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ABSTRACT 

After the brief review on,adaptive array processing, three 

fairly separate topices on the power inversion adaptive array are 

treated,in this thesis. The first topic is the behaviour of a na

rrowband array using the stochastic gradient descent algorithm, 

with the environment assumed to rotate at constant velocity in the 

sine domain. Conditions for steady state weight deviations and 

output power deterioration from optimal values due to the nonstat

ionary environment are derived and are then used to determine the 

maximum scan rate of a radar sidelobe canceller. The second topic 

is the jamming rejection capability of a broadband array using ta

pped delay line processing. The results obtained are used for de

signing the tap spacing and number of taps of the delay lines as 

well as assessing, in terms of the number of variable weights, the 

relative advantage of the alternative broadband processing method 

using several narrowband array processors. The frequency distort

ions at various directions introduced by rejecting the jarnrners are 

also studied qualitatively. The third topic is the convergence 

behaviour of the broadband array when the stochastic gradient des

cent algorithm is employed. Comparison with the alternative broa-. 

dband processing method is again given. A simple transformation 

preprocessor, independent of the external environment and capable 

of improving the convergence behaviour of using tapped delay line 

processing, is also derived. 
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CHAPTER 1 REVIEW OF ADAPTIVE ARRAY PROCESSING 

Before the development of chapter 2, this chapter will fir-

st give a brief review on adaptive array processing in general so 
--~--·- -·-----.., J ---------

'\:"'-'" 
for the three to_:p_i_c~ treated on the subject as to form a framework 

in this thesis. In the review, no attempt has been made to incl-

ude all the possible references. This is due to the large number 

of related publications and furthermore, many detailed aspects in 

adaptive array processing, especially in connection with practical 

implementation, have not been studied or are still being actively 
-~----------------- _-,~,·-- --

::_s_:_arched __ a!_tll_e_time_ of writing. 

The review is organized as foll01-rs. Section 1.1 discusses 

adaptive array processing in the fr~~~~~~k of array processing. 

Section 1.2 traces the origin of adaptive array processing. _Sec-

tion 1.3 then classifies the important developments from three 

fundamental concerns in adaptive array processing. Section 1.4 

discusses the "controls" commonly employed for achieving the adap-

tive processing. Finally, section 1.5 describes some experimental 

adaptive arrays and recent studies regarding more detailed aspects. 

1.1 Within the Framework of Array Processing 

In the context of signal processing, a receiving array is a 

number of transducing elements spatially distributed in a region, 

termed the aperture. The array output is formed by summing the 

weighted element outputs. Two common reasons for using a number 

of array elements are: (a) the aperture is too large to be fully 

filled so that sampling in the spatial domain is necessary and (b) 

the directional, frequency or other characteristics of the entire 

system have to be varied from time to time and this can easily be 

achieved by varying the element weights. 
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In conventional array synthesis[ 1 •21 , the weights are desi

gned a priori, perhaps using optimization procedures, with regard 

to the look direction, beamwidth 1 average sidelobe level, compon

ent accuracies and/or other similar parameters. The method obvi

ously leads to pre-determined array responses that may not match 

the actual operating environment which is seldom known precisely 

a priori and is often time-varying. However, the performance of 

the conventional array is usually adquate when the interferences 

are roughly isotropically distributed. In the other extreme, 

array performance is most probably inadquate in situations where 

there ~re strong deliberate or accidental jammers ·whose leakage 

powers, even through the sidelobes, would increase the array out

put noise po~er to unacceptable level. Therefore, with the advent 

of high power ECM systems in recent years, increasing interest 

has been directed to the use of complex adaptive array processing. 

techniques to improve performance. 

Best array performance is obtained by employing the weights 

which maximize the performance criterion in question, subject to 

the feasible measurements and a priori knowledge regarding the 

environment. This is often referred to as "optimum array process

ing" in the literature. Obviously, if the environment is time

varying, the optimal weights are also time-varying so that in a 

practical realization, the weights have to be updated by an algor

ithm using the most recent measurements and a priori knowledge 

concerning the environment. This is "adaptive array processing". 

Due to the nonzero settling time of the adaptive algorithm as well 

as the replacement of old by new measurements in a stochastic en

vironment, an adaptive array is never able to achieve optimum we

ighting in a nonstationary and most probably, even stationary en-
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vironment. However, the array is able to track the changing 

environment and most likely maintains near-optimum performance. 

Other side benefits, such as compensation for component inaccur-

acies and transducer distortion effects, can also be obtained. 

Introductory material for adaptive array processing can be found 

in [3-81. 

1.2 Origin 

Historically, the concept of adaptive array processing was 

first conceived in the retordirective antenna arrays invented by 

[9] [10 11] 
Van Atta and developed by_others ' in the early 1950's and 

1960's. Adaptivity in these arrays refers to the use of ,;.daptive 

phase-cohering circuits so that a self-phased beam can be focused 

at a signal at unknown direction or position, provided that the 

element input noises are uncorrelated with one another. If this 

condition is satisfied, performance enhancement is obtained. In 

cases of severe jamming where the element input noises are highly 

correlated, however, there is no inherent adaptive protection. 

The use of adaptive processing for rejecting interferences 

to improve performance then originated in the middle 1960's in 

many diverse fields. Some of the early initiative was taken in 

the radar sidelobe canceller of Howells[ 121 , the adaptive filters 

and antenna arrays of Widrow[i3-15l 1 the adaptive equalizer of 

Lucky[ 161 
1 the works by Byn[ 171 , Mermoz[ 181 and Shor[191 on sonar 

d th k b C [ 20) d L [ 21] . . arrays an e wor s y apon an acoss on se1sm1c arra-

ys. Since these early systems were proposed, the development of 

adaptive array processing, especially in the area of communicat-

ion antenna arrays, has been rapid and numerous papers have been 

appearing on the subject. 

- 3 -



1.3 Classifications of Important Developments 

To outline the important developments briefly and systemat-

ically, the various adaptive arrays of general interest in the 

literature are now classified into categories according to: (a) 

the way the a priori knowledge about the signal is utilized, (b) 

the adaptive algorithm and ~ts implementation and (c) the perform-

ance criterion. From the discussion of section 1.1, these are 

the most fundamental concerns in adaptive array processing. 

1. 3.1 Classification (a) the way the signal a priori knowledge 

is utilized 

Adaptive arrays can be divided roughly into three categories 

in this section. The a priori knowledge about the signal is used 

to generate a reference input, highly correlated with the signal 

but almost uncorrelated with the interferences, in the early adap-

tive antenna arrays proposed 
. . [ 11] 

by W~drow • Thus, by adjusting 

the weights so that the array output approaches the reference in-

put in a mean square sense, the interferences are rejected while 

the signal is preserved. Obviously, these arrays are of interest 

if the reference input can easily be derived as, for example, in 

coded communication systems. 

In contrast, the adaptive arrays derived by Griffiths 1221 

and Frost 123l from that of Widrow as well as the early seismic 

t d . d b L 1211 . . • k 1 d b th arrays s u ~e y acoss requ~re a pr~or1 now e ge a out e 

signal direction and possibly, the shape of the signal power den-

sity spectrum for formulating constraints on the weights to pres-

erve the signal while minimizing array output power to reject the 

interferences. In [23], for instance, the weights are subject to 

a set of hard linear equality constraints so that the frequency 

- 4 -
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response at the look direction is pre-determined and do not vary 

with the updating of the weights. The term "hard constraint" is 

coined relative to the term "soft constraint" which means a con-

straint that can be violated with the amount of violation propo-

rtional to the "forces" set up in the algorithm forcing the weigh-

ts to satisfy the constraint. One early difficulty in employing 

simple schemes like that just described is the cancellation of 

the signal even if there are slight mismatches between the actual 

signal characteristics, for example, direction[ 241 , and that ass-

umed to be known and used by the array. The problem is overcome 

by using additional constrairits[ 25-27 1 to decrease the sensitivity 

of the array towards such mismatches. This type of arrays is of 

most interest in radar, sonar and seismology where, apart from 

the direction, the signal structure is seldom known in detail a 

priori. 

Lastly, the power inversion array, suggested by Zahm[ 281 

and Compton[ 29l, only requires the signal power to be small for 

its operation. The array functions by the phenomenon that if opt-

imum weighting is used, the output power compone·nt due to a jammer 

decreases roughly linearly with increase in the jammer's power. 

In situations where there are only two jammers, inversion of jam-

mer power ratio or "power inversion" is obtained. Thus, acquisit-

ion of a weak signal in the presence of strong jammers is possible 

even without any other a priori knowledge about the signal. Hav-

ing the simplest structure, the power inversion array is most 

attractive when the signal is weak or can easily be filtered out, 

as in frequency hopping systems. The early radar sidelobe cancel

[121 
ler as well as later developments of the canceller by Appleba-
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um[30l and Brennan[ 311 can be regarded as a special form of power 

inversion array with a carefully designed quiesent response. 

1.3.2 Classification (b) - the adantive algorithm and its implem

entation 

With the adaptive algorithm, the weights will be updated and 

converge towards the optimal values. The convergence behaviour 

of the weights and the other parameters of interest is clearly one 

important characteristic of the algoritho. Note that due to the 

stochastic nature of the environment and the essential replacement 

of old by new datas used in every algorithm to track the environ

ment, the weights will not converge exactly to the optimal values 

but will undergo stochastic processes in the steady state, even in 

stationary environments[ 13•321 • First used by Widrow[131, "misad

justment" is a measure of the increase in output noise power due 

to the stochastic processes of the weights and is another importa

nt characteristic of the algorithm used. Not surprisingly, faster 

or better convergence behaviour can be achieved only at the expen

se of increasing misadjustment and vice versa, unless a superior 

algorithm can be employed. Evidently, in comparing the convergen

ce behaviour from using various algorithms, the misadjustment 

should be kept constant. 

Especially in the early adaptive arrays[ 12 •15,19• 211, the 

stochastic gradient descent algorithm has received the most inter

est so far. Analogue implementation with correlation loops and 

digital implementation have been proposed. The algorithm, howev-

er, has the disadvantage that the convergence behaviour is depend

ent on the external environment and can be very slow in some sit-

uations of severe jamming. Better convergence behaviour can be 

- 6 -



obtained at the cost of changing the basic structure with various 

modifications, including hard-limiting(33l, modifications of fee

dback loops( 32 • 341 and the use of preprocessors 1351 • On the oth-

er hand, simpler, cheaper but slower implementation can be achie

ved by using perturbation techniques(361 in conjuction with sear

ch algorithms 137- 391 • 

All these algorithms are sometimes referred to as closed-

loop algorithms, in contrast to open-loop algorithms which do not 

use the array output and hence do not have any feedback loop. Th-

ese latter more complex algorithms are much faster but require h

igher computation rates and with no feedback loop, have lost most 

of the side benefits of compensating for nonideal component chara-

cteristics. They are thus of most interest in sonar, seismology 

or radar when due to the low data rate, all-digital array process-

ing is possible and component inaccuracy is not a problem. The 

algorithms based on the inversion of the 

. [40] [41] 1x , Woodbury identity and Kalman 

sampled covariance matr

filtering1421 as well as 

that discussed in [431 are some well known open-loop algorithms. 

Of course, both closed- and open-loop algorithms can be 

employed together so· that some of the advantages of both types of 

algorithms are obtained. An example is the algorithm based on the 

[441 Newton-Raphson procedure. 

1.3.3 Classification (c) - the nerforrnance criterion 

Since the performance criterion depends on the signal chara-

cteristics and the purpose of the array, the classification here, 

being widely used in the literature, is closely related to that 

of subsection 1.3.1. 

In the arrays proposed by Widrow 1151 and Griffiths 1221 , the 
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performance criterion is minimum mean square error. This corr-

esponds, in the former arrays, with the minimization of mean 

square error between the reference input and the array output 

to reject interferences and is the reason for the terminology 

11 LMS (Least Mean Square) algorithm" used by Widrow to refer to 

the use of the stochastic gradient descent algorithm in his 

array. 

In association with arrays employing constraints, another 

widely used criterion is constrained minimization of output power. 

This refers to the minimization of output power to reject the 

interferences while the-signal is preserved by the constraints. 

When simple linear look direction constraints are used, the optim

al weights resulting from this criterion are the same as those 

from the criteria of maximum likelihood and maximum likelihood 

ratio. The array is therefore sometimes said to use the latter 

two criteria in such cases. Similar to Widrow, Frost[ 23 1 intro

duced the terminology "CLMS (constrained LMS) algorithm" to refer 

to using the stochastic gradient descent algorithm in his simple 

linear look direction constrained array. 

The last widely used criterion, especially in radar arrays 

[12•3°,311 , is maximum signal to noise power ratio. 

In [8,45,461, all these criteria are discussed, compared and 

shown to define very similar optimal weights, especially when the 

array is narrowband. 

1.4 Controls for achieving the Adaptive Processing 

In almost all adaptive arrays investigated in the litera-

ture, the control of the processing for the element inputs has 

been achieved by using quadrature/complex weighting or variable 
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gain tapped delay lines 11 5 1• When the array is narrowband, full 

control of the array response can be obtained by using, behind 

each element, quadrature weights or with negligible difference, 

a 2-tap delay line with a quarter wavelength spacing at the centre 

frequency. When the array is broadband, however, the tapped delay 

lines should theoretically have infinite numbers of taps if full 

control is required. Alternatively, the array frequency band can 

be divided into an infinite number of "frequency bins", with the 

element inputs within the frequency bins being processed in para-

llel by using an infinite number of similar narrot<band array pro-

cessors. Of course, in practice, the number of taps and narrowba-

nd processors will be finite and should be as small as possible. 

Other methods of controlling the processing in adaptive 

arrays are of course possible. In narrowband arrays, full con-

trol can also be achieved by using amplitude 

behind each element. Amplitude only 147l and 

and phase weighting 

[48] phase only , 

weighting can also be used when the number of elements is large 

so that full control is cumbersome and not essential. Some tech-

niques for reducing the number of weights without seriously impa-

iring performance are discussed in [49,50]. Furthermore, con

rol of the processing via the Nolen beamforming 135 •51l and Davies 

null steering[5ZI networks is also possible and can lead to bet-

ter convergence behaviour. In broadband arrays, control of the 

processing based on the architecture of adaptive lattice filters 

!53] has also attracted interest recently. Finally, note that 

though the discussion in previous sections was addressed princip-

ally to the two common processing structures of the last paragr-

aphs, the fundamental concepts of adaptive array optimality are 

- 9 -



applicable to all methods of controlling the processing. Howev-

er, the detailed aspects, for example, implementations of algori-

thms, may well be very different for different processing struct-

ures. 

1.5 Experimental Arrays and Detailed Aspects 

Because of the intensive research in adaptive array proces-

sing in the past two decades, most of the fundamental theoretical 

concepts in the subject have been formulated. Recent publications 

therefore incline towards more detailed aspects or discussing exp-

erimental arrays. Some.of the important published works in these 

areas will now be briefly discussed. 

Two of the earliest experimental adaptive arrays based on 

reference inputs were described by Reigler 154l and Susan!55l. 

The latter array, though not very successful, was for use at UHF 

television stations and employed a perturbation algorithm. The 

former was a 2-element LMS array intended for RF communication 

purpose and was one of the earliest to demonstrate practically 

the advantages and feasibility of adaptive array processing. A 

similar more realistic 4-element array was subsequently describ

ed by Compton[5GJ who later modified it for use in PN-coded spread 

spectrum communication systems[5?l. The fundamental characteris-

tics of the LMS array were verified in these experiments which 

also led to the recognition of two practical difficulties: multi

plier offset voltage[5Sl and reference loop phase shift!59l. The 

use of artifical noise[GOJ was suggested to overcome the former 

problem. Associated with arrays using reference inputs, some ot-

her detailed aspects studied include the grating nulla due to dif-

- 10 -
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. !611 . !621 ferent element d~rectional patterns , we~ght errors and the 

bandwidth of a 2-element tapped delay line broadband array 1631• 

With regard to arrays using constraints, Griftiths 1641 dis-

cussed an experimental application of the CLMS and his P-vector 

1 • th " HF d F th G. J [ 
651 d • a gor~ ms ~n an ra ar array. ur ermore, ~r<~uoon ~sou-

ssed an experimental sonar array based on the Gram-Schmidt ortho

gonization procedure, whereas Windram 1661 discussed a successful 

perturbation array for use at UHF television stations. The adva-

ntages of adapttve array processing were again illustrated from 

these experiments. With respect to more detailed studies, the 

accuradies required for D/A and A/D convertors, used in some 

closed-loop arrays before analogue weighting and open-loop arrays 

for digitizing element inputs respectively, were investigated by 

Hudson 1671• The performance deterioration resulted from various 

distortion effects and component inaccuracies was studied by Vur-

1 !681 d c !691 a an ox • 

The performance with respect to sig.nal direction error "f 

2-element arrays using constraints, reference input and. the prin

ciple of power inversion was compared by Compton!701. 

In connection with many open-loop algorithms, the precision 

requirements for estimating the covariance matrix and subsequent 

computing of the optimal weights were discussed by Reed! 401 , Nit

zberg1711 and Boroson 1721 • 

The band1ddth of a narrowband Applebaum array was studied 

by Mayhan 1731 with regard to antenna distortion and channel mis-

match effects. 

In the field of RF at large, the choice of various implem-

entations at present depends very much on the available device 

- 11 -



technologies. Some general discussion in this area was given by 

Doctor 174 l and 

Finally, 

Masenten l75l. 

1761 Compton presented an overview of research on 

adaptive antenna arrays for communication purpose in the Ohio St-

ate University. 
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CHAPTER 2 INTRODUCTION 

This thesis ic concerned with.three fairly separate topics 

[28,29] 
on the power inversion array , Each topic is properly in-

traduced, discussed and concluded in each of chapters 3-5. After 

the brief review on adaptive array processing in the last chapter, 

the power inversion array of interest '<ill first be discussed in 

more detail before the three topics are briefly introduced in 

this chapter. 

2.1 The Power Inversion Array 

In a general M-element_power inversion array, the channel 

gain for one of the elements is held constant at unity, whereas 

those for the other elements are adaptively controlled, without 

any constraint, to minimize output power. This results in the ph-

enomenon of power inversion mentioned in subsection 1.3.1. Intu-

itively, the purpose of having one element with constant process-

ing gain is to prevent the trivial condition in which all the 

elements have zero processing gains and the output power is truly 

minimized at zero. Of course, regarding the input from the cons

tant gain element as the reference input, the power inversion 

array can be viewed as a special case of Widrows• arrays[151 which 

use reference inputs. Furthermore, the power inversion array can 

also be considered as one using constraints[251, the constraints 

being on the processing of the constant gain element. 

The main advantage of the power inversion array over the 

other types of adaptive arrays lies in its simplicity. The simpl-

icity is obtained since no inherent mechanism is used in the adap-

tive processing to preserve the signal. The array is therefore 

- 13 -



of most interest in applications where the signal is small or can 

easily be filtered out before the adaptive processing so that the 

array, when attempting to reject the interferences by minimizing 

output power, is not responding to and so will not reject the si

gnal. Uses of the power inversion array can thus be envisaged in, 

for example, spread spectruo systems where the signal's power is 

around or below receiver noise power, radar systems where no tar-

get return is present over most of the time and frequency hopping 

systems where the signal can easily be filtered out. 

In communication applications, the array usually has ident

ical elements with isotropic-directional responses in the plane of 

interest. Furthermore, adjacent elements are usually spaced by the 

order of half a wavelength at the centre frequency. When used in 

radar, however, the power inversion array usually takes the form 

of a sidelobe canceller[30l. The element with constant processing 

gain is now a well-designed high-directivity antenna pointing tow

ards the target returns, while the other elements are usually iso

tropic in the plane of interest with antenna gains roughly equal 

to the sidelobe gain of the high-directivity antenna. Moreover, 

adjacent element spacings are usually very much greater than half 

a wavelength at the centre frequency. 

The power inversion array concerned in this thesis is shown 

in fig.2.1. As indicated, the M-element array is linear and equa

lly spaced by d, with the end element on the left having constant 

unity processing gain. The reason for using the linear equally 

spaced array is simplicity and popularity, though many derivations 

in this thesis can easily be extended to arrays with other geomet

ries. The reason for choosing one of the end elements but not the 
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Adaptive • • 
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Linear 
Processing 

M 
• • 

Linear 
Processing 

Algorithm ----+------------+------------,_ ____ _, 

Output 

Fig.2.1 The power inversion array concerned in this thesis. 

others to have constant processing gain is that if this is not so, 

the array may not be able to utilize its M-1 spatial degrees of f-

reedom to reject M-1 directional jammers in certain situations. 

Consider, for example, a 3-element narrowband array in an environ-

ment consisting of only 2 directional jammers. If the directions 

of the jammers are such that the centre element has to have zero 

processing gain for the two jammers to be nulled together, then 

obviously, if the centre element has constant unity processing ga-

in, the array cannot null the two jammers together. The array 

concerned is intended for communication purpose and thus, for sim-

plicity, all the elements are assumed to be identical with isotro-

pie directional responses in the plane of interest, except in sec-

tion 3.10 where·under the conditions discussed there, some of the 

results derived are applied directly to the sidelobe canceller. 
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Furthermore, without loss of generality, all the simulation resu-

lts in this thesis will be for the element spacing of half a wav-

elength at the centre frequency. 

For simplicity again, the array is assumed to be in an env-

ironment consisting of only N independent directional jammers and 

receiver noise. For proper operation, the number of elements is 

assumed to be greater than the number of jammers. The nth jammer's 

po;rer and direction (initial direction in the rotating environment 

of chapter 3) will be denoted by s and e respectively, the con-
n n 

vention for measuring direction being indicated by e in fig.2.1. 

Receiver noise is assumed to-be independent between elements and 

of power s0 • When the array is broadband, bandpass filtering is 

assumed to be used so that all the power density spectrums are 

zero outside the array frequency band from (1-B/2)!0 to (1+B/2)f0 

where fo is the· centre frequency and B the array relative bandw

idth. For convenience, the array frequency band and relative ban-

dwidth will simply be referred to as the band and band\iidth respe-

ctively. Note that because of the bandpass filtering, receiver 

noise will, in addition, be taken as having a flat power density 

spectrum across the whole band. The signal, assumed to be weak or 

filtered out before the adaptive processing, is neglected in this 

thesis which is not concerned with the behaviour or effects of all 

signal parameters. The discussion in the last and this paragraphs 

gives the usual assumptions made regarding the power inversion 

array and its operating environment and will be used in this thes-

is. Of course, there are also other assumptions associated with 

each topic and these will be discussed in the appropriate chapters. 

Note that for convenience, some of the symbols and terminologies 
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used in this thesis may have different meanings at different pl~ 

aces. In cases where ambiguity arises, however, clarification 

will be given. 

2.2 The Three Topics 

To the knowledge of the author, the three topics concerned 

have not been studied before in the literature and the investiga~ 

tions presented in this thesis are original. Although the thesis 

treats only the array discussed in the last section, many of the 

problems investigated and proposal suggested are also relevant in 

adaptive array processing in general. 

The first topic treated in chapter 3 concerns the behaviour 

and performance of the narrowband power inversion array in a non~ 

stationary environment. For simplicity and mathematical tractab

ility, the array is assumed to employ the widely used stochastic 

gradient descent algorithm and the nonstationarity is modelled by 

the jammers rotating with equal angular velocities in the sine 

domain. The practical significance of the nonstationarity is cl~ 

early that it corresponds roughly to the situation when the array 

is moved or rotated. The main reason for the study is that due 

to mathematical difficulties, the behaviour and performance of ad

aptive arrays have always been investigated assuming the environ

ment is stationary, although the prime use of adaptive arrays is 

clearly to track time-varying environments. The main objective 

of the study is thus to provide insight in the latter situations. 

Chapters 4 and 5 discuss two topics connected with the broa

dband implementation of the power inversion array. The two usual 

methods of achieving broadband adaptive array processing are by 

using several similar narrowband array processors in parallel or 
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by employing tapped delay linesf15l. The use of tapped delay li

nes, since first proposed, has not yet been studied in detail and 

the relative advantages of the two methods still remain unresolved. 

Chapter 4 investigates the ability of the tapped delay line power 

inversion array to reject jammers so that the tap spacing and nu

mber of taps required of the delay lines can be determined. Com

parison with the other broadband processing method can then be 

made in terms of the number of variable weights needed. Chapter 

5 investigates the convergence behaviour of the tapped delay line 

array so that comparison with that using the other broadband pro-· 

cessing method can be made. -The widely used stochastic gradient 

descent algorithm is assumed to be employed. In subsequent ana

lysis, a transformation preprocessor depending only on the array 

parameters is derived and shown to lead to better convergence 

behaviour of the tapped delay line array. 
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CHAPTER 3 THE POWER INVERSION ARRAY IN THE ROTATING ENVIRONMENT 

3.1 Introduction 

Element 

Input 

Complex 
Weight 

Output 

1 

x0(k) 

2 

d 

x1(k) 

~ 
d 

3 . . 

x2(k) 

/ 
/ 

M 
• 

xN_1(k) 

M-1 
y(k)=x0(k)+ 2 w (k)*x (k) 

m=1 m m 

Narrowband power inversion array using complex weights. 

This chapter investigates the behaviour of the narrowband p

ower inversion 128• 291 array in a nonstationary environment. Fig. 

3.1 shows the narrowband array of interest. In addition to the as-

sumptions of section 2.2, the array is assumed to employ complex 

weights, with the widely used stochastic gradient descent algori-

thm for updating. Furthermore, the jammers in the external envir-

onment are assumed to rotate with equal angular velocities in the 

sine domain. These assumptions concerning the array and nonstat-

ionarity are made mainly because of simplicity and mathematical 

tractability, although as ~iscussed below, they are physically 

maeaningful as well. 

Due to mathematical tractability, almost all previous eval-
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uations of adaptive algorithms and arrays have been based on the 

assumption that the operating environment is stationary. The 

theories and results derived using this assumption are relevant 

just after abrupt changes occur in the environment, as when the 

array is first switched on. However, when the movement of the ja-

mmers relative to the array is smooth and continuous, the assumpt-

ion clearly does not apply. The main objective of the investiga-

tion is therefore to provide insight in the latter situation, 

when the stochastic gradient descent algorithm is employed on the 

narrowband power inversion array. 
. -

A related study by Widrow on the nonstationary characteris-

tics of the adaptive LMS filter is given in f77J. The nonstatio-

narity concerned in [771 for the adaptive filter, however, is 

different from that in the adaptive array situation. In [771, the 

nonstationarity is characterized by the optimal weights which are 

assumed to undergo stationary random processes uncorrelated_with 

the stationary random process of the input. In the case of the 

adaptive array, the random input processes are nonstationary and 

determine also the random optimal weight processes. 

The relative movement of the jammers can be due to the actu-

al motions of the jammers and/or the motion of the array itself. 

The former situation can obviously be very complicated, since us-

ually 1 each jammer can move independent of all the others. Howe-

ver, in applications like scanning radars or airborne communicat-

ion systems where the arrays are mobile, it can be speculated th-

at, since the jammers and arrays are normally separated by long 

distances, the motions of the arrays will be more significant th-

an that of the jammers. Obviously, as smooth motion of the array 
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corresponds roughly to a rotation of the environment, the investi

gation is relevant in many practical situations. 

This chapter is organized as follows. In section 3.2, the 

notations, terminologies and basic formulations associated with 

the algorithm and the array are discussed in general terms. The 

behaviour of the array in stationary environments is then studied 

in section 3.3 to introduce the usual methods used in analysing 

adaptive arrays and enable comparisons to be made later. Invest

igation in the rotatin9 environment is given in sections 3.4-3.10. 

Following the mathematical formulation of the environment in sect

ion 3.4, the average weights-and output power in the steady state 

are solved, in sections 3.5 and 3.6 respectively, and discussed in 

general terms. To complete the general discussion, section 3.7 

discusses the transient convergence behaviour of the array to the 

steady state. The more interesting steady state behaviour is then 

studied in more detail in section 3.8 by solving some of the equ

ations explicitly and using simulation results for the single

jammer situation. Similarly, section 3.9 discusses the multi

jammer situation. A direct application of the results to determine 

the maximum scan rate limitation of a radar sidelobe canceller is 

given in section 3.10 as a practical example. Conclusions are 

drawn in section 3.11. 

Finally, the principal derivations and deductions of this 

chapter were published in 178). 

3.2 Preliminary Discussion and Fundamental Formulations 

In this section, the notations, terminologies and fundament

al formulations associated with the stochastic gradient descent 

algorithm on the array of interest are discussed. The discussion 
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will be general and .all the results and formulations are applicab-

le to all stationary and nonstationary environments. 

Firstly, using the notation in fig.3.1, the input vector X(k) 

and weight vector W(k) will be defined in this chapter as 

X(k)T = [x (k)* x (k)* • • X (k)*J 
1 2 M-1 · {3.1a) 

. and 

W(k)T = [w (k)* w (k)* • • w (k)*J 
1 2 M-1 (3.1b) 

where k, T and ~denote the kth sampling instant, complex conjuga-

te transpose and complex conjugate respectively. Note that since 

complex weights are used, complex variables are employed. Also, 

fo; simplicity, discrete rather than continuous time formulation· 
~ 

is used. Clearly, from the definitions in (3.1) and fig.3.1, the 

array output is 

T y{k) = x0 (k) + W(k) X(k). 

From (3.2), the output power for the weight vector W(k) is 

sw(k) = y(k)*y(k) 

= sx(k) + W(k)TR0 (k) + R
0

(k)TW(k) + W(k)TR(k)W{k) 

where 

(3.4a) 

(3.4b) 

R(k) = X(k)X(k)T (3.4c) 

and the overbar denotes ensemble average. Among the second order 

input statistics of (3.4), R(k) will be referred to as the covar-

iance matrix, in accordance with usual terminology. It can be 

shown 131l that the gradients of the output power with respect to 

the weights are given by the gradient vector 

= 
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which is obviously the same as 

(3.6) 

Therefore, to minimize the output power to reject the jammers, the 

output must be uncorrelated with the input vector so that the gra

dient vector is zero. Clearly, this is in accordance with Wiener 

filter theory. The optimal weight vector for minimum output power 

is thus, from (3.5), 

. -
Substituting this into (3.3) gives the minimum or optimal output 

power as 

= s (k) 
X 

= s (k) 
X 

- R0(k)TR(k)-1R0(k) 

T 
+ R0 (k) wopt(k). 

(3.8) 

Evidently, from (3.7), the optimal weight vector depends on 

the second order input statistics of the environment. To mainta-

in good performance in nonstationary environments, the adaptive 

array therefore has to periodically make measurements regarding 

the environment and utilize the information via an algorithm to 

update the weights. In discrete time formulation, the stochastic 

gradient descent algorithm used for this purpose can be written 

as 

W(k+1) = W(k) - ay(k)*X(k) 

where a is a positive constant, termed the feedback factor for the 

algorithm. From (3.6), the weight vector adjustment per sampling 

period can be seen to be a stochastic approximation of the gradi-

ent vector, scaled by minus the feedback factor to be in the dir-
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ection of decreasing output power. Thus, on average at least, the 

algorithm, which is obviously named after these features, is alw

ays attempting, by adjusting the weights; to minimize the output 

power to reject the jammers. 

Using (3.2) and (3.9), all the statistics concerning the 

behaviour of the array can be derived, at least theoretically, 

once the statistical properties of the inputs are specified. For 

ease of analysis, the inputs at different sampling instants are 

commonly and will be assumed to be independent. Since, from (3.9), 

the present weights depend only on inputs at previous sampling 

instants, this assumption clearly leads to the important indepen

dence of the inputs and weights at the same sampling instant. 

The average weight vector is obviously one of the statisti

cs of interest. With the weights and inputs at the same sampling 

instant being independent, its behaviour can be found by taking 

the ensemble average of (3.9) giving 

W(k+1) = WTkJ- ay(k)*X(k) 

= wtk)- a[X(k)X(k)TW(k) + x
0
(k)•x(k)l 

= [I- aR(k)lwtkJ- R0 (k). (3.10) 

Evidently, the average weight vector at any sampling instant can 

be calculated from this recursive equation using the second order 

input statistics and initial weight vector. 

The other statistics of interest are the various components 

of the average output power. By taking the ensemble average of 

y(k)*y(k) and again using the independence of the inputs and we-

ights at the same sampling instant, the average output power is 

s(k) = y(k)*y(k) 
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= x0 (k)•x0 (k) + W(k)Tx
0

(k)*X(k) 

+ x0 (k)X(k)TW(k) + W(k)TX(k)X(k)TW(k) 

= sx(k) + ~R0(k) + R0 (k)TwrkJ + W(k)TR(k)W(k). (3.11) 

Note that this is the actual ensemble average output power and is 

different from the output power of (3.3). The latter is obvious-

ly for a "particular" and hence deterministic weight vector and 

thus, is applicable for a particular sample of the weight vector 

process. Defining AW(k) as 

AW(k) = W(k) - wtkJ (3.12) 

so that 

AW(k) = 0 

and using the mathematical theorem 

(3.14) 

for t1~0 matrices A and B of the same dimensions, (3.11) becomes 

s(k) = s (k) + s t(k) y w . 

where 

(3.16) 

and 

(3.17) 

Clearly, the average output power is separated into two positive 

components. swt(k) is the component due to the noisiness of the 

weights about their average values resulting from the algorithm 

replacing, effectively, old with new inputs. For convenience, 

this will be referred to as weight variance noise. In contrast, 
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being equal to the output power of (3.3) if the particular weight 

vector W(k) is replaced by the average weight vector W(k), s (k) 
y 

is the component resulting from the average weight vector. Olea• 

rly, it will be equal to the average output power if there is no 

weight variance. Thus, for convenience, the term output power 

will henceforth be used to mean s (k). By substituting (3.7) and 
' y 

(3.8) into (3.16), the output power becomes 

( 3o18) 

Obviously, with s t(k) as the minimum output power possible, the op 

second term is the component_of output power due to the difference 

or "lag" of the average from the optimal weight vector. This lag 

results from the finite convergence rate of the algorithm so that 

for instance, perfect tracking of the optimal weights in nonstat-

ionary environments is not achieved, even on average in the steady 

state. From (3.18), the output power is expressed, in addition to 

the covariance matrix, in terms of the optimal output power, optimal 

and average weight vectors. Bince the behaviour of these, as sp-

ecified in (3.7), (3.8) and (3.10) 1 depends only on the second 

order input statistics, the behaviour of the output power is also 

given from only the second order input statistics. In contrast, 

the weight variance noise of (3.17) depends also on the weight 

covariance matrix ~W(k)~W(k)T in addition to the covariance matrix. 

To find the behaviour of the weight covariance matrix and 

hence, that of the weight variance noise, (3.10) is subtracted 

from (3.9) yielding, after substituting (3.7) and (3.12), 

~W(k+1) = ~W(k)- ay(k)*X(k) + aR(k)[W(k) - W t(k)]. op (3.19) 

Post-multiplying both sides with their own complex conjugate tra-
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anspose and taking ensemble average, this is shown in appendix 3. 

12.1 to give rise to 

t.W(k+1)t.W(k+1 )T = t.W(k)t.\Hk)T + a2y(k)*y(k)X(k)X(k)T 

- a2R(k) ['iii'(kj' - W t(k)] [W{k) - W t{k)l TR(k) op op 
-----::: 

- aR(k)L'.W(k)L'.W(k)T - at.W(k)L'.W(k)TR(k). 

(3.20) 

Theoretically, this is a recursive equation from which the weight 

covariance matrix at any sampling instant can be calculated from 

the statistics of the inputs. However, the equation is obviously 

very complex and in particular, fourth order statistics are invo-

lved in the second term~ To-decompose this term, the inputs are 

commonly and will be assumed to be ~ero mean complex Gaussian[79J 

random processes so that all fourth order input statistics can be 

expressed in terms of second order statistics by using the mathe-

matical theorem 

for four ~ero mean complex Gaussian random variables ~1 , z2 , z
3 

and z4• Using this theorem, (3.20) is then shown in appendix 3. 

12.2 to become 

L'.W(k+1)t.W(k+1)T = t.W(k)L'.W(k)T 

+ a 2 [s (k) + s t(k)]R(k) + a~(k)~W(k)~W(k)TR(k) y w 

- aR(k)~W(k)Mv(k)T - a~W(k)L'.W(k)TR(k). 

This slightly simplified recursive equation, in which only second 

order input statistics are involved, can be used in conjuction 

with (3.17) to derive expressions for the weight variance noise. 

Summarizing, the stochastic gradient descent algorithm has 
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been formulated mathematically on the narrowband power inversion 

array in this section. Because of the algorithm and the stochastic 

environment, the average output power consists of: (a) weight var

iance noise which is due to the variances of the weights about 

their average values and (b) output power which results from the 

average weights and is _comp~sed of the optimal output power plus 

a component due to the lagging of the average from the optimal 

weights. By using the common simplifying assumptions, general eq

uations for determining the behaviour of the average weight vec

tor and the various components of the average output power were 

derived. 

3.3 Behaviour in Stationary Environments 

Before studying the rotating environment,· the behaviour of 

the array in stationary environments will first be investigated 

by using the formulations of the last section. Comparison can 

then be made later and the usual analysis in adaptive array pro

cessing can be introduced. 

In stationary environments, all the input statistics are 

time-independent. The second order input statistics of (3.4) can 

thus be written as 

sx(k) = sx' 

R0 (k) = R
0 

and 

R(k) = R. 

(3.23a) 

(3.23b) 

(3.23c) 

Using (3.7) and (3.8), the optimal weight vector and output power 

then become 
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-1 = -R R0 

and 

s t(k) = s = s - R TR-1R op opt x 0 0 

which are also time-independent. 

To study the behaviour of the average weight vector, (3.24) 

is substituted into (3.10) yielding 

W(k+1)-W t=!I-aRJIWTkJ-W tl• op op (3.26) 

With W(O) denoting the initial weight vector, this implies 

(3.27) 

Using the polar decomposition 

R = (3.28) 

where hm' m=1,··,M-1, is the mth largest eigenvalue of R with Hm 

as the corresponding normalized eigenvector, (3.27) can be writt-

en as 

M-1 
WTkJ = W t + l e (k)H op m=1 m m (3.29) 

where em(k) is the component of wtk>-wopt' the average weight vec

tor lag, in the direction of Hm and converges according to 

e (k) = (1 - oh )ke (D). 
m m m 

Evidently, in stationary environments, the average weight vector 

will eventually converge to the optimal weight vector. Specifica-

lly, if the average weight vector lag is expressed in component 

form with H as the mth of the M-1 basis vectors, then the mth m 

component e (k) will converge, independent of the· other components, m 

to zero exponentially with a time constant of -1/lnl1-ah I sampl
m 
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ing period. Obviously, the convergence is subject to 11-ah I bei
m 

ng less than unity or since the sum of all the eigenvalues is equ-

al to the trace of the covariance matrix, 

(3.31) 

Due to weight variance noise, the feedback factor will be shown 

later to be limited to well "below this bound. ah will thus be 
m 

much smaller than unity and the time constant for the convergence 

of e (k) can be approximated by 
m 

-rm _1_ sampling period. 
ahm (3. 32) 

By substituting (3.25), (3.28) and (3.29) into (3.18), the 

behaviour of the output po•~er is easily expressed as 

s (k) "' s t + Y op 

Obviously, the output power converges eventually to the optimal 

output pol<er, with convergence behaviour aJ.so described by that of 

em(k). Specifically, the difference between the output and optimal 

output povrer is given by the sum of M-1 components, the mth compo

nent having po>~er hmlem(O)I 2 initially and converging exponentially 

to zero with a time constant twice that of (3.32). 

After the transient convergence period or in the steady state 

in stationary environments, the average weight vector will be equal 

to the optimal weight vector and with the output power given by the 

optimal output power, the average output power will compose of only 

the optimal output power plus weight variance noise. In these ci-

rcumstances, (3.17) and (3.22) for determining the weight variance 

noise become 
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and 

AW(k+1)AW(k+1)T = AW(k)AW(k)T 

+ o.
2

lsopt + swt(k)]R + o.~liW(k)LIW(k}TR 

- o.RAW(k)LIW(k)T - aliW(k)LIW(k)TR. 

(3.35) 

Evidently, the weight covariance matrix and weight variance noise 

will become time-independent in the steady state as k tends towa-

rds infinite. Therefore with k=ro denoting steady state, (3.34) 

and (3.35) become 

and 

(3.37) 

Clearly, solving for the steady state weight variance noise from 

these two equations is still not easy. However, useful tight 

bounds for the noise can be obtained by taking the trace of (3.37) 

and using (3.36). This gives, after using also .. (3.14)
1 

(2 - atrR)s t(ro) = o.s ttrR + o.tr!R2LI\~(oo)/\W(ro)TJ. w op 

Using (3.36) again and the mathematical theorem 

a . trB f tr(AB) f a trB mJ.n max (3.39) 

for two positive definite hermitian matrices A and B with amin and 

a as the smallest and largest eigenvalues of A respectively, max 

the steady state weight variance noise is then easily seen to be 

bounded in the inequality 

o.trR 6 wt("') atrR 
.,.--,..;:...::~--:--..... t, t .,.---.:;.::.;~___,~ 
2-a(trR+h) s 2-a(trR+h)• M-1 opt 1 

(3.40) 
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Clearly, for finite steady state weight variance noise, at least 

the denominator of the lower bound has to be greater than zero. 

This implies that the condition of (3.31) for the convergence of 

the output power and average weight vector will always be satisfw 

ied. 

The term "misadjustmen:t" was first introduces by Widrow[131 

as a measure of weight variance noise, relative to optimal output 

power, in the steady state in stationary environments. In this 

thesis, misadjustment is defined in more general terms as 

_ steady state weight variance noise 
Mwt - steady state outpu~ power 

so that it is still applicable in the rotating environment to be 

discussed. In stationary environments where the optimal and steady 

state output powers.are equal, the misadjustment so defined agrees 

with that in [13] and is clearly within the bounds of (3.40). In 

almost all applications, the misadjustment desired is small, of the 

order of 10% say. The misadjustment can then be approximated, from 

(3.40), by 

M ~~ 
wt 2 (3.42) 

which implies that the feedback factor is well below the bound of 

(3.31) as mentioned. 

From (3.32) and (3.42) 1 increasing the feedback factor can 

be seen to lead to shorter time constants, hence faster convergen-

ce, at the expense of higher misadjustment and vice versa. By su-

bstituting (3.42) into {3.32) the convergence time constant is 

'I" ~ 

m 
trR 

2M th w m 
sampling period. 

Evidently, since the sum of all the eigenvalues is equal to the 

trace of the covariance matrix, sl01;er transient convergence, at 
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constant misadjustment, is associated with larger spread of the 

eigenvalues. This, in turn, is known to be associated with situ

ations where the jammers are closed together and/or have large 

range of powers. Finally, as the weight variance noise is relat

ively small during the transient convergence period, the converg

ence behaviour of the average output power will be roughly equal 

to that of the output power. In addition to being difficult to 

analyze, the behaviour of the weight variance noise during the 

transient convergence period is therefore not of interest and th

us is commonly and will not be discussed. 

Summarizing, using the-formulations of the last section, 

the behaviour of the array in stationary environments has been 

investigated in this section. In such environments, the output 

power and average weights will converge to the optimal values in 

the steady state as sums of exponentially decaying components with 

time constants inversely proportional to the eigenvalues of, the 

covariance matrix. As given by (3.43), the time constants are 

also inversely proportional to the misadjustment defined by (3.41), 

illustrating the dilemma between fast convergence and high weight 

variance noise. Moreover, slow convergence is associated with 

large spread of eigenvalues and will be the case when the jammers 

are closed together and/or have large range of powers. 

3.4 Formulation of the Rotating Environment 

Having analyzed the behaviour of the array in stationary en

vironments, similar investigation in the nonstationary rotating 

environment will now be started by formulating the environment 

mathematically in this section. 

In an arbitrary nonstationary environment, study of the beh-
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aviour of the array by solving analytically (3.10), (3.22) and the 

other associated equations will not be possible because of mathem-

atical difficulties. However, by assuming that all the jammers in 

the environment rotate with equal angular velocities in the sinS 

domain, the nonstationary second order input statistics have part-

icuiarly simple forms and thus at least some theoretical analysis c-

an be expected to be possible. Mathematically, (3.4) is easily 

seen to have the form 

( 3.44a) 

(3.44b) 

and 

(3.44c) 

where 

(M-1)jM) 
• •' e ' (3.44d) 

• angular velocity in the sinS domain (3.44e) 

and c is the wave velocity. The initial second order statistics 

at k=O, given by sx' R0 and R, will be assumed fo be the same as 

that given by (3.23) in stationary environments so that the results 

obtained in the rotating and stationary environments can be compa-

red. Clearly, in the .second order statistics formulated, the rot-

ation of the jammers is described in terms of only the time-varying 

matrix Fk with 6~ giving the rate of rotation. Note that 6~ can 

also be defined, equivalent to (3.44e), as the change in element 

to element phase of inputs per sampling period due to the rotation 

of the jammers. For convenience, this will be referred to as jam-

mer phase rate. Obviously, the main concern of the study is to 
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investigate the variation of the behaviour of the array as the ja-

mmer phase rate varies. 

3.5 Average Weight Vector in the Steady State 

With the second order input statistics elegantly formulated, 

the steady state behaviour of the array appears intuitively and 

and will be sho\in to be welr defined. Specifically, this section 

will be concerned with the general derivations and discussion of 

the steady state average weight vector, while similar investigation 

of the steady state average output power will be given in the next 

section. For convenience, t~e average weight vector in the stea-

· dy state will be referred to as the steady state weight vector, 

although even in the steady state, the weight vector is still a 

set of random processes. 

Using (3.7), the optimal weight vector in the rotating env-

ironment is 

W t(k) = Fkw t op op 

Note that, with Fk as the first and only time-varying factor, the 

directional pattern obtained using this weight vector rotates in 

synchronization with the jammers. This is because, for an obser-

ver rotating with the same velocities as the jammers so that the 

jammers always appear to arrive from their initial directions, the 

optimal directional pattern observed will be given by pre-multip

lying the optimal weight vector by F-k and thus also appears to 

be stationary. For convenience, the term directional pattern will 

henceforth be used in this chapter to mean that observed by the 

rotating observer and so given by the "de-rotated" weight vector 

-k obtained from pre-multiplying the weight vector concerned by F • 
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Due to the finite convergence rate of the algorithm, the 

optimal weight vector is not expected to be attained even on ave-

rage in the steady state in the rotating environment. However, 

it seems reasonable to assume that, similar to the optimal weight 

vector, the steady state weight vector also gives rise to statio-

nary directional pattern: 

W {k) = Fkw {3.46) s s 

where the subscript s denotes steady state. Substituting (3.46), 

(3.10) in the rotating environment becomes 

which leads to 

(3.48) 

Obviously, this time-independent solution for Ws proves the cons

istency of assumption (3.46). 

With the initial environment represented by N jammersc of 

po1~ers sn' n=1, • • ,N, at directions en plus receiver noise of power 

s0, the initial second order input statistics can be expressed in 

more physical terms as 

N 
T s (0) = s = L sn = s0 + G AG, 

X X n=O c 
(3.49a) 

N 
R0{0) = Ro = L snQn = QAG 

n=1 
(3.49b) 

and 

R(O) = R = s
0

I + (3.49c) 

where 

(3.49d) 
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Q T 
n 

= 

-j<li -2j<li 
= [e ne n •• 

0 

GT = [1 1 •' 1 l 
-N-

and 

-(M-1)j<li 
n e J, (3.49e) 

(3.49f) 

(3.49h) 

Obviously, in (3.49a-o), the terms with suffix n=1,••,N give the 

second order statistics due to the nth of the N jammers, while 

the terms with suffix 0 give those due to receiver noise. Using 

the matrix inversion theorem-

for three compatible matrices A, B and c, (3.45) and (3.46) are 

then shown in appendix 3.12.3 to become 

(3.51) 

and 

(3.52) 

where 

D s0r F - I = + a 
"M 2 "M (M-1)jll<l> eJ - 1 e J - 1 - 1). s 0I + dia( a •• e 

(3.53) = • • ' a a 

Since the jammer phase rate will be small, D can be approximated 

by 

"M 
D ~ s0I + ~dia(1, 2, ··, M-1). 

Clearly, (3.52) for the steady state weight vector can be obtained 

from (3.51) for the optimal weight vector by replacing s0I with D. 

Therefore, from (3.54), the steady state weights can be deduced to 
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start to deviate from their optimal values when the jammer phase 

rate has increased to the critical value of 

so that the largest element deviation in D from s0 is equal to s0• 

3.6 Average Output Power in the Steady State 

In addition to the average weight vector, the other statis-

tics of most concern in the steady state are the various compone-

nts of the average output power. These will now be discussed in 

this section. 

Substituting (3.45) into (3.8), the optimal output power in 

the rotating environment is 

(k) - R TR-1R R TW sopt = sopt = sx 0 0 = sx + 0 opt (3.56) 

which is time-independent. In more physical terms, this is shown 

in appendix 3.12.4, using (3.49) and (3.51) 1 to be 

(3.57) 

where, with IIAII and [A] as the Euclidean norm ATA and the nth el
n 

ement of the vector A respectively, the first term is the optimal 

output power component due to receiver noise, while the nth of the 

N terms under the summation is the component due to the nth jammer. 

Substituting (3.46) into (3.16), the steady state output 

power in the rotating environment is 

which is also time-independent. Again, as discussed in appendix 

3.12.4, this can be expressed, using (3.49) and (3.52), in more 

physical terms as 

- 38 -



where the first term is the steady state output power component 

due to receiver noise, while the nth term under the summation is 

the component due to the nth jammer. For convenience, these corn-

ponents of the steady state output power due to the jammers and 

receiver noise will be referred to as residue powers. Comparing 

(3.57) and (3.59) indicates that the output power, unlike that in 

stationary environments, is not equal to and hence greater than 

the optimal output power even in the steady state. 

Intuitively, in accordance with faster convergence behaviour 

in stationary environments, the array appears to be less vulnera-

ble to the rotation of the jammers if the feedback factor and he-

nee the critical jammer phase rate of (3.55) is increased. Howe-

ver, as in stationary environments, the feedback factor is limited 

by the desired amount of steady state weight variance noise which 

will now be derived using the same analysis as in stationary env-

ironments. In the rotating environment, (3.17) and (3.22) for 

determining the weight variance noise become, after using (3.14), 

(3.60) 

and 

F [F-k-1 L\W(k+1 )L\W (k+1) TFk+11 F-1 " F-kL\\v(k)L\W (k) TFk (3.61) 

+ a 2 [s (k) + s t(k)] R + a2R[F-klllv(k)LIW(k)TFk]R 
y w 

- aR[F-kLIW(k)LIW(k)TFkl - a[F-kL\IV(k)li\V(k)TFk]R. 

Evidently, the matrix F-kL\W(k)L\W(k)TF-k is the weight covariance 

matrix after de-rotating the weight vector. Clearly, as k tends 

towards infinit~ in the steady state so that the output power 
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attains its constant steady state value, the de-rotated weight eo-

variance matrix and weight variance noise, as given by (3.60) and 

the recursive equation of (3.61), will become time-independent, 

though this implies that the actual weight covariance matrix will 

be time-varying. Thus, taking the trace of (3.61) and using (3.14) 

and (3.60) gives 

?_-k ( )T k (2 - atrR)swt(oo) = asy(oo)trR + atr[R' b,W k)b,';l(k F ] (3.62) 

where k tends t01~ards infinity. Note that (3.60) and (3.62) have 

the same forms as the corresponding equations (3.36) and (3.38) 

respectively in stationary environments. Hence, using the same 

arguments for deriving (3.40) from (3.36) and (3.38) as well as 

the definition for misadjustment in (3.41), (3.60) and (3.62) lead 

to 

atrR 1, atrR 
2 - a ( trR + h1 ) • 

2 - a( trR + 

Thus, for small misadjustment, the misadjustment can again be app-

roximated, using (3.49c,e), by 

M "' .E!i::B, wt 2 

N a(M-1) \ 
"" 2 L sn 

n=O 
(3.64) 

which is clearly the same as (3.42) in stationary environments. 

From the discussion in the last two paragraphs, the array 

obviously has better performance if the environment is stationary. 

Note that as used here and henceforth in this chapter, array per-

formance refers to the ability of the array to reject the jammers 

as measured by the average output power in the steady state. Th-

us, array performance deterioration refers to where the steady 

state average output power has increased significantly above the 
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optimal value. Evidently, with roughly the same misadjustment as 

in stationary environments, performance deterioration in the rot-

ating environment is the result of significant increase in steady 

state output power due to the lag of the steady state from the 

optimal weight vector. Any increase in steady state output power 

is, of course, a combination of: (a) increase in receiver noise 

residue power due to increase in the Euclidean norm of the steady 

state weight vector and/or (b) increase in jammers' residue powers 

due to the inability of the array to track the rotating jammers. 

As expected intuitively and to be demonstrated in later sections, 

the receiver noise residue power do not change much as the jammer 

phase rate increases and thus, significant increase in steady st-

ate output power or performance deterioration is the result of 

the latter factor. Since the only difference between the terms 

in (3.57) and (3.59) associated with the same jammer is in the 

matrices D and s 0I, the jammers• residue powers can be deduced, 

similar to the steady state weight vector, to start increasing 

from their optimal values when the jammer phase rate has increa-

sed to the critical value of (3.55). However, note that (3.55) 

only gives the jammer phase rate at which the steady state weights 

and jammers• residue powers start to deviate from their optimal 

values. As will be explained more clearly in later sections, pe-

rformance deterioration usually starts at jammer phase rate much 

greater than the critical value of (3.55). 

By substituting (3.64), (3.55) becomes 

2M N s 2Mwt 
M ~ w\( l s n)-1 = _ __::.,:;...._ 

( M-1) n=O 0 ( M-1/ENR 
(3.65) 

where ENR denotes the element to receiver noise power ratio. 
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Clearly, the critical jammer phase rate for steady state weight 

and jammers' residue power deviations is roughly proportional to 

misadjustment and inversely proportional to the ENR. This agrees 

with the intuitive thought that the ability of the array to track 

the rotating jammers will improve if either the feedback factor 

is increased at the expense,of higher misadjustment or correspon

ding to a decrease in ENR, the jammers• powers are decreased so 

that the accuracies required of the nulls in tracking the jammers 

can be decreased. The critical jammer phase rate of (3.65) is 

also roughly proportional to the square of the number of elements. 

Intuitively, this is because when the number of elements increas

es, both the misadjustment and the rate of change of the environ

ment seen by the array, measured from the end elements say, incr-

ease. 

Summarizing, the steady state behaviour of the array in the 

rotating environment, as derived and discussed generally in.this 

and the last sections, was found to be well-defined. Specifical

ly, the optimal output power, steady state output po•t~er and weight 

variance noise are time-independent with both the optimal and st

eady state weight vectors defining stationary directional patter

ns. Furthermore, the critical jammer phase rate of (3.55) was 

derived for deviation of steady state weights and jammers• resid

ue powers from optimal values. However, apart from the weight 

variance noise, the other statistics concerned, as given by (3.51), 

(3.52), (3.57) and (3.59), cannot be expressed in more explicit 

forms unless some simplifying assumptions are made regarding the 

environment so that some of the matrices in these equations have 

special properties. This will be done in sections 3.8 and 3.9 
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where more insight can be obtained. 

3.7 Transient Convergence Behaviour 

Before the more detailed investigation of sections 3.8 and 

3.9, this section will complete the general discussion by studying 

briefly the transient convergence behaviour of the average weight 

vector and output power. Note that for the same reason as in st-

ationary environments, the behaviour of the weight variance noise 

in the transient convergence period will not be discussed. 

The transient convergence behaviour of the average weight 

(3.66) 

To find the condition for the convergence of the average weight 

vector, both sides are pre-multiplied by their own complex conju-

gate transpose yielding 

11\•/(k+1) - Ws(k+1)11 = [iT(k}'- Ws(k)] TFk(I- aR)'7-k 

• [W{k) - w (k)] • 
s 

(3.67) 

With H , rn=1,··,M-1, as the normalized eigenvector associated with m 

the mth largest eigenva1ue hm of R, the corresponding eigenvalue 

and normalized eigenvector of Fk(I-aR) 2F-k are obviously (1-ahm) 2 

and FkH respectively. Thus, (3.67) is easily seen to be bound by m 

(3.68) 

where Max{f(z)} specifies the maximum value of the function f(z) z 

with respect to z. Therefore, the convergence of the average we-

ight vector is guaranteed if as in stationary environments, 11-ah I 
m 

is less than unity or since the sum of all the eigenvalues of R 
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is equal to its trace, 

(3.69) 

Again, as in stationary environments, this will be satisfied since 

for finite weight variance noise, the denominator in the lower b-

ound of (3.63) has to be positive. 

To further investigate the transient convergence behaviour 

of the average weight vector, the recursive equation of (3.66) is 

easily seen to give rise to 

where W(O) is the initial weight vector. With lm and Pm denoting 

its mth eigenvalue and the corresponding eigenvector respectively, 

the matrix F-1(I-uR) can be decomposed as 

-1( ) -1 F I - aR = PLP 

where 

and 

(3.70) then becomes 

where the l.h.s. is obviously the de-rotated lag of the average 

from the steady state weight vector. If this de-rotated average 

weight vector lag is written in component form as 

where Pm is the mth basis vector, the mth component pm(k) is eas-
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ily seen from (3.72), (3.73) and (3.74) to converge according to 

k p (k) = l p (0). m m m 

-1( To relate the eigenvalues and eigenvectors of F I-aR) to 

-1 ( ) . b those of R, F I-aR can be approx~mated y 

F-
1
(I- aR) "(I- aR)- jM•dia(1, 2, ··, M-1)(!- aR) 

as ~~ will be small. With the last term being a perturbation ma-

trix for the hermitian matrix I-aR, the eigenvalues and eigenvec-

-1 ( ) . tors of F I-a~_ can be found by us~ng the perturbation methods 

discussed by Wilkinson[SOJ. Specifically, in a first order appr-

' -1 ( ) . oximation, the eigenvectors of F I-aR ~s roughly equal to the 

corresponding eigenvectors of I-aR and hence R: 

p • H • m m 

Furthermore, the first order approximation for the mth eigenvalue 

of F-
1

(!-aR) isH TF-1(I-aR)H. Using (3.77), this is m m 

l " [1 - jMH Tdia(1, 2, ··, M-1)H ](1 - ah ) m m .m m 

which is equal to 1-ah , the mth eigenvalue of I-aR, plus an imam 

ginary perturbed component between -jM and -(H-1) jM>' that of 

1-ah • 
m 

With the eigenvalue and eigenvector relations of (3.78) and 

(3.79), the transient convergence behaviour of the average weight 

vector as described by (3.75) and (3.76) is obviously very similar 

to that by (3.29) and (3.30) in stationary environments. Specif-

ically, if the de-rotated lag of the average from the steady state 

weight vector is expressed in component form with P or roughly H 
m m 

as the mth of the H-1 basis vectors, then the mth component p (k) 
m 

will converge, independent of the other components, to zero expo-

nentially with a time constant of -1/lnll I sampling period. Si
m 

= 



nee (M-1)~~ and ah will be much smaller than unity, this time 
m 

constant is, from (3.79), 

-1 1 
T m , ln 11 _ ah 1 , Ciii"'" sampling period 

m m 
(3.80) 

which is obviously the same as (3.32) in stationary environments. 

Note that since 1 is complex, the phase of p (k) can be seen fr-m m 

om (3.76) to be rotating constantly by the phase of 1 per sampl
m 

ing period. This is clearly not so in stationary environments 

where the phase of the corresponding component em(k) does not eh-

ange. 

To investigate the transient convergence behaviour of the 

output power, (3.18) can be expressed more conveniently as 

s (k) = s t(k) + (W'{kj - W (k) + W (k).- W t(k)l TR(k) 
y op s . s op . . · 

• [W'{kj - W (k) + 1; (k) - W t(k)l s s op 

= s t(k) + [W (k) - W t(k)]TR(k)[W (k) - W (k)l (3.81) op s op s opt 

+ [W'{kj - W (k)l TR(k) [W('k} - W (k)] 
s s 

+ 2Re{[W'(kj- W (k)]TR(k) [W (k) - 1; t(k)]} • 
. s s op 

Clearly, the first two terms together give the steady state outp

ut power as the other terms tend towards zero when the steady st-

ate is approached and the average becomes the steady state weight 

vector. Thus, substituting (3.45) and (3.46), (3.81) becomes 

s (k) = s (oo) + [W(k) - W (k)JTF~-k[l'l(k) _: W (k)] 
y y s s 

+ 2Re{[W'{kj- W (k)]TF~(W - W t)} · s s op 

which gives, after further substituting (3.75) and (3.76), 

s (k) = 
y 

M-1 
s (<») + 2 [p (O)*p (O)P TRP ](1 *1 )k 

Y 1 m n m n m n m,n= 
M-1 

+ 2 2Re {[p (O)*P TR(Ii - 1; t)] (1 *)k}. 
m=1 m m s op m 
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Obviously, since Pm is an eigenvector of F-1(I-aR) but not R, the 

square-bracketed factors will not be exactly zero in general. 

Therefore, different from that in stationary environments, the 

transient convergence behaviour of the output power to the steady 

state value is described in (3.83) as the sum of many time-varyi-

ng terms, each term representing a sinusoid whose envelope conve-

rges exponentially to zero. With initial powers given by the 

square-bracketed factors in (3.83), the sinusoids have frequenci-

es given by the moduli of the phases of 1 *1 n=1 •• m and 1 • 
m n' ' ' ' m 

per sampling period, while the corresponding time constants of 

the envelops are -1/lnll *1 t and -1/lnll I sampling period. Us-m n m 

ing the same arguments for deriving (3.80) from (3.79), the time 

constants are roughly 1/a(h +h ) and 1/ah respectively. Clearly, m n m 

the longest time constant is 1/ahM_1 and from the discussion in 

section 3.4, is roughly twice the corresponding value in station-

ary environments. If the jammer phase rate is small so that the 

steady state approaches the optimal weight vector and P tends 
m 

towards the mth eigenvector of R, the sinusoids with nonzero fre-

quencies, that is, except ~hose corresponding to l=m, are easily 

seen from (3.83) to have initial powers approaching zero. Clear-

ly, the a~ove description for the transient convergence of the 

output power will then become that in stationary environments. 

In summary, during the transient convergence period, the 

average weight vector, after de-rotating, converges in roughly the 

same way as in stationary environments. The output power, howev-

er, converges in more complicated fashion as a sum of many expon-

entially decaying sinusoidal components. Nevertheless, for small 

jammer phase rate, only the components with zero frequency are 

dominant and the convergence behaviour is roughly that in statio-
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nary environments. In any case, the convergence time constants 

are still roughly inversely proportional to the feedback factor 

and the eigenvalues of the covariance matrix. Therefore, the di-

lemma that increasing the feedback factor leads to faster transi-

ent convergence and better steady state tracking ability but at 

the expense of higher misadjustment can be deduced. Furthermore, 

as in stationary environments, slow convergence is evidently as-

sociated with large spread of eigenvalues and will be the case 

when the jammers are closed together and/or have large range of 

powers. 

3.8 Single-Jammer Situation 

Having generally investigated the behaviour of the array in 

the last three sections, this and the next sections will be conc

erned with obtaining more insight on the more interesting steady 

state behaviour by examining some typical simulation results and 

analytically, by making some realistic simplifying assumptions 

about the environment so that the important equations derived can 

be expressed more explicitly. Specifically, this section will 

investigate the single-jammer situation. 

When only one jammer is present, the matrices A, G, Q, 

QT(s0r)-
1
Q and QTD-

1Q can be seen from (3.49d,e,g,h) and (3.53) 

to be given simply by s 1 , 1, Q1 , (M-1)s1/s
0 

and tr(D-1 ) respecti

vely. Thus, (3.51), (3.52), (3.57) and (3.59) become 

w t(k) op 

• 

w (k) 
s =~ s 

k 
-s1F Q1 

(3.84) 

= 
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sopt 

and 

S ( oo) 
y 

= so<~+ 

= s
0

{1 + 

so ]2 (3.86) I\Wopt11 ) + s1 [ (M-1 )s
1 + so 

(M-1)s1 
2 

2} + 
so 

]2 
s1 [ (M-1 )s

1 [(M-1 )s1 + s
0

] + so 

Being the component of optimal output power due to the jammer, 

the second term_~f (3.86) is roughly inversely proportional to the 

jammer•s power and is usually much smaller than the fairly const-

' ant first term due to receiver noise. This illustrates the power 

inversion property and the ability of the array to suppress the 

optimal outpUt power components due to strong jammers to well 

below optimal output power. Included in both (3.85) and (3.87), ' 

-1 -1 the important factor [1+s1tr(D )] is, from (3.54), 

-1 -1 [1 + s1tr(D )] 
M-1 

• [1 + l as
1

(as
0 

+ jmA~)- 1 ]- 1 • 
m=1 

(3.88) 

Clearly, this cannot be further simplified unless assumptions are 

made regarding the re1ative magnitudes of as0 , as
1 

and A~. Since 

the cases of most interest correspond to where the jammer's power 

is greater than receiver noise power, the three most interesting 

and usual assumptions for simplifying (3.88) are 

(3. 90) 

and 

(3. 91) 

where the numerical factors 2, L+, H-1 and ln(2M-1) are sufficient 
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for deriving approximate explicit solutions for (3.85) and (3.87). 

The significance of and the results obtained under these assumpt-

ions will now be discussed. 

Under assumption (3.89), the jammer phase rate is below the 

critical value of (3.55) for steady state weight and jammers• re-

sidue po\~er deviations from optimal values. The assumption ther-

efore corresponds to the case where the jammer is rotating too 

slowly to give rise to any significant c::hange in array behaviour 

and performance. Specifically, (3.85) and (3.87) are shown, usi-

ng Maclaurin•s theorem and neglecting second and higher order te-

rms, in appendix 3.12.5-to become 

~ (M-1 )s
1 

+ 

and 

s (<o) ~ 
y 

s [I 
0 

.ill<!>.. (M-2 
+ ---a.~a -2 ' as0 

(3.92) 

(3.93) 

Note that second and higher order terms is used in this chapter to 

mean those relative to the first and so the largest term of the 

series concerned. Comparing (3.84) and (3.92) shows that the mth 

of the M-1 steady steady state weights is composed of the corres-

ponding optimal weight plus a perturbed component. Relative to 

the optimal weight, the perturbed component is at phase quadratu-

re and has relative magnitude of roughly /(M/2-m)ll<l>/as
0

!. The 

maximum relative magnitude is hence roughly HM/2as
0 

or 1/2 at 

the critical jammer phase rate of (3.55) which is clearly physic-

ally relevant. Regarding the steady state output power of (3.93), 

the first and second terms due to receiver noise and the jammer 

respectively are obviously equal to the corresponding components 
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of the optimal output power of (3.86) in this case. 

Next, under assumption (3.91), (3.85) and (3.8?) are shown 

in appendix 3.12.7, using the same analysis as deriving (3.92) and 

(3.93) in appendix 3.12.5, to be 

jas
1
Fk jln(2M-1)as1 1 1 

(3.94) w (k) • ' {[1 + M ]dia(1, 2• ' M-1) s M 
jas0 1 1 2 

+ ~ia(1, 'If' ' [M-1] )}Q1 

and 

as 
("') , [1 2(M-1 )(_,1)2] 8 y 8 0 + M 11<1> + 8 1" (3.95) 

Obviously, as the jammer phase rate increases, the steady state 

weights tend towards zero. Furthermore, as the first term of (3. 

95) due to receiver noise decreases towards receiver noise power, 

the steady state output power becomes that due to the first elem-

ent of the array. Evidently, as implied in (3.91), for jammer 

phase rate greater than 2ln(2M-1)as1 and as
0

, the jammer is.movi

ng too fast to be tracked so that in accordance with intuitive 

thought, the adaptive array tends towards adopting a policy of 

nonadaptation. Note that this case is not physically unrealistic. 

In multi-jarnmer situations, the inequality M0.2ln(2H-1 )as
1 

impli

ed by (3.91) can be satisfied as the feedback factor may be limi-

ted by the presence of other considerably stronger jammers to much 

smaller value than \~hen only one jammer is present. 

Finally, the intermediate and most interesting case under 

assumption (3.90) will now be discussed. Again, using the same 

analysis as deriving (3.92) and (3.93) in appendix 3.12.5, (3.85) 

and (3.8?) are shown in appendix 3.12.6 to be 

w (k) 
s 

-Fk 
' ln(2M-1) {[ 1 

j2(H-1)as
0 

- Mln( 2M-1 )M] ln(2H-1)as1 
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and 

1 
• dia(1, Z' 

-____,2:.;_(.:;:.H-:..1~)___, sy("") = s 0 {1 + .;} + 
H[ln(2M-1 )I'-

jaso . 1 
""Mha(1, 'lj."• 

M> 2 
s1 [ ln(2i·!-1 )as

1 
1 • (3. 97) 

Obviously, the steady state weight vector is very different from 

the optimal one given by (3L84). Regarding the steady state ou

tput power, both the first and second terms of (3.97) due to rec-

eiver noise and the jammer respectively are easily seen to be gr-

eater than the corresponding components of the optimal output po-

wer of (3.86). Specifically, the jammer's residue power increases 

in proportion to the square of jammer phase rate and over the ra• 

nge of jammer phase rate specified by (3.90) 1 can increase from 
2 

4s1 [s0/ln(2H-1)as11 to s 1/4. Clearly, the low.er bound is not 

very much greater than the optimal output power component due to 

the jammer in (3. 86), while the upper bound is only 6dB belo~1 the 

jammer's power or residue power after the array has adopted·the 

nonadaptation policy. Evidently, assumption (3.90) corresponds 

to the case where the tracking ability of the array is deteriora

ting significantly. Note that, tdth ln(2M-1)as1.~4s0 implied by 

(3.90), the increase in receiver noise residue power can be seen 

by comparing the first terms of (3.86) and (3.97) to be of the 

order of 10% or less of the optimal output power. Therefore, as 

mentioned, significant increase in steady state output power is 

due to the increase in jammer•s residue power resulting from de-

gradation in the tracking ability of the array. Very loosely, 

it can be considered that the stead.y state output power will sta-

rt to increase significantly and the array performance will start 

to deteriorate if the jammer phase rate is increased above the 
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critical value of 

at which the jammer's residue power is roughly equal to receiver 

noise power. Of course, as used in [771, a more precise approach 

to find the condition for performance deterioration is first to 

determine the optimal feedback factor so that the steady state 

average output power is minimized. Assuming the optimal feedback 

factor is to be used, the condition can then be derived by speci

fying an acceptable increase, which will be of the order of weight 

variance noise, of the steady state average above the optimal ou

tput power. Essentially, the critical jammer phase rate found 

from this approach will correspond to where the jammer's residue 

power is at a value depending on misadjustment, optimal output 

power and other related parameters. Obviously, the replacement 

of this threshold value by simply receiver noise power leads to 

(3.98). Thus, being proportional to only the square root of rec

eiver noise power which will not be very different from this thr

eshold value, the critical jammer phase rate of (3.98) will be r

oughly equal to that obtained via the more precise approach menti

oned and for simplicity, will be used in the investigation. 

As a demonstrating example, fig.3.2 shows the variation of 

steady state behaviour with jammer phase rate for a 4-element 

array with -20dB receiver noise power and feedback factor of o. 

0005. Having OdB power, the jammer is chosen to arrive from 0° 

initially so that the space vector Q
1

, from (3.49e,f), has unity 

elements. Figs.3.2a and b show the variation of the real and ima

ginary parts respectively of the elements of the steady state we

ight vector after de-rotating or ignoring the time-varying factor 
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Fig.3.2 Variation of steady state behaviour with jammer phase rate for 
a single-jammer situation. The array has 4 elements, -20dB receiver 
noise power and feedback factor of 0.0005, whereas the jammer has power 
OdB and arrives from 0° initially. 
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Fk. Regions of jammer phase rate for the validity of the three 

assumptions of (3.89)-(3.91) are shown, in addition to the crit

ical jammer phase rate of (3.55) for steady state weight deviat

ions. Solid and broken lines are used for curves due to simula

tion and those obtained from analytic results derived under the 

three assumptions respectively. Obviously, good agreement can 

be seen between the two sets of curves. Note that the purpose of 

using the very small feedback factor of 0.0005 is to present the 

case under assumption (3.91). Fig.3.2c shows the variation of 

the steady state output power and its components. The two dash

ed lines drawn on the figure-correspond to the critical jammer 

phase rates of (3.55) and (3.98). Again, the broken curves are 

due to the analytic results derived and can be seen to agree well 

with the corresponding solid simulation curves. From figs.3.2a-c, 

the steady state weights and jammer•s residue power can be seen 

to start to deviate from their optimal values as the jammer,phase 

rate increases above the critical value of (3.55), illustrating 

its physical relevance. Furthermore, as the jammer phase rate 

increases further, the receiver noise residue power do not vary 

much, though the steady state weights change considerably. In c

ontrast, the jammer•s residue power curve increases with gradient 

of 20dB per decade, in accordance with the proportionality to the 

square of jammer phase rate discussed under assumption (3.90), 

and gives rise to significant increase in steady state output po

wer, hence performance deterioration, at roughly the critical ja

mmer phase rate of (3.98) whose physical relevance is thus also 

illustrated. As the jammer phase rate increases still further, 

the steady state weights can be seen to tend towards zero eventu

ally, resulting in the jammer•s and receiver noise residue power 

- 56 -



curves to level off at the jammer's and receiver noise powers re-

spectively. Note that from (3.55) and (3.98), the two critical 

jammer phase rates have ratio of Mln(2l1-1 )(s1;s0 ) 112, which incr

eases as the number of elements and the jammer to receiver noise 

power ratio increase, and are very different in this example. 

This difference can be seen from fig.3.2c to be due to the suppr-

ession of the jammer's residue power to approximately 30dB below 

optimal output power at very small jammer phase rate. Fig.3.2d 

shows the variation of the steady state directional pattern obta-

ined from the steady state weight vector. The pattern correspon-

ding to the smallest jammer phase rate is essentially the same as 

when the jammer is not moving. As the jammer phase rate increases, 

the depth of the null obviously decreases and its position shifts 

to the left. These changes can also be seen to accelerate with 

increase in jammer phase rate. Note that since the jammer is mov-

ing in the direction of increasing e, the shifting of the null to-

wards the left represents a lag of the null behind the jammer. 

3.9 Hulti-Jammer Situation 

In this section, the more detailed investigation on the st-

eady state behaviour of the array will be continued by studyi~g 

the multi-jammer situation. Computer simulation will be used, but 

first, the important results in the single-jammer situation will 

be extended analytically. 

As mentioned, expressing (3.52) and (3.59) in more explicit 

forms is not possible without making simplifying assumptions about 

the environment. In the multi-jammer situation, the most useful 

assumption is obviously that the space vectors Q , n=1,··,N, for 
n 

the jammers satisfy the orthogonal relation of 
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so that from (3.49d,e,f) and (3.53), the matrix QTD-1Q is simply 

-1) tr(D r. Thus, (3.52) and (3.59) become, after using (3.49d,g,h) 

as well, 

and 

s ( "') 
y 

N 

1 
n=1 I -1 1 + s tr,D ) 

n 

N 

l 
n=1 11 + 

s 
n 

s tr(D-1 )J z• 
n 

(3.100) 

(3.101) 

Clearly, with assumption (3.99), the steady state weight vector is 

given by the sum of N component vectors with forms as (3.85). 

Specifically, the nth component vector is the steady state weight 

vetcor from considering only the nth jamrner in a single-jamrner 

situation, The same is true for the second term of (3.101), the 

total jammer residue power, 11hich is composed of N components ha-

ving forms as the jarnmer's residue power in (3.87). Evidently, 

all the discussion regarding the steady state weight vector and 

jammer•s residue power in section 3.8 on the single-jammer situa-

tion is also applicable, by considering each jammer separately and 

independent of the others, in this simplified multi-jammer situa-

tion. 

Corresponding to assumption (3.90) in the single-jammer si-

tuation, consider now the most interesting case expressed by 

ln(2M-1)aMin{s } ~ 261 ~ 4as
0 n n (3.102) 

when, with Nin{f(z)} denoting the minimum value of the function z 

f(z) with respect to z, the tracking ability for all the jammers 

is deteriorating considerably. Since, in this case, the jammers' 



residue powers have the same form as the second term of (3.97) 

under assumption (3.90) in the single-jammer situation, (3.101) 

becomes 

M 2 N 1 
[ uln( 2l1-1) I L

1
5• 

n= n 
(3.103) 

As will be illustrated later from simulation results, with the 

change in receiver noise residue power being relatively small, 

significant increase in steady state output power is the result 

of increase in jammers' residue powers. Therefore, with the same 

reason for deriving (3.98) in the single-jammer situation, array 

performance can be considered to start deteriorating when the ja-

mmer phase rate is increased above the critical value of 

(3.104) 

at which the total jammer residue power is approximately equal to 

receiver noise power. Using (3.64) to eliminate the feedback fa-

ctor, this becomes 

2ln(2H-1 )Mwt N 1 ~ ..2_)-1/2 
M • M-1 ( L s n)- ( L s s (3 • 1 05) 

n=1 n=1 0 n 

and is dependent on the individual jammers' powers. In practical 

applications, the individual jammers' powers are most probably not 

known, although the total jammer power can be calculated from the 

measured element power. For a given total jammer power, (3.105) 

is easily seen to be minimized if the environment is composed of 

one strong jammer with as many weak jammers as possible. Furthe-

rmore, the weak jammers' powers should be as small as possible, 

but of course, should also be above the minimum value, smin' so 

that the array still suffers performance deterioration if it is 
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unable to track the weak jammers. Vlith s . being much smaller ml.n 

than the strong jammer's power and the maximum number of weak ja-

mmers being M-2 when all the degrees of freedom of the array are 

fully utilized, the minimum value of (3.105) is approximately 

1/2 2ln(2H-1 )M t(s0s . ) N 1 w ml.n ( L ) -
(M-1)(M-2) 1/ 2 n=1

5
n • 

(3.106) 

To very roughly obtained a more useful expression for the "safety" 

jammer phase rate below which the array performance will not det-

eriorate regardless of the distribution of the jammers• powers, 

smin can be equated to s 0 yielding 

2ln( 211-1) Mwt 
M = -----;;""J,;;-;--

(M-1)(M-2)1/2ENR• 

Obviously, the equating of s m in to 

mmer phase rate is very similar to 

mer residue power in (3.103) to so 

(3.107) 

s0 for deriving the safety ja-

the equating of the total jam-

for deriving the critical jam-

mer phase rate of (3.104). However, the whole discussion in this 

paragraph is based on the assumption of (3.102) which implies that 

s . is greater than 4s0/ln(2H-1) and thus may not equal s
0

• Deml.n 

spite this inconsistancy, (3.107) will still be used in this cha-

pter, as (3.106) is proportional to only the square root and thus 

fairly insensitive to the variation of smin" Furthermore, if the 

array is able to track only the strong jammer, it seems reasonable 

that the increase in steady state output power of (11-2)s
0 

due to 

the weak jammers can be regarded as approaching the minimum for 

performance deterioration. Note that the safety jammer phase rate 

of (3.107) is very similar to the critical jammer phase rate of 

(3.65) for steady state weight and jammers' residue power deviat-

ions from optimal values. Specifically, the ratio of the former 
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to the latter is (M-1 )(M-2)- 1/ 2ln(2H-1) 1~hich depends only on the 

number of elements and is less than 10 for arrays with less than 

11 elements. 

Having extended the important results obtained in the sing-

le-jammer situation, it should be noted that the orthogonal rela-

tion of (3.99), on which the whole discussion is based, will not 

be satisfied if Qn and D have the forms as given in (3.49e) and 

(3.53) respectively. Despite this shortcoming, many deductions 

obtained will be shown, mainly by computer simulation, to be sti-

11 valid, particularly if the array has extra degrees of freedom 

and the jammers are far-apart. In any case, using (3.49d), the 

steady state weight vector of (3.52) can be written in general as 

w (k) = 
s 

where 

1 
g = [- + 

n s 
n 

-g s F~-1 Q 
n n n 

1 + s tr(D-1 ) 
n 

(3.108) 

(3.109) 

Obviously, except that each of the component vectors is now weig-

hted by a complex scalar, (3.108) is the same as· (3.100) which is 

obtained after assuming (3.99). 

To obtain more insight, the multi-jammer situation will now 

be further investigated by using some typical simulation results. 

Fig.3.3a shows graphs of steady state output power and its compo

nents against jammer phase rate for a 4-element array with -40dB 

receiver noise power and feedback factor of 0.05. Two jammers of 

powers 0 and -20dB arrive initially from 10° and 40° respectively. 

The power inversion property of the array can be seen from the 

difference between the two solid jammers 1 residue power curves 
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Fig,3,3 Variation of steady state behaviour with jammer phase rate for 
a 4-element array with -40dB receiver noise and feedback factor of 0.05. 
T1~0 jammers of powers 0 and -20dB arrive initially from 10 and 40° re
spectively, This is one typical example where the jammers are far apart 
and the array has extra degrees of freedom, 
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before they start to increase. This gives the ratio of the weak 

to the strong jammers' residue powers when the array has near

optimal behaviour as approximately 20dB and hence, roughly equal 

to the ratio of the strong to the weak jammers' powers. Also sh

own in fig.3.3a in broken lines are the variation of the jammers' 

residue powers when only one of the jammers is present. The sli

ght difference between these broken curves with the corresponding 

solid curves obtained when both jammers are present illustrates 

that the two-ja~mer situation here is roughly a linear combinati

on of two single-jammer situations. For clarity, the term residue 

powers'will be used to refer to those obtained when all the jamm

ers are present, unless stated otherwise. As shown in the figure, 

the dashed l~nes indicate the important theoretical jammer phase 

rates of (3.55), (3.104) and (3.107). Clearly, the jammers' res~ 

idue power curves start to increase simultaneously at around the 

critical jammer phase rate of (3.55). As the jammer phase rate 

increases, these curves attain gradients of about 20dB per decade, 

corresponding to the jammers• residue powers being roughly propo

rtional to the square of jammer phase rate. However, with virtu

ally no change in receiver noise residue power, the array perfor

mance deteriorates only until the weak jammer•s residue power cu

rve has increased to where it is about to meet the steady state 

output power curve which, as a result, increases significantly at 

around the critical jammer phase ra.te of (3.104). As the jammer 

phase rate increases further, the steady state output power curve 

then follows the increase and later levelling off of the weak ja

mmer•s residue power curve. Note that this levelling off of the 

curve at around the weak jammer's power of -20dB implies that the 
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array is no longer able to track and null the weak jammer. Still 

further increase in jammer phase rate then causes the strong jam

mer's residue power curve to increase above the weak jammer's re

sidue power curve so that the steady state output power curve fi

nally follows the former curve. Note that roughly after the array 

performance has deteriorated, the receiver noise residue power 

starts to decrease and eventually approaches the receiver noise 

power of -40dB, indicating that the weight vector norm is decrea

sing and the array is tending towards adopting the nonadaptation 

policy. Clearly, in this scenario, the critical jammer phase ra

tes of (3.55) and (3.104) are physically relevant, though the sa

fety jammer phase rate of (3.107) is quite conservative. Fig.3.3b 

shows the variation of steady state directional pattern with jam

mer phase rate in this scenario. Evidently, the behaviour of the 

nulls (decreasing in depths and lagging. behind the jammers) as the 

·jammer phase rate increases is the same as that in the single

jammer situation of fig.3.2d. Also, .as expected, the null for the 

weak jammer disappears first, at the jammer phase rate correspon

ding to where its residue power curve in fig.3.3.a starts to level 

off at -20dB. Fig.3.4 shows the same set of curves as fig.3.3a, 

using also the same scenario but with the weak jammer having -30 

instead of -20dB power. Obviously, all the general comments and 

description regarding fig.3.3a also apply to this figure. Howev

er, due to the decrease in the weak jammer's power, the intermed

iate levelling off of the steady state output power is lengthened 

and at a lower value. Array performance deterioration now begins 

at smaller jammer phase rate and the safety jammer phase rate of 

(3.107) is approached. Fig.3.5 shows the same set of curves as 
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Fig.3.5 Variation of steady state output power and its components with 
jammer phase rate for a 8-element array with -40dB receiver noise and 
feedback factor of 0.025. Three je.mmers of powers 0, -10 and -25dB ar
rive initially from 20°, 40°and -10° respectively, This more complex 
example is again typical of that l<hen the jammers are far apart and the 
array has extra degrees of freedom. 
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fig.3.3a, but for a more complex 8-element, 3-jammer situation 

with -40dB receiver noise power and feedback factor of 0.025. 

The three jammers, of powers o, -10 and -25dB, arrive initially 

from 20°, 40° and -10° respectively. Again, the independence of 

the jammers' residue powers, the relevance of the critical jammer 

phase rates of (3.55) and (3.104) as well as the general remarks 

regarding fig.3.3a are demonstrated even in this more complex 

scenario. In general, the scenarios studied by figs.3.3~3.5 

represent examples in which the jammers are far apart and the ar

ray has extra degrees of freedom. In these situations, the theo

retical deductions discussed-under assumption (3.99) has been fo

und to be valid and applicable, at least approximately. 

Fig.3.6a shows the same set of curves as fig.3.3a except 

that the two jammers now arrive from 10° and 13° initially and 

both have powers -3dB. This scenario is one typical example when 

the array has extra degrees of freedom but the jammers are close 

together. By comparison, the steady state output power and its 

components have the same behaviour as that of fig.3.3a apart from 

two differences. Firstly, for very large jammer phase rate after 

performance deterioration, the residue power curve due to the ja

mmer at initially 13° decreases in gradient while that for the 

other jammer has a notch. Secondly, even for smaller jammer pha-

se rate, the jammers' residue power curves are very much greater, 

though by roughly a constant margin, than the corresponding brok

en ones when only one of the jammers is present. Obviously, bec

ause of this, performance deterioration starts at jammer phase 

rate which is much smaller than the critical value of (3.104) and 

approaches, though not yet reached, the safety value of (3.107). 

The rather complex behaviour of the jammers' residue power curves 
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Fig.3.6 Variation of steady state behaviour with jammer phase rate for 
the array of fig.3.3 when two jammers, both of powers -3dB, arrive ini
tially from 10° and 13°. This is one typical example where the jammers 
are closed together but the array still has extra degrees of freedom. 
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mentioned for large jammer phase rate can be better understood 

from the variation of steady state directional pattern with jammer 

phase rate shown in fig.3.6b in this situation. As the jammer 

phase rate increases above the critical value of (3.55), the mov

ements (decreasing in depths and shifting to the left) of the two 

nulls relative to the corresponding jammers are roughly equal and 

correspond to the 20dB per decade gradient of the jammers• residue 

p01~er curves in fig.3.6a. Further increase in jammer phase rate 

then causes perf~rmance deterioration after which the null at in

itially 10° starts to shift relatively faster to the left and di-

' sappears first while the other null is about half way between the 

two jammers. Intuitively, since the array is not able to form two 

nulls to track the jammers, it uses all its degrees of freedom to 

form one null in the middle of the two closely spaced jammers. 

As the jammer phase rate increases still further, this null shifts 

to the left and decreases in depth relatively slowly until it has 

passed the jammer at initially 10° 1 accounting for the decrease in 

gradients of the jammers' residue power curves. Obviously, when 

this null shifts pass the jammer at initially 10°, the residue 

power due to this jammer first decreases and then increases, res-

ulting in the notch observed in the corresponding residue power 

curve. 

Fig.3.7 shows the same set of curves as fig.3.3a, using, 

again, the same array but with three jammers of powers o, -10 and 

-20dB arriving initially from 20°, 40° and 70° respectively. This 

is one typical example when the jammers are far apart but the ar-

ray has no extra degree of freedom. Note that the behaviour of 

the steady state output power and residue powers is essentially 

the same as that of fig.3.6a. In particular, when the weakest 
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Fig.3.7 Variation of steady state output power and its components with 
jammer phase rate for the array of fig.3.3 when three jammers, of powers 
O, -10 and -20dB, arrive initially from 20°, 40° and 70° respectively. 
This is one typical example where the jammers are far apart but the ar
ray has no extra degree of freedom. 

jammer's residue power curve starts to level off at around -20dB 

indicating that the array is no longer able to track this jammer, 

the array uses its two degrees of freedom initially for rejecting 

this jammer to reject the other two jammers instead, resulting in 

the intermediate levelling off of their residue power curves. 

This behaviour is virtually the same as the formation of one null 

between the jammers in the situation of fig.3.6 and is also slig-

htly noticeable in figs.3.3a, 3•4 and 3.5. Many other scenarios 

in which the jammers are far apart/closed together and/or the ar-

ray has/has no extra degrees of freedom have been studied. The 

results obtained will not be presented as no new characteristic 

concerning the array behaviour is observed. 

One important observation from all the simulation results 
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is that if the jammers' residue power curves are increasing with 

jammer phase rate, they always tend to increase with gradients of 

roughly 20dB per decade. In particular, for jammer phase rate 

above roughly the critical value of (3.55) but before any of the 

jammers• residue power curves levels off or decreases, the curves 

always increase with gradient of about 20dB per decade. This can 

. ( T -1 be explained theoretically by examining the matr~x factor Q D Q 

+A-1 )-1 in (3.59). Using (3.49d,e,h) and (3.54), the (p,q) elem

ent of the N•N matrix QTD-1Q+A-1 is 

1 N 1 
- + n~1s0 + jmM/a' P"q s 

IQTD-1Q + A-11 
p 

= jn(<P - 11> ) • (3.110) 
' pq N e q P 

2 so + jmM/a' pf'q - n=1 

Clearly, for b~·greater than as0 but much smaller than aMin{s }, 
1 

n n 

this is roughly inversely proportional to ~~ and thus the matrix 

( T -1 -1 -1 Q D Q+A ) is roughly proportional to~~. Evidently, in 

such cases, all the terms under the summation in (3.59) are roug-

hly proportional to the square of jammer phase rate and hence, all 

the jammers• residue power curves increase with about 20dB per 

decade gradients. 

Summarizing the deductions obtained in the detailed discussion 

of this and the last sections, array performance deterioration from 

significant increase in steady state output power has been found 

to be the result of increase in jammers• residue powers. As the 

jammer phase rate increases, the jammers 1 residue powers begin to 

increase simultaneously at the critical jammer phase rate of (3.5 

5), where the steady state ~~eights also start to deviate from the-

ir optimal values, and soon become proportional to the square of 

jammer phase rate. As the jamrner phase rate increases further 
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so that some of the jammero' residue powers become increasing less 

rapidly, the jammers 1 residue powers may start having complex be

haviour \~hich has to be accounted for by the shifting of nulls 

and the switching of degrees of freedom of the array from nulling 

weak to strong jammers. However, when the jammers are far apart 

and the array has extra degrees of freedom, the behaviour of the 

jammers' residue powers are quite independent and simple and rou

ghly equal to that obtained in single-jammer situations when the 

corresponding jammers are present on their own. As a result, ar

ray performance deterioration starts at around the critical jamm

er phase rate of (3.104) which is usually much greater than the 

actual value in other situations. Finally, because of the abil

ity of the array to suppress the strong jammers' residue pO\~ers, 

before they increase, to well below optimal output power, array 

performance deterioration usually starts at jammer phase rate 

much greater than the critical value of (3.55). However, there 

exists "worst" situations where the safety jammer phase rate of 

(3.107), being the minimum of (3.104) and closed to the critical 

value of (3.55) which is obviously the lOiiest upper bound before 

performance deterioration, is approached. From the simulation re

sults examined, such worst situations are associated with scenarios 

in which: (a) the range of the jammers 1 powers is large and/or (b) 

the jammers are close together and/or the array has no extra deg

ree of freedom. Clearly, the first two circumstances are also as

sociated with situations when the array has slow transient conver

gence behaviour in the rotating and stationary environments. 

3.10 l1aximum Scan Rate Limitation of the Radar Sidelobe Canceller 

The differences between the radar sidelobe canceller and the 
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pov1er inversion array of fig.3.1 have been discussed in section 

2.2. Obviously, in terms of the second order input statistics, 

the former is the same as the latter if, in addition to both hav-

ing the same geometries: (a) corresponding to element 1 in fig.3. 

1, the high gain antenna in the radar sidelobe canceller is desi-

gned to have uniform sidelobe level, (b) all the jammers are in 

the sidelobes of the high gain antenna, which is a case of most 

interest, (c) the high gain antenna and the other elements, which 

are isotropic with the same antenna gains as the sidelobe gain of 

the high gain antenna, have equal receiver noise power and (d) the 

target returns in the look direction of the high gain antenna are 

small enough to be neglected. Provided these conditions are sat-

isfied, all the results derived can be applied directly to the 

sidelobe canceller if it is further assumed that the constant 

rotational speed of the radar does not change the deductions sig-

nificantly. 

Thus, under the assumptions of the last paragraph, the safety 

jammer phase rate of (4.107) can be used directly to determine the 

maximum scan rate limitation of the radar sidelobe canceller. 

Consider an example of a 5-element, 20 wavelength spacing cancel-

ler with 10% misadjustment operating in a 40dB ENR environment. 

The safety jammer phase rate of ().107) is then given by 4•10-6 

rad. per sampling period or 8 rad. per second if the radar has a 

wavelength of 1HHz and Nyquist sampling at 2HHz is used. Assuming 

further a scan sector of 180° so that as 6 varies from -90° to 

90°, the total change in element to element phase <P, given by 

2rrdf0sin6/c, is 80rr rad., the maximum scan rate is obviously limi

ted to about 8/80w or 1/30 scan per second. 
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3.11 Conclusion 

Having analyzed the array behaviour in stationary environm

ents, the nonstationary rotating environment was formulated eleg

antly in terms of the rate of rotation, the jammer phase rate, in 

this chapter. The steady state behaviour was then solved implic

itly in general terms and found to be well defined. In particul

ar; the weight variance noise, steady state and optimal output 

powers are time-independent, while the steady state and optimal 

weights define directional patterns which rotate in synchronizat

ion with the jammers. Furthermore, the steady state weights and 

jammers• residue powers· start to deviate from their optimal valu

es at the critical jammer phase rate of (3.55). Regarding the 

transient convergence behaviour, the average weights converge in 

similar manner as in stationary environments, though the output 

power may converge in more complicated fashion in, for example, 

having many more time constants. Theoretically and by using 

simulation results, the more interesting steady state behaviour 

was studied in more detail in the single-jammer situation, leading 

to the derivation of the critical jammer phase rate of (3.98) for 

array performance deterioration. Similarly, when the jammers are 

far apart and the array has extra degrees of freedom, the multi

jammer situation 1·ras found to be roughly a linear combination of 

single-jammer situations and the critical jammer phase rate of 

(3.104), with a minimum value given by the safety jammer phase 

rate of (3.107), was obtained for performance deterioration. In 

other situations, the steady state behaviour may be more complex 

and have to be explained by the shifting of nulls and the switch

ing of degrees of freedom from nulling weak to strong jammers. 
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Furthermore, performance deterioration now usually starts at jam-

mer phase rate much greater than the critical value of (3.104), 

though still below the safety value of (3.107). In any case, be-

cause of the ability of the array to suppress the strong jammers' 

residue powers to well below optimal output power for small jammer 

phase rate, performance deterioration usually begins at jammer 

phase rate much greater than the critical value of (3.55). Howe-

ver, when (a) the jammers are closed together and/or (b) the jam-

mers have large range of powers and/or (c) the array has no extra 

degree of freedom, the safety jammer phase rate of (3.107), being 

closed to the critical value-of (3.55), may be approached. Last-

ly, as an application example, using the safety jammer phase rate 

of (3.107), the maximum scan rate of a 5-element sidelobe cancel-

ler was found to be limited to about 1/30 scan per second. 

3.12 Anpendix 

3.12.1 Derivation of (3.20) 

Post-multiplying both sides of (3.19) with their own comp-

lex conjugate transposes and taking ensemble average gives 

6W(k+1)6W(k+1)T • 6W(k)6W(k)T + a 2y(k)*y(k)X(k)X(k)T 

+ a2R(k)[wtk}- W t(k)] [W(kj- W t(k)]TR(k) op op 

- a2y(k) *X(k)[W('kl" - lv opt (k)J TR(k) 

- a2R(k)fwtkJ- wopt(k)ly(k)X(k)T 

- ay(k)*X(k)6W(k)T - ay(k)6W(k)X(k)T 

(3A.1) 

+ aR(k)[im{)- W t(k)l61Hk)T + a6W(k)!'W1kJ- W t(k)JTR(k). op op 

Since the weights are independent of the inputs at the same samp-

ling instant, the ensemble average of y(k)*X(k) is 
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y(k)•x(k) = x0 (k)*X(k) + X(k)X(k)TW(k) 

= R0 (k) + R(k)WlkJ 

= R(k)[W'("k)'- wopt(k)l (3A.2) 

where W t(k) is given by (3.?). Similarly, with llvl(k) defined op 

by (3.12), the ensemble average of y(k) *X(k)liH(k)T is 

y(k) *X(k)liiHk)T = x0 (k) *X(k)liH(k)T + X(k)X(k)TW(k)lllo/(k)T 

= R0(k)liW(k)T + R(k)W(k)liW(k)T 

= R0 (k)li1Hk)T + R(k)WC'k'Jlll14(k)TJ + R(k)tl14(k)MI(k)T.:, (3A.3) 

Finall~, substituting (3A.2) and (3A.3) into (3A.1) and.using (3. 

13J then easily yields (3.20). 

3.12.2 Derivation of (3.22) 

Since, at any sampling instant, the inputs are complex Gau-

ssian random variables independent of the weights, the ensemble 

average of the (p,q) element of the (M-1)•(M-1) matrix y(k)*y(k) 

X(k)X(k)T is, using (3.21) and ignoring the time index k for eon-

venience, 

[y*yXXT]pq = (x0 • + XTW)(x0 + WTX)[X]p[X*]q 

M-1 
= x •x x •x + 2Re{ 2 (w)x •x x •x } 

0 0 q p m=1 m m 0 q p 

M-1 
+ \ (w •w )x *x x •x 

L 1 n m m n q p m,n:::: 

= ( x •x )(x •x ) + (x •x )(-x-•'""x-) 0 0 q p 0 p q 0 
M-1 

+ 2Re{ \ (w)(x •x0 )(x •x ) + (w)(x •x )(x •x
0

)} 
m~1 m m q p m m p q 

M-1 
+ 2 (w •w )(x •x )(x •x ) + (w •w )(x •x )(x •x ) _1 n m m n q p n m m p q n m,n_ 

= sx[R]pq + !R0 Jp!R0•Jq + WTRW[R]pq (3A.4) 
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M-1 
+ 2Re{ L !Wlm!R0 *J IRJ + [WJ [RJ !R0 •J } 

m= 1 m pq m pm q 

M-1 -
+ L (RJ [lvWTJ !RJ • 

1 nq mn pm m,n= 

T Clearly, the ensemble average of y(k)*y(k)X(k)X(k) is 

y(k) *y(k)X(k)X(k)T = R
0

(k)R
0

(k)T + R(k)\v(k)W(k)TR(k) 

+ R(k)W(k)R0 (k)T + R0(k)~R(k) 
+ [sx(k) + W(k)TR(k)W(k) + R0(k)~ + ~R0(k)]R(k). 

Substituting (3~12) and using (3.11) and (3.13) then gives 

y(k) *y~k)X(k)X(k)T = s(k)R(k) + R(k)liV/(k)liVI(k)TR(k) (3A.6) 

Using (3.7) Ji.nd (3.15), this becomes 

y(k)*y(k)X(k)X(k)T = [s (k) + s t(k)]R(k) (3A.7) 
y w 

+ R(k) [wtkj - W t(k)l [wtkj - W t(k)) TR(k) op op -----;;;-
+ R(k)liW(k)liW(k)TR(k) 

which, if substituted into (3.20), obviously gives rise to (3.22). 

3.12.3 Derivation of (3.51) and (3.52) 

By substituting (3.49b,c), (3.45) becomes 

( ) le k( T)-1 lv t k = r-w t = -F s0I + QAQ QAG. op op (3A.8) 

Using (3.50), this can be manipulated to give (3.51) as follows. 

k )-1 -1 T -1 -1 -1 T )-1 \vopt(k) = -F {(s0I - (s0I) QIQ (s0I) Q +A J Q (s
0

I }QAG 

= -Fk(soi)-1Q{[QT(soil-1Q + A-11-1 IQT(soi)-1Q + A-11 

- IQT(soi)-1Q + A-1l-1QT(soi)-1Q}AG • 

= -Fk(s0Il-1Q!QT(s0I)-1Q + A-1J-1G. (3A.9) 

Similarly, by substituting (3.48) and (3.49b,c), (3.46) becomes 
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(3A.10) 

where 

D s0r F - I 
= + 

Cl (3A.11) 
jM 2"M 

s 0r dia(e - 1 e J - 1 
= + ' Cl Cl 

(M-1 )jM 
e - 1 ). 

• Cl 

Clearly, (3A.11) is the same as (3.53) and using the same manipu-

lation which leads to (3Ao9) on (3P.10) results in (3.52). 

3.12.4 Derivation of (3.5?) and (3.59) 
.· 

The optimal output power component due to the nth of the N 

jammer~ is obviously given by (3.3) with W(k) being equal to 

W t(k) and the second order input statistics replaced by their op 

components due to only the nth jammer. Thus, from (3.49a-c), this 

optimal output power component is 

With W t(k) given by (3.51), this becomes op 

s 11 + (FkQ )TW t(k)i 2 
n n op 

T( )-1 T( )·-1 -1 -1 2 = snl1 - Qn s0r Q[Q s0r Q + A 1 Gl • 

Defining K as 
n 

Kn = dia(O, 0, 0, 1, 0, 0, ··, 0) 
~--'-n -N-n-

and using (3.49e,g,h), (3A.13) becomes 

(3A.12) 

(3A.13) 

(3A.14) 

s 11 + n 
(FkQ )TW (k)l 2 = s IQ T(s I)-1Q[QT(s

0
I)-1Q + A-11-1G n opt n n 0 

- GTKn[QT(sOI)-1Q + A-11 [QT(sOI)-1Q + A-11-1GI2 

= sniGTKnA-1[QT(sOI)-1Q + A-1,-1GI2 

= 
J({QT(soi)-1Q + A-1}-1Gln12 

s 
n 
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Using (3.51), the optimal output power component due to receiver 

noise is clearly 

s0 [1 + I~ t(k)TW t(k)1 = op op 
T 

so(1 + w t w t) op op (3A.16) 

= s 0 ( 1 + IIW optll ) 

where IIAII is the Euclidean norm of the vector A. Combining (3A.15) 

and (3A.16) then gives rise to (3.57). Similarly, (3.59) is obt-

ained by applying the same arguments discussed for \'/ t(k) to \~ (k) op . s 

of (3.52). 

3.12.5 Derivation of (3.92) and (3.93) 

\fith the inequality as
0

l(M-1)M implied by (3.89), the sum

mation in (3.88) can be approximated by using Maclaurin's theorem 

and neglecting second and higher order terms as 

M-1 
L as1(as

0 
+ jm~~)- 1 

m=1 

Thus, (3.88) becomes 

( 
_1 _1 (11-1 )s1 + s

0 
- js1 (H-1 )11M/2as

0 
_

1 [1 + s 1tr D )1 • [· s 1 
0 

s 0 js1 (l1-1)MM 
{ -1 = ~C~M--~1~)s~1~+--s-- 1 - 2as

0
!(!1-1)s

1 
+ s 1} • 

0 0 ' 

(3A.17) 

(3A.18) 

Obviously, from (3.89), the imaginary term has magnitude less than 

unity. Hence, further use of Maclaurin's theorem with (3.89) and 

neglecting second and higher order terms gives 

-1 -1 
[1 + s

1
tr(D )1 

s 0 js
1

(M-1)11M 

" (H-1 )s
1 

+ s
0 

{1 + 2as
0 

!(H-1 )s
1 

+ s
0

1} 

s
0 

( 1 + j}1M/2as
0

) 

(H-1)s1 + s
0 

• 

By substituting ( 3.54) and (31,.19), the mth of the 11-1 elements of 
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W , as given in (3.85), is thus a 
' -a [Q 1 . 

[W 1 = 1 1 m (1 + ..Jl1~)(1 a m (M-1 )s1 + s
0 

Zc.s
0 

;,t:L\<l>)-1 
+~- • 

a so 
(3A.20) 

Using Maclaurin' a theorem with as
0 

C::.( M-1 )M again and neglecting 

second and higher order terms then yields 

(3Ao21) 

which, with (3.85), obviously gives rise to (3.92). 

With Q1 

(3A.21), is 

given by (3.49e), the Euclidean norm of W , from 
a 

(3A.22) 

Note that if exact manipulation is used to find the Euclidean no-

rm from (3A.21), a second order term will result from the first 

order term in (3A.21). However, since second and higher order 

terms have been neglected in (3A.21) and thus the Euclidean norm 

found from this equation cannot be more accurate than a first or-

der approximation, the second order term is neglected and (3A.22) 

. . [ ( -1) -1 results. S1m1larly, the modulus square of 1+s
1
tr D 1 , from 

(3A.19), is 

(3A.23) 

Clearly, substituting (3A.22) and (3A.23) into (3.87) leads to (3 

.93). 

3.12.. 6 Derivation of ( 3. 96) and (3. 97) 

Using Haclaurin' s theorem with the inequality MC::.as
0 

implied 
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by (3.90) and neglecting second and higher order terms, the summ

ation in (3.88) can be approximated by 

= 

= 

M-1 ctn1 L <~H1 
1 

Jffiu-. 
m= ' 

ln(2~1-1 )as1 
jM 

By substitution, (3.88) becomes 

[ ( -1)-1 1 + s 1 tr D 1 = .iM [1 + 
ln( 2!1-l) a3

1 
iM -1 

2j(M-1)ao0 
Mln(2!1-1 ;M 

+ I 1 ln(Zl1-'l)as
1 

• 

(3A.24) 

(3A.25) 

From (3.90),_both the second and third terms can be seen to have 

magnitudes less than 1/2. Therefore, using Maclaurin's theorem 

and neglecting second and higher order terms gives (3A.25) as 

[ ( -1)]-1 ;jM 11 1 + s,tr D = ln(2M-1)as
1 

-

iM 
- ln(2i1-1)as

1
1• 

2j(M-1)as
0 

Mln(2M-1)t.<J> ( 3A.2.6) 

By substituting (3.54) and (3,\.26), the mth of the M-1 elements of 

W , as given in (3.85), is thus s 

lil 1 = s m 
-!Q1l m 

11 
~iM 

mln( 2M-1) - ln\ 2.H;.;;_:.;;1'"")_a_s_
1 

ClR;) _
1 • (1 + ~) • 

Jr1u"' 

2j(M-1 )as0 , 

- Mln(2M-1 !M"1 (3A.27) 

Using Maclaurin's theorem with 6<P~as0 and neglecting second and 

higher order terms then yields 

[ \~ 
-!Q1] m ,iM> 

2j(M-1)as0 jas
0 1 = [1 

t1ln(2M-1 )M] ( 1 +-) s m mln(2H-1) - ln(2H-1 )as
1 

- mt,<P 

-!Q I 'M jaso 2(M-1) 1 
= 1 m {1 - ln(zi:-1 )as1 - M"1Hln(2H-1) - -]) (3A .28) mln(2M-1) m 
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which, together with (3.85), obviously gives rise to (3.96). 

IHth the same arguments as in deriving (3A.22), the Euclid-

ean norm of W , from (3A.28), is s 

IIW 11 s 
1 M- 1 1 2(M-1) 

, 2 ( 2 2) , ----'--'-'---..2 
[ln(211-1 )I m=1 m Mlln(2M-1 )] 

(3A.29) 

in a first order approxiamtion. Similarly, the modulus square of 

[1+s1 tr(D-1 )1-1 is, from (3A.26), 

-1) -1 2 M 2 ( ) 1[1 + s 1tr(D I I • [ln(Z!1-1 )as
1

J • 3A.30 

Clearly, substituting (3A.29) and (3A.30) into (3.87) leads to (3 

• 97). ' 

-3.12.7 Derivation of (3.94) and (3.95) 

By substituting (3A.24) which is derived under the inequality 

~~~as0 , also implied in (3.91), (3.88) becomes 

[1 + 
_

1 
_

1 
ln(2M-1)as

1 s 1tr(D )l , [1 + jM + (3A.31) 

Because of (3.91), the second and third terms can easily be seen 

to have magni tudes less than 1/2. Hence, using 11aclaurin • s theo-

rem and neglecting second and higher order terms gives (3A.31) as 

_1 _1 ln(2M-1)as
1 

[1 + s 1 tr(D ) ] , 1 - jM • (3A.32) 

By substituting (3.54) and (3A.32), the mth of. the M-1 elements of 

W , as given in (3.85), is then s 

jas1 [Q.l 
[W ] , -M' m[1 + 

s m m 

jln(2M-1)as1 
M 1(1 

aso -1 
+ jmM) • 

Using Maclaurin's theorem with ll~~as0 again and neglecting second 

and higher order terms gives 

jln(2H-1)as1 jas, 

M + rtll~ I 
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which, with (3.85), obviously givas rise to (3.94). 

With the ss.me s.rgur.tents as in deriving (3A. 22), the Euclid-

ean norm of I~ , from (3A. 28), is s 

in a first order approximation. 

-1 -1 [1+s1tr(D )] , from (3A.32), is 

( . -1) -1 2 I !1 + s 1 tr D 1 I • 1. 

( 3A. 34) 

Similarly, the modulus square of 

( 3Ao35) 

Substituting (3A.34) and (3Ao35) into (3.87) then gives rise to 
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CHAPTER 4 THE JAMMING REJECTION CAPABILITY OF THE BROADBAND 

TAPPED DELAY LINE POWER INVERSION ARRAY 

4.1 Introduction 

Element 1 2 M 
• • 

d 

/ 

Output 

Fig.4.1 The broadband tapped delay line power inversion array. 

Fig.4.1 shows the broadband tapped delay line power inversion 

[28 291 
' array concerned. It is obtained from fig.2.1 by replacing 

the processing behind each element with a tapped delay line having 

J taps and equal tap spacing To (The use of tapped delay line 

processing in broadband adaptive arrays was first suggested by 

Widrow 11 51• Another broadband processing method is to divide the 

whole band into several equal divisions and use one narrowband 

array processor to process the array inputs within each division. 
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Thus, the broadband adaptive array becomes several similar narro-

wband adaptive arrays in parallel. For convenience, the term "a-

lternative broadband processing" will be used to refer to this 

processing method 1~hich, together with tapped delay line process-

ing, are the two most discussed processing techniques in broadband 

adaptive arrays.) Practically, the tap spacing used will not be 

greater than 1/4f0• For simplicity, this will be assumed so in 

the experimental study in this chapter. Since the objective of 

the power inversion array is to minimize output power, the weights 

w , m=1,; ·, (J.l-1 )J, in the figure will be optimal if the correspo
m 

' nding output power s is at the minimum value of s t' the optimal 
y op 

output power. Two most obvious observations on the use of tapped 

delay line processing on the power inversion array are: (a) As 

with increasing the number of elements, if the number of taps in-

creases, the optimal output power will not increase and most pro-

bably decreases. However, the amount by which it decreases will 

also decrease t~ith increasing number of taps since obviously,· the 

optimal output power cannot be less than receiver noise power. 

(b) Since the optimal output power will evidently increase with 

the bandwidth, so will the number of taps required if the optimal 

output power is to be kept roughly constant at a useful level. 

With any signal processing system, it is of interest to know 

the variation of the best performance obtainable in various situ-

ations. This is particularly true for the array concerned here 

as t<ell as for other systems employing tapped delay line process-

ing, because from such information, the tap spacing and number of 

taps required can be determined for a certain designed bandwidth. 

Then, the bandwidth under which the use of 2-tap delay line or 

with negligible difference, quadrature weighting will be adequate 
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can be determined, Thus, it is possible to determine the number 

of narrowband processors required if the alternative broadband 

is used instead of tapped delay line processing. Furthermore, 

the relative advantage, in terms of the number of variable weights 

required, of the two broadband processing techniques can be camp-

ared. In this chapter, the best performance obtainable from the 

array concerned will be investigated, both theoretically in a qu-

alitative manner and quantitatively using simulation results, in 

terms of the ja~ming rejection capability, in various situations. 

The investigation will be slightly biased towards situations where 

the best performance'obtainable is "worse", as the results obtai-

ned will be applied for the mentioned practical purposes and des-

igns which will be based on assuming that the best performance 

obtainable is to be adequate under all the possible environments. · 

Since the jamming rejection capability, to be discussed shortly, 

is a measure averaged over the entire band, this chapter will 

eventually also study, qualitatively from simulation results,'· the 

distortion in frequency response at various directions due to re-

jecting the jammers. 

In this chapter, the jamming rejection capability will be 

used in synonymous witl. the more technical term 11 Jammer Gain (JG)", 

defined as 

optimal output power assuming no receiver 

Jammer Gain = ~~~~~~~~~~n~o~i~s~e~~~~~~~~~~ element po;1er assuming no rece~ver noJ.se• ( 4.1) 

Clearly, this is also the ratio of the component of output power 

from all the jammers to the total jammer power if the array util-

izes all its ability to reject the jammers. This is therefore a 

measure of the ultimate ability of the array to reject the jamme-

rs. Since the power inversion array has the objective of minimi-
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zing output power to reject the jammers, it is most appropriate 

to measure the best performance obtainable, which will be referred 

to as the performance henceforth in this chapter for convenience, 

by using the optimal output to receiver noise power ratio (ONR). 

Instead, as mentioned in the last paragraph, the JG will be used 

for this purpose because: (a) The ONR depends on one more parame-

ter than does the JG. Specifically, corresponding to the jammer 

to receiver noise power ratios on which the ONR depends, the JG 

depends on the jammer power ratios. (b) Despite this, given the 

JG and element to receiver noise power ratio (ENR), it is possib

le to roughly estimate the ONR and so determine if significant 

improvement in ONR can be obtained by, say, increasing the number 

of taps. As will be explained in more detail in section 4.7, if 

the ENR is much greater than -JG in dB, the ONR will be roughly 

equal to -JG in dB and substantial improvement in ONR will be po-

ssible. On the contrary, if the E~~ is less than -JG in dB, then 

most probably, the ONR will not be much greater than unity and 

substantial improvement in ONR not possible. With the JG as the 

performance measure, the worst performance for a given array is 

obviously measured by the !1aximum Jammer Gain (HJG), given by 

Maximum Jammer Gain 

maximum value of JG over the domain 
= of number of jammers, jammers• direc

tions, jammer power ratios and shapes 
of jammers' power density spectrums. 

{4.2) 

Clearly, in addition to the JG, the MJG will be of particular in-

terest in this chapter since, as implied in the discussion in the 

last paragraph, the practical applications to be discussed will be 

with respect to the worst performance in the worst environment. 

Regarding other detailed studies t;ith similar objectives in 

the literature, Rodgers and Compton[ 631 first investigated the 
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performance of employing tapped delay line processing in broadband 

adaptive arrays. The study was based on a 2-element LMS array[151. 

The investigation by Mayhan[?3l was more general, but was cancer-

ned with only narrowband arrays. The results in both studies, 

though useful, are not applicable to the broadband power inversion 

array of interest here. 

This chapter is organized as follows. Section 4.2 investi-

gates the JG theoretically for small bandwidth by expressing the 

autocorrelationJunctions of the jammers' power density spectrums 

in power series of bandwidth. Although only qualitative deducti

ons are obtained, the derivation is general and can easily be ex-

tended to other similar systems using tapped delay line processi

ng. Sections 4.3, 4.4 and 4.5 then study, in a more detailed and 

quantitative manner using simulation results, the JG of the 2-, 

3- and multi-element arrays respectively. Some of the theoretical 

deductions are verified and the three sections will be based on 

the assumption that all the jammers have flat power density spec-

trums across the whole band. The situations when this assumption 

does not hold are then similarly but briefly studied in section 

4.6. In section 4.7, the results obtained are applied to the pr

actical applications mentioned. Section 4.8 discusses qualitati-

vely using simulation results the frequency distortion introduced 

by rejecting the jammers. Conclusions are drawn in section 4.9. 

Finally, the principal derivations and deductions of this 

chapter were published in [81] • 

4.2 Theoretical Derivation 

In this section, the JG will be studied theoretically by 

assuming small bandwidth and expanding the autocorrelation funct-
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ions of the jammers' power density spectrums in power series of 

bandwidth. The results derived, though mainly qualitative in na-

ture, 'are useful for providing valuable insight and explaining 

many of the quantitative simulation results obtained. Furthermo-

re, most of the derivation can easily be extended to other similar 

tapped delay line processing systems. 

4.2.1 Autocorrelation functions 

To start off the investigation, the autocorrelation functions 

of the jammers' power density spectrums will be expanded in power 

series of bandwidth in this subsection. In accordance with the 

assumptions concerning the environment in section 2.2, fig.4.2a 

shows the power density spectrum Sn(f) of the nth of the N jammers 

s (f) 
n 

0 

Fig.4.2a The nth jammer's power density spectrum S (f) 
n 

Fig.4.2b The spectrum s0n(f) 

corresponding to the nth jam
mer's power density spectrum 
s (f) 

n 

-1 0 

f 

area 1 

f 
1 

Fig.4.2 The power density spectrum Sn(f) and spectrum s
0

n(f) co

rresponding to the nth jammer. The spectrum s
0
n(f) gives the sh

ape of the pot1er density spectrum. 
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with power sn and arriving from direction en. The shape of this 

power density spectrum is depicted by the spectrum s
0

n(f) of fig. 

4.2b with unity power and extending from f=-1 to f=1. For conve-

nience and clarity, the term "spectrum" will henceforth be used 

in this thesis to mean the shape of the associated power density 

spectrum which depends also on the bandwidth and the corresponding 

jammers' or receiver noise power. From fig.4.2, the power density 

spectrum Sn(f) is obviously related to the spectrum s
0

n(f) by 

s 2f 
s (f) 

n 
= -E-rs

0 
( Bf

0 
n 

- 2f.o 
Bf ) 

0 
(4.3) 

The autocorrelation function.Rn(t) of the power density spectrum 

is therefore 

. ( 4.4) 

Expanding the factor cos[2~f0t(1+Bf/2)l in power series of bandw

idth as 

cos[2~f0t(1 + ~f)l = cos2nf0tcos~Bf0tf- sin2~f0tsinnBf0tf 
(nBf0tr) 2 (nBf

0
tr) 4 

= cos2nf0 t + Z! cos(2nf0 t + 11) + 4! cos(21lf
0

t 

< 1TBf
0
tr)3 

+ 211) + · • + (1lBf0tf)cos(21lf0 t + ~) + 
3

! cos(27Tf
0

t 

+ ~) + c 

oo ( 1TBf
0
tf)P 

= 2 , cos(21Tf0 t + ~), 
p=O p. 

(4.4) then becomes 

R (t) 
n (4.6) 
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where 

J
1 

N = s0 (f)fPdf, pn _
1 

n p:O, • • ,oo., 

As given, Mpn is the pth moment of the spectrum s0n(f) about the 

origin and thus, is proportional to the pth derivative of the au-

tocorrelation function of this spectrum at the origin. Evidently, 

(4.6) is essentially a Maclaurin series expansion. 

4.2.2 Output power comnonent due to the nth jammer 

Having expanded the autocorrelation functions of the jamme-

rs' power density spectrums in power series of bandwidth, the eo-

mponent of output power due to the nth of the N jammers will now 

' be derived in this subsection as a sum of square terms by using 

the expansion. 

----T-T ( M-1 )J n---,----
2n 

_T1n-

Fig.4.3 The equivalent filter for the nth jammer. 
To the jammer, the array is equivalent to this 
filter. 

To the nth jammer, the array of fig.4.1 is equivalent to a 

general tapped delay line transversal filter, to be referred to as 

the nth jammer•s equivalent filter for convenience, as shown in 

fig.4. 3. As indicated, T , m=1, • •, (11-1 )J, is the total time demn 

lay from the input to the tapping point for the mth weight and can 

have any, including negative, value depending on the jammer's di-

rection and tap spacing. Note that for clarity, the term "tap 

spacing" always refers to that of the tapped delay lines employed 
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in the array and not to those of the equivalent filters. Defining 

(4.3) 

and 

for notational convenience, the output power component due to the 

nth jammer is, from the equivalent filter, clearly 

s = yn 

(M-1 )J 
l · w w1-~ (T - T1 ). 
1 -0 m n mn n m, -

(4.10) 

From (4.6) and using the binomial expansion, the factor Rn(Tmn

Tfn) is 

R (T ;,. T1n) n mn 

Using the mathematical theorem 

(4.11) 

(4.12) 

where f(z 1,z2 ) is a function of the indices z
1 

and z
2

, (4.11) be-

comes 

R (T - T1 ) n mn n 

M 
p+Q 

(11Bf )p+q 
n 0 T PT q 
p!q! mn ln 
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(4.13) 

Substituting this into (4.10), the output pa>rer component due to 

the nth jammer is therefore 

s yn 
00 0 --

"' s L M (w w + w '~ ) n 0 pqn cpn cqn spn sqn 

where 

' 
w cpn 

w spn 

and 

p,q= 

(M-1 )J 

"' L w (Bf0T )Pcos(2nf
0

T !.E) 
o-m mn mn + 2 ' me 

(M-1 )J . 
!.E) = l w (Bf0T )Psin(2nf

0
T + 

0 m mn mn 2 m" 

p+q 
"' !.._M p!q! p+q ' q=O, • • ,<»., n 

(4.14) 

p:::O, ... ,oo' (4.15) 

(4.16) 

( 4~17) 

Evidently, wcpn and w are linear combinations of the weights spn 

and proportional to BP, with the suffiX c and s signifying the 

cosine and sine factors respectively. 

In matrix form, (4.14) can be written as 

s yn = s ( 
n 

+ 

wcOn 

w c1n 

w s1n 

'~cOn 

"c1n 
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where T denotes transpose, Since N° , from (4.17), satisfies pqn 

the matrices in (4.18) with M0 as elements are symmetrical and pqn 
can be decomposed as 

0 0 0 JP T. 0 0 0 Moon 11o1n 
. . 11oon OOn 

1 1 0 0 0 0 0 1111n 1112n (4.20) M10n M11n = H10n 1110n + 
1 1 0 1121n 1122n 

where 

(4.21) 

0 Obviously, the decomposition depends on Moon being nonzero. That 

this is so can be seen from (4.7) and (4.17) which give Mgon as 

unity. However, to decompose the last term of (4.20) in the same 

1 way, it is necessary to investigate the possible values that M
11

n 

may take. Deleting all except the first two rows and columns of 

(4.20) gives 

+ [~ M~ ]· 11n 

Consider now the quadratic form obtained from the l.h.s.: 

[ ]
T[MO Jp ][ ] 1 

2 1 OOn '•o1 n 2 1 0 
= ZZJ'l • 

z2 JP MO z2 L =0 P q pqn 
10n 11n p,q 

Using (4.7) and (4.17), this becomes 

1 
l z z M 

0 P q pqn p,q= 

1 p+qz z J1 
= L w D 9 s (f)fp+qdf 

0 p !q! 
1 

On p,q= -

J
1 1 (nf)Pz 

2 = ( \ 
1 

D j SO (f) df 0 

1 Lo P. n 
- P= 
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Clearly, this is non-negative. Furthermore, since the square fa-

ctor can only be zero (without z1 and z
2 

being zero together) at 

one frequency at most, the quadratic form will be positive defin-

ite unless the jammer's spectrum is composed of only one discrete 

narrowband component: 

(4.25) 

where d( •) is the delta function and f 1 gives the frequency of the 

narrow band component. In this special case, 1P p,q=O, •• ,'"_, is pqn' 
given, from (4.7) and (4.17), by 

(4.26) 

and thus, (4.20) becomes· simply 

0 
Moon 

0 
1101n 

·c 1Tf1 ,o-~"'(7ff1 ,o. T 

0 0 0! 0! 
M10n 1111n = 1 ' 1 ( nf 

1
) (nf

1
) 

(4.27) 

1! 1 ! 

• L • L -
which implies that the last term in (4.20) is zero. Apart from 

1 
this special case, H11 n will be positive since the quadratic form 

of (4.24) and hence (4.22) are positive definite. Therefore, the 

same decomposition for the l.h.s. can be applied to the last term 

of (4.20) yielding 

0 0 0 0 T 
0 0 T 

MOOn M01n 
. . 11

oon 
11
oon 

1 1 0 0 1 0 0 1 1111n M11n (4.28) 111on H11n =o- 1110n 1110n +~ 
1100 M11n 1 '11 1121n '21n 

0 0 0 0 
0 0 0 0 

0 0 
2 2 

H22n 1123n + 2 2 0 0 !13? 11
33n . -n 
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---------------------------------------------------------------

where 

(4-.29) 

1 Clearly, the same arguments for investigating M11 n can be applied 

2 
to M22n to determine if the last term of (4.28) can be similarly 

decomposed. As to be expeci;ed, the deduction is that the last 

term will be zero if the jammer•s spectrum consists of only two 

discrete narrowband components. Otherwise, ~2n will be positive 

and further decomposition can be performed. Evidently, the entire 

arguments can be applied repetitively so that eventually, (4.20) 

becomes a sum of dyads: 

T 0 0 . 
0 MOOn M01n I 0 0 "' 1 0 

1110n 1111n == 2 u 
U=O Mu I uun 

0 

(4.30) 

• 

u 
where M , u=1,•·,"', p,q=u, ~·,"", can be obtaine.d from the recur-pqn . 

sive equation 

= Mu-1 
pqn 

Mu-1 Mu-1 
p u-1 n q u-1 n 

Mu-1 
u-1 u-1 n 

( 4. 31) 

u 
and M is positive. Of course, if the jammer's spectrum is co-uun 

mposed of only a number, say S, of discrete narrowband components, 

only the first S dyads in (4.30) will be present and the index u 

range from only 0 to S-1. Considering this as a special case in 

the remaining derivation in this section, (4.18) becomes, by sub-

stituting (4.30), 

- 95 -



s yn = (4.32) 

which gives the output power component due to the nth jammer as a 

sum of non-negative square terms. 

4.2.3 Jammer Gain 

Having decomposed the,output power component due to the 

nth of the N jammers as a sum of square terms, this subsection 

will study the JG using the decomposition and assuming small ban-

dwidth. 

From (4.32), the output power, with no receiver noise, is 

(4. 33) 

With wcun' U=O,' • •""• and. wsun proporfional to Bu, this is essent

ially a power series of bandwidth. Obviously, if the band,~idth 

tends towards zero, the output power will be dominated by the te

rms with the least po1~er of bandwidth and will be smaller when 

this least power of bandwidth is'larger. Thus, with w and w cun sun 
being linear combinations of the weights, the optimal weights must 

be such that this least power of bandwidth is as large as possib-

le. Consider, therefore, the output power of (4.33) being repre

sented by terms proportional to B2(U-1 ) or less, U=1,··,"": 

s 
y = 

U-1 
2 

U:O 

N s U-1 
l -!;_[(2Hu w )2 

1 l,u pun cpn n= ·1 P=U uun 

U-1 2 + (\Mu w p ) 1. 
L plln s n 

P=U 

Clearly, if the 2NU linear equations on the weights, 

w = w = 0, u=O, .. ,U-1, n=1, .. ,N, cun sun (4.35) 

are not all satisfied, (4.34) 1dll not be zero and the output po-

2(U-1) wer will not be proportional to more than B for small band-
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width. On the contrary, if the weights satisfy.: .. these 2NU equa

tions, (4.34) will be zero and thus, the output pow_er, from (4.33), 

will be given by 

"' 
s = 2 

y U=O 

N s "' 
\ n ( \ Mu W )2 

n~ 1 ~ p~U pun cpn + 
uun 

and will be proportional to_at least B2u. Therefore, if V is such 

that the weights can satisfy the 2NV equations of 

w = w = 0, U=O,·•,V-1, n=1,··,N, cun sun (4.37) 

but cannot satisfy the 2N(V+1) equations of 

w = w = 0, u=O, • • ; V, n=1 , • • , N, . cun sun 

simultaneously, the output power can be proportional to B2V but 

cannot be proportional to more than B2v, implying that the optimal 

output power will be proportional to B2v. Since there are (M-1)J 

weights, V is normally given by 

V _ (H-1 )J 
- L 2N J 

where LzJ is the smallest integer larger than or equal to z. In 

a functional form, the optimal output power at zero receiver noise 

and for small bandwidth is thus 

s = f(M,J,r,N, {s }, {9 }, {H })B2L(H-1)J/2NJ 
opt n n pn (4.40) 

where f(z1,z2,··,zzl denotes a function of the parameters z
1

, z
2

, 

• • and zZ' while {s } , {e } . and {11 } give the sets of jammers• 
n n pn 

p011ers, directions and spectrums respectively. By substituting 

(4.40) into (4.1), the JG for small bandwidth is hence 

s 
JG = f(l1 J r N {~} {9 } {M } )B2L(I1-1 )J/2NJ 

' ' ' ' sN ' n ' pn (4<41) 

where {s /s,,} is the set of jammer power ratios and for convenien h 
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nee, will be taken to have elements s 1/sN' s 2/sN' •• and sN_1/sN. 

, t B2L ( H-1) J/2NJ Examining (4.41), the ~ac or i~ most interes-

ting because it relates the array performance to bandwidth, the 

number of jammers and the number of degrees of freedom. Since, 

for small bandwidth, it is the dominating factor in the equation, 

the following qualitative deductions can be made. (a) Variation 

of tap spacing gives rise to relatively small change in performance 

as compared with varying the number of taps in which the index of 

the dominating factor changes. (b) As discussed earlier, better 

performance is generally obtained from increasing the number of 

degrees of freedom. Of-course, better performance will also res-

ult if the number of jammers is decreased such that the index of 

the dominating factor is increased, although intuitively, this is 

expected to be so even when the index does not change. In any 

case, the change in performance due to changes in the number of 

jammers and/or degrees of freedom will be more significant if the 

index changes as a result. (c) The performance improvement from 

increase in the index becomes less as the bandwidth, the base of 

the dominating factor, increases. (d) Since the number of jammers 

will not be greater than the number of spatial degrees of freedom, 

the minimum value for the index is 2LJ/2J and is obviously assd-

ciated with situations where the performance is worse. In part-

icular, from (4.2) and (4.41), the HJG is 

MJG = f(M,J,'T)B2 LJ/ZJ (4.42) 

for small bandwidth. (e) The inefficiency, in terms of the number 

of weights required, of the odd-tap array in ;rorse situations wh-

ere the index has the minimum value of 2LJ/2J is obvious as incr-

easing the number of taps of an even-tap array by one leads to the 

same index. 
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In the derivation of (4.40), it is essential that, with V 

given by (4.39), the weights are able to satisfy (4.37) but not 

(4.38). As mentioned, this is normally the case. The other t~10 

rare possibilities will now be discussed. The first possibility 

is that the weights are able to satisfy, not only (4.37), but also 

(4.38). Obviously, the optimal output power will now be proport-

ional to 2L(M-1 )J/2NJ . . more than B , hence ~mply~ng better performa-

nee. Situations associated with this possibility include those in 

which all the jammers can be perfectly nulled as, for instance, 

when there is only one jammer arriving from broadside. Such sit-

uations can clearly be included in (4.41) as special cases where 

the function f(H,J,••) is zero. Other situations associated with 

this possibility will be pointed out in later sections when disc-

ussing simulation results. The second possibility is that with 

(4.39) giving V, the 2NV equations of (4.37) are inconsistent and 

so cannot be satisfied simultaneously. Clearly, the optimal output 

than B2L(H-1)J/2NJ, power will now be proportional to less implying 

performance deterioration. This possibility is associated with 

the trivial situations where the number of jammers exceeds the nu-

mber of spatial degrees of freedom so that the output power of (4. 

33) cannot be equal to zero even if only the terms proportional to 

0 
B are present as when all the jammers 1 spectrums consist only of 

discrete narrowband components at the centre frequency. As an ex-

ample of non-trivial situations associated with this possibility, 

consider a 4-tap array in a 2-jammer environment. From (4.41), 

2(M-1) . . the JG is proportional to B , wh1ch ~s usually the case. Ho-

wever, with c denoting the \~ave velocity, if one of the jammers 

arrives from the direction 
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9 • -1(c'f) = -sJ.n -
d (4.43) 

so that, from fig.4.1, the time delay of the input due to this 

jammer at the mth of the H elements relative to that at the first 

element is (M-1)'1", then the equivalent filter of fig.4.3 for this 

jammer will become the one shown in fig.4.4. Clearly, the equiv-

alent filter, which normally has 4-(H-1) separate tapping points, 

is now degenerated into one with only M+2 separate 'tapping point-

-r{Dr@ ...!.... L!jl L!:J 

()'1 )w2 -- )w3 c)w4 ( 

)w5 w6 ( w7 )"18 
' 

()w9 )
110 ( w11 

w13 ( w14 -
. ( w17 

. 

"'(M-1)J 

+ + .;t, -:!; ----0 - - +:)----

Fig.4.4 
when the 

The equivalent filter for a jammer arriving from sin-1(c'f/d) 
array has 4 taps. 

s, meaning that at most 1-!+2 degrees of freedom can be directed 

towards rejecting this jammer. By considering the terms in (4.33) 

associated with only the nth of the N jammers and using the argu-

menta that followed, the output power component due to the nth 

jammer can easily be seen to be proportional to B2U if and only if 

w = w = o, U=O,··,U-1, cun sun (4.44) 

which normally requires 2U degrees of freedom. Evidently, for the 

JG to be proportional to B2(l1-1 ), 2(H-1) degrees of freedom are 

usually needed per jammer. Hence, if 2(M-1) is greater than J.l+2 

or M is greater than 4, it is most probably that the JG will not 
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. 2(11-1) . . 2L(H+2)/2J be proport1onal to B but :Lnstead pro:port:Lono.l to B , 

because even with the maximum of H+2 degrees of freedom directed 

towards rejecting the jammer from the direction of (4.43), the 

output power component due to this jammer is :proportional to only 

B2 L(M+ 2)/2 J at most. Generally, it has been found that only if c, 

given by 

minimum value of numbers of separate tapping points of 
C = the jammers• equivalent filters, not counting the fil- ( 4 •45 ) 

ters whose input points coincide tdth some of the tap-
ping points 

minimum value of numbers of degrees of freedom that can 
be directed tO\{ards each of the jammers, neglecting the 

= jammers that can be_perf~ctly nulled individually because 
the input points of the associated equivalent filters 
coincide with some of the tapping points, 

is less than 2V as tihen M is greater than 4 in the example just 

discussed, the 2NV equations of (4.37) can be and are most proba-

bly inconsistent. The JG will then be limited by the maximum nu-

mber of degrees of freedom that can be directed towards rejecting 

the jammers giving rise to C and so proportional to B2LC/2J. Note 

that as expressed in (4.45), the evaluation of C excludes tha ja-

mmers that can be perfectly nulled individually.· This is obviou-

sly because if the maximum numbers of degrees of freedom that can 

be directed to reject these jammers are used, the output power 

components due to these jammers will be zero and so the JG cannot 

be limited by these jammers. In other 11ords, these jammers cannot 

lead to the inconsistency of the 2NV equations of (4.37). However, 

as implied in the general statement, there are also a few other 

situations where, with C less than 2V, the JG is proportional to 

2LC/2J more than B and hence, better performance than expected re-

sults. In particular, one situation where the 2NV equations of 

(4.37) are still consistent despite 2V is greater than C will be 
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pointed out in section 4.4. 

From the considerations of the last paragraph, the JG of 

(4.41) should be more precisely written as 

JG = 

3 I 

f(M J ,. N {·..!!} {e } {M })B2L(H-1)J/2NJ 
' • ' ' s ' n ' pn ' 

2 (!1-1 )J LC 
L 2N J-N 

2. (M-1) J J.C 
L 2N J 

(4.46) 

except for a few situations in which the index of the dominating 

factor is greater than the values given and the performance is 

better. From (4.45) and fig.4.1, the minimum value for C is eas-

ily seen to be l1+J-2 when the environment includes a jammer arri-

ving from the direction of (4.43) so that the associated equival

ent filter has the same structure as that of fig.4.4. Thus, from 

(4.46), 

maximum value of JG over the domain of jammers 1 

directions, spectrums and jammer power ratios 

= 

f(M,J,'T",N)B2L(H-1)J/2NJ, 

f ( H, J, '!", N)B2 L( H+J-2)/2J' 

2 (H-1 )J LH J-2 
L 2N J- + 

2 (N-1 )J J.f.l J-2· 
L 2N J + 

(4.47) 

Evidently, when the number of elements greatly exceeds the number 

of jammers, there exists many worse situations in which the index 

of the dominating factor 2 L01+J-2)/2J is much smaller than 2 L(M-1) 

J/2NJ,.that obtained if the number of elements is roughly equal to 

the number of jammers, keeping the total number of weights (M-1)J 

constant. Thus, if the maximum number of jammers to be anticipa-

ted is much smaller than the number of elements, the tapped delay 

line array of fig.4.1 can be very inefficient in terms of the nu-

mber of weights required unless the array structure is modified by 

using, for example, different tap spacings and numbers of taps for 

the delay lines so that the minimum value for C is increased. 
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These modifications will not be investigated. 

Finally, note that for simplicity, all the discussion so far 

in this subsection has been without regard to the situations men~ 

tioned in the last subsection when some of the jammers' spectrums 

are composed of only finite numbers of discrete narrowband compo~ 

nents. Clearly, since the output power in these cases will still 

be given by (4.33) except that the index u now ranges from zero to 

some finite values for such jammers, all the above analysis and 

arguments are easily extended to these few situations. In parti-

cular, the index of the dominating factor in these cases is easily 

seen to be not smaller than that in the corresponding general si

tu~tions discussed above. Evidently, (4.46) can be considered as 

applicable g~nerally, except for a few special situations where 

the index of the dominating factor has larger value. 

Summarizing, by expressing the autocorrelation functions of 

the jammers' power density spectrums in power series of bandwidth 

which is then assumed to be small, the JG has been derived to have 

the form of (4.46), with C given by (4.45). Normally, the condi~ 

tion 2L(M-1)J/2NJfC is valid and the array devotes 2L(H-1)J/2NJ 

degrees of freedom to reject each jammer, resulting in the JG being 

proportional to B2 L(M-1 )J/2NJ. However, because of the fairly 

symmetrical processing structure of fig.4.1, it may also happen 

that the array is not able to direct 2l(H-1)J/2NJ degrees of fre-

edom towards rejecting the jammer should it arrive from certain 

directions so that many of tapping points of the associated equi

valent filter of fig.4.3 coincide. The JG in such cases, specif

ied by 2L(M-1)J/2NJ:,c, is proportional to only B2LC/2J. In addi-

tion to the usual situations, there are also a few other special 

situations, for example, when some of the jammers' spectrums con-
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sist of only a few discrete narrowband components, in 1~hich the 

index of the dominating factor in (4.46) has smaller value and the 

performance is hence better. Lastly, although the deductions in 

(a)-(e) are derived from (4.41), they are obviously v1orded to be 

applicable in general. 

4.3 Two-Element Array 

Having investigated the JG theoretically but qualitatively 

in the last section, the quantitative study of the JG by using 

simulation results will now be started. First, the 2-element ar-

ray will be discussed in this section, with the 3- and multi-ele-

ment arrays to be discussed in the next two sections. The discu-
~ 

ssion in the three sections will be based on the assumption that 

all the jamm;rs' spectrums are flat. Note that for convenience, 

flat spectrum means flat across the whole band. The assumption is 

of course for reducing the dimension of the investigation, although 

the spectrums assumed obviously have practical significance. Thus, 

since the jammers do not normally know the array frequency band 

precisely, the best jamming source may be a wideband noise over 

the entire suspected frequency band. Hence, the jammer•s spectrum 

with respect to the array after bandpass filtering will then be 

roughly flat over the'whole band, especially if the bandwidth is 

small. In addition, it also appears intuitively plausible that 

the jammers' spectrums assumed will lead to worse performance wh-

ich as mentioned in section 4.1, is of more interest. Neverthel-

ess, some simulation examples with other jammers' spectrums will 

be discussed in section 4.6. As may be expected, the principal 

results obtained there are very similar to those of this and the 

next two sections. 
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For the 2-element array, N is equal to only 1 and from (4. 

45), C is equal to J. Thus, (4.47) becomes simply 

Some typical simulation results obtained for examining and verif-

ying this as well as some of the theoretical deductions in the 

last section will now be pr~sented and discussed for the 2-element 

array. 

For general discussion as well as to verify the B2 LJ/2J de

pendence, figs.4.5-4.7 show graphs of JG against jammer's direct

ion at bandwidths of 5, 10, 20 and 40%. The tap spacing used is 

1/4f0 and the number of taps being 2, 3 and 4 for figs.4.5, 4.6 

and 4.7 respectively. All the graphs indicate that better perfo-

rmance results t<hen the jammer's direction is positive. Further-

more, the difference in JG for positive and negative jammers' di-

rections becomes more pronounced as the number of taps increases. 

This can be explained by referring to the jammer's equivalent fi

lter of fig.4.8, easily obtained from the array of fig.4.1. Cle-

arly, if the jammer arrives from a positive direction, the tapping 

points are "nearer" to the input point and consequently, better 

performance results. In particular, for sin&
1 

less than 1 and 

such that 

dsin&1 
U'l" = c 

where u equals o, 

one of the tapping 

and is depicted by 

and 90° in all the 

1 ' 
.. or 

points. 

the dips 

curves. 

(4.49) 

J-1, the input point will coincide with 

Perfect nulling will then be possible 

at the jammers' directions of 0°, 30° 

In contrast, when the jammer's direc-

tion is negative, all the curves flatten to plateaus which can be 
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Fig.4.5 Graphs ef JG against jammer•s direction at bandwidths of 5, 10, 
20 and 40% for a 2-element, 2-tap array with 1/4f

0 
tap spacing. 
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Fig.4.6 Graphs of JG against jammer' s direction at various band1~idths 
obtained for the situations of fig.4.5 but with the array having 3 taps. 
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Fig.4.7 Graphs of JG against jammer•s direction at various bandwidths 
obtained for the situations of fig.4.5 but with the array having 4 taps. 

Fig.4.8 The jammer•s equ
ivalent filter when the 
array has only 2 elements. 

-dsin6,fc 

regarded as regions of worse performance. 2 
The B dependence for 

the 2-tap array can be seen from the 6dB difference between adja-

cent curves, with band1~idths differing by a factor of 2, in fig. 

4.5. Similarly, the B
4 

dependence for the 4-tap array can be seen 

from the 12dB difference between adjacent curves in fig.4.7. Li

kewise, the curves in fig.4.6 for the 3-tap array show the B2 de-

0 pendence except at jammer•s direction closed to -90 • At this 

direction, adjacent curves differ by 12dB and by comparing with 

fig.4.7, the JG actually equals that of the 4-tap array. This is 

one of the special situations 1~here the index of the dominating 
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factor in (4.46) has larger values and so better performance res-

ults. Specifically, with V given by (4.39), this situation is one 

in which the (M-1)J weights are able to satisfy, not only (3.37), 

but also (3.38) •. From figs.4.5-4.7 and other similar results, the 

2LJ/2J . B dependence has been found to be val1d, apart from a few 

special cases like the one just discussed, for bandwidth up to 

about 40%. For larger bandwidth, it has been found that the spa-

cing between adjacent curves decreases and thus, the performance 

does not deteriorate as rapidly as predicted by (4.48). 

To study the variation of performance with number of taps, 

fig.4.9 shows graphs of JG against jammer's direction for arrays 

with 2-6 taps at 20% bandwidth and 1/4f0 tap spacing. The gener

al characteristics of the curves are obviously as discussed. In 

the regions of worse performance, the curves for the even-tap ar-

rays are equally spaced by the same amount as that for the odd-tap 

arrays. Furthermore, the curves for the 3- and 5-tap arrays are 

only slightly below those for the 2- and 4-tap arrays respect~vely, 

except for jammer's direction near to -90° and 90°. For the reason 

discussed in the last paragraph, the 3- and 5-tap arrays have the 

same JG as the 4- and 6- tap arrays respectively at the jammer•s 

direction of -90°. The difference between the curves for the 2-

and 3-tap arrays at the jammer 1 s direction of 90° is because, from 

(4.49), the 2-tap array cannot have a perfect null at 90° while 

the 3-tap array can. The superiority of the even-tap array is 

obvious from these observations. 

To study the variation of performance with tap spacing, fig. 

4.10 shows graphs of JG against jammer•s direction for a 4-tap 

array with 40% bandwidth at tap spacings of 1/4f0 , 1/5f0 , 1/6f
0 
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Fig.4.10 Graphs of JG against jammer's direction at tap spacings of 
1/4f0 , 1/5f0 , 1/6f0 and 1/8f0 for a 2-element, 4-tap array with 40% 

bandwidth. 
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and 1/8f0• Again, the curves have the same general characteristics 

as discussed. Furthermore, for positive jammer's direction, the 

performance can be seen to be better if the tap spacing is roughly 

1/6f0 or when the total length of the delay line is about 1/2f0 so 

that from (4.49), the 4 perfect nulling directions are approxima

tely uniformly distributed between 0 and 1 in the sine domain. 

For larger tap spacing, one or more of the perfect nulling direc

tions are outside the range of physical significance, that is, 

corresponding to sine greater than 1, and thus the performance is 

worse. However, if the tap spacing is reduced so that the perfect 

nulling directions move·towards the broadside direction, the per

formance near broadside will be enhanced at the expense of perfo

rmance deterioration at jammer's direction near to.90°. In cons

trast, when the jammer•s direction is negative, decreasing tap 

spacing all1ays leads to better performance, although the improve

ment is negligible for jammer's direction near to -90° when the 

performance is the worse. In.particular, the maximum values of 

the curves differ by less_ than 1 or 2 dB. 

Last but not least, table 4;, 1a summarizes ··the worst perfor

mance of the 2-element array when the jammer's spectrum is flat. 

Specifically, tabulated as a function of bandwidth and number of 

taps, the JGs shown are the maximum values over the domain of ja

mmer's direction. Note that these values are obtained for the 

maximum envisaged tap spacing of 1/4f0 since from the observations 

in the last paragraphs, they are only 1 or 2 dB above the values 

should smaller tap spacing be used. Also, the table is concerned 

with only even-tap array because, from fig.4.9 and other simulat

ion results, the values sho·.m 'dll roughly equal those even if the 

number of taps is increased by one. lfith these considerations, 
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the results in table 4.1a are easily seen to lead to the important 

generalization 

maximum value of JG for the 2-element, J-tap 
array with tap spacing ~ and bandwidth B when 
the jammer 1 5 spectrum is flat 

, 1.6(0.8B) 2 LJ/2J. 

Number of taps Number of taps 
2 4 6 8 2 4 6 8 

5 -26 -53 -81 5 -23 -47 

10 -20 -4__1 -6 3 10 -17 -35 -54 

20 -14 -29 -45 -60 20 -11 -24 -37 -50 

40 ' -8 -18 -27 -37 40 -5. -12 -20 -28 

Balldwidth(%) Bandwidth(%) 

Table 4.1a ~-element array Table 4.1b 3-element array 

Number of taps Number of taps 
2 4 6 8 2 4 6 8 

5 -19 -44 5 -18 -40 

10 -14 -32 -51 10 -12 -29 -52 

20 -8 -20 -33 -57 20 -7 -19 -32 -55 

40 -3 -10 -17 -24 40 -2 -11 -17 -25 

Bandwidth(%) Bandwidth(%) 

Table 4.1c 4-element array Table 4.1d 5-element array 

Table 4.1 Maximum values of JG when all the jammers 1 spectrums 
are flat. These values are obtained at the maximum envisaged tap 
spacing of 1/4f0 , but are only a few dB above the values for sma-

ller tap spacing. Furthermore, although only even-tap array is 
concerned, the values shown are roughly those should the number 
of taps be increased by one. 

4.4 Three-Element Array 

Having investigated quantitatively in more detail the perf-

ormance of the 2-element array using simulation results, similar 

study on the 3-element array will now be carried out in this sec-
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tion. 

For the 3-element array, C can easily be seen from fig.4.1 

and the definition of (4.45) to have, in addition to the normal 

maximum value of 2J, the possible values of 

C = J+ u, u=1,··,J-1, uc-r.(;d, 

when the jammer which gives _rise to C arrives from the direction 

. -1(UC'T) e = -stn d. 

Thus, since the only non-trivial values for N are 1 and 2, 

can be written as 

2J f(J,-r,a1 )B , N=1; 2J.(;C 

2LC/2J 
JG = f(J,-r,e1 >s , N=1, 2J~c. 

s1 2LJ/2J 
f(J,-r,s

2
,a1 ,a2 )B , N=2 

(4.52) 

(4.46) 

(4.53) 

\~ith objectives similar to the investigation of the last section, 

some typical simulation results on the 3-element array will now be 

presented and discussed. 

The variation of array performance with jammer power ratio 

can be investigated with reference to table 4.2. This shows th~ 

JG as a function of jammers 1 directions and jammer power ratio for 

a 4-tap array array with 20% bandwidth and 1/4f0 tap spacing. The 

four entries, reading downwards, in each "direction cell" defined 

by the jammers 1 directions correspond to jammer power ratios of o, 

5, 10 and 15dB, s 1 bein~:> the stronger jammer. Entries with "XX" 

represent program failure due to negative computed JG values, that 

is, situations where all the jammers are roughly perfectly nulled. 

Obviously, when the stronger jammer's direction is positive, inc

reasing the jammer power ratio usually leads to slightly better 

performance. This is in accordance with the deduction in section 
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-26 -25 -27 -33 -43 ~so XX -11 -·t8 -56 -4·1 
-25 -25 -27 -33 -13 -52 -\34 -'15 -19 -56 -·t3 
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si_,.,(8:2) n•_:.le ~ XX c'en.•)tes ;J"'GrY'"'IJ.~\1 c-allu,..e. 

Table 4.2 Variation of JG against jammers' directions at various 
jammer power ratios when two jammers are present. The array has 
3 elements, 4 taps, 1/4f0 tap spacing and 20% bandwidth. Reading 

downwards, the four entries in each direction cell correspond to 
jammer power ratios of o, 5, 10 and 15dB, with 51 as the stronger 
jammer. 
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3.3 that the performance is better if the jammer 1 s direction is 

positive. On the other hand, virtually no change in performance 

from increase in jammer power ratio can be seen when the stronger 

jammer•s direction is negative. These observations have also been 

obtained from other simulation results. Since worse performance 

is of more interest, all the simulation results to be presented in 

this section will be for the case of equal jammer powers. 

2LJ/2J A·s an example to verify the B dependence in (4.53) 

when two jammers are present, table 4.3 shows the variation of JG 

with jammers' directions and bandwidth for a 2-tap array with 1/4f
0 

tap spacing. The entries in_each direction cell now correspond to 

bandwidths of 5, 10, 20 and 40%. The B2 dependence can be seen 

from the 6dB difference between adjacent entries in all the non-

diagonal cells. The corresponding 1-jammer example is shown in 

fig.4.11 using the same array. Except at the jammer's direction 

0 
of -30 , the curves can be seen to be separated by 12dB. Further-

more, comparing with fig.4.7 shows that the 3-element 2-tap.array 

has very similar performance to the 2-element 4-tap array when the 

jammer•s direction is negative. At the jammer's direction of -30°, 

however, the curves become discontinuous and peak. In fact, only 

6dB difference can be found bet\'leen adjacent curves and the JG 

actually equals that of the 2-element 2-tap array. These observ-

ations clearly verify the bandwidth power dependence in (4.53) for 

the 1-jammer situation, the dominating nature of this dependence 

as well as the possible inefficiency of the tapped delay line st-

ructure of fig.4.1 when the number of jammers is much less than 

the number of elements. Together with other simulation results, 

the bandwidth power dependence, at various tap spacing and number 

of taps, has been proved to about 40% band~<idth when one or two 
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-25 -'12 c22 -20 -19 -18 -17 -IS -J 9 -21 -25 
-I 9 -3C -IS -, ·: -~~ -12 -11 -12 -i3 - 1 :i -19 
-13 -18 -13 -8 -8 -6 -6 -7 -8 -3 -13 

-.5 -25 -28 -55 -25 -26 -25 -25 o• -25 -25 -25 • L 0 
-1S -22 -43 -20 -23 -19 -18 -20 -lS -JS -1S 
-1 3 -16 -3i -) -": -1 ·: -13 -13 -1 ·' -13 -1 3 -13 

-8 -13 -20 -9 -8 -7 -7 -8 -8 -7 -8 

- • 4 -23 -26 -26 -62 -23 -29 -30 -23 -26 -21 -23 
-17 -28 -20 -5G -23 -23 -2-1 -23 -20 -18 -17 
-· 11 -' ·: -1<1: -3C -17 -17 -18 -17 -1~ -12 -11 
-5 .c8 -3 -26 -11 -12 -13 -11 -8 -7 -5 

-.2 -23 -25 -26 -29 -77 -·11 -3~1 -32 -3C -26 -23 
-I 7 -19 -20 -23 -65 -35 -33 -25 -21 -20 -I 7 
-11 -I·": -14 -17 -53 -29 -27 -20 -18 -1 ·' -11 

-6 -8 -8 -11 -11 -23 -21 -15 -12 -8 -6 

- .0 -23 -21 -25 -29 -11 XX -46 -4·1 -39 -27 -23 
-17 -18 -19 -23 -35 -127 -·W -38 -33 -21 -17 
-- I \ -12 -13 -1 7 -29 XX -3.tr -32 -27 -1:J -11 
-6- -6 -7 -12 -23 XX -28 -25 -21 -13 -6 

.2 -21 -23 -25 -30 -38 -16 -131 -31 -2~ -25 -21 
-18 -17 -19 -21 -33 -18 -89 -25 -23 -13 -15 
-12 -11 -13 -15 -27 -31 -77 -28 -17 -1 ,, -12 
-6 -5 -7 -13 -21 -28 -65 -15 -12 -8 -6 

4 -25 -21 -25 -29 -32 -11 -31 -92 -26 -26 -25 
-19 -18 -20 -23 -26 -38 -25 -78 -21 -20 -19 
-13 -· \ 2 -'I A -17 -23 -32 -28 -56 -15 -1 ·' -13 

··8 -7 -8 -11 -1~ -26 -1~ -51 -12 -9 -8 

.5 -28 -25 -25 -26 -3G -39 -29 -26 -77 -29 -28 
-22 -19 -13 -28 -2·1 -33 -23 -21 -S3 -23 -22 
-16 -) 3 -13 -1·"' -18 -27 -17 -16 -53 -15 -16 
-·I I -5 -8 -8 -12 -21 -12 -12 -·11 -15 -11 

.8 -32 -27 -25 -2·~ -26 -27 -25 -26 -23 -51 -32 
-26 -21 -19 -1G -2e -21 -13 -23 -23 -19 -25 
-22 -1~ -13 -12 -1-': -15 -I ·' -1 -~ -18 -31 -22 -]··: -3 -7 -7 -8 -12 -8 -3 -15 -25 -.1 ·: 

1 • (j -51 -3i -25 -23 -23 -23 -2·1 -25 -26 -32 -51 
-12 -25 -13 -17 -17 -17 -18 -19 -22 -26 -'12 
-3() -13 -13 ··11 -11 -11 -12 -13 -16 -28 -30 
-18 -13 -8 -5 -6 -6 -5 -8 -11 -I,, -18 

.si1(8::) ne; le?.; XX den'.Jt.t?s ~;cg,...a:n .cailu:e. 

Table 4.3 Variation of JG against jammers' directions at various 
bandwidths when two jammers are present. The array has 3 elements, 
2 taps and 1/4f0 tap spacing while the jammers have eq_ual powers. 
Reading downwards, the four entries in each direction cell corres-
pond to bandwidths of 5, 10, 20 and 40%. 
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Fig.4.11 Graphs of JG against jammer 1 s direction at bandwidths of 5, 
10, 20 and 40% for a 3-element, 2-tap array with 1/4f

0 
tap spacing when 

only one jammer is present. 

jammers with equal powers are present. For jammer power ratios of 

10 and 20dB in the 2-jammer situation, however, the bandwidth po-

wer dependence is valid to only about 30 and 15% bandwidths resp-

actively. For larger bandwidth, increase in bandwidth, as for the 

2-element array, causes less performance deterioration than that 

predicted by (4.53). 

With similar format to tables 4.2 and 4.3, table 4.4 shows 

the typical variation of performance against number of taps when 

two jammers are present. The numbers of taps for the four entries 

in each direction cell are 2, 3, 4 and 6, whereas the bandwidth 

and tap spacing used are 20% and 1/4f0 respectively. Neglecting 

the diagonal direction cells, the 2-tap array has very uniform 

.performance with respect to the jammers• directions. The perfor-

mance of the 3-tap array is very similar to the 2-tap one, apart 

from having much better performance when both the jammers• direc-
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-1 .2 -.9 -.6 -.4 -.2 .a 0 4 c .il I .0 .~ .. , 

-1 .0 -30 -19 -13 -I I -!I -l i -12 -13 -16 -20 -30 
-''r6 -20 -13 -11 -J-1 -27 -17 -16 -15 -23 -30 
-"16 -28 -2-~ -2·1 -25 -27 -28 -29 -3! -32 -30 
-62 -10 -37 -37 -·12 -13 -"1-1 -45 -17 -17 -·18 

- 5 -19 -3D -16 -1 ·: -)·; -12 -1 1 -12 -13 -15 -18 
-20 -16 -18 -1 ·~ -1~ -15 -13 -13 -1·~ -15 -22 
-28 -63 -29 -29 -29 -27 -27 ~2s -29 -30 -3 i 
-·18 -73 -·11 -11 -•f5 -13 -12 -13 -11 -45 -16 

-.6 -13 -16 -3i -1-: -1~ -13 -13 -10: -13 -13 -13 
-13 -18 -51 -1S -15 -1 -~ -1': -1~ -13 -H -17 
-21 -23 -70 -30 -29 -2C -29 -29 -29 -30 -30 
-37 -11 -70 -16 -15 -41 -15 -15 -15 -45 -15 

-.4 -11 -1·: -1 -~ -38 -17 -17 -18 -17 -1~ -12 -11 
-11 _,,~ -19 -61 -22 -20 -20 -17 -15 -1~ -17 
-21 -23 -30 -78 -32 -3~ -35 -33 -31 -3i -32 
-37 -·)) -16 XX -18 -se -51 -19 -18 -18 -·18 

-.2 -11 -1.; -1-7 -17 -53 -29 -27 -20 -18 -1~ -11 
-t-: -15 -15 -22 -79 -32 -27 -22 -20 .-19 -22 
-25 -29 -29 -32 -95 -16 -13 -38 -37 -37 -3G 
-·10 -45 -45 -18 XX -63 -59 -55 -55 -55 -ss 

.0 -11 -12 -13 -17 -29 XX -34 -32 -27 -15 -11 
' -27 -15 -1·; -20 -32 -1 1~ -3'! -35 -35 -27 XX 

-27 -27 -28 -31 -16 -118 -55 -56 -54 -19 XX 
-"'!3_ -13 -11 -50 -63 XX -7·1 -75 -75 -71 -126 

.2 -12 -11 -13 -18 -27 -31 -77 -20 -17 -1': -12 
-17 -13 -1~ -20 -27 -39 -113 -32 -32 -56 -21 
-28 -27 -29 -3~ -13 -55 XX -13 -'17 -56 -16 
-"'r1 -"'t2 -'!5 -51 -59 -71 XX -62 -67 -71 -66 

. '• -13 -12 -1"': -17 -20 -32 -20 -66 -16 -1·~ -13 
-16 -13 -1-: -17 -22 -38 -32 -113 -71 -27 -17 
-29 -28 -29 -33 -38 -56 -43 -122 -72 -50 -18 
-'15 -43 -45 -19 -55 -75 -62 XX -'C 7 -76 -72 

.6 -16 -13 -13 -1'7 -18 -27 -17 -16 -53 -18 -16 
-18 -1·' -13 -15 -22 ~35 -32 -71 -132 -26 -17 
-31 -29 -29 -31 -37 -54 -~7 -72 -122 -17 -45 
-17 -·11 -'\5 -18 -55 -75 -67 -87 -117 -7C -72 

.8 -20 -15 -13 -12 -1'7 -15 -1-: -1-1 -18 -37 -20 
-23 -15 -1"7 -1·~ -19 -27 -56 -27 -26 -81 -22 
-32 -30 -30 -3; -37 -49 -58 -50 -17 -125 -35 
-47 -·15 -45 -18 -55 -71 -71 -76 -70 -119 -68 

1 .2 -31] -19 -13 -11 -1 I -11 -12 -13 -16 -20 -30 
-30 -22 -17 -17 -22 XX -21 -17 -17 -22 XX 
-30 -31 -30 -32 -3E XX -46 -19 -"r5 -35 XX 
-"r6 -46 -45 -48 -56 -126 -66 -72 -72 -6S -125 

sir~<82 ) notE>: XX c~ruJlt?~ pr(~grar~ .cai lu,....t?. 

Table 4.4 Variation of JG against jammers' directions at various 
numbers of taps when two jammers are present. The array has 3 
elements, 20% bandwidth and 1/4f0 tap spacing while the jammers 
have equal powers. Reading downwards, the four entries in each 
direction cell correspond to numbers of taps of 2, 3, 4 and 6. 
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Fig.4.12 Graphs_of JG against jammer•s direction with numbers of taps 
of 2, 3 and-4 for a 3-element, 1/4f0 tap spacing array at 40% bandwidth 
when only one jammer is present. 

tions are positive. As the number of taps increases, the perform-

ance becomes more nonuniform with the jammers• directions and much 

better performance results when all the jammers• directions are 

positive. Comparing the performance of the 2-, 3- and 4-tap arrays 

shows the inefficiency of the 3- or odd-tap array in general when 

all the spatial degrees of freedom ere utilized. Fig.4.12 sho\fS 

the typical variation of performance with number of taps tfhen one 

jammer is present. 2- 1 3- and 4-tap arrays with 40% bandwidth and 

1/4f0 tap spacing are used. Apart from the points of discontinui

ty, the curves are roughly equally spaced and thus, increasing the 

number of taps always leads to significant performance improvement. 

The curve for the 4-tap array shows two points of discontinuity at 

the jammers' directions of -30° and -90° 1 in agreement with (4.51) 

-(4.53). However, the 3-tap array curve has only one point of di-
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scontinuity at -30°, although according to (4.51)-(4.53), there 

should he another point of discontinuity at -90°. The missing of 

this point of discontinuity corresponds to the special situation 

mentioned· in section 4.2 where, with V given by (4.39) and 2V gr

eater than c, the 2NV equations of (4.37) are still consistent and 

so no significant performance deterioration results. At the jam

mer's direction of -30° 1 both the 3- and 4-tap arrays have the 

same performance and from (4.51) and (4.52) 1 give rise to equal 

LC/2J of 2. Clearly, the dominating nature of the bandwidth power 

dependence is again illustrated. 

In similar format to tables 4.2-4.4, table 4.5 shows the 

ty9ical effects of varying tap spacing when two jammers are pres

ent. The foyr entries in each direction cell now correspond to 

tap spacings of 1/4f0 , 1/5f0 , 1/6f0 and 1/10f0 for a 4-tap array 

with 20% bandwidth. Clearly, in the region where one or both of 

the jammers' directions are negative, the performance improves 

only slightly when the tap spacing is decreased. In particul~r, 

the ~aximum values of JG for the four sets of results do not dif

fer by more than 3dB. When both the jammers' directions are pos

itive, however, decreasing tap spacing can lead to improvement or 

deterioration in performance depending on the jammers• directions. 

Thus, if one of the jammers is near to broadside and the other 

arrives from a positive direction, decreasing tap spacing always 

gives rise to better performance, whereas if both the jammers' 

directions are positive and far from broadside, decreasing tap 

spacing usually results in performance deterioration. On the l<h

ole, the best average performance is for tap spacing of around 

1/6f0 , that is, when the total length of the delay line is roul)h

ly 1/2f0 • These observations are obviously similar to those in 
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-82 ~zs -25 -26 -27 -28 -28 -23 -38 -3i - 3C' 
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-.2 -25 -29 -29 -32 -95 -16 -13 -3C -Ti -37 -3C 
-27 -29 -30 -31 -9~ -51 -15 -12 -42 -43 -'iS 
-28 -28 -3i -36- -83 -54 -48 --16 -46 -18 -·':7 
-28 -29 -33 -3S -se -62 -55 -ss -ss -se -'11 

.2 -27 -27 -28 -3·t -15 -11 c -55 -ss -54 -49 XX 
-28 -27 -30 -37 -51 XX -51 XX -59 xv -54 
-27 -ZG -31 -39 -54 XX -72 -73 -70 -62 -123 
-27 -3C -Jij -'15 -52 XX XX XX -127 -53 --re 

0 -28 -27 -29 -3'5 -43 -55 XX -'13 -17 -58 -15 . " 
-28 -28 -3; -37 -·1-5 -51 XX -53 -58 -55 -51 
-28 -28 -32 -39 -·18 -72 XX -66 -67 -53 -47 
-2[ -31 -JS -"r-1 -5'3 XX -l 19 XX -55 -43 -35 

-'' -29 -28 -23 -33 -3C -ss -43 -122 -72 -50 -"rS 
-29 -28 -3i -35 -12 XX -53 '\X -55 XX -•[·1 
-23 -29 -32 -37 -··~s -7 3 -56 XX -66 -•17. -37 
-28 -31 -38 -43 -55 XX XX -125 -4-1 -38 -Ji 

.6 -3 i -29 -23 -31 -31 -54 -·17 -72 -122 -'17 -•!5 
-30 -23 -31 -3'3 -":2 -53 -56 -55 -13C -·!·'! -3~ 
-30 -JC -32 -37 -•iS -72 -57 -ss XX -38 -32 
-3() -32 -3S --':3 -55 -127 -55 - '1··: XX -33 -38 

. [; -32 -30 -30 -3l -37 -";9 -56 -50 -47 -125 -3'5 
.. 3 j -30 -3i -35 -'iJ XX -53 XX -"f i XX -32 
--3Q -3~ -33 -37 -•:8 -62 -53 -•i7 -38 -112 -3i 
--30 -32 -36 -·12 -50 -53 - ·13 -JS -33 -97 -J; 

l .0 -3~ -Jj -3D -32 -3£ \X --15 -49 -15 -35 XX 
-3~ -30 -3i -3') -"r~ -5<1 -51 -·1-~ -3') -32 -12S 
-30 -3C -32 -3 i --'.? -123 -'\7 -3'7 -32 -3 i -11 s 
-JQ -3i -34 -3C -·11 -·H~ -3') -3i -33 -31 -33 

Sl:"\(8:2) '10te, XX c'ef'<Jtes ;:F"'Cl].,..'J.:n CO.llU""'t?, 

Table 4.5 Variation of JG against jammers• directions at various 
tap spacings when two jammers are present. The array has 3 elem-
ents, 4 taps and 2096 bandwidth while the jammers have equal pOI•fe-
rs. Reading downwards, the four entries in each direction cell 
correspond to tap spacings of 1/4r0 , 1/5f0 , 1/6f0 and 1j1or0• 
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Fig.4.13 Graphs of JG against jammer's direction at tap spacings of 1/ 
4f0 , 1/5f0 and 1/6f0 for a 3-element, 2-tap array with 40% bandwidth 

when only one jammer is present. 

the last section for the 2-element array. Fig.4.13 shows the ty-

pical effects of varying tap spacing when one jammer is present. 

A 2-tap, 40% bandwidth array is used at tap spacings of 1/4f
0

, 1/ 

5f0 and 1/6f0• Clearly, as the tap spacing decreases, the perfo-

rmance for negative jammer's direction improves, but at the expe-

nse of performance deterioration for positive jammer's direction. 

Furthermore, in accordance with (4.51)-(4.53), the point of disc-

ontinuity shifts towards the broadside direction, resulting in 

better performance at this point. Obviously, if the performance 

is limited by points of discontinuity, significant improvement in 

performance can be obtained by decreasing tap spacing. 

Last but not least, table 4.1b, as table 4.1a, summarizes 

the worst performance of the 3-element array when all the jammers' 

spectrums are flat. Note that, as can be expected from the resu-

lts presented in this section, the worst performance tabulated is 
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always associated with 2-jammer environments so that the spatial 

degrees of freedom are fully utilized. Also, as with the 2-elem-

ent array, only even-tap array is concerned because, from table 

4.4 and other simulation results, the values shown are roughly 

equal to those should the number of taps be increased by one. 

Furthermore, the values shown are for the maximum envisaged tap 

spacing of 1/4f0 , since from the last paragraph, they are only a 

few dB above the values for smaller tap spacing. With these con-

siderations, the results of table 4.1b can easily be seen to give 

rise to the generalization 

maximum value of JG for·the 3-element, J-tap 
array with tap spacing ~ and bandwidth B when 
all the jammers' spectrums are flat 

= 1.3(1.3B)zt,J/ZJ. 

4.5 Multi-Element Array 

All the deductions in the last two sections regarding the 2-

and 3-element arrays have been based on studying a large number of 

examples encompassing virtually all the possible situations. This 

is of course not practical for large number of elements because of 

the increase in the number of parameters requiring investigation 

and furthermore, the computer CPU time for calculating the JG is 

roughly proportional to the cube of the number of weights. Thus, 

for number of elements greater than 3, the performance charcteris-

tics were studied in only some believe-to-be· typical situations. 

These simulation examples will not be presented since they give 

rise to similar deductions and characteristics about the array 

performance as discussed in the last two sections. Specifically, 

all these simulation examples illustrate the following observati-

ons and deductions: 
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(a) In situations where the number of extra spatial degrees of 

freedom is relatively large, there exists a few environments, 

corresponding to points of discontinuity mentioned in the last 

section, associated with 2L(M-1)J/2NJ1C in (4.46) in which the 

performance is much worse than the normal performance when 

2L(M-1)J/2NJ~C. In these few environments, the tapped delay 

line structure concerned is relatively inefficient, in terms 

of the number of weights used, to reject the jammers. 

(b) Worse performance is associated with environments where the 

spatial degrees of freedom are fully or nearly fully utilized 

so ,that the index of the dominating factor in .(4.46) has the 

, minimum value of 2LJ/2J. 

(c) Worse pe~formance is associated with environments where the 

jammers are widely separated and at least some arrive from 

negative directions. 

(d) Better average performance results when the jammers have wid

ely different powers, although the performance in worse e~vi

ronments is virtually independent of the jammer power ratios. 

(e) Odd-tap array is inefficient in worse situations. Particula

rly, in the worst situations, the JG remains roughly the same 

even though the number of taps of an even-tap array is incre

ased by one. 

(f) The array has best average performance if the total length of 

the delay line is about 1/2f0 • In contrast, the performance 

in worse environments improves, though by only a few dB, as 

the tap spacing decreases. 

(g) The bandwidth power dependence in (4.46) is valid to about 40% 

bandwidth in worse environments. In general, however, the 

domain of validity decreases as the jammer power ratios, the 
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number of taps, the number of extra spatial degrees of freed-

om and the number of elements increase. For bandwidth above 

the domain of validity, better performance than predicted by 

(4.46) usually results. 

(h) As tables 4.1a and b, tables 4.1c and d summarize the worst 

performance of the 4- and 5-element arrays respectively. Due 

to the increasing number of parameters and computer CPU time 

mentioned, the latter two tables were obtained more crudely 

than the former two which are based on examining virtually 

every possible environment. Specifically, deductions (b)-(f) 

above have been used to r.edu ce the domain of maximization. for 

obtaining the worst performance. Thus, in accordance with (b) 

and (d), the jammer power ratios have been taken to be equal, 

with·the number of jammers equal to the number of spatial de-

grees of freedom. Also, from (e) and (f), only even-tap array 

has been considered and the maximum envisaged tap spacing of 

1/4f0 used, since the results obtained are still applicable, 

with perhaps a few dB above the actual values, should the nu-

mber of taps be increased by one or the tap .spacing be decre-

ased. Then, by examining the JG calculated at the griding 

points of the "grid" of jammers' directions in the region of 

worse performance suggested by (c), tables 4.1c and d were 

obtained. Clearly, corresponding values in the two tables 

differ by no more than a few dB and thus, similar to those in 

tables 4.1a and b, lead to the generalization 

maximum value of JG for the 4- and 5-element 
arrays with bandwidth B, tap spacing ~ and J 
taps when all the jammers 1 spectrum are flat 

• lf(1.3B)2LJ/2J • 

(4.55) 

The worst performance for arrays with more than 5 elements has 
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also been studied briefly from a few simulation examples. It 

has been found that the worst performance obtained is roughly 

the same as that in tables 4.1c and d. Therefore, it will be 

postulated that table 4.1c, d or (4.55) describes the Norst 

performance of arrays with more than 3 elements. 

Evidently, deductions (a)-(g) above have been worded such 

that all the important observations and deductions in the last two 

sections are also implied. Therefore, summarizing the quantitative 

investigation when all the jammers• spectrums are flat, (a)-(g) 

above are the general deductions regarding the performance while 

table 4~1 or the generalizations of (4.50), (4.54)· and (4.55) gives 

th~ worst performance. Lastly, it is obvious that all these ded

uctions as w~ll as the more specific comments in the last two se

tions are in agreement with the theoretical derivations and dedu

ctions of section 4.2. 

4.6 Other Jammers• Spectrums 

The array performance has been studied quantitatively in the 

last three sections by assuming that all the jammers have flat 

spectrums. In this section, the situations when this is not so 

will be briefly examined by using some typical simulation results. 

v/ith the theoretical derivations in section 4.2 being inde

pendent of the jammers' spectrums, it may be expected that the 

deductions from the last three sections are also applicable even 

when the spectrums are not all flat. In similar manner as the 

last three sections, the variation of JG with the various parame

ters was studied in some believe-to-be typical and illustrative 

situations where, instead of flat spectrums, some jammers have 

some of the spectrums, of fig.4.14. A few situations where the 

spectrums assume other shapes were also investigated. Generally, 

= 
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Fig.4.14c 11 Square-la1~" spectrum Fig.4.14d "Half-flat" spectrum 

Fig.4.14 The other most studied spectrums. 

the results obtained agree with the theoretical derivations of se-

ction Lf.2 as well as the deductions of the last three sections. 

This being the case, most of the results obtained will not be pre-

sented and discussed. Instead, for illustrating purpose, a few 

examples which demonstrate the important bandwidth power dependence 

in (4.46) and compares the typical characteristics of having diff-

erent spectrums tdll be discussed. 

Figs.4.15 and 4.16 show the same set of curves as fig.4.6 but 

with the jammer having triangular and half-flat spectrums respect-

ively. Obviously, comparing the three figures indicates that alt-

hough the spectrums are very different, the bandwidth power depen-

dence in (4.46) is still valid to about 40% bandt;idth. Specifica-

lly, all the conments regarding fig.4.6 in section 4.3 are also 

applicable to figs.4.15 and 1+.16, except that the decrease in JG at 
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the jammer's direction of -90° in figs. 4.6 and 4.15 has shifted 

slightly, in proportional to bandwidth, to the left in fig.4.16. 

This is because, with a half-flat spectrum, the jammer•s power de

nsity spectrum will be flat across the whole band should the array 

operate at the frequency of f 0(1+B/4) over an absolute bandwidth 

of f 0B/2. Thus, effectively, the array element spacing d is decr

eased by a factor of (1+B/4}. Since the JG depends on dsin91 ins

tead of sin91 se that as d increases, sin9
1 

has to be decreased to 

keep dsina1 constant, the shifting mentioned results. Correspond

ing to table 4.3, table 4.6 shows the results obtained when s
1 

and 

s 2 have triangular and half-:lat spectrums respectively. Obvious

ly, adjacent entries in the diagonal and non-diagonal cells differ 

by 12 and 6dB respectively, verifying again the band~tidth power 

dependence in (4.46) to about 40% bandwidth. 

To compare the typical characteristics of various jammers' 

spectrums, fig.4.17 shows graphs of JG against jammer's direction 

for a. 2-element, 2-tap, 20% band~tidth, 1/4f
0 

tap spacing array wi

th the jammer having flat and the four spectrums of fig.4.14. Cl

early, with approximately constant spacings between curves, the 

variation of JG with jammer•s direction is quite independent of 

the jammer•s spectrum. Furthermore, as the jammer concentrates 

its power from the centre to the edges of the band, that is, as 

the jammer•s spectrum becomes more peaky at the band edges rather 

than at the band centre, the performance deteriorates, though by 

only a few dB. In particular, the performance for inverted-tria

ngular and square-law spectrums is >1orse than that for flat spect

rum. Table 4.7 shows the variation of JG against jammers' direct

ions for a 3-element, 2-tap, 1/4f0 tap spacing, 10% bandwidth arr

ay 1;hen b;o jammers having equal po\<ers are present. The spectrum 
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but with s1 and s2 
ectively. 
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Fig.4.17 Graphs of JG against jammer's direction with the jammer having 
square-law, inverted-triangular, flat, triangular and half-flat spectr
ums for a 2-element, 2-tap, 1/4f0 tap spacing array at 20% band\~idth. 

for s 1 is flat, while the four entries in each direction cell are 

associated with s 2 having flat and the spectrums of figs.4.14a-c. 

Again, like fig.4.17, the performance can be seen to deteriorate, 

though by only a few dB, as s2 concentrates its power from the ce

ntre to the edges of the band. Fig.4.18 sho\~S the same set of cu-

rves as fig.4.17, but with the 2-element array having 4 taps and 

40% bandwidth instead. Again, the variation of JG \dth jammer's 

direction can be seen to be roughly independent of the jammer's 

spectrum. Comparing \~i th fig.4.17, the difference between the c-

urve associated with half-flat spectrum and the other curves is 

increased. \Vith the array having r10re taps, this results essenti-

ally from the bandwidth power dependence in (4.46) as the actual 

bandwidth of half-flat spectrum is halved that of the other spect-

rums. Apart from this, note that with more taps, the performance 
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Table 4.7 Variation of JG against jammers 1 directions for various 
jammers• spectrums when t~<o jammers are present. The array has 3 
elements, 2 taps, 1/4f0 tap spacing and 1096 bandt<idth t<hile the 
jammers have equal pot<ers. The spectrum for s1 is flat, while re-
ading d 01~n11ards, the four entries in each direction cell correspo-
nd to s2 having square-law, inverted-triangular, flat and triangu-
lar spectrums. 
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Fig.4.18 Graphs of JG against jammer's direction for various jammers' 
spectrums obtained in the situations of fig.4.17 but with the array hav
ing 4 taps and 40% bandwidth. 

variation resulting from having different spectrums is decreased. 

Furthermore, unlike the 2-tap array, the performance improves as 

the spectrum becomes more peaky at either the band edges or the 

centre of the band. In particular, amongst all the spectrums, fl-

at spectrn is now associated 11ith roughly the 110rst performance. 

All these observations and deductions are also generally confirmed 

by other simulation results. Therefore, within a few dB above the 

actual values when the number of taps is small, the results of ta-

ble 4.1 or the generalization of (4.50), (4.54) and (4.55), obtai-

ned when all the jammers' spectrums are flat, can be taken as giv-

ing the MJG defined in (4.2). Thus, combining (4.50), (4.54) and 

(4.55) leads to 

MJG • b (b B)ZLJ/ZJ 
1 2 

where 

(4.56a) 
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1.6, M=2 

b1 = 1.·3, ~1=3 

4, HCI.3 

and 

o.8, M=2 

(4.56b) 

(4.56c) 

Evidently, this has the form of (4.lf2) derived theoretically in 

section 4.2. 

Summarizing, it has been found that in general, the array 

performance is fairly insensitive to the jammers 1 spectrums and 

that worst performance is associated with all the .jammers• spectr

um~ being roughly flat. In addition to the theoretical derivatio

ns of section 4.2, the deductions of the last sections are there

fore still applicable even when the jammers' spectrums are not all 

flat. In particular, based on the generalization of (4.50), (4,54) 

and (4.55) obtained from the results of table 4.1, the MJG of (4. 

56) was derived. 

4.7 APplications of results 

Having studied the array performance in terms of the JG in 

the last five sections, this section will discuss the various pra

ctical applications mentioned in section 4.1 by using the results 

obtained and requiring that the performance be satisfactory under 

all the environments to be envisaged. First, however, the relati

onship between JG and ONR, briefly discussed in section 4.1, need 

and will be discussed in more detail. 

As discussed in section 4.1, the array performance is most 

suitably measured by the ONR and the JG is used for this purpose 

because it is independent of receiver noise power and closely rel

ated to the Otffi. Fig.4.19a shows the usual typical variation of 

= 
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Fig.4.19 
JG. 

the point of associated 
discontinuity with the 

environment 

Variation of ONR ~ri th ENR when the environment. is cl os
of the relatively few associated with points of discont-

Variation of ONR ~rith ENR sho~dng the relationship with 

ONR with element to receiver noise power ratio (ENR) and illustra-

tes the relationship between ONR, ENR and JG. For very small ENR 

roughly between 0 and 3dB, the total jammer power is less than re-

ceiver noise power. Thus, in this trivial region, the optimal we-

ights will be predominantly determined by receiver noise and the 

0~~ roughly equal to OdB. In particular, for ENR of OdB, implying 
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that no jammer is present, the optimal weights will be equal to 0 

and the ONR equal to OdB. As the ENR increases, the jammers will 

become dominant. The optimal weights will then be determined pri

ncipally by the necessity to reject the jammers and secondarllyby 

the presence of receiver noise. As indicated in fig.4.19a for 

ENR roughly between 3dB and -JG in dB, the power inversion array 

is able to devote part or all of its degrees of freedom to reject 

the jammers without the output po,~er component due to receiver no

ise being exces~ive. Therefore, in this region, the optimal outp

ut power and so ONR are due mostly to receiver noise and increase 

in small steps as shown, each step being due to the switching of 

degrees of freedom originally "tied" up with receiver noise towar

ds rejecting-the jammers. In other words, as the ENR increases so 

that the component of ONR due to the jammers increases and tends 

to be significant, the array will direct more degrees of freedom 

to further reject the jammers. As a result, although the jammers 

are further rejected, the number of degrees of freedom tied up wi

th receiver noise is decreased and so the ONR, due mostly to rece

iver noise in this region, increases slightly in a step-like mann

er as the degrees of freedom are switched over. Of course, if the 

degrees of freedom can easily be switched over, that is, with the 

ONR component due to receiver noise increased only very slightly, 

or if the switching over takes place gradually, the step increases 

may not be observable and the curve appears to be smoother. Even

tually, if the ENR is increased so that it becomes greater than 

-JG in dB (which gives the jamming rejection capability of the ar

ray), the jammers cannot be rejected to below receiver noise power 

even when all the degrees of freedom are employed for their r~jec

tion. Hence, the array will use all its degrees of freedom to re-
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ject the jammers but even so, the rejection is not satisfactory 

and the optimal output power vlill still be mostly due to the jamm

ers, resulting in the curve of fig.4.19a to increase drastically 

with gradient 1. Clearly, the performance can and will be consid

ered as inadequate if the ENR is greater than -JG in dB. The abo

ve discussion has been found from simulation results to be applic

able in all situations except when the external environment is cl

osed to the relatively fevr where 2L(H-1 )J/2NJ~C in (1>.46) and 

associated with~points of discontinuity discussed in section 4.4. 

From the discussion in previous sections, a point of discontinuity 

is due'to the inability of the array to direct more than a certain 

maximum number of degrees of freedom towards rejecting one of the 

jammers and ~esults from the coinciding of some of the tapping po

ints of the equivalent filter of the jammer concerned. Of course, 

in the neighbourhood of the point of discontinuity, these coincid

ing tapping points will become separated, though only slightly. 

Thus, although the JG in the neighbourhood of the point of discon

tinuity is much smaller than that at the point of discontinuity, 

it is obtained with the array using also some of the 11\wuld-be

inapplicable" degrees of freedom to reject the jammer concerned 

and so associated with the weights having large magnitudes. The 

typical variation of ONR 1dth ENR in these situations is therefore 

that shown in fig.4.19b. For ENR less than the value of -JG in dB 

at the point of discontinuity, the jammers can still be well reje

cted by using the degrees of freedom that are still applicable at 

the point of discontinuity and hence, with the same behaviour as 

in fig.4.19a, the ONR increases only slightly with ENR. However, 

for larger ENR, some of the 1-lould-be-inapplicable degrees of free

dom are also needed to reject the jammer giving rise to the point 
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of discontinuity and this leads to the optimal weights having lar

ge magnitudes and so significant increase in the ONR component due 

to receiver noise and thus ONR itself. Hence, as the ENR increas

es, the ONR increases significantly in large steps as sho1m. The 

reason for the step increase is the same as that discussed for fig. 

4.19a• One difference, however, is that in the usual situations 

of fig.4.19a, the Sl~itching of degrees of freedom to further reje

ct the jammers usually occurs when the ONR component due to the 

jammers is still much smaller than that due to receiver noise. 

Because of the heavy penalty of switching the would-be-inapplicable 

degrees of freedom, this is not so here. Eventually, if the ENR 

is increased above the point where even with all the degrees of 

freedom used for rejecting the jammers, the optimal output power 

is still dominated by the jammers, the curve of fig.4.19b, like 

that of fig.4.19a, will increase with gradient 1. Since the ONR 

has increased significantly, the ENR at which this takes place is 

considerably greater than -JG in dB. Obviously, in the few situ

ations of fig.4.19b, the performance can and will be considered as 

inadequate if the ENR is greater than the value ·of -JG in dB at 

the point of discontinuity. The JG associated with the situation, 

however, does not have much physice.l significance. Therefore, ai

though the array has zero probability to be in environments corre

sponding to points of discontinuity, the JG for these environments 

is not trivial because of the effect of receiver noise. Evidently, 

the above discussion regarding the relationship of orrn, ENR and JG 

justifies the use of JG instead of ONR as the performance measure. 

Fig.4.20 shows some typica~ simulation results investigated 

to verify the discussion of the last paragraph. Fig.4.20a shows 

graphs of ONR against E!ffi for a 3-element, 2-tap, 1/4f0 tap spaci-
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Fig.4.20c Variation of ONR and its components with ENR at the jammer's 
direction of -40°, closed to the point of discontinuity 

Fig.4.20 Variation of ONR and its components with ENR at various jamm
ers• directions for a 3-element, 2-tap, 1/4f0 tap spacing array with 20% 

bandwidth when one jammer 11ith flat spect:rum is present. 

0 ng array with 20% bandwidth at the jammers' directions of -40 , 

0 0 0 
-30 , -20 and 50 when one jammer having flat spectrum is present. 

Fig.4.20b shows the same graph at the jammer's direction of 50° 

and also its components due to the jammer and receiver noise, whi

le fig.4.20c shows those at the jammer's direction of -40°. Also 

drawn on the figures are broken lines giving the values of -JG in 

dB in each environment. Note that the graph of JG against jammer's 

direction in fig.4.11 for this situation has a maximum at the jam

mer's direction of -30°, the only point of discontinuity. Clearly, 

the curves in fig.4.20 at this jammer•s direction and at the jamm

er•s direction of 50°, far from the point of discontinuity, have 

characteristics as discussed for fig.4.19a 1 whereas those at the 

jammers' directions of -20° and -40°, closed to the point of disc-
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ontinuity, agree with the discussion regarding fig.4.19b. Specif-

ically, -for the former two jammers' directions, the ONR increases 

drastically and the performance becomes inadequate if the ENR is 

greater than roughly -JG in dB. Furthermore, for the jammer's di

rection of 50°, the ONR is principally due to receiver noise when 

as depicted by the two troughs in the curve due to the jammer in 

fig.4.20b, the degrees of freedom are switched towards rejecting 

the jammer. On the other hand, for the latter two jammers' direc-

tions, drastic increase in ONR and performance inadequacy occur 

for ENR greater than roughly the value of -JG in dB at the point 

of disc'ontinuity. Moreover, the curves in fig.4.20c have the same 

characteristics as that of fig.4.20b, except that the switching 

over of the would~be-inapplicable degrees of freedom now takes pl-

ace when the ONR is due principally to the jammer. 

From the discussion of the above tl~o paragraphs, it is evid-

ent that if the array is to have adequate performance in all envi-

ronments with ENR less than a designed maximum E!-.'R ( MENR), th('l HE 

NR should not be greater than the value of -MJG in dB: 

1 
MJG L 'M£NR• (4.57) 

Using (4.56a), the minimum number of taps required for a particul-

ar bandwidth and MENR is then 

log( b1 MENR) 
J " -ZL 2log(b

2
B) J 

where b1 and b2 are given in (4.56b,c). Fig.4.21 shows the varia-

tion of the number of taps required with bandwidth at 20 and 40dB 

MENR. (4.56b,c) and (4.58) are used with the operation L•J negle-

cted for convenience. As can be derived from (4.58), the number 

of taps required can be seen to increase fairly linearly with MENR 

in dB and bandwidth. 

= 
- 140 -



N·-<"''Lh'" r_,c 
~n,:>., r;>':,JU~r<>d 

''1 
) -~ ! 

i 
! 

'2.) 

i 
,J 
! 

S! 

' s_: 

j. 2.-l:'l,.....,er;t (l,...f"'(t.j 

" 3- i>lt>...,.?nt o,...r"--1 
1\rr(I.,;S '<11\.h "1';).-,:. 
lho.-. '3 ~·l.;o.n.,.<"'!tS: 

5 

... - ~.;..:'u i''CM? 
·1(:.:8 1'[/Ji.> 

~- --

/ 
/ / 

--

--------------,.-------·-------~-------~ 
: :i 20 ::s 30 3'5 1C 

Fig.4.21 Graphs of number of taps required against bandwidth at 20 and 
40dB !1ENR, obtained using (4.56b,c) and (4.58) with. the operation L·J 
neglected. 

Using again (4.56a) and the principle expressed by (4.5?), 

the maximum bandt~idth for adequate performance of arrays using 2-

tap delay lines or with negligible difference, quadrature weighti-

ng is 

1 
(4.59) 

Therefore, if the alternative broadband processing method discuss-

ed in section 4.1 is to be employed, the number of narrowband pro-

cessors required is 

(4.60) 

where JN is obviously the number of weights per element for this 

processing method. Note that strictly, in deriving (4.60) from 

( 4. 59), it has been .assumed implicitly t;-,at the array element po>r-

er as seen by each narrot;band processor is the same. This is obv-
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iously the case when, for example, all the jammers have flat spec-

trums. -In cases when this is not so and (4.60) is used, some of 

the narrov1band processors may be "overloaded" while some may be 11 

underloaded". However, even in the extreme case where all the ja-

mmers' powers are concentrated into just one processor with the 

other processors seeing no jammer, the final ONR is easily deduced 

to be not very different from that should all the jammers have fl

at spectrums. Hence, (4.60) can and will be taken as applicable 

generally. From (4.58) and (4.60), the relative advantage of usi-

ng tapped delay line and the alternative broadband processings, in 

terms of the number of weights required, is obviously reflected in 

the ratio 

JN -Bbz(b1 HENR) 
1

/
2 

~" Llog(b1HENR)/2log(b2B)J" ( 4. 61) 

Again, neglecting the operation L•J and using (4.56b, c), fig.4.22 

shows the variation of this ratio with bandwidth at 20 and 40dB 

HENR. Note that from (4.61), the ratio JN/J can easily be se~n to 

be roughly independent of b2 «hile proportional to the square root 

of b1 , accounting, with (4.56b,c);' for the large difference bet\~e

en the curve corresponding to more than 3 elements and the other 

two curves at the same HEh~. Clearly, the array using the altern-

ative broadband processing becomes more inefficient relatively as 

the HENR and for bandwidth less than about 20%, the bandwidth inc-

rease. For larger band«idth, increase in band«idth does not lead 

to much change in the relative efficiency. As an example, for ba-

nd1~idth and HElm greater than about 20% and 20dB respectively, the 

array «ith tapped delay line processing uses at most half the num-

ber of weights as that 11hen the alternative broadband processing 

is employed. 
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weights required with the alternative broadband processing to 
tapped delay line processing, The curves are obtained using 
and (4,61) with the operation L·J neglected. 

Summarizing, this section has discussed in more detail the 

relationship between arm, ENR and JG. From the discussion,. the 

array performance was deduced to be adequate in general unless the 

ENR is greater than roughly -JG in dB. However, when the environ-

ment is closed to one giving rise to a point of discontinuity, the 

performance becomes inadequate if the ENR increases above roughly 

the value of -JG in dB at the point of discontinuity. Thus, by 

using (4.56), the number of taps required such that the performan-

ce is adequate under all environments ~lith ENR less than the desi

gned HEtffi value was derived to be given by (4.58) or graphically, 

fig,4.21, Similarly, the number of narro>Iband processors required 

with the alternative broadband processing was derived to be given 

by (4.60), Comparison of the alternative broadband and tapped de-

lay line processings in terms of the number of variable weights 
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required is therefore given by (4.61) or graphically, fig.4.22. 

Incidentally, although the tap spacing for the latter processing w-

as not discussed in this section, the best tap spacing, from the 

discussion in previous sections, is obviously such that the entire 

length of the delay line is about 1/2f0 to give the best average 

performance. 

4.8 Frequency Distortion introduced by rejecting the Jammers 

The previous sections have investigated the performance of 

the array using~he measure JG which only gives information avera-

ged over the entire band. The investigation is useful for the va-

rious practical applications discussed in the last section. Howe-

ver, with the direction of the desired signal being u~<nown a pri-

ori to any reasonable degree of accuracy in many communication pu-

rposes involving the power inversion array, it is also of interest 

to determine the amount of frequency distortion at various direct-

ions due to employing the optimal weights to reject the jammers. 

Note that frequency distortion as used here refers to any departu-

re from the ideal frequency response of which the amplitude and 

phase responses are independent of and proportional to frequency 

respectively, that is, that associated with a pure time delay. 

The purpose of this section is therefore to briefly and qualitati-

vely investigate, using some typical simulation results obtained, 

the variation of array response, as a function of frequency and di-

rection, with the various parameters when tl1e optimal weights are 

employed. Because of the inefficiency of odd-tap array discussed, 

the discussion in this section will be limited to the even-tap ar-

ray. 

Firstly, for general discussion, fig.4.23 sho;Ts the amplitu-
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Fig.4.23 Array response against frequency and direction for a 2-element, 
4-tap, 1/4f0 tap spacing, 20% bandwidth array with 30dB ENR. The jammer 

arrives from -20° and has flat spectrum. 

- 145 -



de and phase responses plotted as contour maps against frequency 

and direction when one jammer with flat spectrum arrives from -20°. 

A 2-Glement, 4-tap array with 20% bandwid~h and 1/4f0 tap spacing 

is used, while the ENR is 30dB, roughly equal to the value of -MJG 

in dB given by (4.56). Adjacent contours in the amplitude and 

and phase response maps are separated by 5dB and 20° respectively. 

The phase response is calculated treating the first array element 

as the phase centre. Note that the contours in both response maps 

become more congested as the frequency increases. This is because 

as the frequency increases, the array element spacing, as a fract-

ion of'wavelength, increases. As expected, two nulla can be seen 

steered towards the jammer in the amplitude response map. Furthe-

rmore, the spatial extent of "near-jammer amplitude distortion", 

as determined by the spatial extent of .these nulls, is very small. 

Apart from this distortion, the amplitude response, though varying 

quite widely with direction, is fairly uniform with frGquency. By 

comparing the phase response shown with the proportionality relat-

ionship between ideal phase response and frequency, it is obvious 

that the jammer has introduced a "background phase distortion" of 

0 the order of 20 at almost every dirGction. Moreover, depicted as 

a series of nearly overlapping contours, there is 180° phase shift 

across the jammer 1 s direction. Corresponding to the spatial extent 
0 

over which this 180 phase jump takes place, the spatial extent of 

11 near-jammer phase distortion" is very small and roughly equals that 

of the near-jammer amplitude distortion. 

Secondly, fig.4.24 shows the array response when the jammer 

arrives from -60°, all the other parameters being the same as that 

of fig.4.23. By comparison, the relative positions of the amplit-
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Fig.4.24 Array response against frequency and direction for the situat
ion of fig.4.23, except with the jammer arr~v~ng from -60° instead. 
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ude and phase contours with respect to the jammer•s direction in 

fig.4.24 are very similar to those in fig.4.23. !n particular, 

the near-jammer distortions in the sinS domain are quite independ

ent of the jammer's direction, implying that, in terms of e, these 

distortions will become more extended as the jammer approaches the 

endfire directions. Due to the effect of grating lobes, distortion 

in frequency response can be seen at directions near to 90° in fig. 

4.24. The "grating amplitude distortion" depends on the amplitude 

response, particularly its slope, around the high frequency region 

near the opposite endfire direction. The "grating phase distorti

on", whose spatial extent is less than that of the corresponding 

amplitude distortion, also depends on the phase response over the 

same region._ Thus, these distortions also become more serious and 

extended as the jammer approaches the endfire directions. Obviou

sly, unless the array element spacing is reduced by a fraction of 

about B so that effectively, the region corresponding to sinS gre

ater than 1-B or less than -1+B in the figure do not have an~ phy

sical significance and thus, these distortions are eliminated, the 

reception capability of the array.near the endfire directions may 

be considerably impaired. 

Thirdly, fig.4.25 shows the array response maps obtained when 

the ENR is decreased to 15dB, all the other parameters being the 

same as that of fig.4.24. The apparent multi-null feature in the 

high frequency grating response of fig.4.25a is due to the algori

thm and tne finite size of the matrix used for the contouring sub

routine in the computer program. Comparing fig.4.25 with 4.24 in

dicates that except for the 'shifting of the two nulls towards the 

band edges and the smearing out of the nearly overlapping phase 

contours between the two nulls, changing the ENR has no effect on 
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Fig.4.25 Array response against frequency and direction for the situat
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the array response. The two effects observed are obviously because 

the presence of receiver noise alone would drive all the weights 

to zero, resulting in an omni frequency-directional response. 

Fourthly, fig.4.26 shows the array response for the situation 

of fig.4.24, except that the bandwidth is decreased to 10%. Note 

that the contours are drawn only within the frequency band of int-

erest. As expected, similar but much better array response can be 

seen as the bandwidth is decreased. Though not quite clear from 

the response maps, the t1~0 nulls of fig.4.26 have actually moved 

slightly towards the band edges and their extent in the spatial 

domain decreased, when compared with those of fig.4.24. Moreover, 

the background phase distortion has decreased by about a half to 

0 very roughly 10 • Furthermore, there is only a very small grating 

amplitude distortion while the grating phase distortion has virtu-

ally vanished. Nevertheless, note that it is still necessary to 

decrease the array element spacing by about a fraction of B to en-

sure that there is no grating amplitude distortion at the endfire 

directions. 

Fifthly, fig.4.27 shows the array response when the number 

of taps is increased to 6, all the other parameters being the same 

as that of fig.4.24. As expected, three nulls can be vaguely seen 

in the amplitude response map. Apart from a decrease in the extent 

of the nulls and the region for the 180° phase jump in the spatial 

domain, the contours of fig.4.27 are roughly identical to those of 

fig.4.24 and so changing the number of taps does not have any sig-

nificant effect on the variation of array response. This is gene-

rally the case except when the number of taps is decreased to 2. 

Fig.4.28 shows the array response for a 3-element, 2-tap, 1/4f0 tap 

spacing array with 20% bandwidth. Only one jammer arriving from 
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50° and having flat spectrum is present. The ENR is 10dB, roughly 

equal to the value of -MJG in dB as given by (4.56). Clearly, with 

only one null steered towards the jammer, the contours near to the 

jammer•s direction have become skewed and so the near-jammer dist

ortions increased. On the other hand, the background phase disto

rtion has reduced significantly and the grating distortions are 

virtually non-existent. Other simulation results also give the 

same observations but not surprisingly, also indicate the proport

ionality of the spatial extent of near-jammer distortions of the 

2-tap array with bandwidth. Evidently, even though the jamming 

rejection capability obtained is satisfactory, the 2-tap array may 

not be suitable for use in large bandwidth applications because of 

the large spatial extent of near-jammer distortions. 

Sixthly, the effect of varying tap spacing has also been st

udied. Since virtually no change in array response is observed, 

the results will not be presented. 

Seventhly, fig.4.29 shows the array response for a 3-e!ement, 

4-tap, 1/4f0 tap spacing, 20% bandwidth array in a 2-jammer envir

onment. The two jammers have equal powers, flat spectrums and ar

rive from -20° and -60°. The ENR is 25dB, roughly equal to the 

value of -MJG in dB as given by (4.56). Obviously, the contours 

have the same characteristics as in the 2-element situations trea

ted. Specifically, because the jammers have equal powers, two nu

lla can be seen steered towards each jammer. Furthermore, although 

the phase contours are more closely spaced, they are more vertical 

and give rise to roughly the same background phase distortion as 

for the 2-element, 20% bandwidth situations discussed. Fig.4.30 

shows the. array response obtained for the situation of fig.4.29 

when only the jammer at -60° is present. Again, two nulls are ste-

- 153 -



Fig.4.28a Amplitude response in dB 

Fig.4.28b Phase response in degree 

Fig.4.28 Array response against frequency and direction for a 2-tap ar
ray with 3 elements, 1/4f0 tap spacing and 20% bandwidth. Only one jam-

mer arriving from 50° and having flat spectrum is present. The ENR is 
10dB. 
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Fig.4.30a ~mplitude response in dB 
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Fig.4.30 ~rray response against frequency ~nd direction for the situat
ion of fig.4.29 when only the jammer at -60 is present. 
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ered towards the jammer. Moreover, although the contours are sli

ghtly different from those of fig.~-.29, they lead to roughly the 

same amount of distortions. In general, the various distortions 

are fairly independent of the numbers of elements and jammers. 

Eighthy, fig.4.31 shows the array response for the situation 

of fig.4.29 1 except that the jammer at -60° has inverted-triangular 

spectrum instead. Clearly, since this jammer concentrates more 

pOl'ler from the the centre towards the edges of the band, the two 

nulls steered t~wards this jammer have moved slightly towards the 

edges of the band. Apart from this difference, however, the cont

ours are roughly the same as those of fig.4.29, indicating that 

generally, the various distortions are fairly insensitive to the 

jammers• speetrums. Similarly, the variation of jammers' relative 

powers and directions have been studied. Again, no significant -

change in the various distortions is observed and the results will 

not be presented. 

So.far, the discussion and results presented have been .for 

situations to be anticipated where the ENR is less than or roughly 

equal to the designed MENR. Clearly, ±'ram the results obtained, 

the number of nulls steered towards each jammer in these normal 

situations does not exceed J/2. To complete the discussion in this 

section, some situations where the ENR is greater than the MENR 

and some jammers "absorb" more nulls will be studied. Figs.4.32 

and 4.33 show the array responses for the situation of fig.4.z8, 

except that the ENR is increased to 30 and 40dB respectively, as 

compared to the MENR (equal to -MJG in dB) of about 10dB. Note 

that from the variation of ONR with ENR given in fig.4.20b for this 

environment, the performance in terms of jamming rejection is still 
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Fig.4.31 Array response against frequency and direction for the situat
ion of fig.4.29, except that the jammer at -60° now has inverted-triang
ular spectrum. 

- 158 -



Fig.4.32a Amplitude response in dB 
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Fig.4.32 Array response against frequency and direction for the situat
ion of fig.4.28, except that the ENR is increased to 30dB. 
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Fig.4.33 Array response against frequency and direction for the situat
ion of fig.4.28, except that the ENR is increased to 40dB. 
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adequate for the increased ENRs. Clearly, as the ENR increases to 

30dB, the null which was originally at the upper band edge of fig. 

4.28 has shifted to the centre of the band in fig.4.32. Further

more, the behaviour of the contours near to the null in fig.4.32 

indicates that, as may also be expected from the ONR against ENR 

graph of fig.4.20b, an additional null is about to move into the 

array frequency band and steer towards the jammer. The formation 

of this new null obviously leads to the increase of all, especially 

near-jammer, di~tortions. As may be expected from fig.4.20b again 

and demonstrated in fig.4.33, the additional null has formed towa

rds the jammer at the ENR of 40dB. Clearly, although the various 

di-stortions are still more severe than that of fig.4.28, they are 

less severe ~han that of fig.4.32, because the additional null has 

been formed. Note that the apparent solid zig-zag phase contours, 

which should be smooth curves, in figs.4.32b and 4.33b are due to 

the failure of the contouring subroutine mentioned earlier. Fina

lly, with all these observations also confirmed by other simulation 

results, it is evident that even though the jamming rejection cap

ability may still be adequate in situations where the ENR exceeds 

the MENR, the various, especially near-jammer, distortions due to 

the formation of extra, in addition to the usual J/2 per jammer, 

nulls necessary to reject some of the jammers may be very severe. 

Summarizing, this section has briefly and qualitatively inv

estigated, using simulation results, the frequency distortion int

roduced by rejecting the jammers. In situations expected to be 

anticipated where the ENR is less than the MENR, two significant 

distortions are generally observed. The first is the background 

phase distortion which, in degree, is of the order of percentage 

bandwidth across the entire band at almost every direction. The 
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second is the grating amplitude distortion which can seriously im

pair the reception capability near endfire directions unless the 

element spacing is reduced to about (1-B) of half a wavelength at 

the centre frequency. These distortions obviously become more se

rious as the bandwidth increases and are roughly independent of 

the other parameters. One exception, however, is with the 2-tap 

array for which these distortions are less severe whereas the near

jammer distortions can be very serious should they be employed in 

large bandwidth applications. In situations not envisaged where 

the ENR is greater than the MENR, the various, especially near

jammer, distortions due.to the formation of extra, in addition to 

the usual J/2 per jammer, nulls to reject some of the jammers may 

be very severe even though the performance in terms of jamming re

jection is still adequate. 

4.9 Conclusion 

The jamming rejection capability, as given by the Jammer Gain 

of (4.1), of the broadband tapped delay line power inversion array 

has been investigated as a function of the various parameters in 

this chapter. Theoretically, the JG was derived to be proportional 

to the 2Vth power of bandwidth for small bandwidth. V is normally 

equal to the largest integer not greater than the number of even 

degrees of freedom available per jammer, though it may take smaller 

value if the number of elements is large compared with the number 

of jammers and there are jammers arriving from certain directions 

relating to the number of taps, tap and element spacings. These 

special situations do not arise when the tapped delay line struct

ure is modified, for example, by using tapped delay lines with un

equal tap spacings. Though not discussed, such modifications are 

essential for better performance in these situations. Since the 
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minimum value for V, corresponding to all the spatial degrees of 

freedom being fully utilized, are (number of taps)/2 and (number 

of taps- 1)/2 for even- and odd-tap arrays respectively, the odd

tap array is relatively inefficient in such situations of worse 

performance. Using computer simulation, the JG bandwidth power 

law is proved for band1~idth up to tens of percents, hence verifying 

the theoretical deductions made. Additionally, it has been found 

that the optimal tap spacing for best average performance is such 

that the length~of the delay line roughly equals half a wavelength 

delay at the centre frequency. Furthermore, the Maximum Jammer 

Gain, giving the worst performance, was found to be given by (4.56). 

For adequate performance in all environments with element to rece

iver noise pewer ratio below a certain designed MEN~ value, this 

equation was used to determine the number of taps required ((4.58) 

and fig.4.21) for a specific bandwidth as well as to assess, in 

terms of the number of weights required, the relative advantage 

((4.61) and fig.4.22) of employing tapped delay line processing as 

compared with employing the alternative broadband processing method 

which uses several narrowband array processors in parallel. The 

use of tapped delay line processing was found to be more efficient 

for large bandwidth and MENR. The frequency distortion introduced 

at various directions due to rejecting the jammers was then studied 

qualitatively by examining simulation results. In situations exp

ected to be anticipated where the ENR is less than the designed M 

ENR value, two significant distortions are generally observed. 

The first is the background phase distortion which, in degree, is 

of the order of percentage bandwidth across· the entire band at al

most every direction. The second is the grating amplitude distor

tion which can seriously impair the reception capability near end-
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fire directions unless the element spacing is reduced to about (1 

- bandwidth) of half a wavelength at the centre frequency. These 

distortions become more serious as the bandwidth increases and are 

roughly independent of the other parameters. One exception, howe

ver, is with the 2-tap array for which these distortions are less 

severe though the near-jammer distortions can be very serious sho

uld they be employed in large bandwidth applications. In situati

ons not envisaged where the ENR is greater than the MENR., the var

ious, especially near-jammer, distortions due to the formation of 

extra nulls to reject the jammers may be very severe even though 

the performance in terms of jamming rejection is still adequate. 
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CHAPTER 5 THE CONVERGENCE BEHII.VIOUR OF THE BROII.DBAND FROST TAPPED 

DELAY LINE POWER INVERSION ARRAY AND SIMPLE PREPROCESSOR 

FOR FASTER CONVERGENCE 

5.1 Introduction 

The last chapter has discussed the jamming rejection capabi-

l ·t f th b db d t d d 1 1" [151 . . [28,291 ~ y o e roa an appe e ay ~ne power ~nvers~on 

array. Briefly, the use of tapped delay line processing on the 

array has been found to be more efficient, in terms of the number 

of weights required, than employing the alternative broadband pro-

cessing using several narrowband array processors in parallel, es-

pecially if the bandwidth and the designed maximum element to rec-

eiver noise power ratio (MENR) are large •. However, it is evident 

that in adaptive array processing, apart from the best performance 

obtainable as measured by the jamming rejection capability, the 

convergence behaviour of the array towards the optimal performance 

is also of much interest. The convergence behaviour depends, of 

course, on the particular algorithm employed. 

In this chapter, the convergence behaviour of the tapped de~ 

lay line power inversion array employing the well known stochastic 

gradient descent algorithm will be investigated in stationary env-

ironments both theoretically for small bandwidth and using simula~ 

tion results. For convenience, since using this algorithm on the 

array concerned corresponds to a special case in Frost's formulat~ 

will be referred to as the 

Frost system. Comparison of convergence behaviour with that obta-

ined from using the same algorithm on the power inversion array 

employing the alternative broadband processing, to be referred to 

as the alternative system for convenience, will also be given in 

terms of the lower bound on the convergence time constants. Cons-
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equently and most importantly, a simple transformation preprocessor, 

independent of the external noise environment, for use with tapped 

delay line processing will be derived and shown, theoretically and 

using simulation results, to improve the convergence behaviour of 

the Frost system considerably in broadband jamming situations. 

Note that although only the stochastic.gradient descent algorithm 

is used, the deductions in this chapter will mostly be based on 

analyzing the eigenvalues of the covariance matrix. The deductions 

and derivations are therefore easily extended to many other, espe-

cially closed-loop, algorithms as well as to other similar tapped 

delay line signal processing-systems. 

This chapter is organized as follows. Section 5.2 gives a 

preliminary discussion of the convergence behaviour, the various 

assumptions made and the alternative system. As in the last chap-

ter, by expanding the autocorrelation functions of all the power 

density spectrums in power series of bandwidth, section 5.3 decem-

poses the covariance matrix into forms suitable for subsequent an-

alysis. Using these decompositions, the eigenvalues and eigenvec-

tors of the covariance matrix are analyzed theoretically for small 

bandwidth in section 5.4. The eigenvalues, which are the paramet-

ers of most importance as they determine the time constants of the 

Frost system, are then studied by using simulation results in sec-

tion 5.5 to verify the theoretical deductions and to provide more 

insight. Also investigated briefly in section 5.5, from simulation 

results, are the eigenvector power components which are defined in 

section 5.2 and are the other parameters of importance in determi-

ning the convergence behaviour of the Frost system. From the the-

oretical analysis of section 5.3, the preprocessor mentioned is 

derived and its effects on convergence behaviour analyzed for small 
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bandwidth theoretically in section 5.6. The eigenvalues and eige-

nvector·power components resulting from using the preprocessor are 

then studied by using simulation results in section 5.7 to verify 

the theoretical deductions and to gain more insight. Comparisons 

with the alternative system are given in sections 5.4 and 5.6. 

Conclusions are drawn in section 5.8. 

5.2 Preliminary Discussion 

Before the more detailed analysis and discussion of later 

sections, this section will first formulate the convergence behav-

iour of the Frost system as well as discuss the alternative system. 

In the process, the main assumptions, notations and terminologies 

' used will be introduced. 

5.2.1 Frost system 

Firstly, the convergence behaviour of the Frost system will 

be formulated in this subsection. The broadband tapped delay line 

power inversion array of interest is that shown in fig.4.1 and di-

scussed in the last chapter. However, because of the inefficiency 

of odd-tap array in situations of worse performance as discussed 

in the last chapter, this chapter will be concerned with only the 

even-tap array. 

The basic principle and formulation of the stochastic gradi-

ent descent algorithm has been discussed in section 3.2 for the 

narrowband power inversion array in discrete time and using compl-

ex notation. Furthermore, section 3.3 has derived the characteri-

sties of the narrowband array in stationary environments using this 

formulation. The derivations in these two sections are of course 

directly applicable to the Frost system of interest here. Nevert-

heless, for completeness, the essense of the analysis will now be 
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applied to the Frost system, leading to a formulation of its conv-

ergence behaviour. 

Defining the weight and input vectors as 

and 

(5.2) 

respectively, where k specifies the kth sampling instant and T de-

notes transpose, the updating of the weights in the Frost system 

due to the stochastic gradient descent algorithm to minimize output 

power can be described, ·corresponding to (3.9), by 

W(k+1) = W(k) - ay(k)X(k) (5.3) 

where a is the feedback factor of the algorithm and y(k), given by 

is the array output. With the same analysis as in sections 3.2 

and 3.3, the average convergence behaviour of the weight vector 

in stationary environments is, corresponding to (3.27), then desc-

ribed by 

WTkJ = W t + (I - aR)k[W(O) - W t] op op 

where the overbar denotes ensemble average, Wept' given by 

-1 
W = -R R

0
, opt 

is the optimal weight vector to which the average weight vector 

eventually converges and the covariance matrix and vector, R and 

R0 respectively, are given by 

R = X(k)X(k/r (5.7) 

and 
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(5.8) 

Using the polar decomposition 

R = 
(M-1)J T 

2 h H H 
m= 1 m m m (5.9) 

where hm' m=1,··,(M-1)J, is the mth largest eigenvalue with Hm as 

the corresponding normalized eigenvector, the convergence behaviour 

of the ensemble average weight vector as given by (5.5) becomes 

W'\i{) = wept + 
(M-1)J 

2 (1 -
__ m=1 

where 

' 
e = H T[W(O) - W ] m m opt 

k ah ) e H m m m (5.10) 

(5.11) 

is the component of the initial weight vector lag, W( 0) -\~ t, in 
op 

the direction of Hm. 

As discussed in sections 3.2 and 3.3, the ensemble average 

output power s(k), given by y(k) 2 here, consists of two components: 

sy(k), referred to as the output power, due to the average behavi

our of the weights plus swt(k), referred to as the weight variance 

noise, due to the variances of the weights about the average valu-

es. Mathematically, the output power in this chapter is 

(5.12) 

where s is the element power, while the weight variance noise is 
X 

Using (5.6), (5.9) and (5.10), the output power converges according 

to 

s (k) = 6 t + y op 

(M-1 )J 
2 2 h e (1 

m=1 m m 

where 
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is the optimal or minimum possible output power to which the output 

power eventually converges. As mentioned in sections 3.2 and 3.3, 

the convergence behaviour of the weight variance noise is difficult 

to analyze but fortunately, since the output power is much greater 

than the weight variance noise during the transient convergence 

period, it is not of importance. Specifically, the convergence 

behaviour of the average output power will be roughly given by (5. 

14) for the output power with the feedback factor being determined 

by the desired relative amount of weight variance noise in the st-

eady state as measured by the misadjustment defined by (3.41). 

Using the same analysis as in sections 3.2 and 3.3, the misadjust-

ment for the Frost system is also roughly equal, for small misadj-

ustment, to 

CltrR 
::!~· (5.16) 

The above two paragraphs have formulated the convergence be-

haviour of the Frost system in terms of the average weight vector 

and output power. Specifically, as can be seen~from (5.10), ·the 

former converges as a sum of exponentially decaying component vec-

tors, the mth vector being initially equal to e H and converging 
m m 

with a time constant of -1/ln(1-Clh ) sampling period. Note that 
m 

for convenience, e will be referred to as the mth eigenvector eom 

mponent. Hore importantly, from (5.14), the output power or roug-

hly, the average output power converges also as a sum of exponent-

ially decaying components, the mth component being initially equal 

2 
to h e , to be referred to as the mth eigenvector power component m m 

for convenience, and converging with a time constant ~ , half that 
m 

of the corresponding average weight vector component, of 
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-1 
~m = Zln( 1 _ ah ) sampling period. 

m 
(5.17) 

Since the misadjustment and so, from (5.16), atrR and ah will be 
m 

small, the mth time constant is, using (5.16), 

trR 
'f m ' 4M th w m 

sampling period. (5.18) 

1vidently, since the time constants for the convergence of the we-

ight vector and output p011er are determined by the eigenvalues, 

the eigenvalues are the parameters of most importance and will be 

most thoroughly studied. Note that unless stated otherwise, time 

constants will henceforth be used to mean those for the convergence 

of the output power. The next parameters of importance are obvio-

usly the eigenvector power components as they also determine the 

conv.;rgence of the output power. However, contrary to the eigenv-

alues, they depend on the eigenvector components which depend on 

the initial weight vector and thus are not so "unique". Furtherm-

ore, even if similar theoretical analysis for examining theceigen-

values are applied to analyze the eigenvector components, as in 

[821, no simple and general deductions can be reached. For these 

reasons, the eigenvector power components will only be briefly in

vestigated in this chapter by using simulation results which show 

that these can in fact have quite complex behaviour. Since the 

detailed convergence behaviour of the weight vector is of relativ-

ely little interest, the parameters of least interest are the eig-

envectors. However, because of their close link with the eigenva-

lues, they will also be briefly discussed in the theoretical anal-

ysis, but will not be examined from simulation results. 

Since the eigenvector po>1er components are proportional to 

the eigenvalues, it is obvious that long time constants are usually 
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associated with small eigenvector power components. Thus, though 

some time constants are very long, their associated eigenvector 

power components may be so small that even if these components do 

not converge, the increase in output power is negligible. Clearly, 

in evaluating the convergence behaviour, the time constants and 

eigenvalues corresponding to insignificant eigenvector power comp

onents should not be considered. In this chapter, the level of 

significance for the eigenvector power components will, for conve

nience, be taken as the optimal output power. Furthermore, the 

term "effective time constants" will be used to refer to those with 

significant eigenvector power components, while the term "final 

effective time constant" will be used to mean the longest effective 

time constant. Evidently, as the effective time constants determ

ine the effective convergence rate of the system~ they, especially 

the final effective one, are of most importance. As will be illu

strated in same simulation examples later, it is not surprising 

that in situations of severe broadband jamming where all the ,degr

ees of freedom have to be employed to reject the jammers, the sma

llest eigenvalues usually determine the final effective time cons

tant. Finally, note that also for convenience, the initial weights 

are taken to be zero for calculating the eigenvector power compon

ents of the power inversion array in this chapter. 

5.2.2 Alternative system 

Having formulated the convergence behaviour of the Frost sy

stem, that for the alternative system will now be discussed. As 

mentioned in sections 4.1 and 4.7, \fith the alternative broadband 

processing, each of the element inputs is first bandpass filtered 

into JN/2 narrowband components. All the element inputs in one 
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frequency bin are then processed by one narrowband array processor 

using quadrature weights or with negligible difference, 2-tap delay 

lines at 1/4f0 tap spacing, JN is therefore the number of weights 

required per element when the alternative broadband processing is 

employed, Finally, the outputs from the narrowband processors are 

combined to give the array output, Note that in practical applic-

ations, the outputs from the narrowband processors are most proba-

bly not combined but used directly for signal extraction. However, 

for the purpose __ of comparing convergence behaviour, the combining 

of the outputs will. be assumed in this chapter so that the array 

inputs'and output in the alternative system are equivalent to those 

in-the Frost system. 

For the purpose of comparison, each narrowband processor in 

the alternative system is taken as employing the stochastic gradi-

ent descent algorithm for weight updating. Clearly, the converge-

nee behaviour of the system is a linear combination of that for the 

narrowband array processors implied in the discussion of the last 

subsection, Denoting the feedback factor and covariance matrix 

associated with the mth of the JN/2 narrowband processors by urn 

and Rm respectively, the total misadjustment of the system is, us-

ing (5.16), 

u trR m m 
2 (5.19) 

where, for convenience, the narrowband processors will be taken as 

using 2-tap delay lines so that R is real and has dimension 2(H-1) 
m 

•2(M-1). Obviously, with receiver noise of s
0 

per element, the 

smallest possible eigenvalue associated with each narrowband cova-

riance matrix is 2s0/JN' the receiver noise per element seen by 
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each processor. Therefore, the set of time constants, {~N}' for 

the convergence of the output power in the alternative system is 

bounded, using (5.17), by 

(5.20) 

where Nax{f(z)} denotes the maximum value of the function f(z) with 
z ' 

respect to z. Evidently, for a certain designed rnisadjustment of 

(5.19), this bound is minimized if and only if all the feedback 

factors are equal to say, a. (5.19) is then given by 

= a(M-1)s 
X 

(5.21) 

anCi because the misad justment, and so asx and aB
0

, will be small, 

(5.20) beconres 

(5.22) 

where 

ENR(M-1)JN 
BN • 4M sampling period 

wt 
(5.23) 

and ENR is the element to receiver noise power ratio. Of course, 

using the same feedback factor for all the processors does not im-

ply best convergence behaviour in all situations. For instance,. 

if all the jamrners are narrowband, faster convergence can result 

when all the feedback factors corresponding to processors with only 

receiver noise are zero so that the feedback factors associated 

with the other processors can be increased, keeping the misadjust-

rnent constant. However, in situations where the smallest eigenva-

lues with significant eigenvector power components in the narrowb-

and processors are roughly equal, using the same feedback factor 

clearly leads to .the minimum final effective time constant and for 
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simplicity, will be taken to be so in this chapter. Note that si-

nee the external environment is not known a priori or measured in 

any detail, the feedback factor have to be chosen from some ad hoc 

principles in any case. Finally, it is obvious that the bound BN 

is loosely approached when with respect to some of the narrowband 

processors, some jammers are close. together or have very different 

powers so that the smallest eigenvalues with significant eigenvec-

tor power components are not very much greater than that due to 

only receiver noise. 

Summarizing, this section has formulated the convergence be-

haviour of the Frost system in terms of the eigenvalues, eigenvec-

tors, eigenvector and eigenvector power components. Particularly, 

the output power converges as a sum of exponentially decaying corn-

ponents, with initial magnitudes given by the eigenvector power 

components and convergence time constants by and inversely propor-

tional to the eigenvalues. Being a linear combination of that for 

several 2-tap narrowband Frost systems at different frequency bins, 

the convergence behaviour of the alternative system has also been 

discussed, leading to the lower bound of (5.23) ·for the convergence 

time constants of the system. 

5.3 Decomnosition of the Covariance Matrix 

From the discussion of the last section, the convergence be-

haviour of the Frost system can be obtained by investigating the 

eigenvalues, ei~envectors and eigenvector power components. Howev-

er, before studying the eigenvalues and eigenvectors theoretically 

in the next section, this section will first decompose the covari-

ance matrix into forms suitable for subsequent analysis. As in the 

last chapter, the derivations will be based on expressing the aut-
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ocorrelation functions of all the power density spectrums in power 

series of bandwidth. 

In subsection 4.2.1 1 the autocorrelation function for the 

po;rer density spectrum of the nth of the N jammers has been derived 

as a power series given by (4.6) and (4.7). The derivation is of 

course also applicable to the receiver noise power density spectr-

um. Therefore, for consistency in notation, the index n in these 

two equations for the autocorrelation functions will range from 0 

to N in this chapter, with n=O being associated with receiver noise 

and n=1,··,N with the nth jammer: 

R (t) 
n 

where 

M pn 

(5.24) 

and s0 n(f) is the spectrum giving the shape of the corresponding 

power density spectrum. 

The derivation of (5.24) clearly indicates that the covaria~ 

nee matrix can also be expressed as a power series of bandwidth: 

"' N 
R = 2 

p=O 
2 R Bp 

n=O pn 
(5.26) 

where R is due to the autocorrelation function R (t) and associ-pn n 

ated with the pth power of bandwidth. Having derived R as a fu
pn 

notion of the various parameters by using (5.24), appendix 5.9.1 

shows, after some further manipulation, that the (M-1)J·(H-1)J 

covariance matrix can be expressed as 

R = 
J/2-1 L Bg+hu Ro u T 

h -0 g gh h 
g' -
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where R
0

h, g,h=O, • • ,J/2-1, of d,.im:ension 2(M-1) ·2(M-1), and U , of 
g g 

deminsion ( M-1) J• 2( M-1), are given as follows. Defining the matrix 

p 
g' of deminsion J·2, as 

(f0T)gcos(2nf
0

T + E?) 
c. -(f0T)gsin(2nf0T + ~) 

( 2f0 -r) gcos(4 nf
0

<r ~) -(2f0<r)gain(4rrf
0

-r 22!.) 
p + 2 + 2 

(5.28) = g 

(Jf
0

r)gcos(2Jrrf
0

-r 
' 

£!) + 2 -(Jf0-r)gain(2Jrrf0T + ~) 

J/2 mutually orthogonal matrices, of deminsions J•2 and which tog-

ether span the whole J dimensional vector space, can be obtained 

by using the Gram-Schmidt orthogcnalization process: 

f:J 
g = 

Note that in this chapter, the vector space er subspace spanned by 

a matrix refers to that spanned by the columns of the matrix. 

Furthermore, as used above, two matrices will be referred to as 

mutually orthcgcnal if the subspace of one is orthogonal to that 

of the other matrix. \{ith (5.28) and (5.29) giving f:J , U is 
g g 

u = g 

0 

0 

fr 
g 

(5.30) 

Clearly, U0 , u1 , •• and UJ/2_1 are mutually orthogonal and depend 

only on the tap spacing and number of taps. On the other hand, 

defining Q as 
n 
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Qn = 

where 

I, n=O 

cos<l> 
n 

sin<l> n 
cos2<l> n 
sin21l n 

cos(M-1 )<Ji 
n 

sin(M-1)<1> 
n 

-sin<l> 
n 

cos<ll 
:'1 

-sin2<l> n 
cos2<l> n 

-sin(H-1)<1> 
n 

cos(M-1)<1> 
n 

' (5.31) 

' n=1,··,N 

(5.32) 

and c ts the wave velocity, R~h is given, after neglecting all hi

gher order terms proportional to the first or higher powers of ba-
' 

ndwidth, by 

N 0 T 
• \ s M Q n~O n ghnQn n 

where as (4.17) of chapter 4, M0 is 
ghn 

g+h = _1T __ M 
g!h! g+h 

g+hf1 h = 1T'h' so (f)fg+ df. n g. . _
1 

n 

(5.33) 

0 Obviously, in contrast to U , R h as given depends on the environ-g g . 

ment and is independent of the array parameters of bandwidth, tap 

spacing and number of taps. Specifically, it is symmetrical and 

is the covariance matrix for an ideal narrowband array in the same 

0 environment except with the power sn multiplied by the factor !1ghn" 

As used in this chapter, an ideal narrowband array means a 2-tap, 

1/4r0 tap spacing array with zero bandwidth. Also shown in appen

dix 5.9.1, R
0 

satisfies, exactly, gh 

( 5. 35) 

As described above, (5.27) is interesting because the covar-

iance matrix has been separated essentially into two parts - that 
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due to the environment and the array. To decompose the covariance 

matrix into a more useful form, note that (5.27) can be written in 

matrix form as 

U T T 0 0 Ro U T 
0 Roo R01 0 J/2-1 0 

BU T 0 0 BU T 
R 1 R10 R11 1 • (5.36) = 

BJ/2-1U T 0 BJ/2-1U T 
J/2-1 RJ/2-1 0 J/2-1 

From (5.35), the second matrix factor is obviously symmetrical. 

Furthermore, since the covariance matrix is positive definite and 

so has full rank even when only receiver noise is present, this 

matrix factor also has full rank and thus, with similar arguments 

' leading to (4.30) in subsection 4.2.2, can be decomposed as 

0 
R J/2-1 0 

+ 

Ro 
0 J/2-1 

= 

(R 1 ) -1 
11 

1 
R J/2-1 1 

0 
0 

0 
R J/2-1 0 

0 
1 

R11 
1 

R21 

1 
R J/2-1 1 

T 

+ •• 

0 
RJ/2-1 0 

0 
0 

T 

T 

+ (RJ/2-1 )-1 
J/2-1 J/2-1 

where 

0 
RJ/2-1 

J/2-1 J/2-1 
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RJ/2-1 

J/2-1 J/2-1 

J p=1,···2-1, 
J 

g. h=p ••• ·2-1. 

= 

(5.37) 



Note that the full rank of the l.h.s. of (5.37) is essential to 

guarantee that RP , p=1,••,J/2-1, has full rank and so an inverse. pp 

Substituting (5.37) into (5.36) then gives, finally, 

(5.39) 

where 

The significanc~ of the decomposition, expressed by (5.39) and (5. 

40), of the covariance matrix in terms of eigenvalues and eigenve-

ctors will be discussed in the next section. 

' Summarizing, by using the power series in bandwidth of the 

autocorrelat~on functions of (5.24), the covariance matrix has been 

formulated in the form of (5.26) in appendix 5.9.1. The formulat-

ion leads to the elegant expression of (5.27) which is then decem-

posed to give (5.39). 

5.4 Eigenvalues and Eigenvectors from Theoretical Analysis 

Having decomposed the covariance matrix into elegant forms 

in the last section, this section will investigate theoretically 

for small bandwidth the implication of the decomposition on the 

eigenvalues and eigenvectors. In the process, the lower bound on 

the convergence time constants of the Frost system will be obtained 

and compared with (5.21) of the alternative system. Note that si-

nee the eigenvectors are not of much importance, the analysis will 

be baised towards the eigenvalues. In particular, only the eigen-

values will be addressed in the important theroems to be derived. 

5.4.1 General structure 

Firstly, this subsection will discuss the general structure 
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of the eigenvalues and eigenvectors. The decomposition expressed 

by (5.39) is elegant and interesting because the covariance matrix 

is decomposed as a sum of J/2 matrices, each having rank 2(M-1) 

equal to the dim.easion of RP , p=O, • · ,J/2-1, and with the covaria
PP 

nee matrix being positive definite, being positive semi-definite. 

Furthermore, from (5.40) with u0 , u1 , •• and UJ/2_1 being mutually 

T orthogonal, the matrix product V V , p~q, p,q=O,··,J/2-1, is pro
P q 

portional to at least B even though the multiplying matrices are 

0 proportional to~only B. Therefore, for small bandwidth, v0 , v1 , 

·~ and VJ/2_1 will also become mutually orthogonal. Evidently, 

for th~ purpose of determining the eigenvalues and eigenvectors in 

a !irst order approximation, terms proportional to the first and 

higher powerS of bandwidth in (5.40) for V can be neglected so 
p 

that (5.39) becomes 

J/2-1 
R ~ L B2Pu RP u T. 

p=O p pp p 
(5.41) 

With RP , given in terms of (5.33) and (5.38), being roughly inde
PP 

pendent of bandwidth, the general structure of the eigenvalues im-

plied by this equation can then be summarized by 

The eigenvalues of the covariance matrix can be divided 
into J/2 sets. The 2(!1-1) eigenvalues in the ith set are 

2(i-1) i-1 (5.42a) given by the nonzero eigenvalues of B U. 1R. 1 4 _ 1 T . 2(i-1) J.- J.- ~ 
U. 1 and are thus proport1onal to B • 

J.-

The associated eigenvectors in the ith set are obviously given by 

i-1 T the corresponding eigenvectors of U. 1R. 1 . 1u. 1 and thus toge
J.- J.- J.- J.-

ther span the same subspace as that spanned by U. 1• Since the 
J.-

0 
spectrum s0n(f), n=O,··,N, is normalized to have area 1 and so MOOn' 

given by (5.34), equals 1, (5.42a) can be supplemented by 
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The first set of eigenvalues, as determined by u
0 

N . T T 
( L snQnQn )U0 , is independent of the jammers' spectrums (

5
•
42

b) 
n=O 

and is the same as that should all the noise processes be 
ideally narrowband, that is, have zero bandwidth. 

This is clearly also true for the first set of eigenvectors. 

5.4.2 At 1/4f0 tap spacing 

Having deduced the general structure of the eigenvalues and 

eigenvectors, this subsection will discuss in more detail the case 

when the tap sp~cing is 1/4f0 • This tap spacing is of most inter

est because, as may be expected intuitively and demonstrated later, 

it is ~ssociated with the spread of eigenvalues being a minimum 

arid so better convergence behaviour of the Frost system. Further-

more, the p~processor to be discussed in section 5.6 is particul-

arly simple and easy to implement at this tap spacing. 

Before applying the particular condition of 1/4f
0 

tap spaci

ng, however, the eigenvalues and eigenvectors of R~h' p=O,··,J/2-1, 

g,h=p, • • ,J/2-1, will first be discussed. As mentioned in section 
0 

5.3, Rgh has the form of the covariance matrix for an ideal narro-

wband array. Thus, as shown in appendix 5.9.2, it is not surpris-

ing that the polar decomposition of R~h' given by (5.33) and (5.38), 

can in general be expressed as 

N 
'\ cP cP cP T 

n;1 ghn ghn ghn 

which also has the same form as that for the covariance matrix of 

an ideal narrowband array. Specifically, there are N+1 distinct 

eigenvalues, c~h 1 , c~h2 , ··, c~hN and s0M~hO' whose associated ei

genvectors are given by the columns of C~h1 ' C~h2 ' ··, C~hN and E 

respectively. The first N eigenvalues, each having multiplicity 
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2, are due to the jammers and reciever noise. Their associated 

eigenvectors together span the same subspace as that spanned toge-

ther by Q1, Q2 , •• and QN. The last eigenvalue, due only to rece

iver noise, has 2(M-N-1) associated eigenvectors which, spanning 

the complimentary subspace, are independent of p, g and h. Note 

that M~hO is given by (5.34), while as (4.31), M~hO' p=1,··,J/2-1, 

is obtained 

p-1 
= MghO 

0 
from MghO by 

p-1 p-1 
Mg p-1 oMb p-1 o 

p-1 ' 
Mp-1 p-1 0 

J g,h=p, •• ·2-1. (5.44) 

Consider now the relationship between the eigenvalues and 

eigenvectors of RP , p=O,·•,J/2-1, with those of U RP UT. Clear-pp p pp p 
2 ly, there is no simple relationship unless, with u representing 

p 

a positive scalar constant, 

so that when z is an eigenvalue of RP with Z as the associated . PP 

normalized eigenvector, U Z/u will be a normalized eigenvector of p p 

U RP U T corresponding to an eigenvalue u 2z. Therefore, if (5.45) 
P PP P P 

is valid, the polar decomposition of the covariance matrix can be 

written, from (5.41) and (5.43), as 

R M (5.46) 

where the columns of the matrices within the curved brackets give 

the normalized eigenvectors. As may be expected intuitively, it 

will be demonstrated later in subsection 5.4.4 that over the tap 

spacing of interest, (5.45) and so (5.46) are valid at only 1/4f
0 
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tap spacing. Thus, the structure of the eigenvalues can be summa-

rized, in addition to (5,42), by 

At 1/4f0 tap spacing. each set of eigenvalues has struct

ure very similar to that for an ideal narrowband array. 
Specifically, there are N+1 distinct eigenvalues in the 
ith set. The largest N distinct eigenvalues, each of mu- (

5
.4?a) 

ltiplicity 2, are due to the jamrners and receiver noise. 
i-1 2B2(i-1) The smallest eigenvalue, of_value s 0 Mi_1 i-1 0ui_

1 
• 

has multiplicity 2(M-N-1) and is due to only receiver noise, 

Note that the smallest distinct eigenvalue is due to only receiver 

noise because the presence of the jammers can only lead to the ei-

genvalues having larger values, As can be seen from (5.46), the 

eigenvectors in the ith set also have structure very similar to 

that for an ideal narrowband array. As (5.42a), (5.47a) can be 

supplemented, from (5.42b) and (5.45), by 

At 1/4f
0 tap spacing, the first set of eigenvalues are 

N T 
given by that of 2 s Q Q , the covariance matrix for 

(5.47b) n=O n n n 
an ideal narrow band array in the same environment, multi-
plied by 2 

uo • 

Obviously, pre-multiplying the eigenvectors of 

also gives the corresponding eigenvectors in the first set. 

5.4.3 When all the jammers• spectrums are flat and the tap spacing 

As discussed in section 4.3, the case when the jammers have 

flat spectrums is physically of most significance and interest and 

will now be treated. When all the jammers have the same spe~trum 

as receiver noise, 0 
Rgh' g,h=O,··,J/2-1, becomes, from (5.33), 

0 N T 
• M hO ~ s Q Q • g. n=O n n n 

(5.48) 
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Substituting into (5.38), R;h' g,h=1, • • ,J/2-1 1 is thus 

R1 • 
gh 

0 
(MghO -

1 
where MghO can be obtained from (5.44). Substituting into (5.38) 

again and so on therefore yields 

(5.50) 

where M~hO is given by (5.34) and (5.44). (5.41) then becomes 

J/2-1 ~ N 
R • 2 MP 0s2Pu ( 2 s Q Q T)U T. (5.51) 

p=O pp p n=O n n n p 

Again, except (5.42), no simple deduction can be made regarding 

the eigenvalues and eigenvectors of the covariance matrix from this 

equation unless the tap spacing is 1/4f
0 

and (5.45) is valid so 

that (5.47) can be further supplemented by 

If, in addition to 1/4f0 tap spacing, all the jammers also 

have flat spectrums, the similarity in structure between 
the ith set of eigenvalues and that for an ideal narrowband 
array is even more prominent. Specifically, the ith set 

N (5.52) 
of eigenvalues is equal to that of L s Q Q T, the covari-

. n=O n n n 
ance matrix for an ideal narro;1band array in the same env-
. 1 . . 2 i-1 2(i-1) J.ronment, mu tJ.plJ.ed by u. 1 M. 

1 
. 

1 0
B 

~- ~- ~- . 
N T 

Clearly, pre-multiplying the eigenvectors of \ s Q Q by U / 
L n n n i-1 n=O 

u. 1 also gives the corresponding eigenvectors in the ith set. J.-

5.4.4 When only receiver noise is present 

Having discussed the eigenvalues and eigenvectors of the eo-

variance matrix in general and in the specific situations of most 

interest, the case when only receiver noise is present will now be 

considered. This trivial case is of importance because it leads 
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to the derivation of the lower bound on the convergence time cons-

tants of the Frost system. Comparison with the corresponding bou-

nd of (5.23) for the alternative system can then be made. 

With only receiver noise present, (5.51) becomes 

R • 
J/2-1 2 T 

} s
0

M 0 B Pu u • 
P=O pp p p (5.53) 

= • (5.54) 

0 

u/uP 
Clearly, with (5.28) and (5.29) giving U , U TU has only two dis

P p p 
• T· tinct eigenvalues equal to that o·f the 2•2 matrix U U • Thus, 

p p 

from (5.53), it can be deduced that 

When only receiver noise is present, there are only two 
distinct eigenvalues in the ith set of eigenvalues. They 

i-1 2(i-1) i-1 ·equal s 0u1 . 1M. 1 . 1 0B and s 0u2 . 1M. 1 . 
1 

O (5.55) 
2(i-1) 1- 1- 1- 1- 1- 1-

B where u1 and u2 are the large and small eigenv-
• T· p p 

alues of U U respectively. 
p p 

Obviously, since the presence of the jammers can only lead to lar-

ger eigenvalues, the eigenvalues in the ith set cannot be smaller 

Therefore, the set of convergence 

time constants, hF}' for the Frost system is bound, using (5.18), 

by 

(5.56) 

where 

J/2-1 0 
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= 
ENR(M-1 )J 

sampling period. (5.57) 

J/2-1 0 

From (5.42) and the polar decomposition of (5.43), it is obvious 

that only two degrees of freedom in each set of eigenvalues can be 

associated with the rejection of the same jammer. Clearly, unless 

at least one of the jammers is so broadband that J degrees of fre-

edom, the maximum designed for each jammer, are required for its 

rejection and thus at least one eigenvalue in each, including the 

last, set has significant eigenvector power component, the bound 

BF will not be approached by the final effective time constant. 

Of course, even if the jamming is broadband, the smallest eigenva-

lue in the last set with significant eigenvector power component -
may still be_considerably larger than the smallest possible eigen

value and the bound still not closely approached. These arguments 

illustrate that the bound ~ is only very loosely approached in a 

few broadband jamming situations. 

Fig.5.1 shows graphs of u 1 PM~pO and u2PM~pO against tap spa

cing for arrays with 2-8 taps. Evidently, at 1/4f
0 

tap spacing, 

the separation between the curves. is at a minimum. This of cour.-

se indicates that the spread of eigenvalues at this tap spacing 

is also at a minimum as mentioned in subsection 5.4.2. Also, note 

that only at this tap spacing, u
1 

Hp 
0 

is equal to u
2 

MP 
0

• This 
P PP P PP 

implies that the 2·2 matrix U TU has only one distinct eigenvalue 
p p 

and hence equal to u1PI or u2PI, indicating that at only 1/4f0 tap 

spacing with up2 given by u1p or u2p' (5.45) is valid as mentioned 

in subsection 5.4.2. Obviously, the curves associated with u2 J/2_1 

M~j~:~ J/2_1 0 , on which the bound ~ depends, are the most impor

tant and can be seen to decrease with increasing slope as the tap 

spacing deviates from 1/4f0 • 
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From (5.23) and (5.57), the ratio Bp/BN is 

J/2-1 0 

and can be used as a crude measure for comparing the convergence 

behaviour of the Frost and alternative system. Although Bp and BN 

are lower bounds for the convergence time constants in the two sy-

stems and as discussed previously, are only loosely approached by 

the final effective time constants in a few situations, their ratio 

has greater physical significance. Consider the most interesting 

case when the tap spacing is 1/4f0 and all the jammers have flat 

spectrums. Obviously, all tlie narrowband processors in the alter-

native system will see the same set of eigenvalues which, from (5. 

52), is also the same, apart from a scaling factor, as the ith set 

of eigenvalues in the Frost system. Since the bounds ~ and EN 

are obtained from the smallest eigenvalues due to only receiver 

noise, the ratio ~/EN gives the ratio of any time constant due to 

the last set of eigenvalues in the Frost system to that due to the 

corresponding eigenvalue in the alternative system. Therefore, if 

the jamming is so broadband that at least one eigenvalue in each 

set in the Frost system has significant eigenvector power compone-

nt, the ratio BF/BN will give the ratio of the final effective time 

constants of the two systems, when the eigenvalues determining th-

ese time constants also correspond with each other. Of course, 

even when the tap spacing is changed, this will still be true if 

the eigenvalue determining the final effective time constant in 

J/2-1 the Frost system changes in the same manner as u2 J/2_1MJ/2_1 J/2_1 0 

changes. There are evidently many other situations, for example, 

~<hen all the jammers are narrowband so that only the first set of 

eigenvalues in the Frost system has significant eigenvector power 
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components, in which the ratio BF/BN has no physical significance. 

However, in situations of broadband jamming where at least one ei-

genvalue in the last set in the Frost system has significant eige-

nvector power component, it has been found from simulation results 

(some to be presented in the next section) that, in general, the 

ratio BF/BN can usually be used to give an order of magnitude for 

the ratio of the final effective time constants. This is not sur-

prising because as implied in earlier discussion, the ratio in th-

ese situations is mainly due to the separation between the last 

set of eigenvalues in the Frost system and the sets of eigenvalues 

seen by the narrowband processors in the alternative system. Hav-

ing discussed the physical significance of the ratio Br/BN which 

illustrates its suitability for very roughly comparing the conver-

gence behaviour of the two systems, fig.5.2 shows graphs of this 

ratio against bandwidth for the designed MENR of 20 and 40dB at 

1/4f0 tap spacing. The number of taps for the Frost system and 

the number of narrowband processors for the alternative system are 

obtained from (4.56b,c), (lt.58) and (4.60) vdth the operation L•J 

neglected for convenience. Furthermore, interpolation has been 

. J/2-1 
used to determ~ne u2 J/2_1MJ/2_1 J/2_1 0 when J/2 so obtained is 

not an integer. From the figure, the ratio ~/BN increases drast

ically with MENR and for bandwidth greater than about 5%, increases 

roughly exponentially with bandwidth. As can be deduced from (5.58) 

and fig.5.1, the ratio has even larger values at tap spacing other 

than 1/4f0 • The slow convergence of the Frost relative to the al

ternative system is clearly illustrated by the figure. For examp-

le, for !1ENR and bandliidth greater than 20dB and 20% respectively, 

the final effective time constant of the Frost system can be 10 

times or more larger than that of the alternative system. 
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Fig.5.2 Graphs of BF/BN against bandwidth for 20 and 40dB MENR at 1/4f0 
tap spacing. BF and BN are the lower bounds for the convergence time 

constants in the Frost and alternative system respectively. Very rough
ly, their ratio gives the ratio of the final effective time constants of 
the two systems in broadband jamming environments. 

Summarizing, this section has studied the structure of the 

eigenvalues and eigenvectors of the covariance matrix theoretically 

for small bandwidth. Using the elegant (5.39) for the covariance 

matrix, the elegant structure of the eigenvectors and, summarized 

by (5.42), (5.47) and (5.52), the eigenvalues is obtained. Brief-

ly, the (M-1)J eigenvalues can be divided equally into J/2 sets, 

those in the ith set being proportional to the 2(i-1)th power of 

bandwidth. Moreover, if the tap spacing is 1/4f0 , corresponding 

to the spread of eigenvalues being a minimum, each set of eigen~a-

lues and eigenvectors is very similar to that for an ideal narrow-

band array. The similarity is even more pronounced if, in additi-

on, all the jammers have flat spectrums. Finally, by studying the 

situation when only receiver noise is present, the lower bound of 
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(5.57) for the convergence time constants is obtained. The ratio 

of this bound to the corresponding bound of (5.23) for the altern-

ative system gives very roughly the ratio of the final effective 

time constants Of the two systems in broadband jamming environments 

where at least one eigenvalue in the last set of eigenvalues in 

the Frost system has significant eigenvector power component. This 

ratio shows that the Frost system can be considerably slower than 

the alternative system. 

5.5 Eigenvalues~and Eigenvector Power Components from Simulation 

Results 

The convergence behaviour of the output power of the Frost 

system has been formulated in terms of the eigenvalues and eigenv--ector power components in subsection 5.2.1. The structure of the 

eigenvalues and eigenvectors has been investigated in the last se-

ction theoretically for small bandwidth. To study the convergence 

behaviour in more detail, this section will investigate the eigen-

values and eigenvector power components by using some typical sim-

ulation results so as to verify the important theoretical deducti-

ens and obtain more insight. 

Fig.5.3a shows graphs of eigenvalues and optimal output power 

against bandwidth for a 3-element, 4-tap, 1/4f0 tap spacing array 

with -20dB receiver noise. Two jammers both of powers -3dB with 

flat spectrums arrive from -20° and -60°. Note that the bandwidth 

axis is log-scaled. Clearly, there are 2 sets of 4 eigenvalue cu-

rves with 0 and 20dB per decade gradients, indicating that in agr-

eement with (5.42), there are 2 sets of 4 eigenvalues proportional 

to B0 and B2 respectively. Furthermore, the structure of the eig-

envalues is also in agreement with (5.47) and (5.52) which are also 
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applicable in this situation. In particular, corresponding eigen-

2 0 values in the h1o sets can be calculated, using (5.52) with u
0 

N
000 

2 1 
and u1 M110 given by the graphs of fig.5,1b at 1/4f

0 
tap spacing, 

to differ by 26dB at 10% bandwidth. This agrees t<i th that obtained 

from the figure to within 1dB. Fig.5.3b shows graphs of eigenvec-

tor power components in this situation. Comparing with fig.5.3a 

shows that, for bandwidth less than about 1~fo, corresponding curves 

in the two figures have the same gradient. This indicates that, 

for small bandwidth, all the eigenvector components are independent 

of bandwidth. For larger bandwidth, the eigenvector po>~er compon-

ents can be seen to have more complex behaviour. From fig.5.3a, 

the performance of the array to reject the jammers obviously starts 

to deteriorate as the optimal output power begins to increase dra-

stically at about 30% bandtddth, in agreement with the value calc-

ulated from (4.56b,c) and (4.58) for a MENR of 20dB, For bandwidth 

belot< this value but above about 20%, eigenvector power component 

1 in fig.5.3b can be seen to be greater than and hence significant 

co:npared with the optimal output po11er of about -15dB, For bandtf-

idth within this region when, obviously, the jamming is broadband 

and all the degrees of freedom are directed towards rejecting the 

jammers, the final effective time constant is therefore determined 

by eigenvalue 1, one of the smallest eigenvalues, and using (5,18) 

and fig.5.3a, is roughly 3000 sampling period at 25% bandwidth and 

10% misadjustment. From (4.56b,c) and (4.60), 3 narrowband proce-

ssors are needed in the alternative system at 25% bandwidth and 

20dB HENR. \1ith all the jammers having flat spectrums in this en-

vironment, the eigenvalues seen by the narrowband processors are 

clearly the same, apart from a scaling factor, as the eigenvalues 
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in the first set and all have significant eigenvector power compo

nents. ·The ratio of the trace of the covariance matrix to the sm

allest eigenvalue in each processor is thus about 10 (twice the 

largest divided by the smallest eigenvalue in the first set). Th

erefore, using (5.18) with the misadjustment for each processor 

being 10/3% so that the total misadjustment is equal to that of 

the corresponding Frost system, the final effective time constant 

of the alternative system is roughly 75 sampling period. The Frost 

system is hence effectively about 40 times slower than the altern

ative system in the environment considered. The significance of 

the ratio ~/BN' from (5.58) and fig.5.1b, of about 30 is thus il

lu~trated, although the bound BF can be calculated from (5.57) and 

fig.5.1b to Ee about 80000 sampling period, 30 times greater than 

the corresponding final effective time constant. Of course, for 

bandwidth smaller than about 10%, only the first set of eigenvalues 

will have significant eigenvector power components and two degrees 

of freedom per jammer are sufficient to well reject the jammers. 

Clearly, in such effectively narrowband situations, BF and 13:F/BN 

will be too large and do not have.much physical significance as 

the effective time constants of the two systems will not be very 

different. 

Fig.5.4 shows the results obtained when the tap spacing is 

changed to 1/6f0 , all the other parameters being the same as that 

of fig.5.3. Obviously, the theoretical eigenvalue structure of 

(5.42) can be seen to be still valid, although the more simpler 

structure of (5.47) and (5.52) are now inapplicable. Comparing 

fig.5.4a with 5o3a indicates the theoretical deduction that as the 

tap spacing deviates from 1/4f0 , the spread of eigenvalues increa

ses. Comparing fig.5.4b with 5.3b shows that the eigenvector pow-
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er component curves have more complex behaviour, although for small 

bandwidth, they still have the same gradient as the corresponding 

eigenvalue curves. Indicating again that the eigenvector compone

nts are independent of bandwidth, this has been found from other 

simulation results to be the case l~henever there is no extra spat

ial degree of freedom and all the jammers• spectrum have even sym

metry. Since the eigenvector power component 1 and optimal output 

power curves of fig.5.4 are roughly equal to those of fig.5.3, the 

final effective time constant will still be determined by the sma

llest eigenvalue, eigenvalue 1, for bandwidth between 20 and 30% 

when the jamming is broadband and all the degrees.of freedom have 

to.. be employed to reject the jammers. 11ith eigenvalue 1 about 10 

dB below that of fig.5.3a, the final effective time constant is 

thus roughly 30000 sampling period, 10 times more than the corres

ponding value calculated at 1/4f0 tap spacing, at 25% bandwidth 

and 10% misadjustrnent. Therefore, effectively, the Frost system 

is now about 400 times sl01~er than the alternative system. From 

(5.57), (5.58) and fig.5.1b again, the ratio BF/BN is about 300, 

even though the bound BF is roughl3· 1000000 sampling period, 30 

times greater than the final effective time constant. Moreover, 

for bandwidth less than about 10%, the effective time constants 

will be due to the first set of eigenvalues and so will not be very 

different from those of the alternative system. Evidently, the 

same deductions as in the last example can be reached. 

Fig.5.5 shows the same set of graphs as fig.5.3 when the ex

ternal environment consists of only one jammer of power OdB at -20° 

and having inverted-triangular spectrum, all the other parameters 

being the same as that of fig.5.3. For band11idth below about 10%, 

the eigenvalue curves can again be seen to agree with the theoret-
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ical description of (5.42) and (5.47), with eigenvalues 1, 2, 5 

and 6 being due to only receiver noise and the other eigenvalues 

due.to the jammer and receiver noise. However, as the bandwidth 

increases and eigenvalue curves 3 and 4 are about to meet with cu-

rves 5 and 6, the "roles" of eigenvalues 3 and 6 start to change 

Eventually, the former, becoming proportional to B2, is one over. 

of the first set of eigenvalues and is due to only receiver noise, 

while the latter, becoming proportional to B2 , is one of the second 

set of eigenval~es and is due to the jammer and receiver noise. 

Moreover, the gradient of eigenvalue curve 1 begins to increase to 

40dB per decade eventually. Overall, the net effect is that one 

of' the smallest eigenvalues 

ional to B4.- Generally, it 

proportional to B2 has 

[82] 
can be proved that 

become proport-

for large ban-

dwidth, some small eigenvalues proportional to large even powers'-

of bandwidth may become increasing faster with still larger even 

powers of bandwidth. Comparing fig.5.5a with 5.3a and 5.4a, the 

more complex behaviour of the eigenvalues can be seen to be due to 

the wide range of eigenvalues within each set of eigenvalues, rel-

ative to the separation between adjacent sets of eigenvalues. Cl-

early, this will be the case if say, the jammers have very differ-

ent pol<ers, some of the jammers are closed together or the spatial 

degrees of freedom are not fully utilized. Regarding fig.5.5b, 

the eigenvector power components obviously have much more complex 

behaviour than that of figs.5.3b and 5.4b. For small bandwidth, 

components 5, 6 and 7, 8 can be seen to be proportional to B4 and 

B
0 

respectively, while the other components are proportional to 

B
2

• From the small bandliidth behaviour of the eigenvalues, this 

implies that all the eigenvector components are proportional to at 

0 . [821 least B , Generally, thl.s can be proved to be so for a 4-tap 
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array if all the jammers' spectrums have even symmetry. By exami

ning the curves in fig.5.5 and using similar arguments as in the 

last hto examples, the same deductions discussed regarding BF' BF/ 

BN and the effective time constants can once more be obtained for 

this example. In general, when the jamming is broadband so that 

at least one eigenvalue in the last set has significant eigenvector 

power component, the ratio 1)./BN he.s been found to be relevant for 

comparing the convergence behaviour of the two systems. Specific

ally, in most of such situations, the ratio gives at least an order 

of magnitude for the ratio of the final effective time constants, 

even though BF and actually, BN may only be very loosely approach

ed. HO\o~ever, in the other extreme when the jamming is effectively 

narrowband so that only the first set of eigenvalues has signific

ant eigenvector p01o1er components, 1)./BN and BF will certainly be 

too large and have no physical relevance as the effective time co

nstants of the two systems will not be very different. Of course, 

if the number of taps and thus number of sets of eigenvalues is 

large, there exist other intermediate cases as well. 

Fig.5.6 shows graphs of eigenvalues against bandwidth for 

the situation of fig.5.5 except with the jammer having half-flat 

spectrum instead. For bandwidth smaller than about 20%, the theo

retical description of (5.42) and (5.47) is again verified. In 

particular, the eigenvalues in the first set or due to only recei

ver noise are .the same as those in fig.5.5a. However, because of 

the decrease of the actual bandwidth of the jammer with a half-flat 

spectrum, the other eigenvalues have become smaller. As may be 

expected, this effect is also generally observed when the jammers' 

spectrums become more peaky at the centre of the band. In all ot

her aspects, the behaviour of the eigenvalues is the same as that 
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of fig.5.5a. 

Finally, fig.5.7 shows graphs of eigenvalues against bandwi

dth for a more complex 4-element, 4-tap, 1/6f0 tap spacing array 

with -20dB receiver noise. Only one jammer of power OdB and havi

ng triangular spectrum is present at -60°. Again, for small band

width, the behaviour of the eigenvalues as described by (5.42) can 

be seen. Also, as fig.5.4a~ the spreading out of the eigenvalues 

at tap spacing other than 1/4f0 can be observed. In particular, 

although the number of spatial degrees of freedom is more than the 

number of jammers, it is obvious from the structure of the eigenv

alues that no eigenvalue due_to only receiver noise exists. Evid

ently, at 1/4f0 tap spacing, the eigenvalues have the minimum spr

ead and with (5.47) and possibly, (5.52) applicable, the simplest 

structure. Though more complex, the behaviour ·of the eigenvalues 

at large bandwidth is essentially the same as that discussed for 

fig.5.5a. 

Summarizing, this section has investigated the eigenvalues 

and eigenvector power components using some typical simulation re

sults obtained. The important theoretical deductions of the last 

section have been verified. Specifically, the structure of the 

eigenvalues as described by (5.42), (5.47) and (5.52) is valid to 

bandwidths of tens of percents depending on the environment. Also,· 

the eigenvalues have minimum spread and so the Frost system has 

best convergence behaviour at 1/4f0 tap spacing. Most importantly, 

the relevance of the ratio BF/BN for very roughly comparing the 

final effective time constants of the Frost and alternative system 

in broadband jamming environments is illustrated. Regarding the 

eigenvector power components, the results show that they can have 

quite complex behaviour, even for small bandwidth. 

- 203 -



5.6 Theoretical Derivation and Consequences of the Preprocessor 

Because of the elegance of (5.27) for the covariance matrix 

derived in appendix 5.9.1 and discussed in section 5.3, it is pos-

sible to construct a matrix preprocessor which, being independent 

of the external environment, transforms the inputs so that they 

become partially "block" decorrelated. Therefore, if the stochas-

tic gradient descent algorithm is applied to these transformed in-

puts instead, resulting in what will be referred to as the "prepr-

ocessed Frost system", much better convergence behaviour will be 

obtained. This section is concerned with the theoretical derivat-

ion and consequences of the preprocessor. In the,process, the le-

wer bound for the convergence time constants of the preprocessed 

Frost system_will be derived and compared with that of the altern-

ative system. Note that the derivation of the preprocessor will 

be general, although the analysis of its consequences will be based 

on the assumption of small bandwidth. 

5.6.1 Derivation of the preprocessor 

Firstly, the preprocessor will be derived in this subsection. 

As its name implies, the preprocessor derives a transformed set of 

inputs from linear combinations of the original inputs. Of course, 

for the power inversion array of fig.4.1, only the inputs from el-

ement 2 to M are of concern to the preprocessor as only these are 

weighted. Therefore, denoting x (k), m=1,··,(M-1)J, as the mth m 

transformed input, the transformed input vector, defined as 

(5.59) 

is obtained from the input vector by 

(5.60) 
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where Lis a (M-1)J·(M-1)J matrix representing the transformation 

preprocessing. For convenience, the term prepro~essor will also 

be used to refer to the matrix L. Obviously, the array output is 

given by 

should the preprocessor be ~sed. Thus, with stochastic gradient 

descent algorithm used for updating the weights to minimize output 

power, the preprocessed Frost system will have similar characteri-

sties and behaviour as for the Frost system. In particular, the 

discussion in subsection 5.2.1 for the Frost system will also be 

valid for the preprocessed Frost system if the covariance matrix 

and vector are replaced by the transformed covariance matrix and 

vector, defined as 

(5.62) 

and 

respectively. Furthermore, the discussion of the last chapter does 

not depend on wh~ ther the preprocessor is employed or not. Note 

that by substituting (5.60), the transformed covariance matrix and 

vector are related to the covariance matrix and vector by 

(5.64) 

and 

As discussed in previous sections, the eigenvalues of the 

covariance matrix determines the convergence time constants of the 

Frost system and are therefore of particular importance. This is 
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of course also true for the preprocessed Frost system. Obviously, 

from (5.64), the eigenvalues of the transformed covariance matrix 

will be different from those of the covariance matrix. It is thus 

of great interest to see if by choosing the preprocessor suitably, 

the spread of eigenvalues can be substantially reduced, resulting 

in the preprocessed Frost system having much better convergence 

behaviour. In the following discussion, it is convenient to view 

the preprocessor as consisting of three component preprocessors 

in series: 

L = FGD (5.66) 

where F, G and D represent and will be referred to as the first, 

second and third component preprocessors respectively. 

Substituting (5.66) into (5.64), the transformed covariance 

matrix is 

Consider now the purpose of the first component preprocessor :E'. 

Partitioning F, which has dimension (M-1)J•(M-1)J, as 

(5.68) 

where F , g=O,··,J/2-1, has dimension (M-1)J•2(M-1), the transfor
g 

med covariance matrix of (5.67) is, after substituting (5.36) which 

is equivalent to (5.27), 

FT U T T 0 0 0 
0 0 Roo R10 RJ/2-1 0 

F T BU T 0 0 

ii DTGT 1 1 R10 R11 
(5.69) = 

F J/2-1 
T BJ/2-1U T Ro 

J/2-1 0 J/2-1 
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U T 
0 

BU T 
1 

F T 
0 

F T 
1 

T 
FJ/2-1 

T 

GD. 

Since, as discussed in section 5.3, Ug depends only on the number 

0 of taps and tap spacing whereas for small bandwidth, Rgh' h=O,··, 

J/2-1, is independent of these two array parameters, it is obvious 

that if the first component preprocessor is such that 

where kgh is the Kronecker delta, then the transformed covariance 

matrix will be rendered, for small bandwidth at least, independent 

of tap spacing and apart from the dimension of the matrix, number 

of taps. Specifically, (5.69) can easily be' seen, from (5.70), to 

become 

I 0 BI 
:R GTDT = 

0 BJ/2-1! 

GD. 

0 0 
Roo Ro1 

0 0 
R10 R11 

0 
RJ/2-1 0 

• Ro . 
J/2-1 0 

(5. 71) 

Note that as given in terms of (5.68) and (5.70), the first compo-

nent preprocessor clearly depends only on the number of taps and 

tap spacing. 

From the transformed covariance matrix of (5.71), the choice 

for the second component preprocessor is obvious. Thus, with G 

given by 
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I 0 
B-1I 

G = • 
0 B-J/2+1! 

which depends only on the bandwidth, (5.71) becomes 

• 
0 

RJ/2-1 0 

Ro 
0 J/2-1 

D • 

(5.72) 

(5.73) 

Clearly, with (5.33) and (5.34) giving R~h' the transformed covar

iance matrix and so its eigenvalues and eigenvectors, due to the 

second component preprocessor, has also become independent of ban-

dwidth, at least for small bandwidth. . 

Although the spread of eigenvalues have been reduced signif-

icantly by the component preprocessors discussed; there will still 

be considerably spread in eigenvalues due to the second factor of 

(5.73). The purpose of the third component preprocessor D is. the-

refore to further reduce this spread of eigenvalues. To determine 

0 D, consider substituting the polar decomposition of (5.43) for Rgh 

in (5.73) so that the transformed covariance matrix becomes, for 

small bandwidth, 

0 T 0 T MO EET MoooEE M010EE • • 
J/2-1 0 0 

0 T 0 T 
N 

R T M100EE M110EE 
D + L DT (5.74) • s 0D 

n=1 
0 T 

MJ/2-1 OOEE 
0 0 0 T 0 0 0 T 0 CO CO T 

cOOn COOn COOn c01nc01nc01n 
. • CO J/2-1 J/2-1 J/2-1 n n 0 n 0 

0 0 0 T 
c10nc10nc10n 

0 0 0 T 
c11nc11nc11n 

~ CO ~ T 
J/2-1 On J/2-1 on J/2-1 on 
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0 0 Note that as discussed in subsection 5.4.2, Cgh1 ' Cgh2 ' •• and 

C~hN together span the same subspace as that spanned together by 

Q1 , Q2, •• and QN and are mutually orthogonal to E. Thus, if D 

has the form 

D = 

door do1I •• do J/2-1r 

d10I d11I 
= DXI (5. 75) 

where x denotes Kronecker product and D is a J/2~J/2 matrix with 

dgh as the (g+1,h+1) element, the first term of (5.74) will remain 

mutually orthogonal to the other terms and define·(M-N-1)J eigenv-

alues due to only receiver noise, while the other terms will give 

rise to NJ e~genvalues due to the jammers and receiver noise. De-

fining M0 as 

0 0 MO 
Mooo M010 

. • 0 J/2-1 0 
0 0 

MO 
M100 M110 

= • (5.76) 
• 
0 

MJ/2-1 00 

using (5.75) and the easily verified mathematical theorem 

for compatible Kronecker products, the first term of (5.74) can be 

expressed as 

. . 

n· (5.78) 

0 T 
MJ/2-1 OOEE 

= s0 (DTxi)(M0xEET)(Dxi) = 
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With the 2(M-N-1) columns of E being normalized eigenvectors of 

R~h associated with only receiver noise, it is obvious that if the 

third preprocessor is chosen such that 

(5-79) 

then all the eigenvalues of the transformed covariance matrix due 

to only receiver noise will be equal to simply s0• This is possi

ble because, with receiver noise having flat spectrum, M0 is a 

constant matrix and is given, from (5.34) and (5.76), by 

0 1 01 0 0 
1T 1T 

OT 0 3 OT 0 i 

0 1 0 1 1 
1T 3 • 1T 

MO = TI 1 . TI • (5.80) 
-0 
3 • • 

' • • 

0 J/2-1 0 0 J/2-1 
1T 1T - (J/2-1)! 

• (J/2-1)! 

Note that since M0 is symmetrical, D will not be.uniquely determi-

ned by (5.79). Specifically, there are only (1+J/2)J/4 independent 

equations for the J 2/4 elements of fi. Therefore, for simplicity, 

D will be further constrained to be an upper triangular matrix in 

this chapter so-that it is uniquely specified, Except the number 

of taps which determines the dimension of M0 , it is evident that 

the third component preprocessor, based on receiver noise having 

flat spectrum, is independent of all other parameters. 

To see in more detail the structure of the preprocessing, 

note that with U having the form of (5.30), the (M-1)J•2(M-1) ma
g 

trix Fg' given by (5.70), also has the form 

:F 
0 g 

F 
:F 

= g 
g 

(5.81) 

• 
0 F 

g 
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---------

where F has dimension J•2 and is related to fr by 
g g 

Therefore, summarizing, the preprocessor L is, from the various 

equations, 

Fo 
' A 

I A 

0 IF1 0 IF J/2-1 0 
Fo F1 I 

F J/2-1 (5.83) L = - I • • 
I 

0 A I 
Fo1 

0 A I 
F11 

0 
:FJ/2-1 

I 0 door d01I do J/2-1! 
B-1I d11I d1 J/2-1I • • 
0 B-J/2+1! 

0 • • 

dJ/2-1 J/2-1! 

where F is specified in terms of (5.82) with (5.28) and (5.29) 
g 

giving frg' while dgh' h=g,··,J/2-1, is given in terms of (5.79) wi-

th (5.80) giving M0• The preprocessor obviously does not require 

any measurement regarding the environment and depends only on the 

number of taps, tap spacing and bandwidth. Furthermore, from the 

numbering of the inputs in fig.4.1, the defining equation of (5.60) 

for the preprocessor-and the structure of the matrices in (5.83), 

the (M-1)J dimension preprocessing L on the inputs from elements 

2, 3, ,. and M is composed of M-1 identical preprocessings, each 

transforming the J inputs behind only one of these elements. Spec-

ifically, the preprocessing for the inputs behind element m+1, m=1, 

··,M-1, is given by 

- 211 -



x2m-1(k) 
x2m(k) 

x2(M-1 )+2m-1 (k) 

x2(M-1)+2m(k) 
• 
• 

x2(M-1)(J/2-1)+2m-1(k) 

x2(M-1)(J/2-1)+2m(k) 

x(m-1)J+1(k) 

=LT x(m-1~J+2(k) 

where L, being independent of m, is 

1 0 -1 B 

x[~~]>. L = F( • 

0 B-J/2+1 

· doo d01 do J/2-1 

. ( d11 d1 J/2-1 xc 0]> • 0 1 . • 
0 

d J/2-1 J/2-1 

and 

(5.84) 

(5.86) 

Note that in (5.84), the numbering of the transformed inputs is 

different from that of the original inputs. Using (5.79) and (5. 

80), the upper triangular matrix in the last factor of (5.85), D, 

is tabulated in table 5.1 for ar~ays with 2-8 taps. Similarly, 

using (5.28), (5.29), (5.82) and (5.86), F is tabulated in table 

5.2 at 1/4f0 tap spacing for arrays with 2-8 taps. Evidently, the 

preprocessing shown can easily be implemented at this tap spacing. 

At other tap spacing, the preprocessing expressed by F is more eo-

mplex and not so elegant. 

Finally, it should be noted that there are a few arbitrary 

elements in the above derivation of the preprocessor. Specifically, 

although the forms of the first and second component preprocessors 
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Number 
f> of taps 

2 [0!/11°][1] 

4 [O!/rr
0 o ][1 o] 

0 1!/111 0 3)2 

[01( 0 
0 r ,_,•;zl 6 

1 ! /rr 1 0 03'/z 0 
0 2!/n 2 0 0 5)23/2 

0!/1r0 0 0 0 1 0 -51/l/2 0 

8 0 1 ! /1f:1 0 0 0 3)?. 0 7)?.3/2 
0 0 2!/11: 0 0 0 5)23/2 0 
0 0 0 3!/rr 3 0 0 0 7)25/2 

Table 5.1 Tabulation of D with number of taps equal to 2, 4, 6 
and 8. D is upper triangular and specifies the third component 
preprocessor, Dxi, for equalizing, for small bandwidth, the eigen
values of the transformed covariance matrix due to only receiver 
noise. 

Number 
of taps 

2 

4 

6 

8 

0 
-1/4 

0 
1/4 

0 
-1/4 

0 
1/4 

[ 0 -1] 
-1 0 

[

-1f2 -1 ~2 g -~] 
0 1/2 2 0 

1/2 0 0 -2 

0 
-1/3 

0 
1/3 

0 
-1/3 

-1/4 
0 

-1/3 1 0 0 2 
0 0 -1 2 0 

1/3 0 0 0 4 
0 0 0 4 0 

-1/3 -1 0 0 2 
0 0 1 2 0 

3/5 0 0 1 
0 -3/5 1 0 

1/4 -1/5 0 0 1 
0 0 1/5 1 0 

-1/4 -1/5 0 0 -1 
0 0 1/5 -1 0 

1/4 3/5 0 0 -1 
0 0 -3/5 -1 0 

-4/3 0 
0 4/3 

-4 0 
0 4 

-4 o· 
0 4 

-4/3 0 
0 4/3 

Table 5.2 Tabulation of F with number of taps equal to 2, 4, 6 
and 8 at 1/4f0 tap spacing. F specifies the first component prep-

rocessor which renders, for small bandwidth, the transformed cova
riance matrix to be independent of tap spacing and apart from the 
dimension of the matrix, also the number of taps. 
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for rendering the eigenvalues to be roughly independent of bandwi-

dth, tap spacing and apart from the dimension of the matrices con-

cerned, the number of taps are quite obvious, the choosing of the 

third component preprocessor is in certain sense similar to the 

choosing of the feedback factors for the narrowband processors in 

the alternative system and hence is not so obvious. Thus, instead 

of choosing the feedback factors so as to equalize the eigenvalues 

due to only receiver noise, the smallest eigenvalues possible, it 

may also be of interest to normalize, as for an ideal narrowband 

array, the feedback factors with respect to the element powers seen 

by the narrowband processors-in the alternative system. Similarly, 

for the preprocessed Frost system, the third component preprocess-

or may be chosen to equalize the powers of the transformed inputs 

instead of equalizing the eigenvalues due to only receiver noise. 

Obviously, the third component preprocessor will then become a di-

agonal matrix and together with the second component preprocessor, 

can be implemented simply by employing AGC circuits. For simplic-

ity, these alternatives will not be investigated. 

5.6.2 Theoretical analysis on the consequences of the preprocessor 

Having derived the preprocessor in the last subsection, this 

subsection will analyze in more detail, theoretically for small 

bandwidth, the consequences of the preprocessor. With the same 

reason as investigating the Frost system, the analysis will be eo-

ncerned principally with the eigenvalues, though the eigenvectors 

will also be briefly discussed. 

Firstly, with D given by (5.75) and as described in appendix 

5.9.2, c0h I n=1,··,N, g,h=O,··,J/2-1, having the form of (5A-31), 
g n 

the matrix sum under the summation of n in (5.74) clearly has the 
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form of (5A.36), except that the dimension should now be (M-1)J• 

(M-1)J. · Thus, the eigenvalues due to this matrix sum will be in 

equal pairs. From also the discussion in the last subsection reg-

arding the third component preprocessor D, the general structure 

of the eigenvalues of the transformed covariance matrix can then 

be summarized, for small bandwidth, by 

The transformed covariance matrix has in general NJ/2+1 
distinct eigenvalues. The largest NJ/2, each of multi
plicity 2, are due to the jammers and receiver noise. 
The smallest eigenvalue, of multiplicity (M-N-1)J, is 
equal to s0 and:is due to only receiver noise. 

Note that again, the smallest eigenvalue is due to only.receiver 

noise as the presence of the jammers cannot lead to smaller eigen-

' values. Regarding the structure of the eigenvectors, it is obvious 

that the eigenvectors associated with the jammers and receiver no-

ise together span the same subspace as that spanned together by 

IxQ1 , IxQ2, •• and IxQN' while those associated with only receiver 

noise are given by the columns of IxE and together span the compl-

imentary subspace. 

Consider now the interesting and significant case when all 
. 0 

the jammers have flat spectrums. With Rgh' D and M
0 

given by (5. 

48), (5.75) and (5.76) respectively, the transformed covariance 

matrix of (5.73) becomes, for small bandwidth, 

N 
R ~ {DTxi)(M

0
x L s Q Q T)(Dxi). 

0 n n n n= 
(5.88) 

Using (5.79) and the mathematical theorem of (5.77), this yields 

T N T N T 
R ~ (D M0D)x \ s Q Q = Ix 2 s Q Q • 

n~O n n n n=O n n n 

The structure of the eigenvalues of the transformed covariance ma-

trix can then be summarized in addition to {5.87) by 
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If all the jammers have flat spectrums, each eigenvalue 
for an ideal narrowband array in the same environment 
becomes an eigenvalue, with multiplicity J/2, of the 
transformed covariance matrix. 

Clearly, the J/2 associated eigenvectors are given by the columns 

of the Kronecker product of I and the corresponding eigenvector of 

the ideal narrowband array. Evidently, in this situation, the pr-

eprocessor is the best in the sense that the "temporal" spread of 

eigenvalues has been reduced to zero and thus the spread of eigen-

values is due only to the spatial and power distributions of the 

jammers, at least for small bandwidth. Furthermore, from (5.89), 

the transformed covariance matrix is now reduced ~Y the preproces-

so~ to a block diagonal form, illustrating that the transformed 

inputs have become block decorrelated. Specifically, if the (M-1)J 

transformed inputs are divided into J/2 groups with the ith group 

consisting of the 2(M-1)(i-1)+1th to the 2(M-1)ith transformed in-

puts, then each group of transformed inputs will be uncorrelated 

with the other groups of transformed inputs and give rise to the 

same covariance matrix as that for an ideal narrowband array in 

the same environment. (Note that even if not all the jammers' sp-

ectrums is flat, each group of transformed inputs will, from (5.73) 

and (5.75), still give rise to the same covariance matrix as that 

for an ideal narrowband array, but not in the same environment.) 

The block decorrelation is of course of importance in applications 

when, say, the hardware for updating the weights is limited so 

that the weights are updated in a time-multiplexed sequence. Thus, 

for example, it will be practical and more efficient to first upd-

ate the weights associated with only the first group of transformed 

inputs until convergence is nearly achieved. If the output power 

reduction is not adequate, updating can then be carried out for 
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the weights associated with only the second group of transformed 

inputs until, again, convergence is nearly reached. Updating can 

then be applied to the next group of weights if the output power 

reduction is still not satisfactory and so on until eventually, 

the output power is small enough. All later updating of weights 

to keep track of the changing environment can then be limited to 

only the weights which have been updated, that is, which give rise 

to significant output power reduction. In this way, the weights 

that give practically no decrease in output power will not be upd-

ated, hence improving the overall convergence behaviour. Of cour-

se, as the bandwidth increases or the jammers• spectrums deviate 

from flat ones, the block decorrelation introduced by the preproc-

essor will become less and less perfect. Nevertheless, the scheme 

described is obviously still useful even though the transformed '. 

inputs may only be partially block decorrelated• For simplicity, 

this scheme and similar ones will not be studied in this chapter. 

Note that because of the partial block decorrelation, the tapped 

delay line processing has become essentially several narrowband 

processings in parallel. The difference with the alternative bro-

adband processing is obviously that while this is based on the use 

of preprocessing on tapped delay lines, the alternative broadband 

processing is based on using bandpass filters. Of course, the 

preprocessor can be viewed as performing filtering operations. 

When all the jammers have flat spectrums, the trace of the 

transformed covariance matrix, from (5.89), is 

N 
trR • (M-1 )J 2 sn. 

n=O 
(5.91) 

Since, from (5.87), the smallest eigenvalue is equal to s0 , the 

set of time constants, {TP}' for the preprocessed Frost system is 
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thus bounded, using (5.18), by 

(5.92) 

where 

B ENR(M-1)J 
P " 4M wt 

sampling period 

With the structure of the eigenvalues as described by (5.90) 1 this 

bound is obviously also loosely approached in situations where the 

bound BN of (5.23) for the alternative system is loosely approach

ed. Moreover, from (5.23) and (5.93), the ratio of the bounds is 

J 
"T N 

and gives the ratio of any time constant in the preprocessed Frost 

system to that due to the corresponding eigenvalue in the alterna-

tive system. In particular, this gives the ratio of the effective 

time constants and as the ratio Br/BN' can be used as a crude mea

sure for comparing the convergence behaviour of the two systems. 

From {5.94), the ratio Bp/BN is equal to the ratio of the number 

of weights required in using tapped delay line processing to that 

should the alternative broadband processing be used. The recipro-

cal of the latter ratio is plotted against bandwidth in fig.4.22 

at 20 and 40dB MENR, using (4.56b,c) and (4.61) with the operation 

L•J neglected for convenience. Obviously, with the preprocessor, 

the slow convergence behaviour of the Frost system, relative to 

the alternative system, has been improved to slightly better than 

the latter system. Furthermore, contrary to the Frost system, the 

preprocessed Frost system has even better convergence behaviour 

relative to the alternative system when the MENR and for bandwidth 

less than about 20%, the bandwidth increase. 

The comparison of the preprocessed Frost and alternative 
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system in the last paragraph has been based on all the jammers having 

flat spectrums. As may be expected intuitively, it has been found 

from simulation results that the eigenvalues are fairly insensitive to 

variation in the jammers• spectrums, unless the changes are so dr-

astic as to result in say, effectively narrowband jamming. There-

fore, the comparison discussed will still roughly hold in most ea-

ses. Specifically, the effective time constants of the preproces-

sed Frost system will not be very different from, perhaps slightly 

shorter than, those of the alternative system and the ratio Bp/BN 

is relevant for roughly.comparing the final effective time consta-

nts of the two systems. Mathematically, by using (5.33) and (5.73), 

the trace of the transformed covariance matrix is shown in appendix 

5.9.3 to be bounded by 

trR (5. 95) 

with equality when there is no receiver noise and all the jammers 

have spectrums consisting of only delta functions at either band 

edges. Substituting into (5.18) with the smallest eigenvalue, due 

to only receiver noise, being s0 , the bound BP now becomes 

2 
~ • ENR§~-1 )J sampling period (5.96) 

wt 

which is not very different from (5.93). Evidently, this gives 

one indication for the general validity of the comparison discussed 

and that the preprocessor works in all situations. 

Summarizing, from the elegant (5.27) for the covariance mat-

rix, a transformation preprocessor has been derived and for small 

bandwidth, analyzed theoretically in this section. As discussed, 

the (M-1)J dimension preprocessing consists of M-1 identical prep-
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rocessings, the mth preprocessing transforming only the J inputs 

behind the m+1th element. The preprocessor depends only on the 

tap spacing, bandwidth and number of taps and is particular simple 

at 1/4f0 tap spacing. With the preprocessor, the covariance matrix 

is rendered independent of bandwidth, tap spacing and apart from 

its dimension, the number of taps. The eigenvalues then have the 

elegant structure of (5.87) and (5.90). Furthermore, the inputs 

after preprocessing can now be divided into J/2 groups, the 2(M-1) 

transformed inputs in each group being partially decorrelated with 

the other groups of tranSformed inputs and having the same covari-

ance matrix as that for an ideal narrowband array. The decorrela-

tion is perfect when all the jammers have flat spectrums. Briefly, 
~ 

the preproce~sor, which can be considered as equivalent to the set 

of bandpass filters in the alternative broadband processing method, 

has reduced the temporal spread of eigenvalues to virtual' nonex-

istence. The effective time constants of the preprocessed Frost s-

ystem are thus, in general, not very different from, perhaps ~lig

htly shorter than, those of the alternative system and the ratio 

of (5.94) can be used roughly for.comparing the final effective time 

constants of the two systems. 

5.7 Eigenvalues and Eigenvector Power Components after Preprocess-

ing from Simulation Results 

Having theoretically derived and discussed the preprocessor, 

this section will, in the same way as section 5.5, study the eige-

nvalues and eigenvector power components in the preprocessed Frost 

system so as to verify the important theoretical deductions as well 

as to provide more insight. Note that .for the same reason as that 

when studying the Frost system, the eigenvector power components 

have not been investigated theoretically. 
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Fig.5.8 shows graphs of eigenvalues and eigenvector power 

components against bandwidth for the situation of fig.5.3 when pr

eprocessing is employed. For small bandwidth, the behaviour of 

the eigenvalues obviously agrees with the theoretical deductions 

of (5.87) and (5.90). In particular, the two groups of eigenvalues 

in fig.5.8a are separated by 7dB, roughly equal to the difference 

between the pairs of eigenvalues in either set of eigenvalues in 

fig.5.3a. From fig.5.8b, the eigenvector power components are pr

oportional to B0 for small bandwidth. Again, this indicates that 

the eigenvector components are proportional to B0 which, as with 

the Frost system, has been found to be the case whenever all the 

spatial degrees of freedom are used to reject jammers whose spect

rums have even symmetry. For larger bandwidth, the eigenvector 

power components have more complex behaviour. From fig.5.8, the 

final effective time constant can be seen to be always determined 

by the smallest eigenvalue which, having significant eigenvector 

power component relative to the optimal output power of about -15 

dB in fig.5.3a, varies only slightly even at large bandwidth. Us

ing (5.18) with the ratio of the trace of the transformed covaria

nce matrix to the smallest eigenvalue being about 13dB (separation 

between the two groups of eigenvalues 7dB + number of large eigen

values 6dB), this is roughly 50 sampling period at 1~~ misadjustm

ent regardless of the bandwidth. Comparing with that for the alt

ernative system of about 75 sampling period calculated earlier at 

25% bandwidth, the preprocessed Frost system is now marginally fa

ster by about 1.5 times, in agreement with the theoretical ratio 

Bp/BN' from (5.94) and the alternative system needing 3 narrowband 

processors at 25% bandwidth, of 1.5. The improvement by the prep

rocessor on the convergence behaviour of the Frost system for ban-
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dwidth between 20 and 30% when the jamming is broadband and the 

smallest eigenvalue determines the final effective time constant 

is obvious. 

Fig.5.9 shows graphs of eigenvalues against tap spacing for 

the situation of fig.5.8 at 25% bandwidth. Evidently, due to the 

preprocessor, the eigenvalues and so the effective time constants 

have become roughly independent of tap spacing. In particular, 

the spreading of the eigenvalues leading to deterioration in the 

convergence behaviour of the Frost system as the tap spacing devi

ates from 1/4f0 now does not exist. The preprocessed Frost system 

is as fast at any other tap spacing. 
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Fig.5.10 shows graphs of eigenvalues and eigenvector power 

components against bandwidth for the situation of fig.5.5 when pr-

eprocessing is employed. For small bandwidth, the behaviour of 

the eigenvalues obviously agrees with the theoretical description 

of (5.87), although with the jammer having inverted-triangular sp-

ectrum, the theoretical deduction of (5.90) is now not valid. As 

the bandwidth increases, eigenvalue 2 can be seen to start to inc

rease and become proportional to B2 eventually. Of course, this 

results from the increase in the gradient of eigenvalue curve 2 in 

fig.5.5a from 20 to 40dB per decade. Generally, from also other · 

simulation results, it has been found that if the·spread of eigen-

values is large as when the jammers have very different powers, 

are closed t~gether or the spatial degrees of freedom are not fully 

utilized, some of the small eigenvalues may increase and become 

proportional to some even powers of bandwidth as the bandwidth in-

creases. From fig.5.10b, eigenvector power components 1, 2 and 5, 

6 can be seen to be roughly proportional to B6 and B8 respect~vely. 
From also the optimal output power curve in fig.5.5a, these compo-

nents, which are associated with eigenvalues due to only receiver 

noise, are obviously insignificant except at bandwidth so large 

that the performance of the array to reject the jammer has deter-

iorated. On the other hand, eigenvector power components 7,.8 

and 3, 4 are roughly proportional to B0 and B2 respectively and 

are due to the jammer and receiver noise. Components 7, 8 are ob-

viously always significant, while components 3, 4 are only signif-

icant for bandwidth greater than about 1~/o. These observations 

are fairly general and are also obtained from other simulation re-

sults. Specifically, in situations to be expected when the ENR is 

less than the designed MENR, the eigenvector power components ass-
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ociated with eigenvalues due to only receiver noise are usually 

proportional to large even powers of bandwidth and insignificant, 

while the other components due to the jammers and receiver noise 

are proportional to small even powers of bandwidth and can be sig

nificant. Using arguments and calculations similar to that with 

fig.5.8, the effective time constants in this situation can also 

be verified to be roughly the same as those for the alternative 

system. Illustrating again the relevance of the ratio Bp/BN' this 

has been found to be so in most of the situations studied. There 

are only a few situations where the final effective time constants 

of the two systems differ by-more than say, a factor of 10. In 

any case, the time constants in the preprocessed Frost system will 

be less than the bound of (5.96), at least for small bandwidth. 

Finally, fig.5.11 shows graphs of eigenvalues against bandwi

dth for the situation of fig.5.10 except that the jammer has tria

ngular spectrum instead. Obviously, the eigenvalues in the two 

figures are roughly identical except that due to the jammer•s spe

ctrum becoming peaky towards the centre of the band, eigenvalues 

3 and 4, due to the jammer and receiver noise, are now smaller. 

As may be expected, this phenomenon is also generally observed. 

Summarizing, the eigenvalues and eigenvector power components 

after preprocessing have been investigated by using simulation re

sults in this section. The important theoretical deductions of 

the last section have been verified. Specifically, the structure 

of the eigenvalues as given by (5.87) and (5.90) is valid to band

width of tens of percents depending on the environment. Furtherm

ore, the effective time constants of the preprocessed Frost and 

alternative system are not very different and the relevance of the 

ratio Bp/BN of (5.94) for roughly comparing the final effective 
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Fig.5.11 Graphs of eigenvalues against bandwidth for 
the situation of fig.5.10 except with the jammer having 
triangular spectrum instead. 

time constants of the two systems is illustrated. The results also 

show that the eigenvector power components usually have more camp-

lex behaviour than the eigenvalues and moreover, those associated 

with eigenvalues due to only receiver noise are insignificant when 

the ENR is below the designed MENR. 

5.8 Conclusion 

The convergence behaviour of the broadband tapped delay line 

Frost system has been formulated in this chapter. Particularly, 

the output power converges as a sum of exponentially decaying com-

ponents with time constants inversely proportional to the eigenva-
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lues of the covariance matrix. By expressing the autocorrelation 

functions of the jammers and receiver noise in power series of 

bandwidth, the covariance matrix was manipulated into an elegant 

form, (5.27). With the assumption of small bandwidth, the elegant 

structure of the eigenvalues, as described by (5.42), (5.47) and 

(5.52), was then derived. Briefly, the eigenvalues can be divided 

into (number of taps)/2 sets. The eigenvalues in the ith set are 

proportional to the 2(i-1)th power of bandwidth and should the tap 

spacing be equal to a quarter wavelength delay at the centre freq

uency, have the same structure as that for an ideal narrowband ar

ray. The lower bound of (5.57) for the convergence time constants 

was then derived and compared with (5.23) for the alternative bro

adband system using several narrowband processors. This shows that 

the Frost system can be considerably slower than the alternative 

system in broadband jamming environments, although the two systems 

have roughly the same effective time constants if the jamming is 

effectively narrowband. For example, the final effective time co

nstants can differ by a factor of 10 at 2~~ bandwidth and 20dB 

element to receiver noise power ratio and increases as the two pa

rameters increase and also as the tap spacing deviates from a qua

rter wavelength delay at the centre frequency. From the elegant 

(5.27) for the covariance matrix, a transformation preprocessor 

was derived. The preprocessor depends only on the number of taps, 

tap spacing and bandwidth and is particular simple at the tap spa

cing just mentioned. Assuming small bandwidth, the array inputs 

after preprocessing was found to be partially block decorrelated 

and give rise to eigenvalue structure as described by (5.87) and 

(5.90). Briefly, the eigenvalues are now independent of tap spac

ing and bandwidth and have spread due effectively to only the power 
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and spatial distributions of the jammers. Thus, the preprocessor 

is essentially equivalent to the set of bandpass filters used in 

the alternative system. With the preprocessor, the Frost system 

was then deduced to have effective time constants not very differ-

ent from, perhaps slightly shorter than, that of the alternative 

system in all environments. Generally verifying all these import-

ant deductions to bandwidth of tens of percents, simulation results 

have also been examined .to provide more insight. 

5. 9 Appendix 

5.9.1 Formulation of the covariance matrix in the form of (5.26) 

and derivation of (5.27) 

With reference to (5.26), consider now Rpn' p=O,••,oo, n=1,••, 

N, due to the nth jammer and associated with the pth power of ban-

. dwidth. 

R = pn 

Partitioning R as pn 

A11 A12 
. • A 1 M-1 

A21 A22 
• t 

AM-1 1 

(5A.1) 

Ast' s,t=1,··,M-1, of dimension J•J, is obviously the component 

covariance matrix giving the covariances concerned between the in-

puts behind the s+1th element with those behind the t+1th element. 

Hence, defining 

dsinS 
n dn = __ c...;; 

= difference in time of arrival between adjacent 
element inputs due to the nth jammer 

and using (5.24), the (u,v) element of Ast is 

s M ,P 
[A ] n pn f

0
P [(u'l" + sd ) - (v'l" + td )] p st uv = p! n n 
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Using the binomial expansion, the factor f 0P [(u<r+sd )-(v<r+td )JP 
n n 

can be expressed as 

f 0 P [(u-r + sdn) - (v-r + tdn)l P 

p 
= 2 (P) [f0 (u-r + sdn)Jp-q(f

0
(v-r + tdn)Jqcos~q 

q:O q 
p p-q q h 

= ~ l ~ (P)(p- q)(q)(f sd )p-q-g(f td )q-
q:O g:O h:O q g h 0 n 0 n 

• (f0u-r)g(f0v-r)hcos~q. 

Substituting into (5A.3) then gives 

~ ' • cos{2,~rf0 [(u - vh + (s - t)dn] + z(P - 2q)}. 
1 

(5A.4) 

(5A.5) 

Considering the definition of (5.28) for P being valid for g=O,·~, 
g 

~ in this appendix, the last three factors together are obviously 

equal to the (u,v) element of 

P [cos[2~r0 (s-t)dn+zCp-2q-g+hll 
g sin[2~f0 (s-t )dn+~(p-2q-g+h)l 

-sin[2~rf0 (s-t)dn+:(p-2q-g+h)l]· T 
. I " ph 
cos[2~rf0 (s-t)dn+2(p-2q-g+h)l 

• • • T· T - p Q Q p 
- g p-q-g ns q-h nt h (5A.6) 

where 

[cos(2s~rf0d + !4> -sin(2s~rf0d + !4>] ,. n G. n ... 
Q ns = . ~ "~ • 

g S1n(2s~rf0dn + ~) cos(2s~rf0dn + ~) 
(5A.7) 

Clearly, from (5A.5) and (5A.6), Ast can be written in matrix form 

as 

s M ~p p p-q ~ 
= n pn ' ' (P)(P - q)(q)(f sd )p-q-g 

p 1 L L g g h 0 n . q=O g=O h=O 
(5A.8) 

• (f td )q-hp Q Q Tp T. 
0 n g p-q-g ns q-h nt h 

= 
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Therefore, by defining 

p = 
g 

and 

p 
g 

0 

p 
g 

0 

• 
p 

g 

( f d )gQ· 
0 n gn1 

g• (2f
0 d ) Q 

2 n gn 

g· 
l(M-1 )f0d ] Q M 1 n gn -

' 

R , from (5A.1) and (5A.8), becomes pn 

R = pn 

s M 11p p p-q 
n P~ L L 

p. q=O g=O 

(5A • 9) 

(5A.10) 

Q Tp T (5A.11) 
n q-h n h • 

Consider now RpO' due to receiver noise, in (5.26). Because 

receiver noise is independent between elements, RpO clearly has 

the form 

(5A.12) 

where A, of dimension J•J, is the component covariance matrix con-

cerned due to receiver noise for inputs behind one of element 2 to 

M. The (u,v) element of A is obviously also given by (5A.5) with 

snMpn replaced by s0MpO and f0sdn equal to f 0tdn equal to, say, 1 

for convenience. Therefore, with the same manipulation leading to 

(5A.8) from (5A.5), A is given by 

(5A.13) 

where 
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= [cos~ -si~.n2]· 
·~ ~ Sl. 2 COS 2 

Thus, with Pg given by (5A.9) and defining QgO as 

QgO 0 

QgO = QgO 
' • 

0 
QgO 

RpO' from (5A.12) and (5A.8), becomes 

s M ilp p .· p-q q 
= n p~ 2 2 2 (P)(P -

p q=O g=O h=O q g 

which has the same form as (5A.11). 

(5A.14) 

Substituting (5A.11) and (5A.16) into (5.26) then gives the -
covariance matrix as 

N .. , p p-q q s M ( 1rB) p 
R = l l 2 l l n pn, (P)(Pg- q)(~) 

n=O p=O q=O g=O h=O p. q 
(5A.17) 

p Q Q Tp T 
• g p-q-g n q-h n h • 

Applying the mathematical theorem (4.12), this becomes 

N .. p q s M (1rB)p+q 
R = l l l l n P(9 n )r (P + q)(P)(hq)P Q nQq-h nTphT 

0 0 0 h --0 p + q • . q g g p-g n= p,q= ,g= 
N "' s M ( 11B)p+q+g+h 

= \ \ n p+q+g+h n (p + q + g + h)(P + g) 
L L (p + q + g + h) I q + h g n=O p,q,g,h=O 

• (q + h)P Q Q Tp T 
h g pn qn h .. 2 Bg+hp R p T 

h-0 g gh h g, -
= (5A.18) 

where 

(5A.19) 

g,h=O, • • , 03 , 

and 
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g+h 
=!__M 

g!h! g+h 
g+hf1 

- .!___ s (f)fg+hdf n - g!h! _
1 

On (5A.20) 

after substituting (5.25). Clearly, Rgh is symmetrical and satis

fies 

(5A.21) 

Pg' as given by (5.28~ and (5A.9), obviously has dimension 

(M-1)J•2(M-1) and with the Gram-Schmidt orthogonalization process, 

can be used to define a set of mutually orthogonal matrices: 

u = 
g 

P0, g=O 

g T -1 T J 
hTI1 !I- uh-1(uh-1. uh-1~ uh-1 lPg, g=1,··,2-1. 

0' g=J' •• 'f<o 
! ' 

(5A.22) 

Obviously, u0 , u1 , •• and UJ/2_1 as defined here are the same as 

that given by (5.29) and (5.30) in section 5.3 and with each having 

full rank, have columns which together span the whole vector space. 

Hence, the definition, for notational convenience, of UJ/2 ' UJ/2+1 , 

•• being zero is necessary if u0 , u1 , •• are to be mutually ortho-

gonal. From (5A.22), P, g=O,··,~, can be expressed as a linear • g 

where 

G 
gg 

Therefore, substituting (5A.23), (5A.18) becomes 

.. g 

R = g,Lo s~o 
h g+h • T T 
\B -lJG RhGhtUt. 

t~O s gs g 

(5A.23) 

(5A.24) 

• 

(5A.25) 

Using the mathematical theorem (4.12) and then (5A.22) 1 this gives 

rise to 
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(5A.26) 

where 

"" 
\ Bs+tG R h+tGh+t T g,h=O,··,""· L g+s g g+s h 1 

s,t=O 
(5A.27) 

From (5A.21), R~h clearly satisfies 

Ro o T 
gh = Rhg • (5A.28) 

Furthermore, from (5A.19) and (5A.24), (5A.27) becomes 

(5Ao29) 

should all higher order terms proportional to the first or higher 

' powers of bandwidth be neglected. Evidently, (5A.26) and (5A.28) 

correspond to (5.27) and (5.35) respectively, whereas with the de

finition for Q , n=O,··,N, given by (5.31) and (5.32) being the n 

same as that by (5A.2) 1 (5A.7), (5A.10), (5A.14) and (5A.15) for 

QOn' (5A.29) corresponds to (5A.33). 

5.9.2 The polar decomposition of 

With Q , n=0 1 •• 1 N, defined 
n by (5.31) 1 it is well known that 

the polar decomposition for R~h' g,h=O,·•,J/2-1, as given by (5. 

33), can be expressed in general as 

N 
\ cO CO CO T 

n;1 ghn ghn ghn (5A.30) 

where the meaning of the various terms and factors are as described 

in subsection 5.4.2. In addition, however, C~hn' n=1,•·,N, has 

the form 
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CO 
ghn = 

a
1 

cosb
1 

a
1
sinb

1 
a 2cosb2 
a 2sinb2 

aM_1cosbM_1 
aM_ 1sinbM_1 

-a
1
sinb

1 
a

1
cosb

1 
-a2sinb2 

a2cosb2 

-aM_1 sinbM_1 
aM_1cosbM_1 

(5A.31) 

which is very similar to that given by (5.31) for Q • From (5A. 
n 

30), the polar decomposition for the inverse of Rg0 which, as dis-

cussed in section 5.3, has full rank is obviously 

(5Ao32) 

By substituting (5A.30) and (5A.32), R;h' g,h=1,·•,J/2-1, as 

given by (5.38), is thus 

N , 
\ cO CO CO T 

n~ 1 ghn ghn ghn (5A.33) 

From the orthogonality of eigenvectors or more specifically, E be-

ing mutually orthogonal with c0h , g,h=O,··,J/2-1, this becomes 
g n 

0 T NOOOT 
~ s0M hOEE + [ \ c h C h C h -g n~1 g n g n g n (5A.34) 

N C0 c0 T N 
( \ OOn OOn ) ( \ 0 0 CO CO T)l J 1 L1 0 L

1 
hOn hOn hOn ' g,h=1 ' • • •2- • 

n= cOOn n= 

where 

(5A.35) 
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Clearly, with cgOn and C~hn having the form of (5A.31), the square 

bracketed term is easily seen to have the form 

N 0 0 
0

0 T 
\ c c 
n~ 1 ghn ghn ghn 

{5Ao 36) 

0 0 

• ( ~ 0
oon°

0
oon )( ~ CO 0 0 T 

L L hOn°hon°hon ) = 
n=1 cOOn n=1 

a11 0 a21 cosb21 a21 sinb21 a31 cosb31 a 31 sinb31 
• 

0 a11 -a21sinb21 a 21 cosb21 -a31 sinb
31 

a
31

cosb
31 

a21 cosb21 -a21 sinb21 a22 0 a 32cosb32 
a

32
sinb

32 
a 21 sinb21 a21 cosb21 0 a22 -a32sinb

32 
a32cosb32 • 

a
31

cosb
31 

-a31 sinb31 
a

32
cosb

32 -a32sinb32 a33 0 

a 31 sinb
31 

a 31 cosb
31 

a
32

sinb
32 

a
32

cosb
32 

0 a33 . ' • • 
• • • 

• 

0 0 
Also, since C h1 ' Cgh2 , _g 

0 
•• and CghN together span the same subspace. 

as Q1, Q2 , •• and QN' so will the square bracketed term. Therefo

re, from (5A.34) and (5Ao36), the polar decomposition for R~h can 

be written as 

(5A•37) 

1 1 where c h and C h have meanings as described in subsection 5.4.2 g n g n 
1 and Cghn also has the form of (5A.31). Evidently, the same argum-

2 ents discussed can be used to find the polar decomposition of Rgh' 

g,h=2,••,J/2-1, and so on, resulting in (5.43), (5.44) and the as-

sociated description in subsection 5.4.2. 

5.9.3 The upper bound on the trace of the transformed covariance 

matrix 

Using the mathematical theorem (3.14) and (5.77), the trace 

of the transformed covariance matrix can be obtained from (5.73) 

and (5. 75) as 
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= 

• 



trR = tr [(DTxi) 

• ·T = tr [(DD xi) 

0 0 
Roo Ro1 . 

0 0 
R10 R11 .. 

0 
R J/2-1 0 

0 0 
Roo Ro1 

0 0 
R10 R11 

0 
RJ/2-1 0 

Ro • 0 

Ro • • 0 

J/2-1 .,T 0 
= l [DD 1 +1 h+1 trRhg• 

g,h=O g 

J/2-1 

(Dxi)l 

J/2-1 

From (5.79), DDT is easily seen to be given by 

so that· (5A.38) becomes 

• J/2-1 -1 
trR = l [MO 1 g+1 g,h=O 

(5A.38) 

(5Ao 39) 

(5A.40) 

With M0 given by (5.80), the (g+1,h+1) element of M
0

- 1 is obviously 

zero if g+h is odd. (5A.39) therefore becomes 

J/2-1 1 0 
trii = l !M0- 1 +1 h+1trRhg" (5A.41) 

g 1 h=0 1 g+h=even g 

0 
From (5.34), Mghn' n=O,••,N, g,h=O,··,J/2-1, is clearly greater 

than zero but less than or equal to 1 if g+h is even. Furthermore,. 

M
0 

is equal to 1 if and only if the associated spectrum consists ghn 

of only delta functions at either band edges. 0 
Evidently, trRgh' 

from (5.33), is bounded, for small bandwidth and even g+h, by 

) g+h N 
0 L t RO L 2(M-1 " '\ 

- r h - lh• L s g g · n=O n 
(5A.42) 

where the upper bound is achieved if there is no receiver noise 

and all the jammers have spectrums given by delta functions at 

either band edges. Substituting (5A.42) into (5A.41), the trace 
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of the transformed covariance matrix is thus bounded by 

tr:R /,. 
N J/2-1 

2(M-1) l sn( l 
n=O g,h=O,g+h=even 

!M -11 "g+h 
0 g+1 h+1 ) 

g lh! • 

Using (5.80), the last bracketed factor has been found from compu-

ter simulation to be 

J/2-1 !M0- 11 "g+h J2 

2 -~--~g+~1~h~+~1 __ _ - = ...,. g!hl 't g,h=O,g+h=even 
(5A.44) 

so that (5A.43) becomes (5.95) with equality under the condition 

stated. 
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