathematically, the periodic ACF of a ZCS z(k) of length N, and of
the same period is given by

Np—1 B
¢.2(K) = Z 2*(k) z((k + k) mod N,) = {03 rmod N, =0 (8.8)

poars 0 wkmodN,#0
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Z(CSs exist for an arbitrary integer length NV, and can be constructed with
the help of the N,-th complex primitive root of unity

Wh, = exp (—j2ma/N,) , (8.9)

where a is any integer relatively prime to N, i.e. ged(a, N,) = 1. Since
|Wn,| = 1, ZCSs are polyphase sequences of constant magnitude, defined
as [Pop92]

k2% /24-qk
N, ,
2(k) = {WN ) p EVEN (8.10)

W D2HeE N odd,

for k = 0,..., N, — 1 and ¢ being any integer. ¢ highlights that certain
linear phase shifts will not affect the correlation, and w.l.0.g. can be set to
zero. Further, trivial variations such as cyclic shifts, addition of a constant
or conjugating the entire code will not affect the ACF as well [Chu72].
Besides the ideal ACF properties, there is also a bound on the cross-
correlation for N, being prime.

The ideal cyclic ACF is especially useful to achieve a good multi-user
separation. This property can be exploited by generating N pilot se-
quences from a single ZCS z,. of length N,, = LN, called root sequence in
the following [Kno*16b]. Each user n = 1, ..., N is then assigned a circu-
larly shifted version of the root sequence, shifted by (n — 1)L elements:

(k) =2z, ((k+ (n—1)L) mod N,). (8.11)

Consequently, all user pilot sequences are strictly orthogonal to each
other, which guarantees perfect user separation. Assembled as columns
of C, itis C'C = ¢2I. Even in case of frequency-selective fading this
is essentially still true due to the shift by at least L elements, which
accommodates for the (non-cyclic) convolution with the channel impulse
responses according to (8.2). However, N, > LN must hold in order to
be able to estimate LN unknown channel coefficients.
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8.2 Solving the Estimation Problem with Block
Orthogonal Matching Pursuit

The task is to estimate the multi-user activity and channel coefficent
vector h, Eq. (8.4), given the measurements y according to (8.1). The
support of h, i.e. the positions of the non-zero entries, represents the
activity pattern of the transmit nodes, and the values of the non-zero
entries correspond to the channel impulse response of the active users.

Hence, the estimation of h equates to a joint activity and channel
estimation. Subsequently, channel equalisation and non-sparse symbol
detection could be performed.

As mentioned previously, there can be frequency-selective fading (L >
1) or frequency-flat fading (L = 1). The recovery problems and applicable
algorithms differ depending on this parameter.

8.2.1 Frequency-Flat Fading Channels

If L = 1, each user channel impulse response h,, simply becomes a
single Rayleigh-distributed complex-valued channel coefficient /,,. Con-
sequently, C, = [c1 -+ cy| contains column-wise every user-specific
pilot sequence and H = diag [h; -+ hy]| is a diagonal matrix of the
user’s channel coefficients.

The S-MAP optimisation problem associated with (8.1) and L = 11is

R . )
h= arghnel(lcr}V ly — Cph|l5 + A, , (8.12)

with .
A:2031n< ppa> , (8.13)

which reflects the a priori statistics of the activity vector a and scales with
the noise power o2. This is a classical CS problem which could be solved
by ¢; minimisation. Given the additional constraint of a low-complexity
implementation in modem hardware, it is evident to opt for alternative
algorithms.

In [Kno*16b], OMP was proposed to solve this, and the algorithm
has already been discussed in detail in Sec. 5.2. The presented digital
architecture created with the RDAM could be applied to this problem.
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Algorithm 8.1: Block Orthogonal Matching Pursuit (BOMP), [EKB10]

. function BOMP(y,S,k, L)
re—y,h«< 0,70
for1,...,k do
4 c+ Sfr
£* + arg maxy HC[Z] H2 > block selection
T+ TuUr
: hjz) + argminy, ||y — Sizjhiz ], > least squares
r<y—Sh
9 return h

OMP solves eq. (8.12) approximately in a greedy fashion while it exploits
the fact that h is maximally k-sparse. Since p, is known, k can be chosen
such that k = [p,N']. When (8.12) is solved by OMP, the result vector is

denoted as hopp.

8.2.2 Frequency-Selective Fading Channels

Frequency-selective fading necessitates the estimation of a block-sparse
vector h of size LN, as stated in (8.4). The MAP optimisation problem
for block-sparse joint activity and channel estimation is

. . - )
h = arg min ly = Cphll; + Ahl|5, - (8.14)

Then, the cost function promotes block-sparsity with |h|[, , according
to (8.6) and block length d = L, i.e. the lengths of the channel impulse
responses. Note, there are two only minor differences to the specialisation
of flat-fading in (8.12).

Hence, a generalised OMP, with an extension for the recovery of
block-sparse signals, should approximately solve it. This algorithm is
called Block Orthogonal Matching Pursuit (BOMP) and was introduced
in [EKB10]. When (8.14) is solved by BOMP, the result vector is denoted
as hgoyp. BOMP expects alls blocks to have the same length.

The pseudocode of BOMP is given in Fig. 8.1. The major difference
to OMP is to be found in line 5, where not a single atom is selected, but
instead the ¢*-th block of atoms of block size L. The selection is based
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Figure 8.1: Channel impulse responses estimated by BOMP compared to
the ground truth and ML estimation.

on the maximal Euclidean norm of the correlation values of each block.
Therefore, Z here denotes the set of selected block indices.

In order to clarify notational issues, the index notation c; returns
a smaller vector c[¢] of length L, which is the ¢-th block in c. This is
analogous to how single elements of a vector are addressed with an
index, ¢; = c(i). When a set is given as index, e.g. hyz] in line 7, all
elements of the blocks in 7 are returned as a vector. Thus, the LS step of
the same line computes L - |Z| values. The result of BOMP is, therefore, a
block-sparse vector with k blocks of non-zero coefficients.

For CS with block sparsity constraint beyond fixed block sizes, the
reader is referred to [Zia*10; EV12]. The variable block sizes nonetheless
must be known beforehand.

8.2.3 Numerical Simulation Results

The system performance of the above explained joint activity and channel
estimation was investigated with numerical Monte-Carlo simulations.
For illustration purposes, a single random channel realisation of a multi-
user channel impulse response vector hcgy according to (8.4) is shown
in Fig. 8.1. The system consists of N = 10 users, whereby N, = 3
users are active (no. 1, 5 and 7). The channel impulse response length
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Table 8.1: Simulation parameters for the joint user activity and channel
estimation.

Parameter Symbol Value

No. of Users N 30

Activity Probability Pa {0.1,0.2,0.3}

No. of Active Users N, paN

Channel Imp. Resp. Length L {1,3}

Pilot Sequence Length Ny {LN,LN/2}

Pilot Sequence Type — Zadoff-Chu, Random Gaussian

is L = 3, thus hcg is of length LN = 30 and N,-block-sparse with
LN, = 9non-zero elements. The system of equations is fully determined
since N, = LN was chosen. BOMP correctly detects all active users
and returns a truly sparse estimation leOMp. In contrast to that, simple
ML estimation distributes the measured noise over all coefficients; an
arbitrary threshold to recover the support would obviously lead to an
erroneous activity detection.

For the following results, a standard set of simulation parameters was
used, given in Table 8.1. Each data point was averaged over at least 20 000
random system model realisations.

Figure 8.2 shows the average detection activity error rate (AER) over the
SNR. AER is defined to be Ny /N, i.e. the average number of false detec-
tions (false-active and false-inactive both accumulated) over the number
of users. In this case, the system is fully determined with N, = LN = 90.
Hence, only measurement noise degrades the detection performance. It
becomes obvious that frequency-selective fading enhances the activity
and channel detection process. This is mainly because of the lesser outage
probability of Rayleigh fading channels with L > 1. ZCSs can benefit
more from this effect, though, especially when many users are active
(better user separation). The plotted curves are for different levels of user
activity (p, = 0.2 not shown for the sake of clarity), where p, = 0.3 cor-
responds to 9 active users, which is quite a lot compared to results given
in other works [SBD13]. In all cases, the specially constructed multi-user
Z(CSs exhibit a better performance than random Gaussian sequences.

In Fig. 8.3, the same setup is investigated with increased bandwidth
efficiency and with shorter pilot sequences of length N, = LN/2, i.e.
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Figure 8.2: Average activity error rate for random Gaussian (dashed) and
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Root Sequence z-

Payload

User Code ¢,

Figure 8.4: Active users transmit user-specific pilots and additionally a
common root sequence for frame synchronisation purposes.

an underdetermined system with factor 1/2. Since ZCSs according to
the construction rule given above do not exist for this case, one can only
resort to random Gaussian sequences. These, however, perform fairly
well and only little loss can be observed for p, = 0.1 compared to the fully
determined case. Detection is again better if diversity due to frequency-
selective channels is available. Nonetheless, the spread of the curves
is wider, which means the underdetermined system is less tolerant to
support many active users. For p, > 0.3, any reliable estimation is not
possible.

8.3 Extension to Multi-User Frame
Synchronisation

The above demonstrated that a joint multi-user activity and channel es-
timation in a WSN based on user-specific pilot code sequences can be
facilitated. Diversity due to frequency-selective fading environments is
helpful for detection. Specifically designed ZCSs, derived from a longer
root sequence, outperform random Gaussian codes in detection perform-
ance. However, only the latter are able to support sequences shorter than
the number of users, but only when there are few active users. No assump-
tions whatsoever were made about the user’s data payload. Therefore,
the obtained results are generally valid and applicable to any possible
frame structure.

Nonetheless, the above setup still assumed a perfect frame synchron-
isation to obtain vectorised samples in y. The sparse nature of the user’s
communication patterns poses a challenge to traditional frame synchron-
isation structures. Therefore, the first task of a receiver is to detect the
beginning of multi-user frames and collect all pilot and payload into
chunks of data for consecutive processing.
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Building upon the constructed orthogonal basis of user pilot sequences
derived from a single root ZCS z,, an extension to frame detection has
been proposed in [Zed*17]. Principally, the root sequence itself is re-
served for frame synchronisation in time. Each user transmits, if active,
the assigned user pilot code for activity and channel estimation and ad-
ditionally the root sequence. This is depicted in Fig. 8.4 schematically.
The superposition of the root sequence z, and user-specific pilot code c,,,
Eq. (8.11), has to be formed to obtain the preamble of the n-th device ¢,
such that

\% (zr +cn) (8.15)
where n = 2, ..., N, i.e. the user index n = 1 is reserved for the root ZCS.
Again, no further assumptions are made about the payload.

The receiver does not have to detect and synchronise each active user
separately, but instead can look for the superimposed multi-user frame.
In other words, the root sequence will be present in the preamble if
at least one user is active. Afterwards, channel equalisation and user
identification can be performed as suggested in [Kno*16b] and Sec. 8.1.

Cp =

8.3.1 Neyman-Pearson Detection

The Neyman-Pearson (NP) lemma can be applied for simple and robust
transmission detection because the root ZCS is known at the receiver
and is transmitted by all active users as part of the preamble [HI14]. In
the following, flat-fading channels are assumed, which is a reasonable
assumption for low data rate MTC. Moreover, a couple of simplifications
are made to reduce the amount of utilised FPGA resources.

The NP detector is a binary hypothesis testing algorithm that compares
two hypotheses 1 and 4,

Ho : (k)
Hy :r(k)

n(k) (8.16a)
hzy (k) + c(k) + n(k), (8.16b)

with n(k) being complex-valued AWGN. The null hypothesis #, indicates
that the received sample r(k) contains only noise, while #; indicates the
presence of noise as well of the superimposed multi-user preamble. At
any time instance, on average p,/V active users synchronously transmit
their specific pilot preamble (8.15) over unique channels.
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The low-rate assumption allows to model each user’s wireless channel
by a single coefficient. On the one hand, and with regard to the commonly
transmitted root sequence, the channel coefficient / in (8.16) is the sum of
all active user channels. This multi-user interference constructively leads
to a channel hardening effect and makes detection robust, because the
outage probability decreases the more users are active. On the other hand,
the superposition of the user-specific pilot sequences can be viewed as an
interfering random noise process sampled as c(k), because instantaneous
user activities are not known.

While H, is a zero-mean random process, #; is not. This statist-
ical difference between the two hypotheses, can be exploited to estab-
lish a threshold which will provide a tunable detection performance.
In[Zed*17], the NP test statistics A was derived to be the cross-correlation
between the root sequence z, (k) and the received samples r(k),

Np—1
A(k) = Ni > zr(k)r(k) (8.17)
Pl k=0

which is interpreted to fulfil H; or o whether A is above or below a
certain threshold ), respectively. However, estimated signal and noise
powers are necessary in order to obtain this analytical threshold. Further,
please note that ideal multi-user interference suppression would require
a cyclic computation with period N,. This cross-correlation is acyclic
though.

Frame synchronisation in time is achieved when the correlation peaks
N, — 1 samples after receiving the first transmitted preamble sample.
Therefore, a buffer is required in order to record the IV, preamble samples
that are necessary for further synchronisation, equalisation and user
identification.

Functional verification of the system model was performed by numer-
ical simulation in Mathworks Matlab for a system with N = 31 users
and N, = 97 over a range of SNR values. The frame detection rates pmg,
for missed detection, and py,, for false-active detection, are plotted in
Fig. 8.5. The threshold A was chosen such that pg, is a constant of low
value while png improves with increasing SNR, which is a property of
NP hypothesis testing. The length of the multi-user preambles was set
to accommodate for frequency-selective fading channels up to L = 3,
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Figure 8.5: Simulated missed frame detection rate and false-active detec-
tion rate versus SNR [Zed*17].

however single-tap channels were simulated. Dummy payload data were
randomly generated and spread by random codes drawn from a uniform
distribution on the unit circle.

There is, nonetheless, a gap between the theoretical rate of missed
detections and the simulated curve. The already mentioned aperiodic
computation of the cross-correlation leads to a performance degradation
which is, obviously, tolerable due to the length of the preamble sequences.
Also, the power of the multi-user interference c(k) is imperfectly known
to the receiver. Anyway, Fig. 8.5 proves that the cross-correlation based
frame detection is capable of successfully detecting superimposed multi-
user preambles of sporadically active users.

8.3.2 RDAM-Based Implementation

A hardware architecture for Neyman—Pearson frame detector was created
following the paradigm of the RDAM, Chap. 3. To begin with, three
algorithmic transformations or implementation techniques were applied
to simplify the design.

Firstly, given that the root ZCS is even in time, the number of multi-
plications of the correlation can be halved by adding up the mirrored
received samples before multiplying them with the reference sequence.
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Table 8.2: FPGA Resource Utilisation and Timing Results for the
Correlation-Based Frame Detection

Name Clock Latency II DSP48E FF LUT
Sequential 9.77ns 54 50 6 6790 6219
Parallel 9.68ns 9 4 50 7461 6666

Available Resources: 220 106400 53200

This is a symmetry property of all odd-length ZCSs as proven in [Zed*17].
Then, Eq. (8.17) becomes

Np—1

A= Ni S 2t () [r(k) + (N — k= 1)]| (8.18)
Pl k=0

This is basically analogous to how a symmetric finite impulse response
(FIR) filter can be computed. Solely the complex-conjugated root se-
quence is needed, thus conjugation can be omitted in hardware if 2 (k)
is pre-computed and stored.

Secondly, for the first and last received samples r(k = 0) and r(k =
N, — 1) complex-valued multiplication can be skipped as they are always
multiplied by one, z,.(0) = 1. This will save four real-valued multiplica-
tion operations.

Thirdly, the Maximum Alpha Minimum Beta (MAMB) algorithm can
be used to compute the absolute value of the correlation in (8.18), [Lyo04].
MAMB approximates the absolute value v = va? + b? of a complex
number a + jb by

v = amax(a,b) + fmin(a,b). (8.19)

With o = 0.9486 and 8 = 0.3929 this will result in a mean squared
approximation error of 0.5773 x 10~ for the evaluation of the absolute
values of complex numbers that have unit magnitude. Doing so trades a
square root operation for a much simpler if-statement.

As a next step, the detection algorithm has been ported to C++ and
synthesised with VHLS for a Zyng-7020 FPGA, as it is the processing core
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Figure 8.6: Synthesised micro-architecture of the Neyman-Pearson frame
detector.

+

of a Nutaq ZeptoSDR, for a target operating clock frequency of 100 MHz.
For reference, Tab. 8.2 states the number of available hardware resource
blocks. Restricting HLS compilation by a pipeline directive with an II
of 4 clock cycles yields a parallel architecture which can process a new
input sample every 4 clock cycles with a latency of 9 clock cycles. Other
necessary directives are related to the partitioning of the data arrays to
enable multiple concurrent data read and write accesses to the memory.
Tab. 8.2 lists all figures of merit for both architectures. Additionally, a
sequential architecture was defined by a more relaxed timing constraint
of II = 50, which drastically reduces the number of utilised hardware
multipliers (DSP48E slices). Both architectures comfortably fit into the
available resources of the FPGA. Input and output samples are 12 bit
wide fixed-point data types to match the design of the incoming in-phase
& quadrature-phase (1Q) samples from the analogue-digital converter
(ADC).

Since the generated architecture will have a a clock period of less than
10ns duration, even the sequential implementation can throughput more
than 2MS/s. Therefore, the algorithm meets the timing constraint of a
potential low-rate MTC application and is capable of real-time operation.
The implementation was successfully tested in hardware using Xilinx
ChipScope with debug data streams.

Fig. 8.6 shows the HLS hardware architecture of the proposed NP
activity detection algorithm. Input samples are stored within a memory
consisting of registers which allow parallel and random read accesses.
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The k-th input sample (with regard to the root ZCS of length N,) is
delayed by IV, — (2n + 1) clock cycles to exploit the central symmetry of
odd-length ZCSs. There is a number of parallel complex-valued additions
followed by complex-valued multiplications, depending on the degree of
inferred parallelism by HLS. In case of the parallel architecture, there are
J =12 such parallel data paths. The complex conjugated coefficients of
the root sequence are read from a ROM. Subsequently, an accumulator
sums up the iteratively computed partial correlation products (i.e. 4 it-
erations for N, = 97). The approximated magnitude of the final scalar
result is determined by the MAMB algorithm and then compared against
a threshold for hypothesis testing. The threshold A can be implemented
as a constant read from a LUT as a function of the coarsely estimated
signal and noise powers.

8.4 Discussion

A joint multi-user activity and channel estimation in a WSN based on
user-specific pilot code sequences can successfully be facilitated.

Diversity due to frequency-selective fading environments is helpful
for detection. Specifically designed ZCSs, derived from a longer root
sequence, outperform random Gaussian codes in detection performance.
However, only the latter are able to support sequences shorter than the
number of users, but only when there are few active users.

As a last innovation, a frame detection for sporadically active users was
presented to obtain vectorised received samples in a multi-user measure-
ment vector y ready for discrete CS processing. Results demonstrate that
a frame detection based on cross-correlations and on a shared root ZCS
is possible. Neither for frame detection nor for the joint user activity and
channel estimation any assumptions were made about the data payload.
Therefore, the obtained results are generally valid and applicable to any
possible frame structure.

After frame detection, the joint user activity and channel estimation
problem can be solved by OMP or a generalisation thereof for block-
sparse multi-user channel vectors, BOMP. These algorithms can supply
the baseband receiver with needed user activity and CSI.
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Chapter 9

Conclusion and Open Research
Issues

Computationally complex algorithms challenge traditional digital VLSI
architecture design techniques on the behavioural register-transfer (RT)
layer, and the productivity design gap requires digital design to be elev-
ated to a more abstract level. The proposed and presented Rapid Data
Type-Agnostic Digital Design Methodology (RDAM) based on HLS is an
answer to this challenge.

9.1 The Rapid Data Type-Agnostic Digital
Design Methodology

Designing with HLS delegates fine-grained control over hardware details
to the HLS compiler. Actually, such control is not always necessary, and
with respect to algorithmic architecture design, configurability and the
exploitation of parallelisms are of far greater importance. The compiler
steps in for explicitly unspecified aspects, like timings, resets and so on.
Hence, designers can focus on the functional implementation.

The RDAM inherits all the advantages of HLS and further benefits
from synergy effects obtained by the consequent exploitation of the ad-
ded DTA. The data type-agnostic design sources bring simplifications
regarding the fixed-point conversion of algorithms and fixed-point arith-
metic with a verified overall functionality and precision by the test-driven
development with the HLS test bench. Having a target numerical preci-
sion leans on ideas of approximate computing and augments the design
space with an additional dimension for trade-offs. It is similar with the
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configurable data type parametrisations. Informed choices of data types,
bit widths, etc. can be made in a Pareto-optimal sense by scripts which
link Mathworks Matlab and Xilinx Vivado HLS for semi-automated para-
metric sweeps. Often, a single baseline fixed-point format can be applied
throughout the whole design.

The survey on various floating-point and fixed-point encodings of
binary numbers in Sec. 3.2 revealed that these two classes share many
characteristics, foremost a limited precision but also limited ranges such
that overflows and underflows can occur. As long as fixed-point values
are properly scaled and confined to the representable interval, they per-
form very much like floating-point data types indeed. The utilisation
of the Q format notation further simplifies fixed-point design, and spe-
cialised data types based on the SystemC class sc_fixed encapsulate
the necessary fixed-point intricacies, adhering to the rules for Q format
changes due to arithmetic operations. Hence, a pseudo floating-point
behaviour is attained and an exchange of floating-point data types in
favour of the former comes with no degradation of numerical accuracy
(given the same bit widths).

Mathematically non-trivial functions beyond the four basic arithmetic
operations can be approximated by polynomials or by computations in
the logarithmic domain. A design example for an (inverse) square root
has been presented. In connection with the RDAM, such reusable code
libraries can accelerate, or enable in the first place, the fast deployment
of fixed-point implementations.

Another area where the RDAM benefits from the DTA are complex-
valued designs with an implicit conversion to real-valued operations.
The creation of the first complex-valued digital architecture for OMP
required no code modifications but solely a different complex-valued
parametrisation of the custom data type definitions.

For testing and functional verification besides the bit-accurate C simu-
lations and RTL co-simulations offered by Vivado HLS, a HIL simulation
framework has been created which provides a communication link for
arbitrary data between Matlab and the I/O interface of an AUT implemen-
ted on the programmable logic part of a Xilinx Zynq SoC. For instance,
the generated IP core of the OMP design was successfully verified in
this way. A comparison of the estimated resource utilisation of Vivado
HLS (VHLS) and the eventually utilised resources lead to the signific-
ant observation that only the DSP slice count is invariant between HLS
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synthesis and post-RTL synthesis. Therefore, the number of used DSP
slices is the best-suited figure of merit to grasp the area complexity of
an FPGA design and corresponds to what the GE is for VLSI designs
targeting ASICs.

9.2 Sparse-Coded Multi-User Communications

The efficacy of the RDAM has been demonstrated in particular by its
application to OMP in Sec. 5.2 [Kno*16a], yet additional “products” of
the RDAM are the first digital architecture of ACGP [Kno*16c], the highly
configurable SD [Kno*17] and the data frame detector based on Neyman-—
Pearson hypothesis testing [Zed*17], mentioned in Part II.

These algorithms altogether play a role for the detection of sparse-
coded wireless multi-user communications, relying on ideas of CS. Given
the finite-alphabet constraint of digital communication systems, a new
class of algorithms, namely tree search algorithms, could successfully be
adapted to solve the CS recovery problem. The performance of a joint
multi-user activity and symbol detection was measured in terms of the
GSER and run time, i.e. the number of processed nodes within the search
tree.

A first examination of sparsity-aware SD showed, that the constrained
search is able to find the optimal discrete multi-user solution vector with a
tremendously reduced run time. This stimulated the study of complexity-
reduced alternatives, namely sparsity-aware K-Best and SIC. The unique
approach put forward to combine these two algorithms with an SQRD
for preprocessing within this CS context facilitates successful detection
with only minor GSER performance degradation compared to optimal
SD. Furthermore, the sorting simultaneously leads to a pre-whitening
filter for improved SIC detection in symbol clock after a correlation-based
reception of multi-user CDMA signals. With regard to K-Best, the SQRD
also enables detection from compressive measurements for reasonable
values of the parameter K if the system of equations is regularised by
the sparsity constraint accordingly.

In order to solve the CSI estimation problem in a setup with sporadic
and instantaneously unknown user activities, a novel multi-user ortho-
gonal code system based on ZCSs and derived from a root sequence is
proposed. The estimation problem can be recast as the CS recovery of a
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block-sparse vector containing the impulse responses of all users. BOMP
and, given flat-fading channels, OMP could fruitfully be applied to a
combined multi-user activity and channel estimation.

Last but not least, the time-synchronously superimposed data frames
of the sporadically active users have to be detected by the receiver within
the incoming IQ data stream from the antenna. To this end, a Neyman-—
Pearson hypothesis test was examined and implemented with the RDAM.

9.3 Open Issues for Future Research

Part II identified necessary algorithms for the reception of sparse-coded
multi-user wireless transmissions. However, each function, i.e. frame
detection, CSI and activity estimation and symbol detection, was de-
signed and examined individually. A further proof of concept would
ultimately be possible now by incorporating all these pieces into a tech-
nology demonstrator for sparse-coded multi-user reception.

Although the number of users assumed in the WSN is quite substantial,
given the length of the user-specific code sequences, it is still relatively
small compared to the postulated MTC scenarios for 5G communications.
Further study should examine how the proposed solutions scale for larger
networks. Alternatively, the concept of Massive MIMO communications
could be included in the system model to improve detection performance
with a spatial dimension. Until now, a multi-user synchronisation in
time has been assumed and non-idealities of RF front-ends, like carrier
frequency offsets, have been neglected. These must be further taken into
account. The question is open if truly uncoordinated access of users with
a priori unknown activities is practically feasible.

A potential technology demonstrator would require the creation of
a custom baseband signal processing chain. The efficacy of the RDAM
in relation to the digital design of algorithms operating as a packaged
IP core has been demonstrated. Yet, several of these blocks need to be
chained up and integrated into a complete system design. Future research
should investigate if the RDAM can be extended to the creation of signal
processing chains.

The augmented design space exploration capabilities, due to the DTA
utilised by the RDAM, certainly help the designer to make sound design
decisions. Nonetheless, however, this process is only automated partly.
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Additional research effort could lead to an intelligent and entirely auto-
mated process in order to exploit algorithmic parallelisms (pipelining
and loop unrolling) or to size bit widths sufficiently, given appropriate
constraints, e.g. maximal resource utilisation figures (number of HW
multipliers, adders, etc.) and a target numerical accuracy, respectively.

The HLS synthesis process is dependent on the knowledge of known
constant parameters at compile time. This allows for vast configuration
options, e.g. demonstrated by the RDAM-based SD in Sec. 7.2.1.2, but
not for a re-configurable system at run time. Algorithmic parameters
concerning sizes, e.g. the (M, N, k) tuple of OMP, are fixed once the
compilation finishes. Even though, a dynamic change of such parameters
is desirable to obtain more versatile digital architectures. This open issue
aims directly at a core limitation of VHLS C synthesis not (yet) supporting
dynamic memory allocations and asks for a solution bypassing it.

Further, the DTA of the RDAM builds upon the notion that different
number encoding altogether model real numbers. This works very well
with floating-point formats and fixed-point numbers with the help of
the Q format. Sec. 3.2.1.2 brushed the idea of unums; the examination
of these configurable floating-point numbers for their application by the
RDAM would certainly be valuable. The same applies to the ideas of
stochastic computing, where numbers are represented by weighted bit
streams [AH13].
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Appendix A

Fixed-Point Arithmetic with the
Q Format

Basically, every fixed-point number is an integer value. Only its interpret-
ation is weighted or scaled by a binary power. The so-called Q format,
introduced in Sec. 3.2.2.2, conveniently describes this circumstance and
moreover helps to keep track of format changes due to arithmetic opera-
tions. This facilitates pseudo floating-point computations.

A.1 Format Changes Due to Arithmetic
Operations

Tab. 3.3 on page 50 lists how arithmetic operation with fixed-point num-
bers affect the Q format of the resulting bit string. These laws pertaining
Q format computations will be proven in the following, but before that
some preliminary definitions shall be introduced.

The format Q(m,n) does not only partition the bit string of length
w = m+n+ 1 into m integer bits and n fractional bits plus a sign bit, but
also represents the set of real-valued rational numbers which can exactly
be represented by this encoding.

Let a, b (inputs) and r (result) be binary fixed-point numbers where

a € Q(ma,ng), b e Q(mp,np), and re Q(my,n.), (A1)

the parameters m,,, n, for all 4, v € {a, b, r} being positive integers. The
number range, here exemplarily for «, is bounded by

a < [amim amax] = [_Qma72ma - Ana] (Az)
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a+b ‘ bmin bmax a—"b ‘ bmin bmax
amin 727”#»'1 _A amjn 0 _2m+1 + A
Gmax —A 2mtl_2A Amax | 27T — A 0

(a) Addition (b) Subtraction

Figure A.1: Resultant maximal and minimal values of addition and sub-
traction (m = max(m,, mp) and A = 2~ max(na,m)),

with A,,, = 27"« being the quantisation step. Then, an arithmetic opera-
tion r = a o b of two variables (binary operator) can be described by the
relation

aob:Q(mg,ng) x Q(my,ny) — Q(my,ny). (A3)

The resulting Q format of any arithmetic operation can be evaluated
by an analysis of the corner cases.

A.1.1 Addition and Subtraction

For additions » = a + b and subtractions = a — b the position of the
radix point of the operands a, b needs to be aligned, which is expressed
by n, and ny,. In order to avoid underflows, n, = max(n,, n,) must hold.

Assume w.l.o.g. that m, > m;. The maximal absolute value of a is
MAXqeQ(ma,n,) 16| = | — 27| = 2™=. Hence, the largest possible absolute
value for the sum r will be 2™ 4 2Me = 2. 2Me = 2meF1 which implies
equality m, = my. The same holds analogously for the difference r =
a+ (—b); the sign inversion of b does not change this bound. The resulting
number range can thus be bounded by r € [—27=T1 2maF1) Note, that
this is a right-open interval, because for additions the maximal positive
result amax + Gmax = (27 — A) + (2™ — A) = 2maF1 — 2A falls short
of the upper bound by two times the quantisation step A = 27". For
subtractions, it is similar as it can be seen from Fig. A.1, which gives all
eight corner cases. Thus, r € [Fmin, max] With

Tmin = Gmin + bmin = —2matl , and (A4)

Tmax = @max — Omin = 2metl Ap, (A.5)
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holds for both operations combined. In conclusion, the resulting Q format
of an addition or subtraction is

atb: Q(ma: na) XQ(mln nb) - Q(max(mm mb)+1a max(nm nb)) . (A6)

The additional accumulation bit is also required if one of the operands
is very small, e.g. b = A: the computations amax + A Or amin — A will
lead to overflows if the integer width m,, is not extended by one bit.

A.1.2 Repeated Accumulation

Of special interest is the k-fold accumulation of fixed-point numbers of
same format,

k
r= Zag , YVar € Q(mg,ng) . (A.7)
=1

The derivation of the resulting Q format follows the proof above ana-
logously, with the exception that the maximal and minimal values are
bounded by ££2™«. Raising the parameter k into the exponent leads to
oma+d(F)1 Hence,

a) ... tap: Q(ma,ng) X ... X Q(mg,ng) = Q(mg + [1d(k)],nq) . (A8)

If the number of accumulations is known beforehand, this rule allows to
efficiently reserve sparse bits because m, + [1d(k)] < m, + k. Note, the
precision n is unaffected, since the radix points are already aligned.

A.1.3 Multiplication
Let
A€ Q(ma +14,0), Be€Q(my+mny,0), ReQ(m,+n,0) (A9)

as corresponding integer values to a,b,r and A, B,R € Z, since the
fractional part vanishes. Yet, these integers are range-limited Q(t =
my, +n,,0) = {=2%...,—-1,0,1,...,2" — 1} C Z because of their finite
word lengths. It is

a=A 2" b= B2 c=R-27". (A.10)

175



Appendix A Fixed-Point Arithmetic with the Q Format

The multiplication of two fixed-point multiplicands can then be ex-
pressed with integers as

r=a-b=A2""" .32 = AB2~(Natm) — RO~ (A.11)

Obviously, n, = n, + n, fractional bits are needed for full-precision mul-
tiplications. Practically, however, this growth becomes problematic for
chained multiplications. Word length restrictions need to be applied,
therefore, and underflows are unavoidable, but a certain target preci-
sion can still be ensured. The resulting maximal absolute value can be
bounded by |R| < max |AB| = max |A|-max |B| = 2™e*"a.2m 1 From
Eq. (3.13) (on page 49) follows directly that R € Q(mq + ng +mp + nsp, 0).
Taking the binary scaling with 2~ (") into account, it follows that

a-b:Q(mg,ng) X Q(my,np) = Q(mg + mp,ng +nyp) . (A.12)

The special case of all-fractional fixed-point numbers Q(0,n) = Qn is
very convenient in handling for the reason that the integer part never
changing its size (which is zero). In other words, multiplications of Qn
numbers will absolutely never cause overflows for multiplicands strictly
less than one in magnitude.

A.1.4 Reciprocal

The reciprocal value of a, a # 0 and

a €{—2Me . —2 M QM 9mMa _ 9 M} (A.13)
is given by

1 1

— {27, ., 2" 2" —————}. Al4

a e{ ) ) ) ) i 2ma _ 2_na } ( )

Whereas |a| € [27 ™=, 2™«] holds, the absolute values of the reciprocal lie
within the interval |1/a| € [27™«,2"=]. The needed quantisation step is
27™a and the range is limited by |1/a| < 2"+. According to Eq. (3.13) it
follows

/a: Q(ma,na) = Q(na,ma) - (A.15)
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The sizes of the fractional and integer parts are exchanged. Since the
reciprocal function f(a) = 1/ais its own inverse (involution), f(f(a)) = a,
a re-application will change fractional and integer parts again to the
original state.

A.1.5 Division

The division r = a/b can be re-written as a multiplication using the
just derived relation (A.15) for the reciprocal, therefore also known as
multiplicative inverse. Then, r = a - § with 1/b € Q(n;, m,) results in

a/b: Q(ma,ng) X Q(mp,np) = Q(meg + np, ng + Myp) (A.16)

by application of (A.12).

A.1.6 Square Root

The resulting Q format of the square root r = /a with the radicand a > 0
can be derived using the bound r < |/amax = V2™Ma — 277 < \/2Ma =
2ma/2_ The square root maps real values to real values, i.e. irrational
numbers, R — R{. Even if the domain is restricted to code points
Q(mq,nq) € Q C Ry, function values will still be within the co-domain
R{ in general. Underflows are thus unavoidable to encode the result
with a quantised Q format, albeit the desired level of precision can be
chosen arbitrarily. With Eq. (3.13),

\/5 : Q(mmna) - Q(I_ma/2~|’ ﬂd(l/p)-‘) . (A.17)

is obtained with p denoting the target precision of the operation. The
choice of n. > n, for the output comes up naturally to be as precise as
the input value. Note, the sign bit is included by the Q format notation
and could be economised further due to the restriction to positive real
values.
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