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Abstract 

An adaptive array is a signal processor used in conjunction with a set of antennae to provide a versatile 

form of spatial filtering. The processor combines spatial samples of a propagating field with a variable 

set of weights, typically chosen to reject interfering signals and noise. In radar, the spatial filtering 

capability of the array facilitates cancellation of hostile jamming signals and aids in the suppression of 

clutter. 

In many applications, the practical usefulness of an adaptive array is limited by the complexity as-

sociated with computing the adaptive weights. In a partially adaptive beamformer only a subset of 

the available degrees of freedom are used adaptively, where adaptive degrees of freedom denotes the 

number of unconstrained or free weights that must be computed. The principal benefits associated with 

reducing the number of adaptive degrees of freedom are reduced computational burden and improved 

adaptive convergence rate. The computational cost of adaptive algorithms is generally either directly 

proportional to the number of adaptive weights or to the square or cube of the number of adaptive 

weights. In radar it is often mandatory that the number of adaptive weights be reduced with large 

antenna arrays because of the algorithms computational requirement. The number of data vectors 

needed for the adaptive weights to converge to their optimal values is also proportional to the number 

of adaptive weights. Thus, in some applications, adaptive response requirements dictate reductions in 

the number of adaptive weights. Both of these aspects are investigated in this thesis. 

The primary disadvantage of reducing the number of adaptive weights is a degradation in the steady—

state interference cancellation capability. This degradation is a function of which adaptive degrees of 

freedom are utilised and is the motivation for the partially adaptive design techniques detailed in this 

thesis. A new technique for selecting adaptive degrees of freedom is proposed. This algorithm sequen-

tially selects adaptive weights based on an output mean square error criterion. It is demonstrated 

through simulation that for a given partially adaptive dimension this approach leads to improved 

steady—state performance, in mean square error terms, over popular eigenstructure approaches. Ad-

ditionally, the adaptive structure which results from this design method is computationally efficient, 

yielding a reduction of around 80% in the number of both complex multiplications and additions. 

When the adaptive weights are computed using a finite number of data vectors, the adapted response 

of the array may experience very noisy sidelobe fluctuations and main beam perturbations. This 

random behaviour occurs because finite sampling causes spurious cross—correlation effects, so that the 

background noise component differs greatly from the asymptotic value. Large sidelobe levels present a 

considerable problem in a radar application, as processing is typically performed in a non—concurrent 

manner, i.e. the weights are computed from a different set of data from that to which they are applied. 

High sidelobes can render the adaptive array very vulnerable to sidelobe clutter, sudden changes in 

the interference environment, or pulsed interference that can benefit from post-processing gain. A 

statistical analysis of the transient response of an adaptive array is presented. In particular, the 

transient sidelobe levels are examined, showing the error to be a function of the number of adaptive 

weights and the number of data vectors combined. 
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Chapter 1 

Introduction 

1.1 Introduction 

In an airborne radar desired signals often have to compete with strong ground clutter returns. 

These returns are usually strongest in the areas illuminated by the mainlobe of the transmit 

beam. When conventional (non—adaptive) signal processing techniques are applied, mainlobe 

clutter returns are typically translated to zero Doppler prior to rejection with low order di-

gital filters. With an electronically scanned beam, clutter rejection is further complicated by 

the increase in beamwidth arising from scanning away from broadside. If the electronically 

scanned beam is to be formed adaptively the clutter filtering operation becomes of even greater 

importance because the mainlobe clutter coincides with the look direction. Great care must 

be taken to avoid the extreme sensitivity of the adaptive processor to mainlobe returns, which 

means that clutter rejection filters must attain significant rejection over the range of Doppler 

frequencies illuminated. 

Within this thesis the problem of designing a partially adaptive beamformer which attains near 

fully adaptive performance is considered. The contribution of this work is the investigation of 

techniques for reducing the required adaptive dimension of an adaptive beamformer. A new 

technique is proposed which selects adaptive degrees of freedom on an output mean square 

error (MSE) criterion. The convergence performance of such a beamformer is also examined, 

and expressions for various parameters are derived, most notably the transient sidelobe levels. 

The purpose of this chapter is to introduce the work undertaken in this project. The chapter 

begins with a discussion of the principal motivations for the work and then gives an overview 

of conventional interference cancellation techniques. Following this, the principal areas of work 

within the thesis are summarised and other salient research reviewed. Finally the organisation 

of the thesis is described. 

1.2 Motivation 

Target recognition and identification in airborne radar typically consists of a reflector antenna 

or waveguide array with some fixed gain pattern which is mechanically steered over all look 

directions of interest. The disadvantages of such a system are many. The physical size of the 

antenna requires a scanning strategy which is continuous and usually periodic. In a hostile 

situation it may be preferable to follow a particular target whilst maintaining a conventional 
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Chapter 1: Introduction 

scanning strategy. Use of an electronically steered phased array, in which the antenna stays 

fixed in space and the radar beam is moved by introducing a phase delay across the array face, 

can allow inertialess scanning and even random scanning strategies. Scanning in such a manner 

not only prevents the detection of a periodic scan, but allows continuous tracking of a target 

as a single task within a larger scheduling scheme. 

With a fixed pattern antenna low sidelobes are relied upon to provide exclusion of undesired 

noise and jamming signals. Most airborne radars will operate in environments in which substan-

tial jamming and interfering signals will be present. These interferences, whether intentional or 

not, will lead to degradation in the ability of the array to identify desired signals. By using an 

adaptive phased array "nulls" can be steered in the directions of jamming signals so cancelling 

their effect. This type of array is easily reconfigurable from within software, allowing many 

different modes of operation to be implemented. This flexibility allows performance which is 

superior to that of existing fixed pattern arrays. 

Phased array antennae are, however, expensive and complex to implement. For a fully adapt-

ive array, each element will require separate gain and phase control. Typical phased arrays 

may contain several thousand active elements, so much work has been focussed on reducing 

the complexity of such structures. Many different approaches have arisen. They may, though, 

be classified into two groups. In the first, auxiliary elements are selected according to some 

algorithm. In the latter, all the array elements are used, with elemental outputs being pre-

combined in a fixed beamformer to form a reduced set of signals, thus reducing subsequent 

processing. These two approaches can be termed element—space and beam—space thinning re-

spectively. There are many inherent problems with both of these regimes. This thesis attempts 

to combine the simplicity of the former techniques with the benefits of the latter. Despite the 

complexity of such structures it is widely agreed that addition of an adaptive capability will 

form the basis of future developments. Investigation of reduction networks will lead to inter-

connection regimes which are optimum (or near optimum) over all interference scenarios. The 

allowed interconnection and combinational rules of the elemental outputs can be incorporated 

in the design phase. In this way the the manner in which partial adaptivity is achieved may be 

seen as only another factor to be optimised in the adaptive processor. 

1.3 Airborne radar 

There are several motivations for carrying a radar on an aircraft, one of them being the raised 

position which enables the radar to look from above. This gives improved detection of low flying 

aircraft and vehicles in a hilly landscape. By doing so, one encounters two serious problems. 

Firstly, the clutter returns will be much larger in amplitude because of the steeper aspect angles. 

Secondly, the clutter returns will be Doppler shifted due to the aircraft motion. Whereas in 

ground—based radar, clutter suppression is a relatively simple filtering operation, suppression of 

clutter returns in an airborne radar becomes a far more complex task. Filters which operate in 

either space or time only will be sub—optimum, reducing the ability to detect a desired signal. 
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To overcome this, two dimensional sampling of the received field (space and time) has been 

employed. This is realised by using a phased array and coherent pulse trains. Such space—time 

processors as applied to suppression of airborne clutter returns are examined in this thesis. 

Partially adaptive processors, namely those that employ a subset of the available degrees of 

freedom are examined and their performance compared. 

The type of radar considered here is termed a pulse—Doppler radar. In this mode of operation 

the radar can yield both range, bearing and Doppler characteristics of targets signals. This type 

of pulsed radar can be divided into three classes, depending on the pulse repetition frequency 

(PRF): 

. Low PRF - the radar will be ambiguous in frequency, but unambiguous in range 

. Medium PRF - the radar will be ambiguous in both frequency and range 

• High PRF - the radar will be unambiguous in frequency, but ambiguous in range 

In this thesis a medium—PRF pulse—Doppler radar is employed. However, the PRF is assumed 

sufficiently high to be greater than the Nyquist sampling rate for the return clutter field. 

This means that the clutter field will be sampled unambiguously in frequency. There will 

however be a set of ambiguous range rings, spread throughout the range profile. At the PRF 

chosen, the clutter returns from all but the first ambiguous range ring will be so small in 

magnitude, that they will not significantly affect the performance. In existing radar applications 

the term narrowband is used to refer to applications which utilise a bandwidth of up to 10% 

of the carrier frequency. In these terms, the problem considered here could be considered 

narrowband. However, because of the azimuth—Doppler structure which exists in the clutter 

returns, wideband steering delays are used in the receiver rather than simple phase-shifers, and 

the problem is treated as wideband, even though the clutter returns could be called narrowband 

by the above definition. For this reason, this thesis discusses clutter cancellation in terms of a 

wideband problem, despite the relatively small bandwidth of clutter returns. 

The discussion above has indicated that the clutter field is two dimensional, so that a two 

dimensional filter is needed for effective suppression. These comments, though, have not given 

any indication of how many adaptive degrees of freedom are required, nor the best manner 

in which to employ these degrees of freedom. One technique for determining the required 

number of degrees of freedom is to examine the eigenstructure of the return clutter field. This 

examination leads to an estimate of the dimension of the clutter signals, and thus an idea 

of how many degrees of freedom are required. This technique has been employed by many 

investigators. 
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1.4 Existing cancellation techniques 

By incorporating an array as the antenna in a radar system, the designer gains an additional 

spatial dimension, in which there are as many degrees of freedom as there are array elements. 

This is seen as the principal benefit of array antennae. Without an array only temporal fil-

tering of the received field can be performed. A conventional moving target indicator (MTI) 

is ineffective in cancelling airborne clutter because it uses temporal degrees of freedom only, 

and can only cancel clutter at the look direction. It is ineffective at cancelling the remaining 

sidelobe clutter. It is evident that in order to cancel both mainlobe and sidelobe clutter, one 

must add some spatial degrees of freedom. The simplest system that combines spatial and 

temporal degrees of freedom is the displaced phase centred array (DPCA). In this system plat-

form motion is compensated for by arranging two sub—apertures along the aircraft's axis and 

switching between them such that every two beams are spatially fixed. This is basically true 

motion compensation, also correcting for the sidelobe clutter. The problem with non—adaptive 

DPCA is that it is sensitive to antenna errors, and requires that the platform velocity is known 

well enough to adjust the interpulse period to ensure pulse to pulse cancellation. Additionally, 

DPCA needs some form of adaptive algorithm to compensate for tolerances and platform dy-

namics, so that it is better to use an adaptive clutter filter without the DPCA technique, which 

will in any case compensate for platform motion effects. 

General adaptive clutter suppression has been discussed in several papers [1,3-8]. These adapt-

ive processors are called space—time processors because they combine both spatial and temporal 

samples of the received field with an adaptive set of weights to effectively suppress all clutter. 

For an adaptive array with N elements, which processes L pulses the total number of adaptive 

weights is NL. The optimum processor will be practically useless because of this large dimen-

sion. The inversion of a NL x NL dimensional covariance matrix requires a computational 

cost of O{(NL) 3 } per iteration which is considered too expensive for real time implementation. 

The extent to which the adaptive dimension may be reduced will ultimately be determined by 

what is considered an acceptable level of performance. However, as an initial estimate, the 

eigendecomposition techniques mentioned earlier can be applied to estimate the dimension of 

the clutter subspace. This was the approach taken in [1,5-7]. In this clutter suppression was 

achieved by forming a single search beam and a set of auxiliary beams used for cancelling clutter 

echoes. More recently Su & Zhou [9] proposed a partially adaptive implementation of a clutter 

space—time filter which uses an on—line estimate of the clutter eigenstructure. 

1.5 Linearly constrained beamforming 

Linearly constrained beamformers are a class of optimum beamformer which allow general con-

trol over large regions of the angular and spectral response. As such they represent an important 

technique for overcoming the problems in adaptive beamforming. Most notably additional lin-

ear constraints can be used to control the sidelobe behaviour of an adapted array, reducing 

the high sidelobes which often occur, and thus reducing susceptibility to sudden changes in the 
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interference environment and sidelobe jamming. Another use of linear constraints is in broad-

ening the mainlobe response of the beamformer, therefore making it less directive, and hence 

increasing the tolerance to beam steering errors. Many constraint regimes exist [10-21], but 

in most applications a combination of the different types of constraints is most effective. Each 

linear constraint uses one degree of freedom in the weight vector, so that with K constraints 

there are only NL - K degrees of freedom available for minimising interference. 

The basic idea behind linearly constrained beamforming is to constrain the response of the 

beamformer so signals from the direction of interest are passed with specified gain and phase. 

The weights are chosen to minimise output power subject to the response constraint. This has 

the effect of preserving the desired signal while minimising contributions to the output due 

to interfering signals and noise arriving from directions other than the direction of interest. 

The generalised sidelobe canceller (GSC) [20,22-26] implementation of the linearly constrained 

beamformer provides a useful structure from which to approach partial adaptivity. The GSC 

splits the weight vector into two portions, one non—adaptive part which satisfies the constraints, 

and another adaptive portion which is orthogonal to the constraints. The desired signal is 

effectively prevented from entering the latter path, meaning the adaptation takes place upon 

interfering signals only. Having decomposed the problem as such, it is possible to allocate any 

number of degrees of freedom up to NL - K to the minimisation of interference. Many different 

techniques for selecting the reduced set of degrees of freedom exist, including that reported in 

this thesis [9,19,27-40]. 

1.6 Summary of the work 

This thesis examines the problem of ground clutter suppression in an airborne array radar. 

More specifically, this thesis presents a new algorithm for weight selection in a partially adaptive 

beamformer, and investigates the convergence performance of this class of beamformer. The 

techniques developed and the ideas presented are applicable to a large class of partially adaptive 

beamforming structures. 

The problem considered is the suppression of ground clutter, so naturally the first part of 

the study was concerned with developing a simple model for the clutter returns received at 

an airborne phased array. Eigendecompositions were performed on typical computed clutter 

returns as a means of providing an estimate of the dimension of the clutter subspace. The 

influence of various radar parameters upon the computed spectra were also examined. 

The problem of choosing a suitable beamforming structure was considered, and the gener-

alised sidelobe canceller was proposed as a solution. This structure answers many of the 

questions posed of adaptive processors for airborne environments. Most notably, the adapt-

ive weights found are computed from signal free data, overcoming signal cancellation and the 

super—directive problems of maximised signal—to—noise beamformers. Additionally, the gen-

eralised sidelobe canceller offers the opportunity to adaptively select the number of adaptive 
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weights which are allocated to interference suppression, without altering the response of the 

beamformer to desired signals. 

Many techniques are available for reducing the adaptive dimension of the generalised sidelobe 

canceller. In this thesis, a weight selection criteria is developed based upon an output mean 

square error cost function. This approach leads to a structure which is computationally efficient, 

yielding up to 80% reductions in the number of both complex multiplications and additions 

that must be performed. The cancellation performance (in mean square error terms) is found 

to exceed that of eigenstructure designed beamformers for a given partially adaptive dimension. 

The adaptive weights that are selected by the algorithm presented are chosen according to 

a mean square error performance measure. This will yield a set of weights which are near 

optimum, and which will result in good signal—to—noise performance. However, no consideration 

is given to the adapted response of the beamformer. Typically, an adaptive array used in 

an airborne radar will operate in a non—concurrent mode, that is different data is used to 

compute the adaptive weights from that to which the weights are applied. High sidelobe levels 

can therefore present a considerable limitation to the performance in a non—concurrent mode. 

The maximum and average sidelobe levels of the generalised sidelobe canceller were examined 

through simulation when the adaptive weights were computed using a sample covariance matrix 

algorithm. The improvement in sidelobe performance obtained by employing diagonal loading 

of the sample covariance matrix was also examined, showing that significant improvements can 

be obtained for a small amount of diagonal loading, even when a small number of samples are 

used in estimating the data covariance. 

1.7 Thesis organisation 

After this brief introduction, the problem of adaptive beamformer design for airborne radar is 

considered. In chapter 2 much of the necessary background to beamforming is presented and 

subjects such as data independent array design, the terminology employed, optimal beamformer 

design when subject to linear constraints, and the generalised sidelobe canceller are discussed. 

The chapter then proceeds to consider the application of different sets of constraints to linearly 

constrained minimum variance (LCMV) beamformers, and how these can be used to improve 

system response. 

In chapter 3 the ground clutter problem is examined in detail and a simple clutter model is 

described. The principal objective of this chapter is to examine the likely interference conditions 

under which the beamformer will operate, and to use these to get a feel for the complexity 

required in an adaptive processor. Typical clutter power spectra are computed and discussed, 

and then subsequently eigenspectra plots are presented for the clutter model. These results 

are used to give an estimate of the number of adaptive degrees of freedom that will need to 

be incorporated in an adaptive processor. The influence of various radar parameters on the 

computed eigenspectra is examined, and the implications discussed. 
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Chapter 4 proposes a new technique for selecting adaptive degrees of freedom in an generalised 

sidelobe cancelling structure. The algorithm is based upon the assumption that the limiting 

factor in applying adaptive algorithms is not in collecting the delayed samples, but in computing 

the adaptive coefficients. With this assumption, the algorithm described selects the best weights 

using a mean square error criterion. The adaptive algorithm uses a sub—optimum approach to 

sequentially select the adaptive weights which best minimise the output mean square error. 

The performance of this new algorithm is contrasted with that of several existing techniques 

and some conclusions are drawn. 

Chapter 5 considers the convergence performance of linearly constrained beamformers, in par-

ticular partially adaptive generalised sidelobe cancellers. The output mean square error when 

the beamformer operates in concurrent and non—concurrent modes is examined. The transient 

sidelobe levels of the beamformer are also considered and are demonstrated through simulation 

to be significantly reduced by the addition of diagonal loading to the sample covariance matrix. 

In chapter 6 the conclusions of this work are summarised and areas in which further work may 

prove useful are suggested. 
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Chapter 2 

Adaptive Beamforming 

2.1 Introduction 

A beamformer is a processor used in conjunction with an array of sensors to provide a versatile 

form of spatial filtering. The sensor array collects spatial samples of propagating waves, which 

are processed by the beamformer. An adaptive beamformer is one which adapts the sensor 

weights to the propagating wave field with the objective of identifying a desired signal in the 

presence of interference and noise. A beamformer can perform spatial filtering to separate 

signals which have overlapping frequency content but originate from differing locations. This 

chapter provides an introduction to beamforming from a signal processing perspective. Data 

independent, and statistically optimum linearly constrained beamformers are discussed. 

The problem in adaptive processing is to obtain a set of weighting coefficients w which result in 

an output signal y(k) having "better" characteristics than would be observed at the output of 

a conventional fixed weight processor. One commonly used weight selection criterion is linearly 

constrained adaptive beamforming [10] in which the weights are constrained such that any signal 

arriving from the desired look direction will appear at the beamformed output with prescribed 

temporal filtering. 

The operation of an adaptive beamformer can be most easily visualised by considering the 

response in terms of the array sensitivity pattern. Interfering signal suppression is obtained 

by appropriately steering beam pattern nulls and reducing pattern sidelobes in the directions 

of interferences, while desired signal reception is maintained by preserving desirable mainlobe 

features. For the radar of interest, the adaptive algorithm therefore relies on the spatial and 

temporal characteristics of the interference to improve performance. Many weight adaptation 

algorithms have been developed over the past three decades with varying degrees of success. 

The reader is referred to [41] for a comprehensive bibliography. At the present time adaptive 

nulling is considered to be the principal benefit of the adaptive techniques employed by adaptive 

array systems, and automatic cancellation of sidelobe jamming provides a valuable electronic 

counter—countermeasures capability for radar systems. 

2.2 Data independent beamformer design 

Synthesis techniques for computing the elemental weights of an array beamformer which result 

in a desired response have existed for many years [42]. The majority of work has focussed on 

Ei 



Chapter 2: Adaptive Beam forming 

designs which achieve reduced sidelobe levels whilst retaining prescribed mainlobe character-

istics. Such beamforming techniques are independent of the data present at the array and are 

thus referred to as deterministic design approaches. 

In this section we will consider beamformers which can be made to approximate an arbitrary 

desired response. This may prove useful in several instances. For example, if we may desire 

to receive a signal over a range of frequencies or directions, and would therefore like to ensure 

unity response over these regions. Alternatively we may have a priori knowledge of the location 

and frequency band of interfering or jamming signals and would consequently like to ensure 

zero response to these signals. Both these concepts are familiar in FIR filter design [43]; the 

former being bandpass filtering, whilst the latter is an example of bandstop filtering. 

Consider matching a desired response rd(O, ) with the weight vector w at P points. The 

beamformer response to a sinusoidal source of frequency w, incident from a bearing of 0 radians, 

is 

r(8, w) = w"d(O,w). 	 (2.1) 

where d(0, w) is the array steering vector, and H denotes complex conjugate transpose. For 

notation, we use boldface lowercase and uppercase symbols to denote vectors and matrices. For 

a general array, the elements of d(6,w) indicate the relative time delays of the received field 

samples within the beamforming structure. When the array has a periodic structure, e.g. a 

linear equi—spaced array, expressions may be derived for the elements of d(0, w). Consider the 

linear array of N elements, with L tap delays per element shown in Figure 2.1. For convenience 

the first element is taken as the phase reference. The steering vector takes the form 

d(0,w) = [1 ejwT2(e) 	 (2.2) 

The Tk (0), 2 < k < NL, represent the time delays due to propagation and any tap delays to the 

point at which the kth weight is applied. Suppose k represents the lth tap of the nth element, 

then 

Tk(0) = i(0)+1T3 , 	 ( 2.3) 

in which T3  is the sampling interyal. An (0) represents the time delay due to propagation from 

the first to the nth sensor, i.e. 

A n  = 
d
—(n-1) cos 0, 	 (2.4) 
C 

in which d is the element spacing in metres, and c is the speed of propagation in ms'. Matching 

the beamformer response r(0, w) to the given response rd (0, ) in a least squares sense can be 

done as follows. First form the overdetermined least squares problem 

nn IA'1 w - rd 
1 2 , 	 (2.5) 
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Figure 2.1: Array with attached delay lines showing the sampling of a signal propagating in 
plane waves from a source located at 0 radians. 

where 

A = [d(0i ,w i ) d(02 ,w 2 ) 	d(Op,wp)], 

rd = [rd(O1,wl) rd(92,w2) 	rd(OP, LOP) ]. 

Assuming that AA   is invertible (i.e., A is full rank), then the solution to (2.5) will be given 

by 

w = A+rd , 	 (2.6) 

where A+ = (AA H)_1A is the pseudo inverse of A. This weight vector minimises the squared 

error between the actual and desired responses at the P points (91 ,w1 ). The response of such a 

beamformer is shown in Figure 2.2. In this example the beamformer has been designed according 

to (2.5) with a desired response of unity over the normalised frequency interval [0.4, 0.8] at 18 

degrees. P was chosen equal to 200. The array is linear equi-spaced with 16 elements spaced 

at one half wavelength and 5 tap FIR filters used at each element. 

Several points of caution should be made. Firstly, although this technique does provide good 

control over beamformer response within the design regions, nothing can be said about the 

response outwith these regions. The antenna pattern may display unacceptably large gain 

(i.e., large sidelobes) which may well be comparable in magnitude with the mainlobe response. 

Clearly this is not a desirable situation, and care must therefore be taken to ensure that this 

does not occur. Secondly, the weight vector found may lead to a large white noise gain, that 
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Figure 2.2: Response of data independent beamformer at eight frequencies linearly spaced in 
the design band [0.4, 0.8]. The beamformer is designed to have unity gain at 18° 
over the normalised frequency band [0.4, 0.8]. 

is the L 2  norm of the weight vector may be large. This may result in poor signal—to—noise 

performance because of the large gain experienced by white noise contributions. If A is ill—

conditioned then the norm of w will be very large so that low rank estimates of A should be 

used whenever A is not full rank. A singular value decomposition can easily provide low rank 

approximations for A and A+. 

The similarities between the synthesis techniques used in finite impulse response (FIR) filter 

design and linear array beamformer design are striking. A linear equi—spaced array can be 

seen as a spatial filter in which sampling occurs at multiples of the signal wavelength. The 

equivalent in FIR filter design is signal period. Many low sidelobe weighting functions have 

arisen for FIR filters. These may readily be applied in deterministic beamformer design. [43] 

provides a summary of many such shading functions. These deterministic design techniques can 

be used to emphasise certain directions or frequencies and to de—emphasise others. Continuing 

with the FIR filter analogy, a bandstop filter is equivalent to a spatially selective filter. The 

analogy fails when we consider either planar, or broadband arrays. In the former case we have 

discrimination in both azimuth and elevation, which has no time equivalence. In the latter case, 

we combine both spatial and temporal resolution, which has no FIR filter equivalent. 

Since an array of sensors can be utilised to obtain some degree of spatial filtering or directional 

sensitivity much of the early literature on array processing was concerned with desirable beam 

patterns. These traditional array synthesis techniques used amplitude tapering of array ele- 
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ments to control the array response. During the 1960's interest moved toward arrays in which 

elements were not spaced on some periodic grid. Skolnik [44] and others [45,46] investigated 

the use of statistically designed density tapers to control antenna pattern sidelobes. In the 

procedure described by Skolnik all of the array elements were excited with equal amplitude and 

the density of antenna elements was matched to the amplitude of the aperture illumination. 

Numazaki et al. [47] extended Skolnik's techniques to arrays in which element weights were 

quantised. Steinberg [46] studied various features of arrays in which the element positions were 

selected randomly. It was found that the ensemble averaged pattern, averaged over several 

random arrays would be equal to the Fourier transform of the probability distribution function 

from which element positions were drawn. This analysis applied only to the ensemble average 

of random arrays. However, the peak sidelobe of a single statistically designed array - an im-

portant measure of beamformer performance - can only be described in a statistical sense. An 

approximate expression was derived showing the peak sidelobe to be relatively independent of 

array size, beam steering angle, and taper function. The advantages of statistical thinning are 

many - 

• Vastly reduced element numbers: up to 90% thinning without significant sidelobe degrad-

ation 

• No grating lobes: no periodicity exists in element location 

• Similar angular resolution to a filled array 

• Reduced mutual coupling through greater interelement spacing 

• Less tolerance required on element location and excitation 

• Equal excitation means improved efficiency 

These benefits are not penalty free. Array gain will be reduced considerably by the removal of 

array elements. In radar applications this may well preclude the use of these techniques. In 

addition the reduction in the number of elements will reduce the designer's control of radiation 

within the sidelobe region. Despite these problems, statistically designed arrays can provide 

solutions for many other applications where good angular resolution is required at minimal cost. 

2.3 Data dependent beamformer design 

The noise power received by a sensor array will be variable in space and time, so it follows 

that any optimum interference suppression can only be obtained through adaptive methods. 

A broadband adaptive processor combines both spatial and temporal samples of the received 

field in such a manner as to maximise (or minimise) some performance measure. Adaptive 

processors can be grouped into two distinct types, those that adapt on the interference field 

alone, and those that adapt on the received field with the desired signal included. The processors 

considered in this chapter are of both types, examples being the minimum power beamformer, 
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and the generalised sidelobe canceller. In all adaptive processors a set of weighting coefficients 

are derived which result in an output signal having better signal to noise characteristics than 

would be observed at the output of a conventional beamforming system. 

Rather than try to attribute developments due to many different researchers in beamforming, 

the reader is referred to the following references: books - Hudson [48], Monzingo and Miller [4], 

Haykin ed. [49], Haykin [50]; special issues - IEEE Transactions on Antennas and Propaga-

tion [51,52]; tutorial - Gabriel [11]; and bibliography - Marr [41]. Papers devoted to beamform-

ing are often found in the IEEE Transactions on: Antennas and Propagation, Acoustics, Speech, 

and Signal Processing (latterly Signal Processing), Aerospace and Electronic Systems, and in 

the lEE Proceedings on Radar and Signal Processing, (latterly Radar, Sonar and Navigation). 

There is a vast body of literature on various aspects of beamforming and only a subset will be 

referred to in this thesis. Much of the literature pertaining to adaptive filtering of time series 

is useful in beamforming discussions, since their histories are both parallel and overlapping. 

Adaptive arrays are a radical departure from conventional thinking in antenna design, offering 

substantial improvements in performance over fixed pattern antennae in environments which 

include severe interference and jamming. They achieve this because of their ability to steer 

response nulls automatically in the direction of unknown or interfering signals and to generally 

alter their beampatterns in order to optimise performance. The class of beamformers which 

will be considered within this thesis are a subset of the general class of adaptive beamformer, 

termed linearly constrained beamformers. These select a set of adaptive weights which minimise 

the output power subject to a set of linear constraints. References to linearly constrained 

beamformers are contained in [9,10,12,13,15-25,27-30,32-40,53-60]. 

We will now review some of the data concepts and terminology for the remainder of the thesis, 

and then introduce the concept of linearly constrained adaptive beamforming. 

2.4 Terminology 

The interferences that will be considered in this thesis are two—dimensional in nature, that is 

they are distributed in both space and time. It is therefore necessary that the received field is 

sampled in both space and time. Evaluation of beamformer performance usually involves power 

or variance, so the second order statistics of the data play an important role. Throughout this 

thesis the received field will be assumed to be a wide—sense stationary discrete—time stochastic 

process. Suppose the field incident at a particular element i at time k is given by z(k). The 

snapshot vector of all elemental signals at time k is 

x(k) = [x i (k) x2(k) ... XN(k) ], 
	 (2.7) 
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and the stacked snapshot vector containing the L previous snapshots up to and including the 

current snapshot is defined as 

z(k) = [ xT(k) XT (k - T3) 	XT (k - (L - 1)T3) 
1T 	

(2.8) 

where T denotes transpose, and 7' is the sampling period. Let us define matrices 

M(r) = E{x(k)x'(k_r)}, 	 (2.9) 

which contain the spatial cross—correlation between two particular snapshots r seconds apart 

of the data incident at an N element array. E {.} denotes expectation. The complete NL x NL 

space—time autocorrelation matrix is then formed as 

M(r) 
	

M(r+ IT,) 
	

M(r+(L— 1)T3 ) 

R. 	= 	M"(r+1T.) 
	

(2.10) 

M"(r+(L_ 1)T3 ) 
	

M(r) 

The spatial information is contained in the submatrices M(r) whereas the temporal informa-

tion lies between them. In this way the structure of the input data is retained, allowing the 

beamformer to discriminate interferences in both bearing and frequency. The complete space—

time autocorrelation matrix of (2.10) can be written more succinctly in terms of the stacked 

snapshot vector z(k) as follows 

R(r) = E{ z (k) x H(k_ r)} . 	 ( 2.11) 

The correlation matrices of principal concern in the analysis of adaptive array behaviour are 

those for which the time—delay variable r is zero. Rather than write the argument explicitly as 

R (0), it is simpler to define R,, R (0). If the data is wide—sense stationary, then R,, will 

be independent of time. Covariance matrices are closely related to correlation matrices since 

the covariance between the vectors z(k) and y(k) is defined by 

cov[x(k), y (k)] = E {(x(k) - ) (y(k) - 	 (2.12) 

where 

i=E{(k)} and 	=E{y(k)}. 

Consequently for zero—mean processes and at delay r = 0, correlation matrices and covari-

ance matrices are identical, and the adaptive array literature frequently uses the two terms 

interchangeably. The covariance matrix has a key role in the statistical analysis and design of 

beamforming systems, so it is useful to understand its various properties and the implications 

thereof. In particular, using the definition of (2.11), the covariance matrix R has the following 

properties 
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R is Hermitian. 

Rr  is block Toeplitz. 

R is non-negative and almost always positive definite. 

This is not an exhaustive list, but these are the properties which are of particular relevance 

to the problem at hand. The Hermitian and Toeplitz nature of R is a direct consequence of 

the assumption that the stochastic process is wide-sense stationary. Indeed, we may even use 

these properties as a measure of the stationarity of the process. The inverse of R,, will also be 

Hermitian. Furthermore, because R is Hermitian and positive semidefinite the eigenvalues of 

are real and positive, and all its eigenvectors are orthogonal. Therefore the eigenvectors of 

R. can be used to form a basis for a subspace termed the signal subspace. Additionally, for 

any vector w, we have 

W 11 Rr VJ > 0. 	 (2.13) 

This has a clear physical interpretation since w 11 R,,w is the power output from the beamformer 

for a given weighting vector w, and will therefore always be greater than or equal to zero. 

The Toeplitz form is desirable because the entire matrix can be reconstructed from the first 

row of submatrices, that is, M(0), M(T 3 ), . . . , M((L - 1)T3 ). Consequently only a N x NL-

dimensional matrix is needed to be stored to have all the information contained in Rr . To 

complete these definitions the crosscorrelation at lag r between two signals (k) and y(k) 

having stationary statistical properties is defined as 

R(r) = E{ x (k) y H(k_ r)} . 	 (2.14) 

If two signals are totally uncorrelated then R., y  (r) will be zero, whereas if x(k) and y(k) are 

correlated, then the elements of 	(r) will reflect the correlation that does exist. 

2.5 Linearly constrained broadband beamforming 

The beamforming structure depicted in Figure 2.3 represents a basic broadband beamformer. 

The number of sensors is N, and the prefilters pi are included to model demodulation and other 

filtering functions which may be present in the system. In the general case here, time-delay 

steering is not necessarily presumed to be present in the prefilters. The beamformer combines 

L successive samples from each prefilter through complex weights for a total of NL degrees of 

freedom. In a radar the time-delays will typically be matched to the pulse repetition interval. 

In vector notation, the beamformed output y(k) is the vector inner product of the data vector 

and a NL-dimensional stacked weight vector to, 

N L-1 

y(k) = w"x(k) = 	w,x(k - 1). 	 (2.15) 
n=1 lO 
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Note that the form of this equation implies that the complex conjugates of the weights are actu-

ally applied to the data samples within the beamformer. The reason for using this formulation 

is that it leads to a compact notation which avoids the necessity of distinguishing between real 

and Hermitian transpose operators. A second advantage is that the form of the solutions for 

the tapped—delay line case are identical to those published widely for real tap weights, except 

for the replacement of real with Hermitian transpose operators. The beamforming weighting 

structure implied by (2.15) is termed the direct—form implementation. 

delay 

V 

W11 	 W1 	 W 13 

x(k) 

S 

WN 	> WN WN 

k) 

Figure 2.3: General form for digital broadband array beamforming system. 

Data dependent weight synthesis methods are based upon the optimisation of a performance 

criterion for the array. For the case of narrow—band beamformers, virtually all known criteria 

result in the same weight vector response (within a scale factor) for a given signal, interference 

and noise environment. The weights obtained for broadband beamformers are, however, criteria 

dependent. During the past several years, much interest has focused on the use of linearly 

constrained minimum output power criterion [10]. The reasons for this interest stem largely 

from the fact that linear constraints can readily be used to control the mainlobe and sidelobe 

response of broadband arrays. This is achieved by fixing the gain of the array at selected 

response points corresponding to particular angles and frequencies of interest [12]; by forcing 

zero derivatives (with respect to bearing and/or frequency) in the beam pattern [18]; or, more 

recently, by using an orthogonal transformation based on eigenvector analysis [54]. In the last of 

these a somewhat surprising result was found, namely that the array response could be steered 

in arbitrary directions using only linear constraints, i.e., steering delays in the array elements 

are not required. 

Each linear constraint on the array response is defined by a NL—dimensional vector Ck.  It is 

assumed that a total of K such linear constraints are used and that K is less than the total 

adaptive degrees of freedom available NL. The constraint equation is defined as Ck"w = fk, 
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where fk  is a scalar complex constant. The set of K linear constraint equations is given by 

C 11 w = f, 
	 (2.16) 

where C is the NL x K constraint matrix, and f is the K-dimensional response vector containing 

the fk.  In the most simple case the columns of the matrix C are steering vectors for the array, 

and the elements of f specify the desired response in those steered directions. The linearly 

constrained mimimum variance (LCMV) beamformer is defined as the set of weights which 

satisfies (2.16) whilst simultaneously minimising the total output power, that is 

min w''Rw subject to C"w=f. 	 (2.17) 

The vector of direct—form beamformer coefficients that satisfies this can be found by the method 

of Lagrange multipliers as 

Wopt = R 1 C(Ch1 R 1 C)f . 	 (2.18) 

Constraining the array response with K linear constraints reduces the total adaptive degrees of 

freedom from NL to NL—K. It is these remaining degrees of freedom that are used to minimise 

the output power from the array. When the array operates in the presence of uncorrelated white 

noise, i.e., a benign environment, the response is termed the quiescent beamformer, given by 

Wq = C(CHC)'f. 	 (2.19) 

As the equation clearly demonstrates, the quiescent response of a linearly constrained beam-

former is completely determined by the constraint equations. 

A key feature of linearly constrained beamformers is the ability to perform a specified filtering 

operation upon signals incident from the steer direction. This is accomplished by employing 

steering—delays at the array elements [10]. The desired signal is identified by time—delay steering 

the sensor outputs so that any signal incident at the array from the direction of interest (look 

direction) appears as an identical replica at the outputs of the steering delays. All other signals 

which do not have this property are processed as noise or interference. As far as the desired 

signal is concerned the array then appears as a single tapped delay line, with tap weights 

given by the sum of the corresponding elemental tap weights for a particular tap. The pre-

steering delays therefore allow control of the frequency response of the array in a prescribed 

look direction. Expressing this argument more formally, steer direction filtering is obtained by 

defining the constraint matrix C as 

IN ON 

ON IN 
C= 

ON 

IN 

(2.20) 

in which IN  and ON  are vectors of length N, with either all one or all zero entries. C has exactly 
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S(k)  

Figure 2.4: Equivalent structure for signal incident from the look direction. 

L columns, one for each bank of taps in the beamformer. Frost [10] noted that the response 

of the beamformer to a desired signal s(k), incident from the steered direction is equivalent to 

implementing a finite—impulse response (FIR) filter. This can be understood by noting that a 

NL—dimensional desired signal vector s(n) can be expressed in terms of a L—dimensional time 

sampled vector of the desired signal 

S(k) = C's(k), 	 (2.21) 

where S (k) contains the L delayed samples of the desired signal. The desired signal output 

component is therefore 

y, (k) = wHs(k) = h"S(k). 	 (2.22) 

The L—dimensional vector h = [ h 1 •.. hL 1' contains the equivalent FIR filter coefficients h 1 , 

as shown in Figure 2.4. Controlling the look direction frequency response therefore simply 

becomes a case of selecting the desired number of FIR filter coefficients, and computing the 

values of the h1. The corresponding values of f, are h,. The relationship between w and h is 

given explicitly as 

h = (C"C)C'w. 	 (2.23) 

Identification of desired signals can be seen as a two stage process; firstly, spatial filtering of 

undesired signals is performed by the steering delays on the sensor elements; secondly, tem-

poral filtering of what remains is performed by the elements of the constraint vector f. The 

constraints described by (2.20) are part of a general class of constraints known as directional 

or point constraints [12]. The example above is a particularly simple case - it provides a look 

direction gain constraint and some spectral filtering. It is possible, however, to constrain the 

response in other directions other than the steered direction, albeit with a non—sparse set of 

constraint vectors. Each constraint vector, along with the associated element of f, will specify 

a relationship between all the elements of in. This more general utilisation of the constraint 

equations may be motivated by a desire to remove the dependency upon steering delays, or 

to impose response conditions based upon some a priori knowledge of interferer locations and 

frequencies. 

Figure 2.5 depicts graphically the operation of a linearly constrained beamformer. Contours of 

constant output power (cost) and the optimum constrained weight vector w,, pt  that minimises 
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the output power are shown. The constraint equations define a NL—K—dimensional hyperplane 

Contours of consta 
output power 

W HR  w 

C"w = f} 

Figure 2.5: Example showing contours of constant output power and the constrained weight 
vector that minimises output power, w,, p t = R 1  c ( CH B;1 c) f. 

A, in NL—dimensional space. This constraint plane is defined by 

A = {w : C' t w=f}. 	 (2.24) 

Additionally, it is possible to define a constraint subspace as the solution to the homogeneous 

set of equations 

E = {w : C'w=O}. 	 (2.25) 

The optimum weight vector is that vector which terminates on the constraint plane and sim-

ultaneously minimises the output power. Vectors which point in a direction normal to the 

constraint plane (but not necessarily terminating on the plane) can be expressed as linear com-

binations of the constraint vectors C. Thus, the vector tog  = C (CH  C)' 1 points in a direc-

tion normal to the constraint plane, and terminates on the constraint plane, since Cwq = f. 

tog  is therefore the shortest vector terminating on the constraint plane, and forms the quiescent 

solution. Continuous adaptation algorithms have been developed for the linearly constrained 

beamformer, and can be easily interpreted in relation to Figure 2.5. In Frost's constrained least 

mean squares algorithm [10], the weight vector is initialised as w(0) = C (CH  C)f. As each 

new snapshot becomes available a weight vector is computed. This new weight vector may not 

satisfy the constraints, so it is projected back onto the constraint subspace then returned to 

the constraint plane by adding tog . The new weight vector to (k + 1) satisfies the constraints 

to within the accuracy of the arithmetic used in implementing the algorithm. Other references 

to continuous constrained adaptation algorithms can be found in [12,22,53]. 

Use of linear constraints is a very general approach that permits extensive control over the 

adapted response of the beamformer. However, the ability to control the response depends 

upon several variables, most notably the size of the constraint region, the number of constraints 
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employed and the manner in which the constraints are utilised. Following a process similar to 

that in section 2.2, we may get a qualitative feel for how well the beamformer can match a 

desired response. Suppose the desired response, defined in the region CE [C,Ob] ,w E 

is given by 91  (0, w). A total of K linear constraints are assumed to be available and these are 

contained in the matrix C. The response of the beamformer to a signal s (6, w), lying within 

the constraint region is 

r(6,w) = w H s (8 ,w ) , 	 (2.26) 

where w will be computed according to (2.18), and the vector s (0, w) contains the temporal 

and spatial samples of s (0, w). Denoting the partial response due to the kth column of C by 

r (0,w), and r = (CH R;1C)f, then expanding yields 

rk(O,w) = rHC'Rs(9 , w) , 	1< k <K, 	 (2.27) 

where Ck is the kth constraint vector in C. (2.18) requires r(0,w) to be expressed as a linear 

combination of the rk(O,w), 1< k <K, over the region CE {Oa,Ob]  ,w E [wo,wb]. In general, 

this cannot be achieved so we conclude that perfect control of beamformer response cannot 

be accomplished. Several different philosophies can be employed for choosing the constraint 

matrix and response vector, a large number of which apply least squares approaches to the 

above problem. Constraint design techniques are discussed in section 2.7. 

Before constraint design is discussed, we will describe an alternative implementation of the 

linearly constrained beamformer, called the generalised sidelobe canceller. This structure maps 

the constrained minimisation of the direct—form implementation to an unconstrained optim-

isation through a transformation which is orthogonal to the original constraint set C. The 

resulting structure is flexible, and is readily applicable to the partially adaptive beamforming 

problem. 

2.6 Generalised sidelobe canceller 

The generalised sidelobe canceller (GSC) represents an alternative formulation of the LCMV 

problem, which provides new insight, is useful for analysis, and can simplify LCMV beamformer 

implementation. Essentially the GSC is a mechanism for changing a constrained minimisation 

problem into an unconstrained form. Griffiths and Jim [23] applied similar concepts to those 

found in some linear least squares problems to LCMV beamforming and coined the term GSC. 

Similar techniques were discussed by Applebaum and Chapman [51]. 

The linearly constrained adaptive processor defined by (2.17)—(2.18) can be implemented in 

one of two forms. In the first, the direct—form implementation, each coefficient in the beam-

former is updated by the adaptive processor which computes new weights using an adaptive 

algorithm. An alternative implementation which yields equivalent steady—state performance 

can be derived from Frost's initial algorithm [22,23]. This structure is termed the generalised 
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sidelobe canceller form and is depicted in Figure 2.7. The generalised sidelobe canceller is a 

useful vehicle for generalising the linearly constrained beamformer to include any arbitrary qui-

escent response. Additionally, the adaptive dimension of the adaptive processor can be modified 

without changing the quiescent response. 

(k) 

Figure 2.6: Direct implementation of linearly constrained adaptive processor. 

I 

'k) 

Figure 2.7: Generalised sidelobe canceller structure. 

In a generalised sidelobe canceller the weight vector is decomposed into two orthogonal terms, 

one that lies in the constraint space spanned by the columns of C, denoted by V q , and another 

that is orthogonal to the space spanned by the columns of C, represented by - C w0 , so that 

tO = Wg - Cnwa. These two terms are implemented in the upper and lower processing paths. 

In the upper path a conventional non—adaptive beamformer combines the array tap data with 

the fixed weights Wql, Wq2, . . . , WqNL, producing some non-adaptive signal yq (k) 

yq (k) = WqHZ(k), 	 (2.28) 

where W q  = [wgi Wq2 	WqNL] T . This conventional beamsteering system is identical to that 

which would be used in a fixed non—adaptive array. In most applications the weights Vi q  are 

chosen to provide a trade—off between beamwidth and sidelobe level. 

The lower path in Figure 2.7 is the sidelobe cancelling path. It consists of a matrix preprocessor 

C,, followed by an unconstrained set of adaptive weights Wa. In it's most simple form, the 

purpose of the NL x J matrix C is to prevent the desired signal s(k) from entering the 

lower path. The adaptive weights Wa are then allowed to adapt in an unconstrained manner. 

Therefore, the generalised sidelobe canceller can be seen as a mapping from the constrained 

minimisation problem to that of an unconstrained minimisation problem. The matrix C,, 

performs the mapping and required reduction in adaptive dimension. The generalised sidelobe 
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canceller and the Frost beamformer [10] will have equivalent steady—state performance if J = 

NL - K. If additionally C" C = 0, then W q  will determine the quiescent response [17]. If 

W q  is chosen to specify the quiescent response then the optimum value for via under quiescent 

conditions is zero. This can be ensured if two conditions are met; firstly that the columns of C, 

are linearly independent, and secondly that each column of C is orthogonal to all the columns 

of the constraint matrix C. The generalised sidelobe canceller problem can thus be expressed 

M. 

CltIwq =f; CHC = 0; rank[C I C,, ] = NL, 	 (2.29) 

and 

Min (wq - CnWa)H R r  (wq - C. W.) 	 (2.30) 
Wa 

The solution of (2.30) is given by 

via = (CH Rr Cn ) 1 Cn"Rx w q . 	 (2.31) 

The orthogonality of C and C implies that the constraints are satisfied independently of 

via. Via is thus unconstrained and represents the available degrees of freedom in W. It is 

straightforward to show that the quiescent weight vector W q  = C (C" C)' f. Thus to form 

an equivalent implementation to the Frost beamformer the problem becomes a simple case of 

finding the NL - K linearly independent columns of C such that 

= 0 ; 	i = 1, 	, NL - K 	 (2.32) 

For an array with wideband steering delays this can be easily achieved, as will be discussed 

later. 

The GSC is a useful structure from which to view linearly constrained beamforming. As an 

example, assume that the linear constraint defined by d" (9, w) vi = g is imposed. C satisfies 

dH (9,w) C = 0 so each column [Cfl]k  can be viewed as a data independent beamformer with 

a null in the direction C at frequency w: dH  (9,w) [Cfl]k = 0. Thus, a signal of frequency w 

and direction 0 arriving at the array will be blocked or nulled by the matrix C. In general if 

the constraints are designed to present a specified response to signals with set directions and 

frequencies, then the columns of C will block those directions and frequencies. These signals 

will only be processed by Vi q  and since W q  satisfies the constraints, they are presented with 

the desired response independent of via. Signals incident from directions and frequencies not 

controlled by C will pass through both the upper and lower path; the upper channel forms 

a fixed response through vi q , whilst the lower branch forms an estimate of the signal in the 

upper path with a linear combination of the tap data. This is familiar to traditional estimation 

problems, in which auxiliary sensors are combined linearly in order to estimate a primary 

channel output. 
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It may seem that if the generalised sidelobe canceller has equivalent steady-state performance 

to the direct form implementation of the linearly constrained beamformer, then the additional 

complexity involved in the GSC would make it foolish to use this implementation. This view, 

though, only considers the beamformer in a fully adaptive sense. The GSC structure becomes 

far more useful in the form of a partially adaptive processor. The desirable features of a partially 

adaptive beamformer are many. Primarily it should have a low adaptive dimension. Partial 

adaptivity is achieved by either deleting a portion of the sensor elements, or by combining all 

the elemental signals in a pre-beamformer. Of equal importance is that the structure should 

retain as near to fully adaptive performance as possible. This is the objective of the techniques 

discussed in chapter 4. Another concern, particularly in the radar community, is that reduction 

in adaptive dimension should not result in loss of gain to a desired signal. This effectively 

rules out thinned or aperiodic arrays, since a overriding concern in airborne radar is target 

observability. If a GSC like structure is used, desired signal gain can be maintained whilst 

simultaneously reducing the computational load. Full gain is ensured by the upper channel, 

and an arbitrary adaptive dimension can be selected in the lower path. 

Linearly constrained beamforming, and latterly the GSC structure, have been an active topic of 

research almost since their first appearance. This is evidenced by the large number of research 

papers published each year. Many aspects of GSC design have been examined, not least of which 

is the applicability to partially adaptive processing. To summarise GSC literature: general and 

review papers [20,22-25]; constraint design and filtering properties [15,18,21,34,59,61]; partial 

adaptivity [9, 19, 27-40]; quiescent pattern control [17,33]; modified filtering structures [55, 57, 

58]; and coherent interference suppression [35,36]. 

2.7 Constraint design 

A variety of different methods for constraining the beamformer response have arisen. The 

most obvious constraints are point constraints which constrain the beamformer response at 

particular points of spatial direction or temporal frequency. Each constraint will constrain the 

beamformer response at a particular point, so that controlling the beamformer response over 

large spatial or spectral regions would require an overly large number of point constraints. Er 

and Cantoni [13] extended point constraints to a more general class of derivative constraints. 

These constraints are used to broaden the beamformer response about the constraint point 

in order to make the beamformer less sensitive to steering mismatch. A typical situation in 

which these would be used is the case in which the direction of the desired signal is known only 

approximately. Latterly techniques have become available which offer a more general method 

of constraining the beamformer response over regions of space and bands of frequency. These 

constraints are termed eigenvector constraints [16,19]. 
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2.7.1 Point constraints 

Optimum beamforming with multiple linear constraints is now a well known technique in ar-

ray processing. In the simplest case, a single linear constraint is imposed, namely unity gain 

response in the steer direction; the weight vectors are then calculated by minimising the beam-

former mean output power subject to this linear constraint. For a narrowband beamformer this 

simple case is equivalent to the maximised signal—to—noise ratio beamformer. 

The constraints used here constrain the array response in the direction of multiple desired sig-

nals, and are hence often called directional constraints [10, 12,18]. Each directional constraint is 

formed by using a priori knowledge of the direction from which desired signals will impinge upon 

the array. For each desired signal direction, a single constraint vector and response value are 

specified. Suppose the beamformer response is required to be controlled at the multiple points 

(Oi ,w i ), (92 ,w 2 ), . . , (OP, WP), where P is less than the total number of degrees of freedom. The 

set of linear point constraint equations is then formulated as 

C11v, = f, 

where 

C = [dT(01,w1 ) dT(9 2,w2 ) ... dT(Op,  WP)  ] , 	 (2.33) 

f = {f 12 	fp]. 	 (2.34) 

The fi  describe the response of the beamformer at the constraint points (0 i , wi). Each linear 

constraint utilises one degree of freedom in the processor. A linear array of N elements with L 

tap FIR filters will have at most NL degrees of freedom, so that at most NL point constraints 

may be employed. If the number of desired signals is small, and their locations are known, then 

these constraints will represent an efficient use of beamformer degrees of freedom. In situations 

where direction of arrival, or frequency band information is inaccurate then undesirable signal 

cancellation may occur. A problem frequently encountered with point constraints is the inability 

to control response over large regions. Each constraint controls the response at a single point, so 

that control over regions of beamformer response can only be achieved by adding many closely 

spaced point constraints. For a general array configuration, the issue of which and how many 

point constraints should be selected to efficiently implement required control over a response 

region remains open. 

2.7.2 Derivative constraints 

In many cases of interest, for example in communication systems, the direction of arrival of 

the desired signal is known only within some angular tolerance. Any signal that is not exactly 

matched to one of the beam steer directions will be treated as an unwanted interference signal 

by the beamformer and will therefore tend to be suppressed. To overcome this problem it 
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is desirable to broaden the width of each adapted beam, while preserving the ability of the 

beamformer to reject unwanted signals from outwith the main beam. Derivative constraints [13, 

15,18,21,601 are used to impose zero, first and second order derivative constraints with respect 

to bearing or frequency upon the beamformer response. 

Consider an array of N elements each with L taps. It is desired to constrain the first order 

derivatives of the power response with respect to both 0 and w to be zero. The beamformer 

output is formed by applying a complex set of weights, subject to these constraints, to the data 

present in the array. The response of the beamformer to a signal of frequency w, coming from 

direction 0 is expressed as before as 

b(9,w) = w'1 V(0,). 	 (2.35) 

The complex vector V (0, w) is a steering vector; its components specify the individual response 

of each element and the relative phase shifts among them. By definition, the power response F 

is given by 

F = w HVV w, 	 (2.36) 

where V (0, ) has been written V for convenience. The power response F and its derivatives 

are invariant to the spatial reference point since F is phase independent. Closed form expressions 

for the derivative constraints with respect to 0 and w have been derived in [13]. In general, these 

derivative constraints are nonlinear and are therefore difficult to implement. Linear constraints 

were used in their place, which resulted in an unnecessary additional constraint upon the phase 

response of the beamformer. For a periodic array, these derivative constraints with respect to 

phase are dependent upon the position of the array phase reference [15]. This phenomenon is 

undesirable, since the choice of spatial reference point should be nothing more than a notational 

convenience. In [60] an approach using double dimension variables to linearise the constraints 

was presented, which removed the unnecessary phase constraints. Taking the first derivative 

with respect to 0, one finds 

= w"i'V'w + WHVTHW 
60 

= 2Re{w"VeV"w}, 	 (2.37) 

where Re {.} denotes the real part of the bracketed quantity, and V9  indicates the first derivative 

of V with respect to 0. Together with a unity gain constraint in the look direction, in 1  V = 1, 

this yields 

bF 
 = 2Re{w"V9}. 

60 
(2.38) 

The first derivative of F with respect to w has a similar form to this. We may therefore express 

the phase independent first derivative constraints (with an assumed gain constraint) as 

Re{w"Ve} = 0, 	Re{w"V w } = 0. 	 (2.39) 
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Notice, however, that these constraints are nonlinear. In order to form a set of linear con-

straints, (2.39) is rewritten in terms of a real version of w with double dimension defined as 

- 	Re {w} 
w = 	 . 	 (2.40) 

Im{w} 

With this definition Re{w' i } is written as 

V9l 
Re{w " 	

Re 
Ve} = [Re{w} Im{w}] 	. 	. 	 (2.41) 

Tm V9  

By transforming the remainder of the variables, the problem readily becomes that of linearly 

constrained minimum variance beamforming in the real domain. The generalised sidelobe can-

celler structure can therefore be applied to implement a first-order case in an adaptive fashion. 

The modified constraint opinions are 

min ti,H. r t 	subject to 	CH 	= f, 	 (2.42) 

where 

= [V 
V V9 V- ' 

}, 	
(2.43) 

J = [ 1 0 0 011 	 (2.44) 

in which 

I Re{V} 1 V=t 
[Im{V} 

{V} 

	

—Im 	1 
1= 

[ 	 I.  

	

Re 	
j 

(2.45) 

Higher order derivative constraints can readily be applied to the beamformer, although care 

must be taken to ensure that C remains full rank. In periodic array structures the higher order 

derivatives often become linearly dependent. For example (as noted in [13]), implementing 

steer direction gain plus both first and second order derivative constraints to an arbitrary array 

geometry reduces the available degrees of freedom in the beamformer by 9. For the case of an 

equally spaced linear array the number of linearly independent constraint vectors is equal to 3. 

Redundant constraint vectors should be deleted from C to prevent singularity occurring. 

2.7.3 Eigenvector constraints 

The linear constraints described in this section use beamformer degrees of freedom most effi-

ciently in a 2nd-order statistical sense. These constraints are based on a low rank orthonormal 

representation of a composite broadband design region, and control response for spatial/spectral 

regions directly instead of at multiple points. In contrast to point and derivative constraints, 

these constraints are referred to as eigen vector constraints. When employing response sampling 

directly to control response over a region of source location and frequency, the response sample 
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points, and their number P, must be selected. For P too large, beamformer degrees of freedom 

will be ineffectually utilised and the constraint matrix will be ill conditioned. For P too small, 

desired response control will not be realised. The number of eigenvectors required to effectively 

control the constraint region can be found by determining the constraint region's effective time—

bandwidth product within the array/beamformer structure. This time—bandwidth product has 

been discussed by many investigators, e.g. Buckley [16], Gabriel [11], and Van Veen [19,20]. 

It is also discussed in chapter 4. Consider again constraining the beamformer response at P 

points (j, j). In this case P is much greater than the available number of degrees of freedom, 

i.e. P>> NL. We now have the overdetermined least squares problem 

min JA 11w - rd 12 	 (2.46) 

where 

A = [d(O1,1) d(02,w2) . 	d(Op,wp)], 

rd = [rd(G1,wl) rd(02,W2) . .. rd(OP, WP) ] 

and 

d(91,w) 	= 	1  ej w i T2 ( 6 ) ej ( i T3 ( O i) . . . ejwi 

P is chosen to be significantly greater than the time—bandwidth product for the broadband 

signal. The similarity between this formulation and the deterministic beamformer design ex-

ample presented earlier in the chapter is obvious. In a deterministic design a singular value 

decomposition (SVD) has been suggested as a practical method of computing the beamformer 

weights. When designing eigenvector constraints a SVD is used explicitly as part of the design 

method. Consider constraining the beamformer response to a broadband signal incident from 

00  over the band [wo,wb].  The d(Oo ,w1) oversample [Wa,Wb] and A is therefore ill—conditioned. 

A rank D approximation of A can be obtained from it's singular value decomposition as 

AD = VED U", 	 (2.47) 

where ED is a D x D diagonal matrix containing the largest singular values of A, and the D 

columns of V and U are respectively the left and right singular vectors corresponding to these 

singular values. Replacing A in (2.46) by its rank D approximate and bringing UED to the 

right hand side (the pseudo inverse of U is UH),  yields 

V11w 
= E 1 U" rd. 	 (2.48) 

Equation (2.48) has the same form as the constraint equation C1w = f, so by comparing 

terms we see that 

C = V, 	f = ED' U"rd. 
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Figure 2.8: Response of a LCMV beam former at eight frequencies in the design band. The 
beam former is designed to have unity gain at 180  over the normalised frequency 
band [0.4, 0.8]. A broadband interferer is incident over the angular region [-7.5°, 
-2.5°], and normalised frequency [0.4, 0.8]. The array is the same as that in 
Figure 2.2, and the frequencies plotted are identical. 

The columns of V correspond to the eigenvectors of the matrix AAH,  hence the name eigen-

vector constraints. It is these eigenvectors that form an orthogonal basis for the constraint 

subspace, the dimension of which is determined by the observation time—bandwidth product. 

Figure 2.8 depicts the response of a LCMV beamformer, designed with eigenvector constraints, 

when a broadband interferer is incident in the presence of white noise. The interferer has a 

flat spectrum on the normalised frequency band [ 0.4, 0.8 ], and extends over the spatial re-

gion [-7.5°, —2.5 0]. Again the array has 16 elements, each with 5 taps, and is designed to 

present unity gain and linear phase to signals incident from 180  over the band [ 0.4, 0.8 J. 7 

eigenvector constraints are used. The effectiveness of the constraints is evident, since all the 

frequency curves pass through 0dB at 18 degrees. The response places nulls in the direction of 

the interference over the entire band of interference. 

2.7.4 Matching a desired quiescent response 

Under conditions when only white noise is incident at the beamformer the response pattern 

is termed the quiescent response. Often the quiescent response of the beamformer will have 

undesirably high sidelobes or large gain away from the mainlobe, particularly when a small 

number of snapshots are used to compute the weights [2,17]. However, even with a large 
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number of snapshots, the response may exhibit large sidelobes because of the tendency of 

simple adaptive algorithms to revert to sinc type pattern responses. Additionally it may be 

desirable to modify the quiescent response to force nulls in the beamformer response in the 

expected direction of interference or jamming. Adjusting the linear constraints employed in 

order to match a desired response is the aim in this section. 

Several investigators [16, 17, 33] have considered modifying the quiescent response of LCMV 

beamformers. The problem can be summarised as follows. A linearly constrained minimum 

variance beamformer defines a set of weight vectors which satisfy the constraints Cw = f. 

The resulting quiescent response of the beamformer will be given by Wq  = C ( C" C) - if, which 

satisfies the constraints but may not be acceptable for the reasons explained above. Suppose the 

desired beamformer response is given by the weight vector to0. This alternative weight vector 

may not satisfy the existing constraints. It is therefore necessary to modify this new quiescent 

weight vector in some way, to form u,0  which will satisfy the original constraint set. Once 

'o has been computed the existing constraint set needs to be modified so that the quiescent 

response of the new beamformer is exactly equal to this modified weight vector. Matching a 

desired response is therefore a two step process. 

Assume that the desired response weight vector to0 which does not satisfy the linear constraints, 

i.e. Cw0 f, is known. This quiescent response is modified by changing the portion of to0 

which projects onto the subspace spanned by the columns of C and leaving the portion which 

projects onto the null space of C as follows 

min {(ü o _wo)"(ii'o_wo)} 	subject to C"v,o=f. 	 (2.49) 
foo   

The resulting vector ib0 meets the constraints and will be a valid quiescent vector. Equation 

(2.49) results in a new vector üo which matches the desired response in a mean square error 

sense. In fact (2.49) defines a mean square error projection of the desired response upon the 

constraint hyperplane. The solution of (2.49) is given by [16] 

ivo = (I_C(C"C) ' C")wo  + toq  

+ Wq 	 (2.50) 

where toq  = C (CH  C) 
-1 

f is the existing quiescent response. The first form for th 0  is useful in 

the direct implementation of the LCMV beamformer, whilst the second is useful in a generalised 

sidelobe canceller implementation. The second stage in the process is to modify the original 

constraint set so that the quiescent response of the beamformer is identical to this new response. 

The new response vector iv0 is decomposed into two orthogonal components fV, and i (in a 

manner analogous to the GSC development), one which lies in the C subspace and one which 

lies in the C subspace. These are given by 
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th = C(CHC)'CHii,o,  

= c(cc) 1 c'u, 0 . 
(2.51) 

If we had just substituted ivo  for W q  in the upper path of the GSC, then no change would have 

occurred in the quiescent response because the lower path would cancelled the desired change. 

We require to append the vector ñ to the constraint set and to remove it from the column 

space of C, thus preventing the lower path negating the effect upon the quiescent response. 

This will consequently reduce the dimension of C by one. Once this has been done the lower 

path can no longer cancel the fo, component. The modified constraint opinions are 

= 
JH = [fH, ü3'ib0]. 

(2.52) 

Once these have been formed a new signal blocking matrix C must be computed. This can be 

done by either removing the iv, component from any (K - 1) columns of Cn  or alternatively 

recomputing a new signal blocking using C. To confirm that these modified constraints do 

indeed give the required quiescent response consider 

tiiq  = 

= [C iv,] 	
-H  
C" [C 

I 
ws  

= c(C"C)f + ijs  

= Wq  + ii),. 

i) 

 1 r CH 

i v  3H] [f ü,.,"ii,o] 

(2.53) 

The vector iv ., is precisely the additional term needed to modify the response. Thus, the two—

step procedure of modifying to0 to üo using (2.50), then augmenting C with the ü vector 

provides a new quiescent solution which matches the original constraint set. Figure 2.9 shows 

the influence of an additional quiescent pattern constraint upon the response of an adaptive 

beamformer. A directional constraint only results in the familiar sinc type power response, 

whereas the addition of a single quiescent pattern constraint, in this case a -30dB Chebychev 

weighting, clearly improves the response. 

2.8 Conclusion 

This chapter has reviewed the basic concepts of adaptive beamforming as they relate to the 

linearly constrained class of adaptive beamformer. Some of the terminology which will be used 

subsequently in the thesis has been defined, and expressions for the important second—order 

statistics of the signals concerned have been given. 

The linearly constrained minimum variance beamformer has been defined formally, and the prin- 

cipal features have been outlined. The generalised sidelobe canceller has been introduced, and 
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Figure 2.9: Influence of quiescent pattern constraint upon adapted response of a linearly con-
strained beam former. 

its application as a solution to linearly constrained beamforming has been described. Further-

more, various techniques for controlling aspects of beamformer response have been described. 
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Chapter 3 

Airborne Radar 

3.1 Introduction 

This thesis is primarily concerned with developing efficient techniques for partially adaptive 

beamformers used in airborne radar. In particular the generalised sidelobe canceller structure 

is considered. To be able to clearly understand this work, and also to understand its position 

relative to other work, a knowledge of several disparate topics is required. This chapter will 

consider the airborne radar environment, and specifically the type of interference which an 

airborne look—down pulse—Doppler radar will experience. The chapter begins with an overview 

of the airborne radar scenario, and then considers the performance of traditional cancellation 

techniques. 

Airborne surveillance radars will become increasing important in the near future because of their 

capability for detecting objects on or close to the ground. Such objects can hardly be detected 

by conventional ground—based surveillance radars because they are masked by the terrain, 

vegetation and other fixed objects. However, the target returns in such a radar have to compete 

with strong clutter returns which are broadband in nature. This has severe implications for 

conventional moving target indication (MTI) schemes, because these rely primarily on targets 

being either spatially or temporally separable. When the radar platform is in motion this may 

no longer be the case. 

This chapter will discuss the problems inherent with airborne pulse—Doppler radar and describe 

several solutions, most notably a Klemm type radar. Typical computed eigenspectra for the 

airborne scenario will be presented and the implications thereof discussed. 

3.2 Airborne pulse—Doppler radar 

Airborne radar provides an important capability for reconnaissance and verification purposes. 

In conjunction with moving target indication it is well suited for detection of moving objects 

close to the ground (for example low flying aircraft or vehicles), because the degradation arising 

from terrain masking is avoided. The next generation of airborne radar will combine these ad-

vantages with an adaptive phased array. However, in realistic situations the strong clutter 

spectrum is Doppler broadened and time varying so that conventional MTI techniques per-

form poorly. The main problem is that moving target returns are submerged in the Doppler 
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broadened sidelobe clutter so that purely temporal filters cannot effectively suppress the side-

lobe clutter which has the same Doppler as the moving target. However, because the sidelobe 

clutter comes from a different direction than that of the target, the moving target echo can 

be distinguished from the sidelobe clutter in the spatial domain and from mainlobe clutter in 

the time (frequency) domain. Optimum clutter suppression can therefore be performed by a 

filter which operates in both time and space. This space—time filter will require space—time 

sampling of the received field. This can be realised by a coherent pulse—Doppler radar with an 

array antenna. The sensor elements provide the spatial samples whilst the coherent pulse train 

realises the temporal sampling of the echo field. 

Such coherent digital signal processing greatly alleviates the effects of clutter. A disadvantage 

of space—time processors is the relatively large amount of pulses (up to 10 or more) that must be 

transmitted at a stable frequency and pulse repetition frequency (PRF). A responsive jammer 

could measure the frequency of the first transmitted pulse and then centre the jammer to spot 

jam the following pulses. Also, the requirement for a stable PRF precludes the use of pulse-

to—pulse jitter, which is one of the most effective techniques against deception and camouflage 

jammers, which rely on anticipating the radar transmitter's pulse. 

Despite these limitations, it is assumed that the transmitted pulses are separated by a fixed 

period termed the pulse repetition interval. Because of the periodic spacing of the pulses there 

will be a greatest distant over which a pulse can travel and return as an echo without arriving 

after the next pulse is transmitted. This range is called the unambiguous range of the radar 

and is given by the expression 

n am b = 
	

(3.1) 

where f, is the pulse repetition frequency in Hz and c is the speed of light in ms -1 . Similarly 

there will exist an unambiguous Doppler frequency, again related to the PRF as follows 

fmax - 	- 2vf 
- 2 - 	c ' 	

(3.2) 

in which V, is the relative velocity of the radar and target in ms 1 , and f is the carrier 

frequency. Studying these two expressions it can be seen that unambiguous range and unam-

biguous Doppler are competing ideals, i.e. an increase in unambiguous range will result in a 

corresponding decrease in unambiguous Doppler and an increase in unambiguous Doppler will 

cause a decrease in unambiguous range. As stated earlier, the radar considered in this thesis 

is operating in a medium PRF mode, that is both Doppler and range ambiguities will occur. 

However, it is assumed that the PRF is sufficiently high that the received clutter field is sampled 

unambiguously in Doppler. Furthermore, all processing is assumed to relate to a single range 

gate - this is a reasonable assumption with the PRF's considered. 

The previous discussion has assumed some idealised receiver of which the output is zero when 

no echo pulse is received and one (or some other scale thereof) when a pulse is incident. This 
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would only be the case if the pulse had infinite length. When the pulse has finite length the 

output of the receiver will not be as described, but will have some sidelobe response - typically 

that of a weighted sinc (sin x/x) function. Cook and Bernfeld [62] produced a valuable text 

on this subject. For the remainder of this thesis it is assumed that the transmitted pulse is 

a monotone of fixed duration, and that any problems arising from this finite duration may 

be ignored. Among the many good papers and books on airborne radar, the following are 

recommended: books [26,63,64], clutter modelling [65-67], clutter suppression [1,3,5-9,68,69]. 

3.3 Clutter model 

The problem geometry is shown in Figure 3.1 The radar platform is taken to be at an altitude 

h above a planar earth. Points upon the ground may be measured relative to the radar by the 

range R, depression angle 0, and azimuth angle 0. Through simple geometric reasoning, the 

relationship between R and 0 is found to be 

sin 4 = . 	 ( 3.3) 

Note that this expression is independent of the azimuth angle 9, so that a particular depression 

angle 00  will define a ring of range R0 upon the planar earth, typically called a range gate. 

Range gating eliminates excess receiver noise from competing with the returned echoes and 

permits target tracking and range measurement. A radar signal returned from a point scatterer 

on the range ring has a two way Doppler shift of the amount 

w = 
27r (-) 

	

Cos 0 Cos q5o , 	 (3.4) 

where A is the carrier wavelength. This expression defines a relationship between the Doppler 

shift which will be observed at different points on a range ring due to the motion of the radar. 

The locus of all ground returns having the same Doppler shift, commonly called an isodop, is 

defined by 

Cos 0 Cos qf o  = 7, 
	 (3.5) 

in which -y is a constant between 0 and 1 which specifies the particular isodop. With the above 

coordinate geometry, the clutter return can be expressed in terms of the problem geometry. 

The most important description of the radar process is the radar equation [64] which gives 

the range of a radar in terms of the radar characteristics. One form of the equation gives the 

received signal power Pr  as 

Pt  G 
Pr 	

47rR2 
X 
 47rR2 

X A r . 	 ( 3.6) 

The three factors in the right hand side convey the physical processes taking place. The first 

factor is the power density at a distance R metres from a radar that radiates Pt  watts with an 

antenna of gain G. In the second factor o is the target cross section in square metres, and the 

denominator represents the divergence on the return path with range and is exactly the same as 
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on the outward path. The product of the first two terms is the power per square metre returned 

to the radar, so that multiplying by the receiver aperture Ar gives the total power which the 

receiver collects. The power returned from a source illuminated by the radar therefore obeys an 

inverse R4  law, and the maximum detectable range Rmax is measured in terms of the minimum 

recoverable signal power S, 7  as 

V 

ground plane 

Figure 3.1: Airborne array geometry. 

PGtArO 
Rmax = 

(4ir)2Smjn 	
(3.7) 

Note that the important parameters are transmitting gain and receiver area. Antenna theory 

gives the relationship between antenna gain and effective area as 

4ir A 
G = , 	 ( 3.8) 

in which \ is the carrier wavelength. Assuming a common antenna is used for both transmission 

and reception, then A t  = Ar = Ae, and (3.6) can be rewritten as 

- PAo Pr 	 (3.9) 
 - 4irA 2 R4  

This expression gives the power received by the radar for a target at range R for given antenna 

and target characteristics. These expressions have assumed that the transmit gain of the trans- 

mit antenna is independent of the relative location of the target, i.e. the antenna radiates and 
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receives power in an omni—directional manner. The transmitter will also experience a variation 

in gain with both bearing and frequency, so that G t  should be written G (9,w), and the power 

returned becomes 

2(9, 	
PG(9,w) A r C 

pw) = 
(4 7r)2 R4 

(3.10) 

(3.10) can be interpreted as the power spatial/spectral density for a particular target o which 

is returned to the receiver. The power distribution indicated by p2  (0, w) forms the basis of 

many target recognition techniques. The points (9, w) which satisfy (3.4), define a region Q 

over which the ground clutter returns within a range gate exist. Within this region the power 

spatial/spectral density can be computed from (3.10). Using the terminology defined in the 

previous chapter, the covariance matrix for the ground clutter returns in a particular range ring 

is given by 

= fp2 (e w )d(0 w )dH(0 w )dQ 	 (3.11) 

where d (0, w) is the array steering vector. In practice, the integral of (3.11) will be approxim-

ated as a Riemann sum 

(3.12) 

where the (0,,, w,,) uniformly sample ft (3.12) may be conveniently rewritten in matrix form 

yielding 

Ar2AH, 	 (3.13) 

where 

A = 1d(0 i ,w i ) d(02 ,w 2 ) 	d(0p,wp)], 

r2  = diag{p2 (Oi ,w i ), p2 ( 02,"2), ... , p2 (Op )  W P) }. 

This is the approach used when computing the clutter returns used in the simulations for this 

thesis. Each of the individual scatterers in the summation of (3.12) are modelled as normally 

distributed random scatterers with variance equal to the value of p2 (0,, , w,,) for the particu-

lar scatterer's location. The variance in the estimate of the covariance matrix is reduced by 

averaging over a large number of individual covariance matrices computed according to (3.12). 

3.4 Clutter spectra 

The discussion presented here relates to an horizontal linear array lying along the axis of the 

aircraft. This need not be the case, and can be easily extended to more complex scenarios 

such as planar, spherical or conformal antennae. An horizontal linear array is sufficient to 

demonstrate the structure which exists within the clutter field and will make subsequent for-

mulations less complex. This array orientation represents the sideways looking airborne radar 
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(SLAR) described by Klemm [1,5-7]. Once the clutter covariance matrix has been formed, a 

two-dimensional power spectrum can be calculated. For instance, 

P (0, w) = d" (0, w) R d (O,w), 	 (3.14) 

is the familiar Fourier-type spectral estimator. The vector d(O, ) is a steering vector for the 

array. Typically the power spectrum defined by (3.14) has insufficient resolution and sidelobe 

behaviour to give an accurate spectral representation of the clutter distribution [70]. The 

minimum variance power estimator 

P(0, W ) = 	
1 

dH(O,)R d(O,w) ' 	 (3.15) 

gives a much more realistic impression of the clutter distribution in the C - w plane. 

3.5 Computed spectra 

The following figures show actual computed two-dimensional power spectra using the clutter 

model outlined above. Table 3.1 summarises the radar parameters used during the simulations. 

The plots are all for arrays with a total adaptive dimension NL = 128, and examine the influence 

Simulation Parameters 

Platform height 

Platform velocity 

Range 

Look direction 

Wavelength 

Pulse repetition frequency 

Sensor spacing 

Clutter-to-noise ratio (measured at the element) 

Element pattern : isotropic 

Transmit antenna: same as receiving antenna 

Clutter return : computed from 200 points distributed over range ring 

Number of elements 

Number of taps 

Total number of samples processed 

1 km 

100 ms-1  

R=2km 

C = 0 

= 0.1 in 

fr = 4 kHz 

d = 

20 dB 

N = 16 

L=8 

NL = 128 

Table 3.1: Radar parameters used during simulation. 

of array geometry, sampling rate and transmit beamwidth. When computing the clutter returns, 

only half the range gate has been considered, 0 < C < ir. This is sufficient to demonstrate the 

structure of the clutter returns, and is the assumption made in several papers [1,5-8]. Figure 3.2 

shows the case described by the parameters in the table. This is the geometry of the sideways 

looking airborne radar (SLAR) discussed by Klemm [1]. Clutter returns are spread along the 

diagonal of the azimuth-Doppler plane. The radar looks ahead (C = 0 0 ) so that the clutter 
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+wmax 

Doppici 

-wmax 

Figure 3.2: Airborne Clutter Spectrum: returns computed for parameters in Table 3.1. 

maximum (mainlobe clutter) occurs at maximum Doppler w - +Wma. The sidelobe clutter 

is distributed over the whole of the azimuth range with the associated Doppler frequencies, 

resulting in this characteristic profile. Figure 3.3 shows the clutter returns for same beamformer 

as the previous figure, but with a reduced sampling rate. A reduction in the sampling rate (i.e. 

the PRF) will result in spectral aliasing of the clutter returns. This can be clearly seen in the 

figure. The Doppler spectrum of Figure 3.2 has been aliased several times in the Doppler plane, 

demonstrating the need for unambiguous sampling of received field. Figure 3.4 shows the same 

array as Figure 3.2 but with a different transmit pattern. In this case a low sidelobe equi-

ripple response was used. The influence which all of these parameters have on the computed 

eigenspectra will be discussed later in the chapter. 

3.6 Existing cancellation techniques 

Desired targets are assumed to be illuminated by the mainlobe of the transmit pattern. They 

will have similar spatial characteristics as mainlobe clutter, and will therefore have to com-

pete with large clutter returns. The most simple solution to the mainlobe clutter problem is 

to apply fixed digital filters in each elemental channel prior to spatial adaptive beamforming. 

These digital filters are configured to present a stop—band over the widest possible frequency 

extent of mainlobe clutter. This represents moving target indication (MTI) at its most basic. A 

potential enhancement to this fixed filtering is to employ adaptive filters in each spatial channel 

to adaptively match the stop band to the spread of mainlobe clutter. However, this suffers 

from the serious drawback that spatial correlation between jamming signals can be lost, mean-

ing that subsequent adaptive spatial filtering will be ineffective. A substantial improvement 

can be obtained by performing adaptive processing in both the spatial and Doppler domains 

simultaneously. These space—time processors will provide the source of much interest in coming 
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+wmax 

Doppte 

•wmax 

Figure 3.3: Airborne Clutter Spectrum: sampling rate. The sampling rate has been reduced 
to 10% of the Nyquist sampling rate for the clutter field. 

+wmax 

Dopple 

Figure 3.4: Airborne Clutter Spectrum: transmit aperture. The transmit pattern has been 
modified to a low sidelobe equi-ripple pattern. 
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years. 

The basic idea behind conventional MTI is to place a notch in the filter response at the fre-

quency corresponding to mainlobe clutter returns. The effective filtering operation is shown in 

Figure 3.5. It can be seen that this approach will provide good rejection of mainlobe clutter, but 

will be ineffective in cancelling sidelobe clutter. Target returns will therefore have to compete 

with sidelobe clutter returns, significantly reducing the ability to detect weak target signals. 

In "space—time" adaptive processing an adaptive tapped delay line processor is placed in each 

LI 

+0) max 

Doppler frequency 

max 
—1 	

Direction of arrival 

Figure 3.5: MTI filter response superposed on clutter returns. 

spatial channel. The adaptive weights are computed for the entire array at once, overcoming the 

problems described above. In the radar geometries considered by Klemm, sensors are aligned 

along the direction of travel. As was noted by the author in [6], space—time processing with this 

type of array geometry results in a generalisation of the displaced phase centred array (DPCA) 

technique [68]. DPCA is the simplest system which combines spatial and temporal degrees 

of freedom. Platform motion is compensated for by varying the time delay between pulses, 

provided accurate estimates of the platform velocity exist. However, good estimates of plat-

form velocity are not generally available so that an adaptive algorithm must be used to estimate 

the velocity. Since an adaptive algorithm is required for effective operation of a DPCA, many 

authors have highlighted adaptive space—time processing as a potential improvement. Adaptive 

space—time processors represent a powerful technique for suppressing both mainlobe and side-

lobe clutter. Figure 3.6 demonstrates the filtering process achieved by combining spatial and 

temporal samples. The tap spacing needs to be matched to the pulse repetition frequency to 

ensure that each snapshot of data corresponds to the returns from a single range gate. Unlike 

fixed MTI schemes, no a priori knowledge is required of the clutter direction of arrival and 

Doppler. However, attenuation of the beam response at the known desired signal direction 

and unknown signal Doppler must be avoided. This can be achieved through use of linear 

constraints as described in chapter 2. 

At this point it is important to examine the operation of the adaptive airborne MTI described 
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Doppler frequency 
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—1 	
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Figure 3.6: Space—time filter superposed on clutter returns. 

by Klemm in [1]. This "auxiliary channel approach" is the most similar to that which will be 

presented later in this thesis, in that it uses a partially adaptive processor to cancel ground 

clutter. This approach is a generalisation of well known sidelobe canceller techniques, in which 

a total of N + L + 1 beams are formed, one of which is a search beam, the remaining beams 

being used for clutter cancellation. Each cancellation beam is subjected to Doppler processing 

such that the N + L beams cover the diagonal of the clutter plane, effectively suppressing both 

mainlobe and sidelobe clutter. This receiver is shown in block diagram form in Fig. 3.7. On the 

post processing 

threshold detection 

display 

Figure 3.7: Block diagram of auxiliary channel receiver (after Klemm [1]). 

left N elements with subsequent receiver channels including amplification, demodulation and I 

& Q sampling are shown. In the following network N + L + 1 beams are formed, one of which 

is the search beam. The beamformers number 2, . . . , N are followed by Doppler filters (DF) 

matched to the clutter frequency of the corresponding beam. The search beam is connected to 

a Doppler filter bank matched to all possible target velocities. A set of weights are computed 

via an estimated covariance matrix i, after which there is some conventional detection and 

display circuitry. A total of N + L clutter cancellation beams are formed because this was 

the dimension estimated for the clutter subspace. The analysis which provided this estimate is 

discussed in the following sections. 
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3.7 Relationship between space—time processing and DPCA 

Several authors have commented upon the relationship between DPCA techniques and adapt-

ive space—time processing. When considering the sideways looking radar geometry, adaptive 

space—time processing has been referred to as generalised DPCA [6,69], or adaptive DPCA [8]. 

However, DPCA and space—time processing differ fundamentally since the former is aimed at 

achieving complete clutter cancellation, whilst space—time processing attempts to maximise the 

signal to noise ratio. Therefore the solutions found in space—time processing cannot always 

be expected to replicate those of DPCA. In this section, the conditions under which adaptive 

space—time processing and DPCA have equivalent solutions are discussed. 

The displaced phase centred array technique operates by matching the interval between trans-

mission of two successive pulses to the distance travelled by two identical sensors (or subarrays) 

between the two pulses, that is 

d 
r = -, 

2 v, 
(3.16) 

where r is the pulse repetition interval, and d is the sensor spacing. When (3.16) is satisfied 

returns from stationary targets (i.e. the ground) can then be completely cancelled by sub-

tracting the returns from two successive pulses. Assuming that all errors can be ignored, and 

that r is exactly matched, then the effective filtering operation is as shown in Figure 3.6. De-

gradation in cancellation performance will occur through a variety of processes, mostly due 

to non—stationarity of the clutter returns and variability in the platform motion. Adaptive 

space—time processors have been proposed because of their ability to overcome these problems. 

Figure 3.8 depicts the flow of clutter data within a space—time processor in which the tap spacing 

has been chosen to satisfy the DPCA condition. Subject to this condition, the clutter data lying 

at each point along the diagonals will be identical. These diagonals are indicated by dashed lines. 

The platform moves to the left and positions previously occupied by the sensors are indicated 

by 0, -1, -2, etc. These previous locations are termed "virtual" spatial sampling points, whilst 

the current N sensor locations are termed "real" spatial sampling points. Studying Figure 3.8, 

it can be seen that the clutter data present in the beamformer is collected from a set of N "real" 

spatial sampling points and from L - 1 "virtual" spatial sampling points. Since the clutter data 

is derived from at most N + L - 1 independent spatial locations, the clutter subspace will have 

dimension no greater than N + L - 1. In the example shown, N = 5, L = 4, and the clutter 

subspace will have dimension 5 + 4 - 1 = 8. This figure compares with that of N + L = 9 

derived empirically in [1]. 

This diagrammatic approach can also be used to gain insight into cases when the DPCA con-

dition is or is not satisfied. When the pulse repetition interval is matched to the platform 

motion, then total clutter cancellation can be achieved by ensuring that the weights lying along 

any of the diagonals sum to zero. This is simply a restatement of the DPCA principal, that 

subsequent echoes should be combined such that the resultant output clutter signal is zero. 
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Figure 3.8: Space—time processor data flow diagram - DPCA condition. 

However, when the DPCA condition in not satisfied, i.e. when the PRF is higher or lower 

than that indicated by (3.16), then the clutter data will be spread throughout the entire tap 

structure, causing the estimate for the clutter dimension to change. Both these situations are 

considered in simulations in the next section. 

3.8 Eigenspectra 

Power spectra like those seen in Section 3.5 are impressive to look at, but give little indication 

as to the complexity or design of a clutter suppression filter. An alternative representation of 

the clutter covariance matrix is it's eigenspectrum. This can give an indication of the rank of 

Rr , and consequently the dimensionality required in the suppression filter. An eigenspectrum 

is simply a plot of the eigenvalues arranged in decreasing order of magnitude. Consider the 

eigendecomposition of R 

Rv, = )v3 , 	 j=1,2,--- ,NL, 	 (3.17) 

where {), ; ) ~
! } 

are the eigenvalues associated with the NL eigenvectors v. This is 

the eigenstructure of the interference covariance matrix Rr . The eigenstructure, through R, 

is a function of the frequency bands, the location ranges and the weighting function of the 

interference. The expansion described by 

	

= 
> )t.,v3 vf', 	 (3.18) 

where D < NL, is the discrete Karhunen—Loève expansion (KLE). With this expansion and 

a selected D, (3.18) is the most efficient rank D representation of Rr  in a 2nd—order stat-

istical sense. The eigenvalues Aj  represent the energy of a sample vector projected onto the 

corresponding basis vector. The representation dimension D is selected to obtain a required 

approximation error, and {v 1 , ... , VD} span the broadband interference subspace. Such low 
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rank representations form the basis of many signal processing techniques. Any vector x (k) 

within the selected region 0 can be considered to be a sample vector of the "random process" 

represented by the covariance matrix. These vectors are therefore efficiently represented with 

the interference representation space described above. 

Figure 3.9 shows a simplified eigenspectrum plot. This is often the most informative method 

for displaying the eigendecomposition. In this plot it can be seen that there are a total of NL 

eigenvalues. The first point to note is that a large number of the eigenvalues are of the same, 

small magnitude. Since these are small in magnitude we can make the reasonable assumption 

that they are related to the background noise within the input data, and can thus be classified 

as noise eigenvalues. The magnitude of the minimum eigenvalue is a function of the additive 

noise level, and will determine the obtainable gain in the adaptive processor. The remaining 

K eigenvalues are of a larger magnitude. The number of these "large" eigenvalues gives an 

approximate estimate of the degrees of freedom inherent within the process. Traditionally these 

elgenvalue 
(dB) 

o 	 K 	eigenvalue number 	 NL 

signal 	I 	 noise 

Figure 3.9: Simplified example eigenspectrum. 

eigenvalues are termed signal eigenvalues, and their distribution will reflect the complexity of 

the generating process. For example, consider a simple case of a single narrowband interferer in 

the presence of uncorrelated white noise. In this scenario there will be a single large eigenvalue; 

the remaining eigenvalues will all have like magnitude, equal to the noise power. As the process 

becomes more complex, the number of non—noise eigenvalues will increase, not necessarily 

in relation to any measurable increase in the complexity of the generating process. Imagine 

our simple example was progressively extended by adding additional narrowband interferers. 

Initially the dimension K would increase as the number of sources, but not indefinitely. In 

the limit, when the number of interferers was much greater than the total number of samples 

processed, we may still observe a bounded eigenspectrum, similar to that depicted in Figure 3.9. 

The computed eigenspectra curves presented later demonstrate this behaviour. 

44 



Chapter 3: Airborne Radar 

Digenspectra such as those presented later in the chapter, provide an estimate of the number 

of adaptive weights that might be required for effective suppression of interfering signals. For 

this reason, the first part of this study examined the influence various radar parameters have 

upon the eigenspectra curves. Figures 3.10 - 3.15 show the relative influence of the different 

parameters. The fixed radar parameters are those given in Table 3.1. Note that these values 

satisfy the DPCA condition. Until now, the discussion has related to a linear array of N 

elements lying along the axis of the aircraft. The eigenspectra presented here consider planar 

arrays of N x M elements lying parallel to the ground plane. In all plots the total number of 

samples processed (the fully adaptive dimension) is 128, but it can be seen by inspection that 

nearly all the scenarios demonstrate considerably less rank than this. The rank depends on 

various parameters, such as sampling rate, transmit beamwidth, the distribution of elements 

and the quiescent noise level. The number of non—noise eigenvalues are referred to as the clutter 

eigenvalues, since these eigenvalues relate to the underlying process which generates the clutter. 

The magnitude of the noise eigenvalues will depend upon the quiescent noise power, and will 

determine optimum processor gain, and target detectability. 

Figures 3.10- 3.13 show the eigenvalue spread as array geometry is varied. The three coefficients 

are N, M and L, and represent the number of elements parallel to the flight direction, the 

number of elements perpendicular to the flight direction, and the number of temporal snapshots 

combined in the processor. Consider first Figure 3.10. The most striking feature is the 
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Figure 3.10: Eigenspectrum: Distribution of elements - 2 dimensional array with omni-
directional transmit pattern. 

rectangular nature of the curves. All the arrays display a stepped eigenspectra. This can be 

appreciated heuristically by noting that these result from an omni—directional transmit pattern. 

Such a uniform illumination will cause a rectangular Doppler spectrum, which could be seen to 
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Figure 3.11: Eigenspectrum: Distribution of elements -2 dimensional array with sin x/x trans-
mit pattern. 

result in a quasi-rectangular eigenspectrum. In Figure 3.10 it would appear that a large number 

of temporal samples (L large) leads to a larger clutter dimensionality. As L is reduced (and 

conversely N x M is increased) the clutter dimensionality decreases. Take for example curve 1-

1-128. This represents the adaptive MTI type receiver depicted in Figure 3.5. Purely temporal 

filtering is relied upon to perform clutter suppression, which as was highlighted, will result in 

poor performance. This curve suggests that adaptive MTI filtering may additionally increase 

the number of significant degrees of freedom. The smallest clutter dimensionality can be seen 

to occur for case 4-4-8, the case in which the number of spatial degrees of freedom is nearest to 

the number of temporal degrees of freedom, i.e N x M L. In most situations an array with a 

combination of spatial and temporal resolution would prove to be the most versatile. Figure 3.11 

shows the same array geometries, but in this case a sin xix transmit pattern was used. The 

mainlobe beamwidth was 75 O  The clutter dimensionality remains more or less unchanged, 

but the distribution of clutter eigenvalues changes markedly. The ordered eigenvalues taper 

smoothly and do not exhibit the step—like behaviour of the omni—directional transmit pattern 

curves. Intuitively this would seem correct - a tapered Doppler spectrum will lead to a tapered 

eigenspectrum. This may be useful in a reduced-state processor because the performance would 

be expected to degrade more gracefully as the number of degrees of freedom in the processor 

are reduced. 

Figures 3.12 and 3.13 show the eigenspectra for one dimensional arrays parallel and perpendicu-

lar to the flight direction, respectively. Both plots are similar in shape, but Figure 3.12 suggests 

that there may be some benefit to be derived from the array parallel to the flight direction. For 

all but the one element array the clutter dimensionality is approximately three less than for the 
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Figure 3.12: Eigenspectrum: Distribution of elements - 1 dimensional array parallel to flight 
plane with omni-directional transmit pattern. 
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Figure 3.13: Eigenspectrum: Distribution of elements - 1 dimensional array perpendicular to 
flight plane with omni-directional transmit pattern. 
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equivalent perpendicular array. Klemm [1,5,6] suggested that, for a linear array, the clutter 

dimensionality was approximately equal to the sum of spatial and temporal degrees of freedom, 

i.e. N + L, which will of course be a minimum when N = L. Su and Zhou [9] support 

this assertion, stating that the dimension will be bounded by N + L, providing the sampling 

of clutter is non-ambiguous and that no clutter fluctuations occur (i.e. the clutter statistics 

are stationary over the period during which the covariance matrix is formed). Subsequently 

Richardson [69] discussed this in relation to space—time processing which satisfies the DPCA 

criterion. The reasoning presented in section 3.7 suggested that the dimension of the clutter 

subspace equals N + L - 1. The plots presented here do not agree exactly, but can be seen to 

follow the trend. The difference may be attributed to different assumptions in the statistics of 

the clutter model, and effects due to finite sampling in the formation of the covariance matrices. 

The next figure shows the influence of sampling rate upon the eigenspectrum. The Nyquist 

sampling rate for the received clutter field was T3  = 0.25 ms, which satsifies the DPCA condition. 

Undersampling (T3  = 2.5 ms, 25.0 ms) causes the eigenvalues to spread across the whole domain, 

whilst greatly oversampling (T = 0.0025 ms, 0.025 ms) reduces the clutter dimension. Again, 

these results seem intuitively correct. Undersampling of the received field leads to spectral 

aliasing of the clutter returns, effectively smearing the clutter returns over the whole azimuth—

Doppler plane. By comparison with undersampling, a degree of oversampling will ensure that 

the clutter returns are localised upon the azimuth—Doppler plane. 
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Figure 3.14: Eigenspectrum: Influence of Sampling Rate. The Nyquist sampling rate for the 
clutter field was 0.25ms. 

The effect of differing transmit beamwidths upon the spectra is shown in Figure 3.15. All the 

curves demonstrate a similar clutter dimension. They show that a small transmit beamwidth 
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will tend to act as a narrow Doppler filter, selecting only a band of frequencies and thus resulting 

in a faster roll—off of the clutter eigenvalues. Alternatively, a large transmit beamwidth will 

illuminate a larger band of Doppler frequencies, and thus give rise to a slower roll—off of the 

clutter eigenvalues. This is an interesting point since it suggests that omni-directional transmit 

beams could be employed without increasing the required DOF of a subsequent processor. A 

similar effect was noted in [1]. 
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Figure 3.15: Eigenspectrum: Influence of Transmit Beamwidth. The values indicate a multiple 
of the transmit beamwidth 7.5. larger multiple implies a smaller transmit 
aperture. The eigen values have been plotted normalised to the noise floor, as 
opposed to the largest eigen value. 

As was discussed in [5], eigendecompositions lack physical meaning. Any particular eigenvalue 

(or vector) cannot be related to some physical variable such as frequency or bearing, and as 

a result their usefulness is often overlooked. The number of clutter eigenvalues is a measure 

of the degrees of freedom of the process and tells the designer something about the obtainable 

gain and the number of degrees of freedom required for a clutter suppression filter. Many 

authors have considered this problem, suggesting eigen—decompositions of clutter space—time 

covariance matrices as techniques for partially adaptive processing. The approaches with most 

bearing upon this thesis are reviewed in the next chapter. 

The plots that have been presented here indicate that the clutter dimensionality is significantly 

less than that of the data space. This is natural since the ground clutter returns within a 

single range gate represent a band limited process, that is, the clutter exists over a finite set 

of bearings, with a specific set of associated Doppler frequencies. Certain array geometries will 

lead to concise expressions for the dimension of the clutter subspace, e.g. the sideways looking 

space—time processor which satisfies the DPCA condition discussed in Section 3.7, whereas for 
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more general array geometries such expressions cannot be found. In these cases the clutter 

dimensionality will depend upon the assumptions made in the clutter model, specifically the 

statistical properties and number of the clutter scatterers, the depression angle of the particular 

range ring, and any sampling effects in forming the clutter covariance matrix. 

3.9 Conclusion 

This chapter has introduced pulse—Doppler radar, and examined the clutter suppression prob-

lem. A simple model for ground clutter returns has been given, and based upon this the 

implications of various radar and array parameters have been considered. This was achieved by 

computing an eigenspectrum for the simulated returns received at a moving platform. Through 

this it was shown that the dimension of the clutter subspace can be expected to increase as the 

number of samples processed is increased, and additionally as sampling rate is decreased, and 

transmit beamwidth is increased. 
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Chapter 4 

An Iterative Algorithm 

4.1 Introduction 

The generalised sidelobe canceller was introduced in chapter 2 as an adaptive structure which 

is effective in the cancellation and suppression of two—dimensional noise and interference. 

Throughout the chapter the generalised sidelobe canceller was considered in a fully adapt-

ive sense. No consideration was given to reducing the computational burden such structures 

place upon an adaptive processor. Within this chapter we will consider the problem of redu-

cing the adaptive degrees of freedom which the processor is required to compute. A variety of 

techniques will be considered and their relative performance examined. 

The computational requirements of each update in adaptive beamforming algorithms increases 

rapidly with the number of elements in the array. In many situations the beamformer will have 

an overly large number of degrees of freedom. The expression degrees of freedom denotes the 

number of unconstrained or "free" weights that must be computed. For example, an LCMV 

beamformer with L constraints upon N elements has N - L degrees of freedom, the GSC 

implementation would separate these degrees of freedom into the unconstrained adaptive weight 

vector to0 . A fully adaptive beamformer uses all of these degrees of freedom whilst a partially 

adaptive beamformer will utilise only a subset of these degrees of freedom. When the system 

has too many degrees of freedom several undesirable results arise: 

the system will require many iterations before convergence; and 

the computational burden per iteration will increase quickly as the number of weights. 

It is therefore of great importance that we reduce the number of degrees of freedom available 

to the processor. One possible approach is to employ a linear (matrix) transformation to map 

the full dimension elemental data into a lower dimensional subspace, often called a beamspace, 

then to apply a signal processing algorithm to this new data set. However, the design of 

such transformations are generally guided by subjective criterion. This chapter will define the 

performance measures output mean square error (MSE) and signal—to—noise ratio (SNR) which 

are subsequently used to evaluate partially adaptive performance. 

There is a performance penalty associated with partially adaptive beamforming. A partially 

adaptive beamformer will not converge to the same weight vector as the fully adaptive beam- 

former. Therefore the aim in partially adaptive beamformer design is to limit any degradation 
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in performance which occurs, whilst simultaneously reducing the adaptive dimension. This 

chapter will review several existing techniques for designing partially adaptive GSCs, and in-

troduce an alternative approach - a technique based on iterative minimisation of the beamformer 

output mean squared error. It is shown that this approach not only leads to a sparse structure 

for the transformation matrix, but will also allow a reduction in the required partially adaptive 

dimension of the resultant beamformer. The relationship between this new approach and the 

existing techniques is described using a simple geometrical picture. 

4.2 Partially adaptive beamformer design 

Figure 4.1 depicts a generic sidelobe cancelling structure. N and M are respectively the numbers 

of elements in the array, and the number of adaptive weights that will be computed. Reduction 

in adaptive dimension is performed by the matrix T. The fixed weights Wql, .. . , WqN are set 

to form a fixed beam with a peak in the direction of the desired signal, whilst the variable 

weights Wa 1,• . ., WaM are chosen so as to maximise some performance measure of the output 

y(n). Several approaches to reducing degrees of freedom are based upon processing a subset of 

W 
qi 

Figure 4.1: Generic partially adaptive beamformer. N is the total number of elements, M the 
number of adaptive weights. 

the elemental outputs. This implies that the matrix T is a sparse matrix of zeros and ones. 

Morgan [71] evaluated partially adaptive beamformer performance for this multiple sidelobe 

canceller structure when the matrix T selected a subset of the elements to form auxiliary channel 

outputs. This configuration is termed an element spece approach, since a subset of elemental 

outputs are utilised. An alternative approach has been described by several investigators, for 

example Adams [72] and Gabriel [73]. In this approach each column of T is used to form 

a beam. This technique is therefore termed a beam space approach. The columns of T are 
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designed as independent beamformers, each beam being steered in a different direction. The 

beams are matched to the locations of interfering signals. The objective is to direct a beam 

at each interfering source so that it can be subtracted from the fixed branch. Element space 

approaches are often preferred because of their simplicity. Improved cancellation performance 

can be obtained through beam space approaches, especially for interference due to either spatial 

distributed sources, or sources of appreciable temporal bandwidth. However, this improvement 

will be at the expense of implementing the required number of beams. 

Chapman [74] considered selecting the columns of T to form subarrays, i.e. each column involves 

only a subset of the array elements. The weightings applied to each subarray (elements of T) 

can be chosen in various ways, one of which is to use the subarray to form a beam. Cancellation 

performance depends upon the number of sensors in each subarray, the number of subarrays, 

and the weightings used to combine sensor outputs in the subarray. Note that each column 

of T will have zeros in the locations corresponding to elements that are excluded from that 

subarray, so that the overall T will be sparse in nature. 

Takao [31] described a beam space partially adaptive antenna in which a subset of the active 

auxiliary beams were selected from the full set of potential auxiliary beams. The auxiliary 

beams were required to be orthogonal, such as those output from a Butler matrix. An eigen-

decomposition similar to that in [73], was used to compute the optimum weight vector. This 

used a low rank approximation of the interference covariance matrix to form the optimum beam 

weightings. 

The trade off between degrees of freedom and cancellation performance in partially adaptive 

beamforming merits some discussion. Consider a narrowband interferer of frequency w 0 , incid-

ent at the array from direction 0. The overall weight vector for the array is w = (wq - Tw a ). 

The response of the fixed branch W q  to this source is g = wd (O,w o ), where d (O,w o ) is 

the steering vector. Perfect cancellation of this interferer will occur if wHd  (0, wo) = 0. This 

implies 

= 
	 (4.1) 

that is the response of the adaptive branch will be equal to that of the fixed branch. Therefore 

perfect cancellation can be achieved by ensuring that the output of T is nonzero for this 

narrowband source. Now consider a broadband source of extent w 0  <w <Wi, incident at the 

array. The response of the upper branch is given by gi  (w) = wd (0, w). To achieve perfect 

cancellation Wa must satisfy 

W aH T H d(O,w) = g1(w). 	 wa_<wwb 	 (4.2) 

Define the response of each column of T as 

f(w) = [T]'d (0, w) 	 1 <i < M 	 (4.3) 
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where [T] denotes the ith column of T. Equation (4.2) requires that g(w) be expressed as 

a linear combination of f(u)), 1 < i < M over Wa < w < wb. In general, this cannot be 

accomplished, so that we can conclude that total cancellation of a broadband interferer cannot 

be obtained. We can express the output power due to the broadband source as an integral 

over frequency of the magnitude squared of the difference between the fixed and adaptive 

branches responses, weighted by the interferer power spectrum. The degree of cancellation will 

vary greatly and will depend on spatial location, frequency extent and critically upon T. For 

example, good cancellation could be obtained for M = 1, whereas poor cancellation might be 

achieved if M was large. These conclusions are equally valid for narrowband sources incident 

over a wide spatial region (spatial distributed interference). In the ground clutter suppression 

problem we will typically be faced with interference spread in both location and frequency. 

4.3 The partially adaptive generalised sidelobe canceller 

The generalised sidelobe canceller, because of its structure, is readily applicable to the design of 

partially adaptive beamformers. The basic GSC structure depicted in Figure 2.7 is an example 

of a beam space adaptive array. The signal blocking matrix forms a selection of beams, each 

beam having a null in the spatial location of the desired signal. In a partially adaptive GSC a 

transformation matrix T is inserted after the signal blocking matrix. We can therefore think 

of T as the combination of the signal blocking matrix C, and the transformation T, with 

the transformation acting as a beam selector/combiner. That is, partial adaptivity is achieved 

by either combining the beams output from C, or else by selecting a subset of them. 

it 

1k) 

Figure 4.2: The partially adaptive generalised sidelobe canceller. 

Recall that the fully adaptive GSC has dimension NL - K. The transformation T reduces 

this adaptive dimension from NL - K to J. The partially adaptive GSC structure will allow an 

examination of the operation of a beam space partially adaptive array. Within this chapter we 

will be primarily concerned with designing a transformation matrix T which satisfies the twin 

goals of good cancellation performance and simplicity of implementation. This one statement 

summarises the whole problem in partially adaptive beamforming. Both objectives are of 

equal importance, yet each will have serious implications for the other. Good cancellation 

performance will be determined by how well the data output from the signal blocking matrix 
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is represented. Output from C will be a vector Cn(k), in which n(k) is a vector of noise 

and interference. This noise vector may have components arising from both correlated or 

uncorrelated interference. This data vector will lie within a space given by the expectation of 

the outer product of the vectors output from C, i.e. 

E{Cn(k)n"(k)C} = C'RC. 	 (4.4) 

The square matrix R is the covariance matrix of interference and noise. How well the trans-

formation T represents this space will determine how well the GSC operates as a partially 

adaptive beamformer. 

Owsley [14] suggested a narrowband beamformer in which the columns of Tn  were chosen as 

a basis for the space spanned by the fully adaptive weight vectors. The dimension of this 

space is given by the largest eigenvalues which represent the correlations in the input data 

sequence. Subsequently Van Veen [19] extended this to the broadband case. The dimension of 

the fully adaptive weight space can become particularly large since it is now given by the rank 

of the correlated part of the broadband covariance matrix. These approaches are capable of 

satisfactory performance when the interference is narrowband in nature, since each interferer 

will require only a single degree of freedom. However, they cannot be extended easily to the 

broadband environment whilst maintaining a small adaptive dimension. In the broadband case 

the cancellation beams must be matched over a range of frequencies at each interferer direction. 

As discussed in the previous section, in general it is not possible to perfectly cancel broadband 

interferences. Eqn. (4.2) requires control of the beamformer response over a continuous band 

of frequency, which can only be approximated. One example would be to use several banks of 

beams designed to span a range of directions, with each bank operating at a particular frequency. 

However, with this design the number of required beams will quickly become prohibitive. 

Van Veen and Roberts [27,30] have considered a suboptimal sequential approach to this problem, 

in which each column of T0  is optimised in turn. The columns are designed to minimise the 

average interferer power over a range of likely interference environments. Each column of T 

is, however, optimised in an unconstrained manner, so that T will represent yet another 

beamformer. This impracticality is considered in the next section. 

4.4 Practical realisation 

The design of a partially adaptive beamformer cannot be guided solely by cancellation per-

formance. Consideration must also be given to the practical problems of implementing the 

beamformer. Over complexity in the reduction network will negate any reduction in adapt-

ive dimensionality obtained. A radar antenna designer would prefer to construct the majority 

of the beamforming structure at radio frequencies (RF) with demodulation and analogue—to-

digital conversion occurring as far down the processing chain as possible. With this in mind, 

it is possible to begin formulating some guidelines for the design of the matrix T. Firstly it 

would be preferable if only neighbouring elements were combined. Denote the matrix product 
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Figure 4.3: The generalised sidelobe canceller broadband beamformer. 

C, T = T, and consider that T is some general complex matrix. To implement each column 

in hardware would require that a linear combination of all the elemental outputs is performed. 

This is clearly not practical. To ensure that only near neighbouring elements are combined, the 

first guideline is formed as (i) T should be broadly diagonal in structure (or some column—wise 

permutation). Secondly, it is preferable that T be a matrix of ones and zeros to obviate the 

use of amplitude weightings. Additionally T must still satisfy the signal blocking requirement 

imposed upon the lower branch. The second and third guidelines are therefore that (ii) T's 

only nonzero elements should be l's, and (iii) T should satisfy C" T = 0. 

A key to the solution was provided by Frost in his early paper on LCMV beamforming [10]. The 

important feature of his beamformer was the use of wideband steering delays at each element. 

Figure 4.3 depicts of physical realisation of the basic GSC structure. The wideband steering 

delays r1  steer the elemental outputs so that the desired signal appears identically at the input 

to tog  and C,. In the upper path, the outputs of the steering delays are summed linearly and 

the subsequent tap weights are used to identify the frequency of desired signals. The matrix 

B performs the signal blocking operation by simply differencing the outputs of the steering 

delays. Typically the N x (N - 1) matrix B will take the form 

1 

—1 	1 	 0 

	

—1 	1 

(4.5) 

—1 	1 

0 	 —1 

—1 
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This is a sparse bidiagonal matrix in which the only non-zero entries are either 1 or -1. The 

relationship between the signal blocking matrix C and the matrix B shown above is given 

explicitly as 

= B®I, 
	 (4.6) 

where I is an identity matrix of dimension equal to the number of taps within the tapped delay 

lines, and ® indicates Hadamard product. Note that the signal blocking matrix will be full 

rank, and that each column of C, represents a single adaptive weight in the lower path of the 

beamformer. The structures shown in Figures 4.2 and 4.3 will be equivalent provided C,2  is as 

given in (4.6). 

A signal blocking matrix whose elements consist entirely of ones and zeros has a significant 

implemental advantage, namely that the inputs to the adaptive processor are derived through a 

simple differencing of adjacent element outputs. For an array without wideband steering delays 

forming C is a more complex problem. In [16] a general approach for controlling beamformer 

spatial/spectral response is presented in which eigenvector constraints are derived using a low 

rank representation of the desired signal. The number of constraints required was found to be 

approximately equal to the time—bandwidth product of the signal of interest. 

4.5 Beamformer performance measures 

Design of the transformation matrix, and hence a partially adaptive beamformer requires that 

some suitable measure of beamformer performance exists. Measures relating to beamformer 

power patterns, e.g. beamwidth, peak and average sidelobe levels, null depths etc, have arisen 

because, historically, these were the measurable features of a beamformer. Since the advent 

of adaptive beamformers, especially adaptive array beamformers, these measures often do not 

provide a useful assessment of adaptive performance. It is often more meaningful to measure 

the performance not in terms of power patterns, but in terms of signal—to—noise characteristics, 

or cancellation performance. As way of an example, Figure 4.4 depicts the adapted response 

of a space—time processor when ground clutter returns are received. The sidelobe structure is 

complex which will make it difficult to measure the relative performance of different adaptive 

algorithms. 

For the adaptive generalised sidelobe canceller a convenient measure is beamformer output 

mean squared error (MSE). This is defined as the mean squared difference between the output 

signal when only the desired signal is incident at the array and that which is output when both 

the desired signal and interference are incident. The data present in the array z(k) consists of 

a portion s(k) due to the desired signal and a portion n(k) due to the interference and noise, 

i.e. z(k) = s(k) + n(k). Thus the data covariance matrix will be given by four terms 

R x  = R 3  + R, + R 3  + R, 	 (4.7) 
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Figure 4.4: Adapted response of a typical space—time processor, showing the complex sidelobe 
structure which often exists. The arrow indicates the direction from which the 
desired signal is incident. 

where R = E{n(k)n(k)H} , 	= E{s(k)s(k)'} and R 3  = RH=  E{n(k)s(k)"}. The sn 

cross—correlation terms R 3  and R 3  give a measure of the correlation between the desired 

signal and interferers. If no correlation exists then R 3  = 0, but if the interferers 

are correlated with the desired signal (i.e. multipath propagation or intelligent jamming) then 

this will not be the case. Qian and Van Veen [35,36] have studied the use of partially adaptive 

generalised sidelobe cancellers in the suppression of coherent interferences. The LCMV adaptive 

beamformer will choose a weight vector which minimises the output power subject to a set of 

constraints upon the desired signal. This will be successful in the absence of coherent interferers. 

In the presence of coherent interferers though, the output power minimisation process acts not 

only in suppressing the interferers, but also to cause cancellation of the desired signal. This 

is demonstrated algebraically below. The generalised sidelobe canceller is an unconstrained 

implementation of the LCMV beamformer. Recall the unconstrained minimisation problem 

mm (wq - Gn w a )
H 
 R (w q  - C. W.) 	 (4.8) 

W. 

the optimal weight vector being given by 

Wa = ( Cnff 	 (4.9) 

The full rank signal blocking matrix will satisfy C" C, = 0, and will also satisfy CR 5  = 
= 0 because the desired signal s E range (C). The weight vector Wa represents the 

available degrees of freedom in the beamformer. Substituting (4.7) into (4.9) and exploiting 
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the orthogonality between s(k) and C, we obtain 

	

Wa = W + Ws, 	 (4.10) 

where 

H fCRn Ct2j Cn" R n w q , Wi =  

W s  

	

( CH R
fl fli C 	CR ns w q . = 	n  

The first term on the RHS of (4.10) is the weight vector resulting from the noise and interference, 

whilst the second term is that which results from coherence between the desired signal and 

the interferers. Note that in the absence of coherent interferers, i.e. R 3  = 0 the LCMV 

beamformer yields the best available weight set Wa = vi2  in the sense that it provides the 

maximum interference cancellation without causing any signal cancellation. In the presence 

of coherent interference, the additional term w 5  will use the coherent interferers to cancel the 

desired signal. 

Let s(k) denote the desired signal at the beamformer output. We assume the constraints 

CHw = f are chosen to ensure that w passes the desired signal with unit gain. Thus, 

s(k) = ws(k) = w"s(k). In other words, s(k) is the beamformer output in the absence of 

noise and interference, n(k) = 0. Now, the output mean squared error is defined as 

MSE = E{ls( k )_w "z( k )) 2 }. 
	 (4.11) 

Substitution of x(k) = s(k) + n(k) and application of the constraint s(k) = w H s (k) yield 

MSE = E{Is(k) - WH8(k) - w"n(k)12} 

= E{w'1 n(k)J 2 } 

	

= WHRW 	 (4.12) 

Expanding this expression for output MSE, using (4.10) we get 

MSE = (wq Cn w a )HR n ( wq _Cnwa ) 

= wRnwq - 	 - w "Rq nCn wa  + tVa'1 CRnCnWa 

= wqHRnwq - wR n Cn (CRn Cn )'CRn w q  

wfR sn Cn (CRn Cn )'CRns w q . 	 (4.13) 

The output MSE therefore consists of three components which are related specifically to the 

upper and lower processing paths in the GSC. The first term on the RHS of (4.13) is the power 

output from the non—adaptive upper path due to interference and noise, whilst the second term 

is the portion which will be cancelled by the adaptive weights. The third is the portion of signal 

power cancelled due to the presence of R 3 . This is as one would expect - the expression for 

the output MSE mirrors exactly the structure of the GSC. In a partially adaptive generalised 
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sidelobe canceller [19,27,30, 33, 35, 36, 56] a NL - K by J transformation matrix T, which 

maps the fully adaptive problem to a lower (J) dimensional space, is inserted after the signal 

blocking matrix. To simplify notation, the product C,2  T is denoted by T where convenient. 

For the partially adaptive GSC the above expression is modified to 

MSE = wqRnwq - wqHR n T(THR n T)THR nwg  

- wjRsnT(THRnT)_lTHRnswq. 	 (4.14) 

Our problem now is that of designing T so as to minimise any degradation in array perform- 

ance. Within this chapter the primary performance measure employed will be output MSE. 

The task is to minimise this by appropriate design of T. Existing techniques for designing 

are discussed in following sections, followed by a new iterative approach which can lead to 

improved performance. 

Measuring the beamformer performance in terms of output MSE will give a good impression of 

the ability to cancel noise and interference at the output of the beamformer. The expressions 

for output MSE derived above are measures which relate only to the noise power output from 

the beamformer. An alternative performance measure which incorporates the desired signal 

and also allows for an assessment of any signal cancellation effects is output signal—to—noise 

ratio (SNR). This is defined as the ratio of the desired signal power to interference and noise 

power at the output of the beamformer. Consider first the upper path of the beamformer. The 

power due to the desired signal will be given by 

PS  = wqHR swq, 	 (4.15) 

and the portion due to interference and noise 

= wqHRnwg. 	 (4.16) 

For a non—adaptive beamformer these powers would determine the output SNR. For the adapt-

ive generalised sidelobe canceller there are cancellation signals generated by the lower adaptive 

path. The portion of signal power cancelled by a fully adaptive lower path due to coherent 

interferers is 

P,c  = wqHR sn Cn (CR n Cn )lC, Rnswq , 	 (4.17) 

and the noise and interference cancelled by the adaptive weights is given by 

P 	= WqH 	 (4.18) 

In the absence of correlation between the desired signal and the interferers (R 3  = 0), the 

adaptive weights should ensure that the output signal—to—noise ratio is high. P is the amount 

of the desired signal that is cancelled by coherent interference and represents the additional 

mean squared error due to the presence of coherent interference. If severe signal cancellation 
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occurs P will approach P,, the desired signal output power. The overall output signal—to—noise 

ratio for a generalised sidelobe canceller will be given by 

SNR - 
 

— Pn — Pnc' 	
(4.19) 

and the output mean squared error in the presence of coherent interference is 

MSE = P. - 	+ P3. 	 (4.20) 

For a partially adaptive beamformer equations (4.17) and (4.18) are modified as follows 

Psc = V41 R sn T(THR n T)THR nswq , 	 (4.21) 

P = wR T(THR  T) 1  THR nwq . 	 (4.22) 

The signal and noise powers P3  and P will be unchanged. An effective adaptive beamformer 

should have large to maintain reasonable interference cancellation whilst ensuring that P3  

is small to prevent signal cancellation. One natural criterion for designing T0  is therefore to 

minimise the output MSE. Note that P is independent of T, so that minimising the MSE is 

equivalent to maximising P - P3c . For a fuller discussion on this see [35]. Throughout the 

remainder of this chapter coherent interferences are assumed not to be incident at the array. 

With this assumption the total power output from the array may be expressed as 

Pout = w R W q  + wf s Rn w q  

- w"RT (Th'RT) THR nwq. 	 (4.23) 

Similarly the interferer output power is expressed as 

P1 = wq11Rnwq - wqHR n T(THR n T)THR nwq . 	 (4.24) 

It can be seen that the output powers, mean squared error and signal—to—noise ratio depend 

upon R which will generally be unknown. However, in order to illustrate the potential of the 

algorithms studied, R is assumed to be known. This allows direct comparison of the optimal 

performance of different techniques in the suppression of unwanted interferences and noises 

incident at the array. In practice R will need to be estimated on line, typically using a block 

average incorporating a forgetting factor to allow a degree of tracking capability. Chapter 5 

discusses the implications of such sampled covariance matrices. 

4.6 Transformation matrix design 

Now that some performance measures have been identified which give a realistic measure of the 

partially adaptive beamformer performance, we may now examine some techniques for designing 

the partially adaptive beamformer. Several techniques for transformation matrix design have 

been considered. The techniques employed to form the transformation are 
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• Eigenvector / eigenvalue approach 

• Projection method 

• Random method 

. Iterative column selection (sparse approach) 

In the first the eigenvectors corresponding to the largest eigenvalues of C' R, C, are used to 

form the transformation matrix. The eigenvectors of Ca" R n  Cn  are mutually orthogonal and 

will form a basis for the interference subspace. Using the eigenvectors which correspond to the 

largest eigenvalues should therefore give good cancellation performance provided the reduced 

dimension J is greater than or equal to the dimension of the interference subspace. For the case 

when the array is fully adaptive and all the eigenvectors are used the array performance will 

be equivalent to the unmodified array because the transformation will simply be a mapping of 

C'R Cn  onto itself. This solution will lead to a non-sparse transformation matrix though, 

and therefore increased complexity in implementation. 

The non-sparse nature of the transformation matrix found in the eigenvector approach may not 

be acceptable in a practical adaptive array. A transformation matrix which is mostly filled with 

zero elements and a few non-zero elements should reduce the implementational complexity of 

the adaptive processor. Such a transformation matrix will be equivalent to selecting a subset 

of the array elements, or equivalently a selection of the columns of Ca" R C,. A technique for 

selecting a numerically well conditioned set of columns was described by Nisbet et al. [75]. In 

this the J columns with the largest projections upon a set of axis vectors are selected and used 

to form an approximate representation of the signal subspace. This algorithm is summarised 

in section 4.6.2. 

The next method considered uses a transformation matrix with the same sparse structure as 

that in the projection method, but in this case the columns are selected randomly. In some 

situations (dependent on the columns selected) this technique may lead to better performance 

than the projection method. This occurs because the columns selected in the projection method 

are chosen for their numerical properties rather than their ability to model the signal subspace. 

However, they will give a set of weighting coefficients which are numerically better conditioned 

than those that might occur in other approaches. 

The final approach examined is a new algorithm which has been developed during the course 

of this project. Termed an iterative approach, it is based upon iterative minimisation of the 

beamformer output mean square error. This technique retains the sparse nature incorporated 

in the projection method, but because it operates in an iterative manner allows the selection of 

columns which would lead to better performance than the projection techniques. This algorithm 

is described fully in section 4.6.3. 
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4.6.1 Eigenstructure techniques 

Eigenstructure techniques provide a method of designing partially adaptive beamformers which 

will have nearly fully adaptive performance under steady state conditions. The experimental 

analysis carried out in the previous chapter predicts that the required adaptive dimension is 

less than or equal to the rank of the spatially/ temporally correlated portion of the interference 

covariance matrix for any arbitrary LCMV beamformer. To perform this prediction, knowledge 

of the eigenstructure of the correlated portion of the interference covariance matrix will be 

required. In order to avoid having to adaptively estimate this, eigenstructure techniques employ 

the eigenstructure of an "averaged" covariance matrix which spans all interference scenarios of 

interest. The adaptive dimension which is chosen is that which is given by the rank of this 

averaged covariance matrix. 

Assuming that no coherent interference exists, R will decompose into two components, a 

portion due to the signal R,, and a portion due to interference and noise R. Furthermore, 

assuming CR S  = 0, the adaptive weight vector Wa will depend only on 

Wa = (CRn Cn ) 1 C,Rn wq . 

Assuming that the matrix C H  Rn  C,, is symmetric and positive definite it can be factorised as 

= VAVH + 2j, 	 (4.25) 

where A is the diagonal matrix containing the J eigenvalues of the correlated portion 

A = diag[)i A2 

and V is the orthonormal matrix whose jth column is the eigenvector of the correlated portion 

of C,,"R T, C,, associated with the jth eigenvalue. .2  represents the additive noise power. If the 

correlated portion of the interference covariance matrix lies in a J dimensional subspace, then 

correspondingly the adaptive weight vector used to cancel this interference will lie in a subspace 

that is at most J dimensional. Assuming that the eigenstructure of the interference is known, it 

is possible to reduce the adaptive dimensionality of the system from NL - K to J without loss 

in cancellation performance. Most interference scenarios will have eigendecompositions which 

have a relatively small number of large magnitude eigenvalues and a larger number of small 

magnitude eigenvalues. We can make use of this fact by using the eigenvectors corresponding 

to the larger eigenvalues to fill the columns of the matrix T,,. The extent to which T,, repres-

ents the space C,," R,, C,, will depend upon the structure of the eigenvalues. By plotting the 

eigenvalues in order of magnitude some quick conclusions can be drawn. If the eigenstructure 

contains relatively few large eigenvalues and a large number of much smaller eigenvalues then 

T,, should adequately represent the noise subspace. If, conversely there are a large number 

of large magnitude eigenvalues and a small number of much smaller eigenvalues then, for the 

same number of columns, T,, will poorly represent this subspace. If there exists no distinct 
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boundary or "cliff—edge" at which the eigenvalues suddenly fall in magnitude then the number 

of columns required to span the subspace will be difficult to define. 

Putting these comments in a more mathematical sense, a measure for determining how well 

T represents the subspace Cfl"R TI  C can be defined. Numerically determining the rank of a 

matrix is a difficult problem. In [53] an approach which gives a measure of the percentage error 

incurred by representing the space spanned by C"R C ', with J eigenvectors was presented. 

Consider the ratio 

EAi  
NL-K 	

> a, 	 (4.26) 

E Ai 

where Ai are the ordered eigenvalues )t ~: A 2  ~! ... 
~

! 
.ANL-K, of the correlated portion of 

C,~ R n  C. The constant a is chosen to be less than or equal to one. The percentage (1—a)* 100 

gives a measure of the loss incurred by representing Ca" R n  C, with J eigenvectors. Numerically 

computing the eigenstructure will not yield exactly zero eigenvalues, so that choosing a involves 

a compromise. Choosing a to be too large will unnecessarily increase the adaptive dimension of 

the processor, whilst choosing a too small will lead to poor performance. The only comment that 

can really be made is that the value of a chosen will depend upon the particular performance 

required for a particular beamformer. Van Veen [19] and Buckley [16] have both commented 

upon this. 

The transformation matrix T can be thought of as forming eigen—beams. The adaptive pro-

cessor will form J such beams which are then used for interference cancellation. Su and Zhou [9] 

considered an adaptive eigen—beamformer as a solution to clutter suppression. This method 

used a reduced set of Doppler—eigen beams which were updated on—line using an algorithm to 

adaptively estimate the space-time covariance matrix. Eigen beamformers are a specific example 

within a larger class of beamformer, those which are designed by subspace fitting/matching. The 

eigenvectors form a basis for the noise subspace, so that choosing the eigenvectors as columns 

of T will ensure that the beamformer is matched to the particular interference environment. 

These techniques are referred to as noise subspace techniques. 

An alternative data independent subspace matching technique was proposed by Baraboski and 

Steinhardt [76]. A method called localised subspace projection (LSP) was used in which the 

subspace was determined solely by the desired mainbeam location and width and a priori know-

ledge of the array manifold. Therefore the subspace would be independent of any directional 

interferences. Designing the transformation with such a subspace allows enhanced sidelobe con-

trol whilst maintaining nulling performance. However, the performance was found to be very 

sensitive to errors in determining the array manifold. This class of beamformer is generally 

referred to as signal subspace beamformers. 
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The problem with filling the columns of T with eigenvectors is that, in general this gives rise 

to a non-sparse matrix T which will lead to significant complexity, especially in a large phased 

arrays. It would be preferable to have an auxiliary beamformer which either used only a few 

of the actual beams output from C or else combined them in some sparse manner to form a 

reduced number of beams. The sparse approaches described below have these features. 

4.6.2 Projection methods 

One technique for designing a transformation matrix that is sparse in nature was proposed 

in [75]. In this an efficient algorithm for selecting the columns that should be retained in a 

reduced state combiner was proposed. The solution found was chosen to be "close to" the 

minimum-norm solution, and would therefore retain its numerical properties. This technique 

acknowledges that in the vast majority of cases the matrix Ca" R C will be numerically 

rank deficient, i.e. there will be several small eigenvalues. These small eigenvalues will lead to 

instability in the solution. As a result of the matrix inversion employed in forming the solution, 

the adaptive weight vector will be very sensitive to fluctuation in the magnitude of these small 

eigenvalues. Gabriel [73] discussed this problem at length. The solution adopted is to set the 

small eigenvalues to zero and to factorise the matrix as follows 

1  
CR X C 	V 

 [ 

A 0 

j 

VH, 	 (4.27) 

where the columns of V contain the NL - K eigenvectors 

V = [vi v2 ... VNL_K], 

and A contains the J non-zero eigenvalues 

A = diag( A, .\2 ... A.,), 

of the matrix C R n  C. The minimum-norm solution for the generalised sidelobe canceller is 

found by using the pseudo-inverse of CHR  Cn  and substituting in (4.9) 

wTn in  = V 
0 

	

0 1 VHC,Rnwq. 	 (4.28) 

When the matrix CH  Rn  C0  is rank deficient there will be many possible vectors Wa which will 

minimise the output mean square error. The minimum-norm solution WmIfl is unique in that 

it is the only weight vector that will simultaneously (i) minimise the mean square error and 

(ii) have the smallest Euclidian norm possible. A threshold must be chosen which reflects the 

precision of the arithmetic processor being used. Eigenvalues below this threshold are set to 

zero, the remainder are left as before. However, setting eigenvalues to zero is not the same as 

setting elements in the weight vector Wa to zero. In the general case the weight vector Wa will 
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have a full complement of elements. The rank deficiency highlighted earlier will mean that not 

all these elements are required. Using an analogy with the normal set of linear equations 

Az = b, 	 (4.29) 

in which z represents the weight vector Wa, and A the space C" R,, C, we can say that 

the equations are undetermined in that the rank of A is less than the number of coefficients 

in x. Thus there will be many solution vectors x which satisfy (4.29), one of which will be the 

minimum norm solution. The degeneracy which exists in (4.29) is an attractive feature, but 

it does not indicate which of the coefficients in z can be set to zero (discarded). There are 

obviously many possible subsets that could be chosen. The aim of the projection method is to 

find a subset which will be close to the minimum-norm solution. A solution which is close to 

the minimum-norm solution will have the same performance as many other possible solutions, 

but will also retain it's desirable numerical properties. 

The objectives of the projection method are to find a solution which: (i) has a smaller number 

of coefficients than the minimum-norm solution, (ii) achieves the same MSE performance as 

the minimum-norm solution, (iii) has good numerical properties. Let Z denote the set of 

axis vectors, Z = [zi z 2  ... ZNLKI. A subset of axis vectors is selected by projecting each 

axis vector in Z in turn onto the signal subspace. The length of the projection is a measure 

of the proximity of the axis vector to the signal subspace. The axis vectors with the largest 

projections are chosen to form the transformation matrix. This will therefore ensure that the 

subset of coefficients (weights) chosen will have good numerical properties, and additionally 

will lie close to the minimum-norm solution. The algorithm can be summarised as follows - 

Calculate the eigenvalues and eigenvectors of C"RC and hence estimate the rank T. 

The eigenvectors are collected into a matrix V, which is partitioned as 

V=[V. V11 I, 
in which V3  contains the T eigenvectors corresponding to the T largest eigenvalues. 

Each axis vector is projected in turn onto the signal subspace. For the trivial case where 

the axis vectors are given by 

Zj = { Z 1 Zj2 ... 	Z NL I
T 

 Zjj 

where zji = 8, the Kronecker delta, these projections can be defined as a vector d such 

that 

d=diag(V3 V,H). 

The T indices with the largest projections give the indices of the elements (columns) that 

will be retained. The others are discarded. 

The matrix C"R C,, is then reduced in size by removing the rows and columns corres-

ponding to the discarded directions. This leaves a T by T matrix which is used in the 

adaptive processor to form the optimum weight vector. 
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4.6.3 An iterative approach 

The projection technique described above uses a subset of the axis vectors to form the transform-

ation matrix T. This subset of vectors is selected at once, i.e. all the projections are computed 

then those axes with the largest projections are selected, the remainder being discarded. These 

vectors will retain the favourable properties of the minimum—norm solution whilst allowing a 

reduction in the adaptive dimension. Selecting the subset of vectors at once though, is not 

necessarily the best method of designing the transformation. The subset of vectors chosen are 

a selection of unit vectors taken from an identity matrix which will define the fully adaptive 

transformation matrix. Choosing these vectors according to the criteria described above will 

not allow the best MSE or SNR performance for a given partially adaptive dimension. It would 

seem that a better method would be to search for vectors which will minimise the output 

MSE. This is the idea behind iterative techniques. Designing the transformation matrix in this 

manner will not necessarily yield the optimum T, but should provide one with better MSE 

performance than one which is designed in a single stage. 

Analytical minimisation of the mean squared error over all interference scenarios of interest 

presents a formidable problem. Van Veen and others considered this in several papers [27,28,30], 

and suggested employing iterative techniques. A large array will have a transformation mat-

rix which contains a large number of free elements. Global optimisation over each element is 

therefore an unrealistic proposition. The problem in a sparse design of T0 , is that of choosing 

which degrees of freedom should be retained, and which should be discarded. In this section 

we present a sub—optimum iterative approach based upon minimisation of the output MSE of 

the partially adaptive array. Once the desired adaptive dimension is specified the algorithm 

iteratively searches for degrees of freedom which will best minimise the output MSE. A fully 

adaptive beamformer has a solution space of dimension NL - K. The sparse solution found 

means that a reduced number of dimensions, those that have most influence upon the adapta-

tion, will be selected for the optimisation. This results in a transformation matrix that will be 

composed of a selection of unit vectors, the non—zero entries indicating the degrees of freedom 

selected. 

The proposed algorithm is summarised in Table 4.1. We denote the transformation matrix of 

dimension (NL - K) x i with the superfix i as T, and the set of allowed degrees of freedom as 

{ z i}, 1 <j < NL - K. zi is the jth column of an (NL - K) dimensional identity matrix. The 

selected degrees of freedom are collected in {ii } , 1 < j < J. The selection procedure can now 

be summarised as follows. Initially the algorithm selects the first of the set of allowed vectors 

and forms T as a matrix with the single column z 1 . The vector z 1  has a single entry 1 in 

the first position, and (NL - K) - 1 zero elements. The output mean square error is computed 

for this transformation matrix and stored. The column z 1  is now replaced with the second 

vector in the allowed set, namely z 2 , and the output mean square is evaluated once more. This 

procedure is repeated until all the vectors in the allowed set have been tried. The column to 
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0 At the first step, for 1 <j < NL - K, compute 

= Zj 

MSE(Zj) = w Rn  W q  - w"R Cn  T, (T 
H 

R C. T) 
-1 H 

C R W q  

Find MSE' = min{MSE, 1 <j <NL - K} 

then select T.1 = ii. 

El At the k°  step, k> 2, for 1 <j <NL—K, z2 	1,...,ik...1, compute 

= [r - ' : zj] 

MSE = wqRnwq - wRCT (T cRcT) if CR n w q  

Find MSE$k) mm {MSE ( ' )  , 1 <j < NL - A, Z 	1,• . •, ik_11 =  

then select T = [ 	: ik] 

0 The procedure is terminated at the Jth step when 

MSENL_K 
> MSEj  

where 0 < p < 1 is some performance measure. This gives a beamformer of adaptive 
dimension J. 

Table 4.1: The selection algorithm. 

be selected is chosen as the allowed vector which resulted in the smallest output MSE. This 

selected column i 1 , is then deleted from the allowed set and the algorithm commences upon 

a search for additional vectors. At any stage k, the transformation matrix can be partitioned 

into two portions 

= [T 1  : z] , 	 (4.30) 

where T, 1  contains-the previously selected columns and the allowed vector zi is the vector 

for which the output MSE is currently being evaluated. This iterative search for vectors which 

best minimise the output MSE is continued until all the allowed columns zi have been added, 

or until the output MSE reaches an acceptable level. The simulations presented later show that 

often only a small number of the allowed columns are required, and that addition of further 

columns does little to further improve the output MSE performance. 

In the fully adaptive case (J = NL - K), T will be an identity matrix (or some column—wise 

permutation), but in the partially adaptive case (J <NL - K) the columns of T will be those 

degrees of freedom that have most influence upon the output MSE. At each step the algorithm 

searches the remaining DOF for one that results in the greatest reduction in output MSE. 

Figure 4.5 shows graphically how the selection procedure operates. For some step k in the 
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{z1} = 
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Figure 4.5: The selection procedure. 

algorithm, k—i columns of the matrix T will already have been selected. The algorithm begins 

a search for the kth column. This kth column is found by evaluating the MSE after appending 

each of the remaining columns in {z, } in turn to the current transformation matrix. This 

technique is similar to the orthogonal least squares algorithm described by Chen e1 el. [77]. In 

this radial basis function centres are chosen one by one so that each additional centre minimises 

the least squared error. After a centre is chosen the remaining basis vectors (columns) are made 

orthogonal to the chosen vector. This procedure is iterated until the output error is sufficiently 

small. The algorithm described above is simpler because of the sparse requirement upon the 

transformation matrix. By selecting a particular weight (axis vector) this iterative algorithm 

has effectively selected one of the columns of the matrix C R C. To follow the algorithm 

described in [77] the already selected columns would have to be orthogonalised with respect to 

this newly chosen column. The sparse nature of T precludes this operation. Orthogonality 

between the chosen columns is desirable, for several reasons. Firstly, an orthogonal set of 

columns will mean that stochastic gradient algorithms such as the least mean square (LMS) 

or recursive least squares (RLS) will have faster convergence to the optimum weight vector. 

Secondly, orthogonality between the columns should reduce the required adaptive dimension. 

The iterative nature of this algorithm will lead to a "good" set of vectors, but may not yield the 

optimum selection. Back—tracking may need to be added to the algorithm to allow an improved 

set to be chosen. Finding a globally optimum set would require a search of the order (NL - 

= 
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K)!/(J!(NL - K - J)!), whereas the sequential approach requires only EJ I  (NL - K - j + 1) 

steps. 

4.7 Geometrical interpretation 

The eigenvector, projection and iterative design approaches described above can be represen-

ted using a simple geometrical model. Using a simplified model will allow us a far clearer 

understanding of the operation of these algorithms. 

Consider the three dimensional space depicted in Figure 4.6. In this it has been assumed that the 

fully adaptive weight has a dimension of three. This means that a fully adaptive weight vector 

will lie somewhere within this three dimensional space. Now consider the noise/interference 

subspace. Imagine, that after having completed some form of rank analysis upon the input 

data, i.e. an eigendecomposition, that this analysis had suggested that the input data had only 

2 degrees of freedom, that is there would only be two non—zero eigenvalues, the third being 

identically equal to zero. This would mean that the input data would actually exist within 

a two—dimensional subspace (i.e. on a plane) within the three—dimensional space. This two—

dimensional plane within the three—dimensional space is spanned by the eigenvectors computed 

in the eigendecomposition. The two—dimensional subspace in which the input data lies could be 

any general plane within the complex three—dimensional space. Figure 4.6 depicts one example. 

z 

y 

Figure 4.6: Simplified subspace model showing a two—dimensional subspace (the plane) within 
a three—dimensional space. e1 and e2 are the two eigen vectors which span the 
interference subspace. 
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In an eigenstructure design the transformation matrix is formed by choosing the eigenvectors 

associated with the largest eigenvalues of the matrix Ca" R C, namely ei and e2 . Referring 

to the simplified model this transformation matrix can be interpreted as a mapping, one in 

which the two-dimensional subspace (plane) is mapped onto the "nearest" two-dimensional 

plane, in this case the plane indicated by the axes x - y. This holds true within our original 

definition of the plane - the two eigenvectors found will form a basis for this space so that 

the interference subspace is spanned by every possible linear combination of these eigenvectors. 

The mapping can be seen in this case to be an extremely efficient manner of representing 

the signal subspace. However, this is only true because the number of eigenvectors chosen 

was equal to the dimension of the space. If we were to only select one of the eigenvectors 

then the transformation matrix would very poorly represent the interference subspace. The 

subspace is two-dimensional, so that representing it with a single vector will cause drastic loss 

in performance. The simplified subspace model is obviously a particularly simple example. 

In most practical situations the eigenstructure will not be so simplified, but will consist of a 

certain number of near zero eigenvalues. This will mean that a precise definition of the signal 

dimensionality will not exist. If, for example, the third eigenvalue in our example had not 

been zero, but small in magnitude, then the interference subspace would not be a plane but 

would have a small but finite thickness. If this were the case then the remaining axis, the z 

axis would have a small but finite contribution in the representation of this subspace after the 

transformation. 

The projection method described above attempts to select those axes which have the largest 

projections upon the signal subspace. The axes set in Figure. 4.6 are the simple set of unit 

vectors zj. The projections upon the signal subspace are simply computed by evaluating the 

outer products of the eigenvectors and ordering them. In this simple example it is apparent 

that the axes which will have the largest projections are the x and y axes. The projection of 

the z axis upon the signal subspace will be significantly smaller than that of the x and y axes. 

In this example the signal subspace has been deliberately chosen so as to be nearly parallel to 

the x - y plane. This allows us to demonstrate the projection technique. In reality there could 

be many axes which would have similar sized projections, so that there are many choices which 

would lead to similar performance. Imagine the plane in Figure 4.6 actually lay at 450  to the 

x - y plane. In this case both the z and the x axes would have similar magnitude projections. 

Using the projection method would therefore require three degrees of freedom for adequate 

performance. 

Now let us consider the iterative design approach. In this method it was stated that the 

transformation matrix would represent the important or significant dimensions within the space 

CR C. This can again be easily interpreted in the context of our simplified subspace model. 

Assuming the subspace model shown in Figure 4.6 it becomes clear that some dimensions 

will have a greater influence upon the adaptation than others. Following this argument, the 

iterative algorithm attempts to identify these dimensions that best approximate the interference 
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subspace. It can be seen that the dimensions given by the x and y axes will cover the majority 

of the interference subspace, whereas the dimension z will have little influence. These two 

dimensions (axes) happen to be the same as those chosen by the projection method. This 

occurs because of the simplified nature of this example subspace. 

As one might expect, typical signal subspaces will be much more complex than the subspace 

depicted in the simplified model. We can expect to have an eigenstructure which has no cliff—

edges and a large number of non—zero eigenvalues. In these situations the iterative design might 

be expected to perform better because it will select those degrees of freedom that best represent 

the interference subspace in terms of MSE performance. In simple interference environments 

both schemes will probably perform equally, but for the more complex environments, specifically 

those associated with the ground clutter problem encountered in airborne radar, the iterative 

approach offers a realistic hope of reducing the required partially adaptive dimension in the 

adaptive beamformer. 

4.8 Training 

An important part of these algorithms is the training data used in selecting the degrees of 

freedom to be retained. The covariance matrix of interference R should be formed as the 

"average" of a selection of scenarios. This was the approach taken in [19]. In this the trans-

formation matrix was designed over all interferer scenarios of interest.. This can be done as 

follows. Suppose that a particular scenario can be described by the vector 0. This vector 

will contain a group of parameters which define the interference - typically the angular and 

frequency extent, and the relative power levels. The averaged covariance matrix can thus be 

formed as 

= 	

dO. 	 (4.31) 

The space spanned by R,, includes the space spanned by all scenarios R (0) in the region 

0 E [Oa, ObJ. Once this averaged covariance matrix has been formed the transformation can 

be designed as described above. Thus T should operate effectively over all scenarios defined 

by CHI?"C. The region (9 e [Oa, Ob] need not be continuous, but can be the union of 

several distinct regions. In practice the integral in (4.31) will be approximated by a discrete 

summation. 

The choice of design region must reflect the interference scenarios that are liable to be en-

countered. On first inspection it may appear that utilising a large design region will give near 

optimum performance over a large range of scenarios. However, this neglects the influence 

the design region has upon the eigendecomposition of the matrix Ca" i C,. Increasing the 

scope of [t9a , €,] will result in an increase in the rank of C H  .i C,. Therefore, increasing 

the region over which the beamformer is expected to operate will cause a rise in the required 

adaptive dimension. Conversely, reducing the region [Oa, €lb] over which the beamformer is de- 
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signed should lead to a reduction in rank, and thus a reduced adaptive dimension. Buckley [16] 

showed that the approximate rank of a covariance matrix for a broadband source of bandwidth 

B incident at an array from angle U is 

[BT(U)/r + 1 1, 	 (4.32) 

where T(0) represents the total temporal aperture of the array presented to a source at 0 and 

lxi indicates the next integer greater than x. This expression indicates that the rank of an 

interfering source will increase with both bandwidth and/or temporal aperture. Therefore we 

can expect the rank of C"R C to increase with increasing bandwidth or temporal aperture. 

A detailed analysis of the influence of varying design regions upon subsequent performance is 

beyond the present scope of this thesis, and would doubtless form a subjective study anyway. 

4.9 Interference cancellation 

The beamformer detailed in [19] used an eigenstructure technique to match the beamformer 

response over the required scenarios. The eigenstructure technique uses the decomposition 

in (4.25), by filling the columns of T with the most significant eigenvectors. This has the 

advantage that the resulting partially adaptive beamformer should have fully adaptive per-

formance within the region described by 49 E [€, 49&].  However, the required partially ad-

aptive dimension is equal to the number of non—zero eigenvalues, which may be larger than 

that permitted by the adaptive processor. If this is the case the sparse solution will achieve 

better performance than the eigenstructure based approach for the following reasons. Eigen-

structure techniques rely upon the assumption that there are a small number of significant 

eigenvalues and a collection of other much smaller, possibly zero, eigenvalues. In situations 

where this assumption is valid the eigenstructure technique will probably perform as well as 

any other scheme. An obvious example is the case of a single narrowband interferer in white 

noise. There will be only one large eigenvalue corresponding to the interferer, the remaining 

eigenvalues being equal to additive noise power. The interference will therefore be characterised 

by a single eigenvalue and eigenvector. When the interference eigenstructure is more complex, 

for example: when (a) the small eigenvalues are not all of the same magnitude; (b) the rank of 

C H j?" C,, is not easily defined, i.e. there is no "cliff—edge" at which the eigenvalues suddenly 

fall in magnitude; (c) most importantly, the allowable adaptive dimension is smaller than that 

demanded by the eigenstructure then there will exist better methods for forming the reduced—

dimension processor. [32] considered this problem, showing that sequential power minimisation 

techniques can yield improved performance over eigenstructure designs. The sparse scheme 

described above is just one example. Additionally, it was found that cancellation is independ-

ent of eigenvalue size when the white noise power is small, meaning that a design based upon 

eigenvalue size alone may suffer severe loss of performance for particular bearing or frequency 

locations. 

Another important point to note about eigenstructure techniques is that they make the implicit 
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assumption that all the information about the interference exists solely within the covariance 

matrix i. This does not allow the beamformer to take account of any other information which 

may exist about the interference structure, or for that matter the desired signal. Sequential 

algorithms, especially those using performance measures relating to the interference structure, 

make use of this additional information. Specifically, the eigenstructure design uses only the 

2nd—order statistics of the input data, whereas sequential design techniques identify the most 

important dimensions, wherever this information is present. By successively searching the 

degrees of freedom available for one which best minimises the MSE the algorithm will necessarily 

have used any additional structure which exists. 

The beamformer which results from the design procedure described above will be extremely 

simple to implement. Firstly, the upper path is only a summation. This is equivalent to a 

conventional unweighted beamformer. No complex weights or shading functions are required, 

since interference suppression will be performed by the lower adaptive branch of the beam-

former. Secondly, the signal blocking operation and transformation T will consist purely of 

subtraction operations. The resultant signals can be passed straight to the adaptive portion 

of the beamformer. Contrasting this with the structure arising from an eigenstructure design 

the advantages become more clear. An eigenstructure design will give a transformation matrix 

which is full, i.e. a general complex matrix. For this matrix each input to the adaptive portion 

of the beamformer will be formed by combining all of the data samples present in the array. 

Such a computation negates the use of wideband steering delays at each array element - their 

insertion was to allow a sparse structure for C (and subsequently Ta). 

The discussion above provides a qualitative justification for the improved operation of an iter-

ative beamformer. A quantitative description of the interference cancellation can be obtained 

by considering the following simple case which may be easily generalised. The following de-

rivation is based on those variously presented in [16, 27, 30,32]. Assume that the interference 

consists of a single broadband point interferer, uncorrelated with the desired signal, and spa-

tially/temporally uncorrelated white noise. Letting Q (0) denote the covariance matrix for the 

interferer arriving from direction 0 and o 2  be the white noise level implies 

R 	= Q(0) + 0,2 1, 	 (4.33) 

that is the interference covariance matrix consists of two independent terms. Q (0) is expressed 

in terms of the source power spectral density p2  (w), the array response vector d (0, ), and the 

source frequency extent Q as 

Q(0) = 	 (4.34) 

An intuitive understanding of the interference cancellation is obtained by noting that P,,. 

in (4.23) corresponds to w q11 R s w q  + (wq  - C. TnWa ) H  R (w q  - C T,, w,,). Again writing 
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T = C T and substituting (4.34) into (4.23) yields 

P0 	= w' R 3  W q  + T,  1 W q  - Tw 0  1 2  

+ Jp2 (w)Iwd(9,)_ wT H d(O,)I 2 dw. 	 (4.35) 

The output power in this simple case is therefore given by three terms. The first term is 

the signal output power, the second term is the white noise output power, and the last term 

is the interferer output power. The white noise power depends solely on the norm of W q  - 

Tw 0 . The interferer output power is given by the average squared "error" between wd (0, w) 

and wa' THd (0,w) over 0 weighted by the interferer power spectral density. Wrd  (0,w) and 

WaH T" d (9, w) correspond to the responses of the fixed beamformer W q  and the adaptive branch 

TW a , respectively, to a plane wave of frequency w arriving from direction 0. Thus, the interferer 

output power is critically dependent on the degree to which the adaptive branch response 

matches the fixed beamformer response over the interferer frequency extent. 

In [34] (reproduced in appendix A) an expression was derived giving the output power as a 

function of the adaptive weights as 

J 

Poui = wR s w q  + wqHRnwq  - gHg> 	Oi 

1=1 	+ 
(4.36) 

W q11 R,w q  represents the signal power at the output, wq  HRnwq  represents the interference plus 

white noise power at the fixed beamformer output, and the last term represents the reduction in 

output power resulting from the J adaptive weights. The a are the eigenvalues of the matrix 

CH  (9) C. An adaptive cancellation factor (ACF) may be defined as 

J 
ACF = 	a' cos2 4, 	 (4.37) 

which represents the relative cancellation performance of the beamformer. The adaptive can-

cellation is always bounded from above by one since 0,?/(0,? +o- ) < 1 and cos 2  q5 < 1. It 

may seem plausible to select the columns of Tn  corresponding only to the largest eigenvalues 

to minimise the squared error between the fully adaptive weight space and the space spanned 

by T. However this can lead to dramatic performance breakdown. As was stated the problem 

with eigenstructure approaches is numerically determining the effective rank of C" Q (0) C. 

Choosing too few eigenvectors results in poor performance, while choosing too many increases 

the adaptive dimension unnecessarily. If the interferer direction is known, the eigenvalues of 

C" Q (0) C are given by o. Equation (4.36) shows that the cancellation associated with this 

mode depends upon the product c/ (a + o,). When the white noise power is small the 

cancellation is therefore independent of eigenvalue size, thus designing Tn  based in eigenvalue 

size is inappropriate. 

Now let us consider how the above derivations can be interpreted for an iteratively designed 

beamformer. Recall that our objective is to design T to minimise the output interference 
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power over a range of possible scenarios. If we tighten this declaration to minimising the 

average interference power over a range of scenarios, we may express the problem as 

eb 

min Pi (t9) dE, 
T~ j 

ea  

(4.38) 

where Pi (€) is the interference power which will be a function of T. The difficulty associated 

with analytical and numerical optimisation of (4.38) is such that sequential or iterative design 

techniques where T is designed one column at a time, with each new column depending upon 

the previously designed columns, provide the only practical solution. The interferer output 

power will critically dependent upon the degree to which the adaptive branch matches the 

response of the fixed weight branch over the interferer frequency extent. In one approach taken 

by Van Veen [27] each column was unconstrained, that is no restrictions were applied to the 

values of the elements in each column. This sequential technique attempted to match the 

partially adaptive weight vector to the fully adaptive weight vector over a. given design region. 

It was shown that the error associated with this would increase as the size of the design region. 

If the region defined by [e a , €lb]  is overly large then it should be broken up into a set of separate 

subregions, one for each column of T, rather than design each column over the same large 

region. This recommendation arises directly from the discussion relating to (4.35). Increasing 

the size of the design region will cause a rise in adaptive dimension if cancellation performance 

is not be sacrificed. This was alluded to in section 4.8. The relationship between the error and 

region size implies that performance should improve as region size decreases. This characteristic 

was noted in [27]. 

Van Veen's approach, as with eigenstructure beamformers, leads to a full transformation mat-

rix, with the associated computational penalties. The sparse solution found by the algorithm 

proposed above, attempts to retain the sequential nature of Van Veen, whilst satisfying the 

desire for computational efficiency. Columns are selected upon a MSE criterion, so satisfying 

the performance aspect of any partially adaptive design technique, but because of the nature 

of the columns selected, the goal of low computational cost is simultaneously met. 

4.10 Computational expense 

A key feature of the iterative technique is the saving in the number of operations that must be 

performed in computing the adaptive weight vector. Denoting the signal blocking and weight 

selection operations with the NL x J matrix T = C,, 1',,, the adaptive weight vector can be 

written as 

Wa = (TRT) THRxWq. 	 (4.39) 

In an eigenstructure beamformer T is a full complex matrix, whereas for the sparse beamformer 

it will contain at most 2J non—zero elements. For both beamformers, computing the weight 

vector consists of the following operations: evaluating the term inside the inverse, the inverse 
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itself, then the subsequent cross—correlation with the data in the upper path. The total number 

of operations for each beamformer are given by 

Eigenstructure 	
Mult. 	J3  + 2J (NL)2  + 2J2  (NL) + J (NL), 

(4.40) 
Add. 	J3  + 2J (NL)2  + 2J2  (NL) + J (NL). J 

Sparse 	
Mult. 	J3  + J (NL)2  + J (NL), 	

} 	

(4.41) 
Add. 	J3  + J (NL)2  + 3J (NL) + V.  

These expression give the number of complex multiplication and addition/subtraction opera-

tions required, and allow an estimate of the relative expense of the differing approaches. The 

actual number of operations required will be computed later. 

4.11 Simulation results 

Having established the techniques which are available to us, we may now examine their relative 

performance. The results presented in this section relate to the two phases of beamformer 

operation, namely training and the subsequent operation. The performance of the new and 

existing algorithms is examined for the suppression of ground clutter received at an airborne 

phased array radar. The following computer simulations show the performance of the iterative 

algorithm as compared to existing design techniques. The clutter - returns at a variety of GSC 

beamformers were computed. The results will consider the effects of both beamformer dimension 

and the differing radar parameters. Three radar scenarios are considered, for convenience these 

have been named scenarios 1 through to 3. Table 4.2 summarises the different radar parameters. 

All other parameters are as those in Table 3.1. Appendix D contains additional simulation 

results for the design techniques. 

Scenario 1 	Scenario 2 	Scenario 3 

range 2000m 1300m 2000m 

depression angle q 30 0  50-3 0  30 0  

look direction 9 18 0  18 0 
 90 0  

target frequency band 
f = —761Hz 

—1521Hz 

fu = —761Hz 

I 	f, = —1521Hz 

ftL 	1711.9Hz 

fj = 951Hz 

Table 4.2: Parameters for three training scenarios. 

4.11.1 Training phase 

The averaged transformation matrix used in the training phase was a covariance matrix that 

would result from an omnidirectional transmit pattern, i.e. one in which all Doppler frequencies 
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along the diagonal of the Doppler azimuth plane are illuminated equally. This is in fact the 

average of all covariance matrices R (qS) for look directions U within a particular range gate q5 o. 

This was the scenario employed by Klemm [1,5-7]. Figure 4.7 shows the ordered eigenspectrum 

for the first radar scenario. The step—like nature of the eigenspectra would suggest that the 

rank of the correlated portion of the interference covariance matrix is well defined. In this case 

the rank would appear to be approximately 33. For partially adaptive dimensions less than this 

number we might expect the iterative algorithm to have better performance. Another point 

to note is that there are a large number of small eigenvalues. This would suggest that our 

estimation of the rank may be inaccurate. We can expect the output MSE performance to 

mirror this. 

0 
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Figure 4.7: Eigenspectra for correlated portion of C"R Cr, - Scenario 1. 

Figure 4.8 compares the output MSE of the new iterative algorithm with that of the other 

techniques with the scenario 1 parameters. The projection and eigenvector approaches perform 

similarly, both exhibit a distinct step at 26 degrees of freedom. Subsequently both curves roll—

off in almost linear fashion as additional degrees of freedom are added. At no point does either 

curve bottom out, meaning that no precise definition of the required adaptive dimension exists. 

The random design approach appears to have picked a particularly bad set of columns. The 

output MSE performance is by far the worst of the four techniques. The iterative algorithm 

performs significantly better. As can be seen, for low partially adaptive dimensions, the new 

algorithm has a lower output MSE than that of the other techniques. What is also interesting 

is that the new algorithm tends to the fully adaptive MSE much more quickly than the other 

approaches. In fact, for an output MSE of -35.5dB only 43 DOF are required in the sparse 

design, as opposed to 78 in the eigenvector case, representing an almost two—fold decrease in 
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Figure 4.8: Output mean squared error for new iterative design and existing techniques during 
training phase - Scenario 1. 
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Figure 4.9: Output mean squared error for new iterative design and existing techniques during 
training phase - Scenario 2. 

Figures 4.9 and 4.10 show the training curves of the same beamformer under the remaining 
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Figure 4.10: Output mean squared error for new iterative design and existing techniques dur-
ing training phase - Scenario 3. 

scenarios. As can be seen, the performance is similar for all three cases. The iterative design 

out—performs the other techniques, whilst the relative performance of the other techniques 

varies but never exceeds the performance of the new algorithm. The smooth nature of the 

MSE curves shown also suggests that the set chosen, if not the best, is certainly a good set. 

The output MSE may have a more stepped nature under other interference environments. It is 

interesting to note that the randomly designed beamformer of scenario 2 performs better than 

that designed using the projection approach. 

Table 4.3 shows the cost of the two techniques in terms of multiplication and addition/subtraction 

operations. Three beamformer dimensions are compared; scenario 1 described above and two 

smaller cases. K is the number of constraints. For each example, the required partially ad-

aptive dimension was found for the eigenstructure (Jo ) and sparse (J5 ) beamformers, as for 

Figure 4.8, then the operational costs were computed according to (4.40) and (4.41). The op-

erational savings of the iterative approach are dramatic, typically of the order of 80% in the 

number of multiplications. Similar results can be seen in Appendix D. 

4.11.2 Operational example 

The next set of results consider the beamformer output signal—to—noise ratio (SNR) once the 

transformation matrix has been designed as outlined above. Two situations are considered 

- a narrowband desired signal and a broadband desired signal. In both cases the desired 
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Order of 

beamformer 

Eigenstructiire Sparse Saving 

NL K Je Multiplies 

Additions/ 

Subtract. J3  Multiplies 

Additions! 

Subtract. Multiplies 

Additions/ 

Subtract. 

16 4 11 11011 11011 6 1848 3612 83 67 

32 4 22 87384 87384 10 11560 22540 86 74 

128 8 78 4597944 4597944 43 794003 1506892 82 67 

Table 4.3: Operational expense of eigenstructure and iterative beamformers. 

signal is identified by time delay steering of the elemental outputs and subsequent filtering 

according to the response vector f. Suppression of clutter returns is now achieved through two 

processes. Non—look direction interference is cancelled by the adaptive portion as would be 

the case without broadband steering delays. Look direction interference (mainlobe clutter) is 

suppressed by designing the response vector f as a bandpass filter centred on the target signal 

frequency. In practice, where the target Doppler is unknown, there will be a selection of upper 

branches, one matched to each of the expected target Doppler frequencies. Both target signals 

are assumed to arrive from the look direction (90, q5o) _ (30 0 , 18°). Mainlobe clutter has Doppler 

Id = fmax cos 00  where fmax = (2 V/A) cos qo  is the maximum Doppler of clutter returns. The 

narrowband signal has centre frequency f = 06fma  and the broadband target has extent 

[0.8fmax , —0.4fm0 ]. In both cases an equi—ripple bandpass filter with -30dB sidelobe level 

was used to isolate the desired signal. The elements of the response vector f are explicitly 

f = [0.150 + jO.000, - 0.006 + jO.100, - 0.118 - jO.014, 0.024 - jO.127, 

0.126 + jO.032, - 0.036 + jO.114, - 0.093 - jO.036, 0.062 - 0136]T 

Figures 4.11 and 4.12 show the output SNR as degrees of freedom are successively added 

to the beamformer. The iteratively designed beamformer performs slightly better than the 

other designs, although are within 3dB of fully adaptive performance at a partially adaptive 

dimension of approximately 40. It should be remembered that the eigenstructure based design 

does this at a considerably greater implemental expense. 

4.12 Limitations of the approach 

The algorithm presented here operates by successively increasing the dimension of the adaptive 

weight vector w0 . This increase in dimension arises from the addition of a column to the matrix 

T, the added column being selected as described in Table 4.1. For a given dimension k (i.e. 

the kth iteration of the algorithm) the algorithm searches for the best vector to place in column 

k of T. A question that must be answered is, is it possible that the algorithm could select a 

column which moves the MSE toward a local minima, rather than toward a global minima? It 

is important to note that when the algorithm selects the next column, this new column will be 

optimum in terms of the previously selected columns. For example, suppose that 9 columns had 
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Figure 4.11: Output signal-to-noise ratio for new iterative design and existing approaches 
with a narrowband target signal. 
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Figure 4.12: Output signal-to-noise ratio for new iterative design and existing approaches 
with a broadband target signal. 
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been selected, the 10th column is that which results in the greatest decrease in output MSE, so 

that this column will be the optimum choice (in a MSE sense) given the allowed set from which 

to choose, and the 9 previously selected columns. However, it may occur that these 10 columns 

are not the optimum 10 columns, and that an alternative 10 columns may result in improved 

MSE performance. This situation can occur because the algorithm does not look further ahead 

than a single column; at any instance it simply searches for the best column to add. 

Incorporating an element of back-tracking has been proposed as a solution to this limitation 

of forward search techniques. In their paper Cling et al [78] contrasted the performance of a 

forward search algorithm with and without back-tracking. A simple example will indicate the 

advantage gained by back-tracking. Consider the linear system 

Y = Xh + e, 	 (4.42) 

where 

	

13 0 3 	 131 

1 

	

l 	 11 
X 	

00 = I 	 I ; y = 	I 	, 	 (4.43) 

	

o 3 3 	 3 

	

0 0.1 	 [oj 

and e is the error vector of approximating y with Xh. The elements of h represent the columns 

of X that have been selected. Applying the algorithm described earlier to the least squares 

problem 

minjy - Xh12, 	 (4.44) 

will result in h being composed entirely of is or Os. Suppose, initially, that only one column of 

X were to be selected, then the algorithm would select the third column of X, i.e. [3 0.13 01]T 

Now consider adding another column, the algorithm will select one of the first or second columns 

to add to the third. Clearly this selection is poorer than having chosen both the first and second 

columns. This demonstrates that a sub-optimal subset of the columns could be selected without 

the addition of back-tracking. Back-tracking is implemented by measuring the drop in output 

MSE as the number of columns is increased. By studying how each column contributes to the 

output MSE, it is possible to determine whether this column should be added earlier. The idea 

of back-tracking is to introduce columns that provide better performance gain before those that 

provide a lesser performance gain. It can be seen that for back-tracking to provide a noticeable 

improvement, large drops in the MSE curves must occur. The simulations presented here have 

shown that, for the ground clutter problem considered, the MSE curves exhibit a smooth nature. 

This indicates that the set chosen, although maybe not the optimum, are certainly a good set of 

columns, and that back-tracking will not provide a significant improvement. The only method 

of finding the optimum set is to use a brute-force search. This is feasible for the example above, 

but for a practical array finding the best ' J columns out of a set of NL - K requires the MSE 
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(equation (4.14)) to be evaluated 

(NL - K)! 
J!(NL - K - J)! 

(4.45) 

times. This is clearly impractical, even for small arrays. A sequentially designed beamformer 

will require only 

J 
(NL - K - j) = NL —K - (2J + (NL - K - J - 1)) 	 (4.46) 

j=1 

independent evaluations of the MSE. Applying a brute-force search to the array considered in 

Figure 4.8 for which NL = 128, K = 8, J3  = 43, requires the MSE to be computed 7.627 x 10 32  

times, whereas the sequential design described requires only 4257 seperate evaluations! Forward 

selection algorithms will not necessarily provide the optimum selection of columns, but do 

represent a fair trade-off between performance and ease of calculation. Table 4.4 compares the 

beamformers highlighted earlier. 

Order of 

beamformer 

Brute Force Sequential 

NL K J3  

MSE 

computations 

MSE 

computations 

16 4 6 924 57 

32 4 10 1.312 x 10 235 

128 8 1 	43 1 	7.627 x 10 32  4257 

Table 4.4: Cost of search techniques. 

4.13 A reduced channel simplification 

At this point it seems logical to examine the location of the weights which are chosen by the 

variety of methods. This will provide us with an insight into the distribution of weights and also 

where possible simplifications may be made. Figures 4.13-4.15 show the locations of weights 

chosen by the various algorithms described in the previous section. The figures are all for the 

case of an adaptive dimension of 48. Thus in each picture there are 48 points indicating the 

weights chosen. The GSC structure with N = 16 and L = 8 used previously is assumed, giving 

15 tapped-delay-lines (channels) with 8 elemental weights in each channel. The reasons for 

choosing 48 are two-fold. Firstly, at this adaptive dimension the iterative beamformer has 

attained fully adaptive performance and secondly, 48 is a integer multiple of 8. 

Studying the pictures of the weight distributions it becomes apparent that several channels 

have smaller numbers of weights than others. Take Figure 4.13 as an example. Channels 3, 5, 

11, 13, 15 have one or less weights. Since our original aim was to produce a low-complexity 

beamformer, we might try to remove these channels (or any other whole channels) entirely from 
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Figure 4.13: Actual elements chosen during training phase - iterative approach. 
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Figure 4.14: Actual elements chosen during training phase - projection method. 
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Figure 4.15: Actual elements chosen during training phase - random method. 

the optimisation. 

As an initial solution we can modify the iterative algorithm so that it adds a whole channel 

to the processor at each iteration. For the distributions shown in Figures 4.13-4.15, this will 

be represented by adding sets of 8 weights to the processor. Figure 4.16 depicts the channels 

chosen by this modified iterative algorithm, for an adaptive dimension of 56 (equivalent to 7 

channels). The MSE performance of this modified algorithm is shown in Figure 4.17. 

Now consider an improvement to this whole channel approach. Suppose that we had deleted 

channels 3, 5, 11, 13 and 15, and then allowed the iterative algorithm to run on this reduced 

set of channels. These deleted channels are those from which the original iterative algorithm 

selected one or less weights. These deletions mean that at each iteration the weights that may be 

selected cannot be chosen from any of these deleted channels. Curve simulation 1 in Figure 4.17 

contrasts the performance of an iterative beamformer using this reduced channel approach with 

that of a beamformer which uses all of the available channels. The first thing to note is that both 

beamformers have remarkably similar performance, the reduced channel beamformer performs 

only slightly worse. This slight degradation in performance is to be expected as obviously we 

have limited the number of columns which are available to the selection algorithm. That said, 

the degradation is small. This highlights the manner in which the benefits of using an iterative 

power minimisation technique are accrued. At any particular step in the selection process the 

improvement gained by choosing the optimum column as opposed to any other will be small. 

It is only when these small gains are compounded over a series of iterations that a significant 

benefit is observed. Thus, reducing the allowed set of channels from which we may choose 
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Figure 4.16: Actual elements chosen during training phase - whole channels approach. 

degrees of freedom does not necessarily lead to a large loss in cancellation performance. It is 

interesting to observe that the reduced column technique performs marginally better around 40 

degrees of freedom. This again demonstrates the operation of this simple iterative algorithm. 

At each step only the immediately next column to be added is considered. At no point is any 

consideration given to the implications this has for further iterations. 

Now consider making further deletions. We now delete every channel with two or less weights. 

In addition to those deleted above, we remove channels 2, 8 and 12 from the optimisation. 

This will leave a fully adaptive dimension of 120 - 8 x 8 = 56. The MSE performance of this 

beamformer is shown in Figure 4.17, curve simulation 2. Figure 4.18 shows the elements which 

are chosen by the reduced channel processor of simulation 2 for an adaptive dimension of 56. 

Notably the channels 2, 3, 5, 8, 11, 12, 13, and 15 contain no weights, as was required by the 

design specification. 

At this point we can truly see the advantage of using an iterative algorithm. Consider the two 

beamformer structures shown in Figures 4.16 and 4.18. Both these beamformers have identical 

adaptive dimension and implemental complexity, yet the difference in output MSE can be seen 

in Figure 4.17. The whole channel beamformer has an output MSE of -34.64dB, whilst the 

beamformer in simulation 2 has an output MSE of -35.81dB. When the dynamic range of the 

curves is 8dB, a gain of 1dB is significant. 
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Figure 4.17: Relative performance of an iteratively designed beamformer with all channels, 
and a reduced set of channels included in the design. 
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4.14 Conclusions 

Within this chapter various techniques for designing partially adaptive generalised sidelobe 

cancellers have been presented. The relative performance of each of these techniques has been 

established heuristically and by computer simulation. From these analyses it has been shown 

that iterative design techniques, particularly for complex interference environments, do offer 

significant performance advantages. 

To justify the above conclusions it is necessary to compare the performances of each of the 

beamformer design techniques described. Considering firstly the eigenstructure approach, it 

was clear that for this beamformer to operate effectively, knowledge of the likely interference 

eigenstructure was required, or that it could be estimated accurately. If this is so, then good 

cancellation performance will be obtained. However, the complex eigenstructure typical of most 

interference scenarios will mean that this approach can require a prohibitively large partially 

adaptive dimension. Additionally, the complex nature of the transformation matrix found will 

lead to a significant computational load. 

The projection technique outlined in section 4.6.2 used a low rank estimate of the interfer-

ence subspace to form a solution which was "near" to the minimum—norm solution. This 

solution maintains the desirable numerical properties of the minimum—norm solution, but also 

reduces the number of adaptive weights that must be computed. In this approach, an eigen-

decomposition is performed from which an estimate of the interference subspace is constructed. 

Subsequently, coefficients (weights) are selected according to the projections upon the signal 

subspace of their corresponding axis vectors. The axis subset with the largest projections are 

chosen, ensuring that the weight vector will lie near to the minimum—norm solution. The low 

rank approximation of the signal subspace will, as before, require that a good estimate of the 

interference eigenstructure exists. A poor choice of threshold may radically alter the solution 

found. 

In order to obviate the problems of the eigenstructure design, but to also further improve 

performance over that of the projection method, an iterative approach was presented. In 

this adaptive weights were selected in an iterative manner. This technique was demonstrated, 

through simulation, to attain a significant performance improvement over the conventional 

techniques. The operation of this algorithm, when viewed pictorially appears similar to that of 

the projection method. By relaxing the constraint upon finding a solution which is near to the 

minimum—norm solution, it is possible to achieve still further reductions in required adaptive 

dimension. 

Comparing the MSE and SNR performance when applying adaptive algorithms, it can be 

seen that a substantial improvement is achieved. Furthermore, although it may appear that 

techniques such as the eigenstructure approach might better match the interference subspace, in 

fact it is the simpler structures designed to optimise certain performance measures that attains 
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the best performance. 
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Chapter 5 

Convergence Performance 

5.1 Introduction 

The weights derived for the beamformers considered in this thesis are a function of the data 

covariance matrix R. Thus far the true covariance has been assumed known, however in prac-

tice the data covariance is unknown and will have to be estimated from the available data. 

The purpose of an adaptive algorithm is to find a set of optimum weights using the tap data 

z(k) rather than the idealised covariance R. Since adaptive algorithms determine the weights 

using the received data, the weights automatically adjust to changes in the environment in 

order to maintain interference suppression. This chapter considers the transient response of lin-

early constrained beamformers, and examines the convergence properties of various beamformer 

parameters. 

In many applications the practical usefulness of an adaptive array is limited by it's convergence 

rate. The adaptively controlled weights must change at a rate equal to or greater than that of 

the external field. In a radar application this is further complicated by scanning of the array 

antenna. The convergence rate problem is greatest in systems with a large number of adaptive 

degrees of freedom. Adaptive algorithms which either directly or indirectly estimate the data 

covariance matrix are of particular interest to the radar community due to their convergence 

properties. Common gradient based schemes such a least mean squares have limited applicabil-

ity because their convergence characteristics are strongly dependent upon the eigenvalue spread 

of the covariance matrix. A common estimate of R is the sample covariance matrix. This is 

formed by averaging the outer product of M data vectors, i.e. 

M 
i x  = 
	 (5.1) 

k=1 

The sample covariance matrix represents the maximum likelihood estimate of R, given no 

prior structural constraints [79], and can be used to obtain the maximum likelihood estimate 

of signals incident upon the array [80]. The adaptive weight vector is estimated by substituting 

the estimated covariance matrix in place of the true covariance in the expressions given earlier 

for the optimum weight vectors. 

When the adaptive weights are computed via the sample covariance matrix the adapted response 

of the array can experience very "noisy" sidelobe fluctuations and main beam perturbations 
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even though the constraints are chosen to ensure a low sidelobe quiescent pattern. The random 

sidelobe behaviour occurs because finite sampling causes spurious cross-correlations in the co-

variance matrix, which causes the background noise component of the covariance matrix used 

in the adaptive weight determination to differ significantly from the asymptotic value. This 

was demonstrated in simulation results presented in [2,73,81]. Large sidelobe levels represent 

a considerable problem in radar applications, since processing is typical performed in a non—

concurrent manner, i.e. the weights are computed from a different set of data from that to 

which they are applied. High sidelobes can render the adaptive array very vulnerable to side-

lobe clutter, sudden changes in the interference environment, or pulsed interference that can 

benefit from post-processing gain. Therefore, an analysis of the transient sidelobe behaviour of 

sidelobe cancelling systems is of primary importance. 

This chapter will derive expressions for the mean square error and transient sidelobe perform-

ance of a generalised sidelobe canceller beamformer, with an arbitrary number of adaptive 

degrees of freedom. Due to the nature of this beamforming structure, mathematical derivations 

are often quite complex so that theorems relating to multivariate statistical analysis will need to 

be used. A selection of these are given in appendix B. The key results presented are expressions 

for the concurrent and non—concurrent mean square error ((5.21) and (5.33)), and the transient 

sidelobe response ((5.39) and (5.40)). It is believed that the results relating to the transient 

sidelobe performance are completely new. 

5.2 Transient weight vector 

Adopting the notation and assumptions used commonly in the literature, let the columns of 

the N x M data matrix X represent M independently identically distributed (i.i.d.) zero—mean 

complex normally distributed random data vectors impinging at a sensor array which processes 

a total of N samples. Unless otherwise stated N represents the total number of spatial and 

temporal samples combined in the array. Assuming the generalised sidelobe canceller realisation 

of the LCMV beamformer, the beamformer weights are given by 

= Wq - T(THXXHT)'THXXH Wq , 	 (5.2) 

where T denotes the N x J generalised signal blocking matrix, and J represents the number 

of adaptive degrees of freedom available to the beamformer. Let the input data matrix X = 

X3 +X, where X8  and X are mutually uncorrelated signal and noise components, respectively. 

Assume the constraints are chosen so that the quiescent beamformer passes the signal without 

distortion Xw q  = s, where s denotes the M samples of the desired signal. Also, note that 

the signal blocking action of T implies that THX = THX. The estimated adaptive weight 

vector Wa is given by 

Via = ( THXXT)TAtXXIwq. 	 (5.3) 
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This estimate of the adaptive weight vector can be decomposed into components arising due to 

interference alone, and due to the presence of the desired signal, as follows 

Via 	W an  + Was , 	 (5.4) 

where 

Than = (T H Xn XnH T)T H Xn XnH W q)  

Thai 	(THXXT)THXXjIwq, 

in which the fact that THX S  = 0 has been used. It is easy to show that E{Th an } = Vi a  and 

E{Th as } = 0. This is done by defining 

= 	z] - L THX n
]' 

Z 	

[z11 

- IwcJIxn 

2  
(5.5) 

and noting that the Than  may be written in terms of conditional expectations as (theorem B.3) 

W an  = E{(Z2 Z") 1 Z2E{Zf'IZ2}}. 	 (5.6) 

Note that the columns of Z are i.i.d. zero mean multinormal complex random vectors so that 

much of the multinormal distribution theory may be applied. Using theorem B.2 [82, Theorem 

1.2.11], the conditional expectation E {Zf'1Z 2 } equals 

E{Zf'1Z2} = Z(THR n T)'THR nwq , 	 ( 5.7) 

where R = M 1 E {XX,fl is the true noise covariance matrix. Substituting in (5.6) we see 

that 

E{Than} = 	 = Via, 
	 (5.8) 

which is the desired result. Now considering Th 3 , note that E {Th ai } may be expressed as 

E{Th 05 } = E{(Z 2 Z'f) 1 Z2s}, 	 (5.9) 

which can be expressed in terms of conditional expectations as 

E{Th as} = E{(Z 2 Z2") 1 Z2E{sIZ2}}. 	 (5.10) 

Since it is assumed that the signal blocking path is orthogonal to the constraints which passed 

the desired s then E {sIZ2} = 0, and hence E {Th 05 } = 0. Thus E {Th a } = Via, and we can 

conclude that the adaptive weights computed from the sample covariance matrix yield unbiased 

estimates of the steady—state weights. We conclude this section by defining the error in the 

adaptive weight vector as 

LiWa = Th0 - Via, 
	 (5.11) 
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and observe that Lw 0  is a zero mean vector, and will consist of components arising from both 

the interference and the desired signal. 

5.3 Transient mean square error 

In an interesting recent correspondence by Van Veen [34], the expected output power and 

mean square error of the linearly constrained minimum variance beamformer were derived for 

an arbitrary number of adaptive degrees of freedom. The analysis in [34], which extended 

previous work of [4, 79, 83,84], was based upon the use of the sample covariance matrix as a 

covariance estimate and where the same input data was used to compute both the adaptive 

weights and the beamformer output. This mode of operation, which is referred to as block—

mode or concurrent processing, suffers from the disadvantage that the mean output power is less 

than the corresponding "infinite—time" beamformer (i.e. one which employs the true covariance 

matrix rather than a finite—time estimate). The reduction in output power occurs because a 

portion of the desired signal is cancelled by the adaptive weights. This signal cancellation effect 

can be traced to the correlation which exists between the adaptive beamformer weights and 

the data to which they are applied. In a more recent communication [85], this cancellation 

phenomenon was examined more closely and it was found that the output signal component 

under finite—time conditions was, in fact, a biased version of the input signal, scaled by a factor 

less than or equal to one. 

A disadvantage of concurrent processing is that the output data is available only after a delay 

corresponding to the data block length. An alternative implementation that relates to recursive 

processing schemes is to apply weights computed using previous data blocks to the current data. 

This mode of operation is commonly referred to as non-concurrent processing. In this mode 

the adaptive weights are uncorrelated from the input data, and hence signal cancellation is 

avoided. [85] considered this mode of beamformer operation, and showed interestingly that the 

concurrent beamformer could be made to perform identically to the non—concurrent beamformer 

if the concurrent output was corrected for the signal estimation bias. However, the earlier 

comments relating to high sidelobes and vulnerability to changing interference conditions apply 

particularly in the non—concurrent mode of operation. Because the weights are applied to data 

which was not used in their computation, the beamformer will be particularly susceptible to 

changing interference conditions. 

5.3.1 Concurrent operation 

Consider first the concurrent mode of beamformer operation. In this mode the adaptive weights 

are computed from the same block of data to that which they are applied. The sample covariance 

estimate will be given by M_ 1 XX" , and the beamformer output is given by the M x 1 vector 
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y = XHW. The sample mean square error ê is defined as 

- 	1 
e =- H1 2  

- 1 	- w HX 2  
- 

1 HXXH W. (5.12) 

Substituting (5.2) into (5.12) and simplifying, we obtain expressions for the mean square error 

due to the noise component alone en , and the additional mean square error due to the presence 

of the desired signal 6 3  as 

1 
e = y {wX n Xn"w q  - WXnXnHT(THXnX,T THXnXnHWq}, (5.13) 

1 

	

e = 	{ S HXHT (THXX ,  T)  THX 8 1. 	 (5.14) 

At this point we make use of some basic multivariate statistical theory. Appendix B summarises 

most of the important theorems. The columns of X and X, are assumed to be independent 

and identically distributed drawn from NN (0, Re ), and NN (0, Rn) . Under these assumptions 

XXH and Xn Xn" are complex Wishart distributed ([79], and definition B.2), with distributions 

denoted by WN (M, R) and WN (M, R n ). Consider e. Define the J + 1 by J + 1 partitioned 

matrices 

A = [w g  T]HR n [ wq  T] 

A = [w g  T] HXnX[ wq  T] 

= 
 [

wqHXXnHwq wxX,T 1 	
(5.15) 

u' n çu'wq  T H Xn XnH T] 

Applying the identity for the inverse of a partitioned matrix, the first element in the first row 

of A 1  is given by 

{ wqhi XnXwq  - wfXnXT(T'1XnXr'T)1T'XnXWq](5.16) 

Studying (5.16) and (5.12), we see that the sample MSE may be written as 

	

in = 	j 
 [[Ii—l] 

	

= 	 (5.17) 

where u 1  = [ 1 0 0 ... 0]". Application of theorem B.6 tells us that A is complex Wishart 

distributed, with distribution denoted by A WNL (J + 1, A). Now applying theorem B.8, we 

see that Men is distributed as w1 (M - J, [ tz f1 A_ 1 ui]). Note, however, that [uj"A1u1] 
1 

is the steady state mean square error, i.e. the MSE with an infinite number of snapshots (see 

equation (4.14)). Now, Me n  is one half a chi squared random variable with (M - J) complex 

degrees of freedom, i.e. it has 2(M - J) real degrees of freedom. Thus, the mean value of in  is 
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given by [34] 

M—J 
E{e} = 	e. 

M 
(5.18) 

The ratio (M - J)/M determines the adaptive convergence of the mean when viewed as a 

function of the number of snapshots M. Equation (5.18) shows that the expected value of the 

excess MSE will rise towards the steady—state MSE with increasing M and will be within 3dB 

of the optimum after M = 2J data vectors. 

Now, consider the distribution of ê. The conditional distribution of ë given s is obtained by 

defining THX = V as follows 

1 

 

~ SHVH (VVH) - 1  V} 

= 
- 

—p, (5.19) 

where o is a real variable which defines the magnitude of the desired signal, i.e.. s = as0 , where 

0  so  = 1. By forming a Cholesky factorisation of VVH,  Van Veen [34] showed that p is a beta 

distributed random variable, independent of s, with mean J. Thus the mean value of 63  is 

E{ê 5 } = M 1 E{a 2 }E{p} 

= 
	 (5.20) 

where o-,2  is the variance or power of the desired signal. Equation (5.20) shows that the average 

MSE associated with the signal presence is directly proportional to the signal power and the 

number of adaptive degrees of freedom, and inversely proportional to the number of data vectors. 

Thus, it can be seen that the infinite—time MSE associated with the desired signal will be zero, 

and that the presence of a strong desired signal can be expected to result in large transient 

MSE. Recalling ê = ê 3  +ë3 , the total sample MSE for the concurrent beamformer configuration 

is given by 

, ) 

MSE C  = 	 + ()3 
	 (5.21) 

where P and P3  are the steady—state interference and signal powers, respectively, and the 

subscript c indicates that the beamformer operates in a concurrent manner. As the number 

of data vectors increases equation (5.21) indicates that the sample MSE will tend towards the 

steady—state MSE defined by equation (4.14). 

Figures 5.1 and 5.2 depict the MSE due to the noise component and the excess MSE arising 

due to the presence of a strong desired signal. A narrowband GSC beamformer with a fully 

adaptive dimension of 14 was employed. The quiescent response was designed to match a —30dB 

Chebychev pattern using the technique outlined in [2]. A single narrowband interferer and 

uncorrelated noise were included in the simulation. The desired signal and the interferer were 

statistically independent, and the output MSE was averaged over 100 Monte Carlo simulations 
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Figure 5.1: Output sample mean square error due to noise and interference alone versus data 
matrix size - concurrent processing. Each point was computed from 100 Monte 
Carlo simulations. The curves indicate the theoretical values. 
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Figure 5.2: Output sample mean square error due to presence of a 20dB desired signal versus 
data matrix size - concurrent processing. Each point was computed from 100 
Monte Carlo simulations. The curves indicate the theoretical values. 
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for the three adaptive dimensions J = 2, 8 and 14. Theoretical curves have been derived 

using (5.18) and (5.20), and as can be seen the simulation results follow the theoretical curves 

closely. 

5.3.2 Non—concurrent operation 

In the non—concurrent LCMV beamformer [85], weights computed from a previous block of data 

are applied to the current input vector. Mathematically this differs from concurrent processors 

in that now the input data may be assumed uncorrelated from the adaptive weights. Letting 

u = u3  + u denote the current input vector signal and noise components respectively, the 

corresponding beamformer output sample is v = uHw, where w is given by (5.2). Note that 

u is assumed identically distributed, but uncorrelated with the columns of X, and hence the 

weight vector w. Having made this assumption, both X and u have the same covariance 

matrix, i.e. 

= E{uu'1} = M.. 1 E{XXH} . 	 (5.22) 

Now, since there is no coupling of the current input signal through the adaptive weights, the 

mean (or infinite—time) adaptive weight vector may be written as wo = E { w}. The mean 

square error of the non—concurrent beamformer can be derived by writing MSE = E {Iv - 

and expanding as 

MSE = E{1v 1 2 } + E{1s12} - 2R e {E{ s* v }} , 	 (5.23) 

where Re {x} denotes the real part of x and superscript * indicates complex conjugate. Applying 

theorems B.3 and B.4, we can write 

E{s*v} = E{E{s'vjn 8 }} 

E{s*E{vIu s }} 

= E{1s12} = Pi . 	 ( 5.24) 

In [85] it was stated that E {1v12} could be written as 

E {1v12} = w '1 R 3,w0 + tr(Rr), 	 (5.25) 

where F is the covariance matrix associated with w, i.e. coy {w}, and ir () denote the matrix 

trace operation. Using these manipulations, the non—concurrent mean square error can be 

written as 

MSE = WOHIIXWO + tr(Rr) - Ps . 	 (5.26) 

Now, recalling that T is orthogonal to tug , and that w is deterministic, then r is given by 

= TYTH, 	 (5.27) 
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where T = coy {(THXXHT) _ 1  T"XX"w q } = coY {(z2z2") -' z2 zf'1. Now applying 

theorem B.3, T can be written as 

T = E{cov{(Z 2 Z)Z2ZfIZ2Z 2"}} 

= E{(Z2 Zf1 ) 1 cov {Z 2 Zf IZ2 Z2hf}(Z 2 Z) l }. 	 (5.28) 

Application of [82, theorem 3.2.10], shows that coy { Z2  .Zf' I Z2  Z21' } = P. (Z2  Z'), which yields 

T = P.E{(Z2Z)}, 	 (5.29) 

where P is the total power output. Further, application of theorem B.3 shows that E {(z2zfl 11  

1V 

	

(M-J) ('
pHp x 'r 	, and hence 

T - (M_J)(TT). 	 (5.30) 

Substitution in the expression for r yields 

r 	
(M 

P 
J) 

ir ((THRT) (THR X T)) 
= 	— 

JP (5.31) 
= (M—J)' 

which allows the mean square error to be expressed as 

JP 
MSE = w'Rwo 

+ (M - J) - P
3 . 	 (5.32) 

Expanding for wo = Wq  + T (T"R T) T'R v w q , and writing P = P3  + P, yields the 

non—concurrent mean square error, after some manipulation, as 

MSE = (i_)i + () (i_ 
J)_l 	

(5.33) 

where now the subscript n indicates that non—concurrent processing is employed. This compares 

with the expression for the concurrent processor (5.21). Again, the presence of a strong desired 

signal will lead to a high transient MSE. Figures 5.3 and 5.4 depict the MSE due to the noise 

component and the excess MSE arising due to the presence of a 20dB desired signal (relative to 

jamming) for the non—concurrent mode of beamformer operation. The same beamformer was 

used as that in the concurrent mode of operation. The results of the Monte Carlo simulations 

generally follow the theoretical analysis. 

5.4 Transient response 

The previous sections have considered the transient response of the generalised sidelobe canceller 

in terms of the output mean square error. However, another important aspect of the transient 

behaviour is the sidelobe response of the adapted pattern. High sidelobe levels present a serious 

limitation to an airborne radar when the beamformer operates in a non—concurrent mode. The 

remainder of this chapter will examine the adapted response of the generalised sidelobe canceller 
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Figure 5.3: Output sample mean square error due to noise and interference alone versus data 
matrix size - non-concurrent processing. Each point was computed from 100 
Monte Carlo simulations. The curves indicate the theoretical values. 
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data matrix size - non-concurrent processing. Each point was computed from 100 
Monte Carlo simulations. The curves indicate the theoretical values. 
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as a function of the number of snapshots used in estimating the sample covariance matrix, and 

also as a function of the number of adaptive degrees of freedom present in the beamformer. 

Figures 5.5 and 5.6 demonstrate the high sidelobe levels which can be expected due to the 

sensitivity of the adaptive weights to fluctuations in the background noise field. In all examples 

a 16 element linear array has been used. The quiescent response of a generalised sidelobe 

canceller implementation was designed to match a -30dB Chebychev weighting using a technique 

outlined in [2], which leads to a fully adaptive dimension of 14. The beam was steered to 18° 
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Figure 5.5: Transient response of a narrowband GSC beam former after 32 snapshots. The 
quiescent response was designed to match a -30dB Chebychev weighting using the 
technique outlined in [2]. A single jamming source is incident from 65°. 

from broadside, and a simulated interference source was placed at 650  with a power level of 30dB 

relative to the background noise level. Figures 5.5 and 5.6 show adapted beampatterns when 

32 (2N) and 1024 (64N) samples are used, respectively. Virtually perfect nulling is achieved in 

both cases, with little main beam distortion. However, the average sidelobe levels for the two 

cases differ considerably (-15.1 and -30.1, respectively). This level of sidelobe distortion may 

be considered unacceptably high in many applications even though the beam shape is optimum 

from a signal-to-noise standpoint. An expression for the deviation in the adapted pattern 

can be derived by writing the adaptive weight vector in terms of the eigendecomposition of the 

estimated covariance matrix as follows. We begin by recalling the expression for the asymptotic 

value of the adaptive weight vector (i.e. that computed when .k = R) 

Wa = (THR x T)THR z w q . 	 (5.34) 
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Figure 5.6: Transient response of a narrowband GSC beamformer after 1024 snapshots. The 
array is the same as that it Figure 5.5. 

Suppose the interference is characterised by P narrowband interferers and uncorrelated noise, 

then we may represent the true covariance matrix as the sum of a rank P term and an uncor-

related term corresponding to the background noise 

= ESEH + 0.2 1 , 	 (5.35) 

where E is an N by P matrix of eigenvectors and S is a diagonal matrix containing the 

P eigenvalues. Substituting (5.35) into (5.34) yields an expression for Wa in terms of the 

eigenvectors E. Beginning with the term in the inverse 

THR X T = ESEH + o. 2 1 , 	 (5.36) 

where E = THE and we have assumed T" T = I. This does not cause a loss of generality 

since it is the space which T spans which is of interest, not the individual elements. The inverse 

of (5.36) can be expanded as [48] 

(T'RT) '  = 	- i4E (_2EHE  + s')' EH 	 (5.37) 

TH R Wq  becomes 

THR x Wq  = k  + 02THwg 

= EG, 	 (5.38) 
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where G = SE"viq , and Tw q  = 0. Combining (5.37) and (5.38) yields 

Wa = THE H, 	 (5.39) 

with the P dimensional vector H as 

H = [0,-2j - _4E(_2EH 	+ s_ 1 ) 1 ii"E] G. 	 (5.40) 

Equation (5.39) gives the desired result. The adaptive weight vector is formed from the weighted 

sum of the P eigenvectors. The weightings applied to the eigenvectors are given by the individual 

elements of H, which in turn depend upon the eigenvalues S. If only uncorrelated interference 

is incident upon the array, then S is identically zero, and hence from (5.40), Wa 15 zero. Recall 

that the overall weight vector for the array is w = Wq - TW a , so that when P sources are 

incident, the adapted pattern is formed as a quiescent pattern minus the weighted sum of the 

eigenbeams corresponding to the P sources. An eigenbeam is taken to mean the array response 

when the individual elements of any particular eigenvector are used as the beamformer weights. 

This is a clear expression of the fundamental principle of pattern subtraction which applies in 

adaptive array analysis. The reader is referred to [11] for a more extensive discussion. 

If the sample covariance matrix is used in place of the true covariance in (5.34) then the adaptive 

weight vector is given by ?i'a = T' .E .U, where the hats indicated estimated values. When a 

finite number of samples are used in estimating the covariance the eigenstructure is perturbed 

so that the correlated portion of .k increases in dimension from P to N. Associated with the 

N - P additional eigenvalues are N - P "noise" eigenvectors; the term noise eigenvector means 

those eigenvectors which correspond to the small eigenvalues generated by the background noise 

contained in the finite R estimate. The adaptive weight vector is formed from a combination 

of the P eigenvectors relating to the interference, and the N - P noise eigenvectors. The 

eigenvectors associated with the interferers are generally rather robust [73,81] and tend to 

remain relatively stable from one estimate to the next, whereas the noise eigenvectors tend to 

fluctuate considerably because of the inherent random behaviour of noise. Thus, we expect 

that the sidelobe undulations of Figure 5.5 are associated primarily with the noise eigenvectors. 

Figures 5.7 and 5.8 show the noise eigenvalue spread (the ratio of the biggest to smallest 

noise eigenvalue in dB) and maximum and average sidelobe level as a function of the number 

of snapshots used in estimating the covariance matrix. The convergence rate of the noise 

eigenvalues is slow after a large initial improvements. Each point represents a single simulation 

run, and the curves represent least squares fits to these points. 

5.5 Diagonal loading 

If the noise eigenvalue spread can be minimised, then the effects of randomly shaped noise 

eigenbeams will be reduced and the adapted response will approach the ideal response. Gab-

riel [73] suggested that the estimated covariance matrix be modified to accomplish this result. 

This modification takes the form of augmenting the leading diagonal of the covariance matrix 
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Figure 5.7: Noise eigen value spread as a function of the number of snapshots. Each point 
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with a fixed (positive) term as follows 

M 

Ix = 	z(k)z"(k) + Fl. 	 (5.41) 
k=i 

The effect of this modification is that the eigenvalues of the loaded matrix are individually 

increased by an amount equal to F. Large interference eigenvalues are unaffected by this small 

change, but eigenvalues well below the loading level are increased to and compressed at the 

level F. The corresponding eigenvectors remain unchanged by diagonal loading. Figure 5.9 

depicts the adapted response of the beamformer of Figure 5.5 with diagonal loading equal to 

12dB over the background noise level added. This example is identical to the conditions in 

Figure 5.5 with the exception of loading. The response shows that cancellation of the source at 

65 0  is minimally affected, whilst the random sidelobe behaviour is considerably reduced, even 

with such a small number of snapshots. The weights computed using (5.41) deviate from the 
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Figure 5.9: Transient response of a narrowband GSC beamformer after 32 snapshots. The 
array is the same as that it Figure 5.5, but diagonal loading of 12dB above noise 

level has been added. 

optimum weights and will result in a slightly larger output residue, but the cost is negligible 

compared to the remarkably stable results achieved by this relatively simple approach. 

Figure 5.10 depicts the reduction in noise eigenvalue spread achieved by diagonal loading of the 

covariance matrix. The three curves represent least squares fits to the results of 100 Monte Carlo 

simulations for the cases when iN, 3N and 6N snapshots are used in forming the covariance 

estimate. The physical implications of the reductions in eigenvalue spread can be seen in 
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Figure 5.10: Noise eigenvalue spread as a function of diagonal loading level for iN, 3N and 
6N snapshots. Each point was computed from 100 Monte Carlo simulations. 

Figures 5.11 and 5.12, which show the array maximum and average sidelobe behaviour with 

respect to loading level. Loading the diagonal of the covariance estimate as in (5.41) to compress 

the noise eigenvalues is equivalent to desensitising the system by reducing its adaptive capability 

to small interference sources. This process can be thought of as artificially injecting a small 

noise component at each array element. Whilst this desensitivity has minimal effect upon 

cancellation of large interfering sources, as can be seen from (5.39), it may reduce the ability 

to counter interfering signals with small eigenvalues, such as occur from small jamming signals, 

residual jammer energy and dispersive paths. 

The expressions derived earlier for the mean square error showed explicitly the link between 

MSE and adaptive dimension. One would also expect the random sidelobe fluctuations to be 

dependent upon adaptive dimension. Studying (5.39) it can be seen that the effect of the linear 

transformation T is to linearly combine the eigenbeams, prior to weighting. The number of 

these combined eigenbeams that are weighted (i.e. the dimension of H) is now determined by the 

adaptive dimension, so that by reducing the adaptive dimension, random sidelobe fluctuations 

should be minimised. Figure 5.13 and 5.14 show the maximum and average sidelobe level as a 

function of load level for the three adaptive dimensions J = 2, 8 and 14. The conditions are the 

same as those for the earlier figures, namely a single interfering source and uncorrelated noise. 

3N samples were used in forming the covariance matrix estimate. Best fit lines have be drawn 

to illustrate the trend. Clearly, for this simple example, a reduced adaptive dimension leads 

to lower transient sidelobes, both in peak and mean. This is as might be expected, a single 
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Figure 5.11: Maximum sidelobe level as a function of diagonal loading level for iN, 3N and 
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jamming source will require a single adaptive degree of freedom, so that any additional degrees 

of freedom will adapt upon the cross—correlations in the background noise field due to finite 

sampling. 
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Figure 5.13: Maximum sidelobe level after 3N snapshots as a function of diagonal loading 
level for J = 2, 8, and 14. Each point was computed from 100 Monte Carlo 
simulations. 

The interference scenario used to compute the results presented in this section is relatively 

simple. Noise and jammer eigenvalues are separated by a large margin (30dB) SO that estimation 

of the number of jamming signals is a simple task. However, if the interference received at the 

array is derived from dispersive paths, or from a collection of closely spaced interfering sources 

the jammer eigenvalues may not necessarily be so distinct. In the latter case of several closely 

grouped jamming signals, the eigendecomposition will typically yield a single large eigenvalue 

and a selection of smaller eigenvalues. The correlation in spatial location between the sources 

is such that they do not yield distinct eigenvalues. The effects of a dispersive channel can be 

interpreted in a similar way. If secondary eigenvalues are similar in magnitude to the loading 

level, then reduced cancellation can be expected and residual interference power will be present 

after adaptation. However, the residual interference power may be acceptable since the sources 

are weak by definition and the sidelobes of the adaptive pattern provide additional attenuation 

if the interference is spatially separated from the steer direction. It is apparent from Figures 5.11 

and 5.12 that a small amount of diagonal loading can considerably improve many aspects of 

adaptive performance when the number of snapshots used in forming the covariance estimate 

is small. 
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Figure 5.14: Average sidelobe level after 3N snapshots as a function of diagonal loading level 
for J = 2, 8, and 14. Each point was computed from 100 Monte Carlo simulations. 

5.6 Conclusions 

This chapter has considered the adaptive convergence of the generalised sidelobe cancelling 

beamformer structure. Expressions have been derived for a selection of beamformer charac-

teristics. In particular, expressions for the concurrent and non—concurrent mean square error 

and transient sidelobe behaviour have been derived. Furthermore, these expressions have been 

examined and verified through Monte Carlo simulation. 

If a finite number of data snapshots are used to compute the covariance matrix estimate the 

output mean square error will be different from that which would be observed if the true data 

covariance matrix was used. The level of excess mean square error depends upon whether the 

beamformer operates in a concurrent or non—concurrent mode. Expressions for the concur-

rent and non—concurrent mean square error were derived and simulation results showed close 

agreement. 

When the covariance estimate is formed from a finite set of data vectors, the adapted response 

of the array was shown to experience noisy sidelobe fluctuations which can render the array 

susceptible to interfering signals and sidelobe clutter. As a means of characterising the random 

sidelobe fluctuations the eigendecomposition of the estimated covariance matrix was examined. 

It was found that for small numbers of snapshots a significant spread existed in the eigenvalues 

associated with the background noise. As more information was combined in the estimate the 
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noise eigenvalue spread decreased, which led to a corresponding decrease in the maximum and 

average sidelobe levels. A technique for reducing the noise eigenvalue spread, called diagonal 

loading, was examined. It was found that with a small level of loading, the random sidelobe 

fluctuations could be significantly reduced, thus reducing the vulnerability to interfering signals. 

No simulation results have been included for the space—time processors discussed in chapter 4. 

This is mainly due to the simulation time involved in running a large number of Monte Carlo 

simulations, but also because of the problem in accurately identifying the peak sidelobes in a 

two—dimensional response. 
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Conclusions 

6.1 Introduction 

The work described in this thesis is primarily concerned with the analysis of techniques for 

designing partially adaptive beamformers suitable for use with a sideways looking airborne 

radar. In particular, techniques for reducing the adaptive dimension of a generalised sidelobe 

canceller array, when the radar operates in a look—down mode. A sparse algorithm for specifying 

the adaptive degrees of freedom to be selected has been described and applied to the suppression 

of ground clutter returns received at an airborne platform. The convergence performance of the 

resultant partially adaptive beamformer has been analysed and expressions have been derived 

for a variety of transient parameters. Within this chapter the main conclusions of the work 

are highlighted. Additionally, limitations associated with the algorithms and experimental 

techniques are discussed. The chapter concludes with some pointers towards future work. 

6.2 Achievements of the work 

Adaptive beamforming represents a very powerful technique for suppression and cancellation 

of interfering signals, and improving the detection performance of an airborne radar. However, 

adaptive beamforming represents a considerable expense, both in computation and in imple-

mentation. For these reasons, much interest has focussed on techniques for reducing the cost 

of adaptive algorithms, whilst maintaining near optimum performance. A feature of many of 

the common partially adaptive beamforming structures is what appears to be an assumption of 

access to large computing resources. This is an impractical assumption, so the approach taken 

in this thesis has been to produce a partially adaptive beamforming structure which attains 

near fully adaptive performance whilst minimising the computational cost. 

Many of the simpler adaptive algorithms suffer performance degradation if desired signals are 

present in the received data. This occurs because of estimation errors in forming the data 

covariance matrices. For example, the maximised signal to noise ratio adaptive array computed 

the adaptive weights by forming a covariance matrix for the data received at the array, inverting 

it and then multiplying it by a steering vector. If any signal component is present in the 

covariance matrix from the steered direction, the effect of spurious correlations is to place a 

deep null in this direction. At no time can an airborne array make the assumption that there 

will not be signal components incident from the look direction during the period over which 
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the covariance matrix is formed. The generalised sidelobe cancelling beamformer structure was 

proposed as the adaptive structure to be used. This structure separates the beamformer weights 

into two components, a fixed beamformer, and an adaptive path. A matrix transformation 

is placed at the start of the adaptive path, which effectively blocks signal components from 

the steered direction, so that the adaptive weights are computed using data which is free of 

look direction signals. Thus, use of this two path structure prevents the signal cancellation 

phenomena associated with simple maximised signal to noise ratio beamformers. 

The generalised sidelobe canceller is also useful as a partially adaptive beamforming structure. 

Full gain is retained for desired signals, whilst an arbitrary number of adaptive degrees of free-

dom may be assigned to interference cancellation. The number of adaptive degrees of freedom 

assigned to cancellation will be determined by the level of suppression which is deemed accept-

able, and by the number of weights which can be computed. With computational efficiency in 

mind, a sparse approach for specifying the adaptive degrees of freedom in a partially adaptive 

beamformer was presented in chapter 4. The algorithm selects adaptive degrees of freedom 

based upon a mean square error performance criterion. The adaptive degrees of freedom which 

result in the greatest reduction in output mean square error are selected, the remaining adaptive 

weights being set to zero. The performance of this new algorithm was contrasted with several 

existing techniques for designing partially adaptive beamformers, most notably the eigenstruc-

ture based design. The computational expense of the sparse and eigenstructure beamformers 

was also considered, and it was shown that for a variety of beamformer dimensions the sparse 

beamformer could yield around 80% savings in the numbers of operations required to compute 

the adaptive weights. 

Chapter 5 considered the convergence performance of the generalised sidelobe cancelling struc-

ture. A statistical analysis of the output mean square error when the beamformer operates in 

a concurrent and non—concurrent mode were presented. Simulations results for both modes of 

operation were seen to be in close agreement with theoretical analysis. The random sidelobe 

behaviour which exists when the adaptive weights are computed from a finite set of samples was 

also considered. An expression for the adaptive weight vector in terms of the eigendecompos-

ition of the sample covariance matrix was derived. This expression showed that the transient 

sidelobes of the adapted pattern were a function of the spread of the noise eigenvalues of the 

sample covariance matrix. Monte Carlo simulation results were presented showing the max-

imum and average sidelobe levels as a function of the noise eigenvalue spread. A technique for 

overcoming the dependency upon the fluctuations in the small eigenvalues was discussed. It was 

seen through simulation that a small level of diagonal loading of the sample covariance matrix 

could yield significant improvements in both maximum and average sidelobe levels, even when 

a small number of samples were used in forming the sample covariance matrix. 
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6.3 Limitations of the experimental techniques 

In order to achieve the primary object of the work, which was to develop techniques for spe-

cifying the best adaptive degrees of freedom to retain in a partially adaptive beamformer, 

a number of necessary simplifying assumptions were made. These can be broadly separated 

into two groups, (i) simplifications associated with the radar operation, (ii) and simplifications 

relating to the beamforming aspect of the work. 

The most obvious simplifications relating to the radar are the flight characteristics, namely 

a assumption of an horizontal flight plane at constant velocity. These assumptions, coupled 

with the assumption that no dispersion or multipath propagation occurs, allow a very simple 

model for the operation of a range gated radar. The clutter returns in any particular range 

gate will be derived solely from scatterers (targets or the ground) at multiples of the gate 

range. In computing the clutter returns, the range gates are divided into a ring of individual 

uncorrelated scatterers, so that calculation of idealised covariance matrices is replaced by a 

discret.e summation over the individual scatterers. Arguments can be formed in a similar 

manner to those relating to the choice of point constraints (section 2.7.1) in linearly constrained 

beamforming, to express how well (in a least squares sense) the sum matches the ideal. 

Simplifications relating to the array itself are chosen more for mathematical convenience than 

computational ease. Each sensor is assumed to be followed with an ideal wideband steering 

delay, such that any signal, regardless of frequency, incident from the look direction appears 

identically at the output of the steering delays. Such perfect matching is unrealistic, and can 

only be achieved over small bands of frequency. Mismatch in array elements will destroy the 

correlation of a source within the beamforming structure, making separation of desired and 

interfering signals a considerably more complex problem. 

6.4 Limitations of the work 

The algorithm presented in chapter 4 is based upon the principal that the over—riding cost of 

performing adaptive beamforming is the computation of the adaptive weights, rather than in 

forming the data samples. Thus the algorithm is allowed to select which ever tap sample best 

minimises the output mean square error, regardless of the position which the weight occupies in 

the adaptive structure. The nature of the transformation matrix associated with this method 

of design is sparse, so that the required number of operations is considerably less than the 

popular subspace techniques. The comments and simulations presented later in chapter 4 were 

aimed at limiting the implemental cost of the iterative algorithm. The algorithm is nonetheless 

computationally intensive, which will most probably mean that it will be only used at a design 

stage, based upon likely interference data. The choice of training data will determine to a large 

extent how well the beamformer will operate once in flight. The question of how large to choose 

the range of scenarios the beamformer is designed to operate over remains open. 
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Adaptive array performance is generally measured in signal to noise or cancellation ability, and 

the iterative algorithm is based upon a mean square error performance measure. However, 

these measures do not consider the adapted response of the beamformer, which can often 

exhibit undesirably high sidelobe levels. The analysis of chapter 5 shows that the adaptive 

sidelobe level, whilst being a function of the noise scenario and desired signal strength, is 

directly proportional to the number of adaptive degrees of freedom present in the beamformer. 

Therefore the reduced adaptive dimension facilitated by the sparse approach should help to 

minimise the average transient sidelobe response. 

The interference problem considered in this thesis was the cancellation of ground clutter returns 

in an airborne radar. Whilst the two—dimensional nature of this interference provides a stern 

test of a broadband adaptive beamformer, the analysis of section 3.7 demonstrated the inherent 

rank deficiency of this problem. The cancellation problem, under certain conditions, requires 

considerably fewer degrees of freedom than is provided by the tap structure. There may exist 

other interference problems which do not have this nature, and the performance enhancements 

achieved may not be as significant. 

6.5 Areas for future work 

To conclude the thesis, we provide some pointers to further areas of development, and provide 

suggestions for alternative applications. 

The radar geometry considered in this thesis was that of a sideways looking airborne radar 

(SLAR). This is a common mode of operation for surveillance radars, but in the future atten-

tion will move to forward looking geometries. These are popular in fighter aircraft because the 

radar antenna is typically mounted in the aircraft's nose. The diagonal azimuth—Doppler char-

acteristics of the ground clutter associated with sideways looking geometries are not mirrored 

in the forward looking geometry. When the radar is in a forward looking configuration clutter 

returns are localised around an ellipse in the azimuth—Doppler plane. This has major repercus-

sions for the design of clutter cancellation filters. The simple DPCA cancellation system cannot 

be applied because sub—apertures no longer exist along the aircraft's axis. For this reason, an 

analysis of the forward looking geometry, and of typical clutter spectra will form the basis for 

the design of forward looking radars. From this analysis, conclusions may be drawn as to the 

beamforming requirements for the forward looking geometry. 

The selection algorithm presented in chapter 4 selects the adaptive degrees of freedom that have 

most influence upon the output mean square error. This algorithm was applied to the weight 

selection for cancellation of ground clutter returns. However, this approach may be taken in a 

variety of interference cancellation problems in which a reduced adaptive dimension is useful. 

In fact a simple analogy can be drawn between the nature of this algorithm and tap selection 

in the RAKE type receivers common in spread spectrum communications. A RAKE receiver 

combines delayed samples of a received field to provide cancellation of interfering signals and 
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enhancement of desired signals in the presence of multipath propagation. The weights applied 

to the various multipaths are simply the tap weights of the filter structure. If the algorithm 

described in this thesis were to be applied to this problem it would simply result in the selection 

of the weights corresponding to the largest multipath components. 

In connection with the work of chapter 5 a statistical analysis of the peak and mean sidelobe 

behaviour of the generalised sidelobe canceller may be performed. Previous work exists giving 

a measure of the peak and average sidelobes of a randomly spaced array [46]. This analysis, 

coupled with multivariate statistical theory could provide expressions similar in nature to the 

concurrent and non-concurrent mean square error expressions of chapter 5. These expressions 

would allow confidence intervals to be established for the adapted response of the beamformer. 
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Appendix A 

Interference cancellation 

In this appendix an expression for the adaptive cancellation associated with using J eigenvectors 

of the averaged interferer covariance matrix is formed. The following derivation is based on those 

variously presented in [16,27,30,32]. Assume that the interference consists of a single broadband 

point interferer, uncorrelated with the desired signal, and spatially/temporally uncorrelated 

white noise. Letting Q (9) denote the covariance matrix for the interferer arriving from direction 

O and o be the white noise level implies 

= Q(0) + 	 (A.1) 

Q (0) is expressed in terms of the source power spectral density p2  (w), the array response vector 

d (9,w), and the source frequency extent 0 as 

Q(0) = 	 (A.2) 

Writing T = C T, the power output is given by 

H 	 2 	 2 
ou = Wq  R 3  vi + O Wq - TWaI 

+ 	 (A.3) 

The first term is the signal output power, the second term is the white noise output power, and 

the last term is the interferer output power. A more quantitative description of interference 

cancellation is obtained by approximating (A.2) as a Riemann sum 

Q(0) 
	

(A.4) 

where Wm uniformly sample Q, 50 	= Wm+1 - W m . Rewriting (A.4) in matrix form yields 

Q(0) 
	

(A.5) 

where 

A9 = [d(0,w i ) d(0,w2) ... d(0,iM)], 

= diag {p2  (w 1 ), p2  (w2), ..., p2  (WM)} 	w. 
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The approximation error in (A.4) and (A.5) approaches 0 as M - := (1w -# 0). Here M 

is assumed to be sufficiently large. We assume for the latter part of this discussion that r is 

the positive square root of I2,  T" T = I, and Tw q  = 0. Assuming T" T = I does not 

reduce generality since it is the space spanned by the columns of T that is important, not 

the elements of T; this is evident by noting that the output power is invariant to nonsingular 

transformations applied to T on the right. The assumption Tw q  = 0 implies that W q  has 

been chosen to determine the quiescent response of the beamformer [17]. Substituting (A.5) 

and (A.1) into the expression for the optimum weight vector w and simplifying results in 

Wa= [ THA O FF4I T + uI] THA e rr4 wq. 	 (A.6) 

Now, we may approximate the M by J matrix FA H  T by the rank d singular value decompos-

ition 

rA"T = UVH 
	

(A.7) 

Here U and V are composed of the d left and right singular vectors corresponding to the d 

largest singular values and E is a d by d diagonal matrix containing the largest singular values. 

The approximate low rank nature of Q (0) (and thus FA A" T) is discussed by Buckley [16]. 

Consider the physical meaning of V, E, and U. V represents an orthonormal basis for the 

rows of rAt' T and is also the set of eigenvectors of T' Q (0) T corresponding to nonzero 

eigenvalues. Thus, V represents a basis for the space spanned by the interferer at the output 

of T. E describes the distribution of the interference power in the space described by V. U 

represents an orthonormal basis for the columns of TA H  T. Let [B] denote the ith column of 

a matrix B. Now 

[FAt' T] 1  = r4'[T]1 . 	 (A.8) 

A [T] 1  is a vector whose elements describe the response of the ith column of T in direction 

0 at the frequency sampling points [wj, w2, •, wM]. Premultiplication by r simply scales 

the response proportionally to the power spectral density of the source. Thus, each column of 

rA T represents the frequency distribution of the interferer at the output of the corresponding 

column of T. We can conclude then that U is a basis for the space spanned by the interferer 

frequency distributions at the output of T, just as V represented the interferer frequency 

distributions at the output of C. Continuing with the derivation, substituting (A.7) into (A.6) 

yields 

Wa = [ VE2VH + 0-
W
2 1 ] — ' VEUH 9, 	 (A.9) 

with 

= r4'w q . 	 (A.10) 
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Following the discussion in the previous paragraph, g represents the frequency distribution of 

the interferer at the fixed beamformer output. Applying the matrix inversion lemma to (A.9) 

and simplifying gives 

Wa = VDU"g, 	 (A.11) 

where D is a diagonal matrix with entries 

Dii = 	 (A.12) 

Here ori represents the ith diagonal element of E. Equation (A.10) indicates that the weight 

vector lies in the space spanned by V, which is the space spanned by the interferer after trans-

formation by T. The coordinates of w 0  in this space are given by D U"g. Rewriting (A.10) 

for the fully adaptive case gives Wa = V1  D1  U79. Eigenstructure designs utilise the fact that 

the fully adaptive weight vector lies in the space spanned by Vj. The columns of V1  are 

the eigenvectors corresponding to nonzero eigenvalues of the spatially/temporally correlated 

portion of the interference covariance matrix at the output of C. For the interference en-

vironment described by (4.34), V1 corresponds to the eigenvectors of C Q (0) C0  associated 

with nonzero eigenvalues. In an arbitrary interference environment, Vj corresponds to the 

eigenvectors of C" R0  C0  associated with nonzero eigenvalues where R0  represents only the 

spatially/temporally correlated terms (white noise excluded). 

The final step in the derivation is to express U'g in terms of angles between vectors. Define 

the generalised angle between two vectors z and y as [48] 

Cos 2(x,y) = 

	(H) 2  

(A.13) 
(z"x)(y"y) 

Applying (A.13) to (A.11) allows us to identify the ith component of DU'g as 

[DU"g]2 = 	°' 	(g"g) 1 " 2  cos çti j e'7 ' 	 (A.14) 
cr +o 

where 

cos Oi e21' = 	
[U]1g 
	 1/2 	

(A.15) 
([u] [U]1 gHg) 

The weighting placed on [V] 1  therefore depends upon the normalised inner product between 

the interferer frequency distribution at the fixed beamformer output and the ith basis vector 

for the interferer frequency distribution at the output of T0  (cos Oi  e'1 '), the interferer to white 

noise level in the ith mode, and the fixed beamformer output power due to the interferer (g"g). 

As the white noise level decreases, the higher order modes are weighted more heavily. We may 

now rewrite the output power as 

P0 	wR s wg  + crWWq  + 9  - g"UED U"g, 	 (A.16) 
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which may be alternatively expressed as 

J 
= w' R, W q  + Wa' R W  - g H  g 	0,? +U2 cos 2 q5. 	 (A.17) 

wa'Rs w q  represents the signal power at the output, Wa'R n W q  represents the interference plus 

white noise power at the fixed beamformer output, and the last term represents the reduction in 

output power resulting from the J adaptive weights. More general cancellation analysis can be 

performed following the arguments above; however, the analysis provides little insight, except 

in cases where the design region becomes a single point. 
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Appendix B 

Multivariate statistics 

This appendix will introduce some of the properties of multivariate normal distributions, and 

discuss their application to the sample covariance matrix introduced in chapter 5. The theorems 

listed below will be stated without proof. If required, proofs of these may be found in any 

multivariate analysis book. Muirhead [82], Mardia [86], Eaton [87], Siotani [88], Chatfield [89] 

and Bickel [90] are recommended. We begin by defining the multivariate normal distribution. 

Definition B.1 The random vector X (m x 1) is said to have an rn—variate normal distribu-

tion if, for any vector a E Cm, the distribution of a"X is univari ate normal. The multivariate 

normal distribution is denoted by Nm  (it, L') and defines a rn x 1 random vector with mean 

vector p, and covariance Z. 0 

Theorem B.1 If X is N m  (i, L') then the marginal distribution of any k (k <rn) components 

of X is k—variate normal. 	 0 

A consequence of this theorem is that the marginal distribution of each component of X is 

univariate normal. The converse is not true in general, the fact that each component of a 

random vector is normal does not imply that the vector has a multivariate normal distribution. 

Theorem B.2 Suppose that X is Nm  (IA, X ), and X is partitioned as 

X 	=I 
1x11 

I, 
Lx2] 

with corresponding partitions 

I Al 1 	I.11 .l21 
11=1 	I,= 	 I, 

LP2J 	L21 	'22j 

then if .L' 2 2 is full rank so that E 21  exists, the conditional distribution of X 1  given X 2  is 

multivariate normal with expected value 

E{X 1 IX2} - iLl + 

ii 

Theorem B.3 Suppose that X is a random vector, then the mean of the conditional expect-

ations of X given a random vector Y is 

E{E{XIY}} = E{X}. 
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UI 

Theorem B.4 If h(X) is bounded and r(X) has finite mean, then 

E{r(X)h(Y)} = E{h(Y)E{r(X)IY}}. 

Fr 

Theorem B.5 If h(X) is bounded and r(X) has finite mean, then 

E{r(X)h(Y)IY=y} = h(y)E{r(X)JY=y}. 

IU 

Theorems B.4 and B.5 are commonly called the product expectation and substitution formulae 

for conditional expectations [90, PP.  5]. When used in conjunction with theorems B.2 and B.3 

they provide a powerful method of manipulating functions of multivariate random variables. 

Definition B.2 If  (m x m) can be written S = ZHZ, where Z (m x n) is a data matrix 

from N m  (0, L'), then S is said to have a Wishart distribution with scale matrix E and degrees 

of freedom parameter n. This is written S W m  (n, X). When .7 = Im , the distribution is 

said to be in standard form. 0 

Note that when m = 1, the Wi  (n, o.2)  distribution is the same as the 0,2 x (chi-squared) 

distribution. The scale matrix .J plays the same role as o.2  does in the o 2 x distribution. Note 

also that S is singular for n < in, so the density function of Wm  (n, .) will exist only for 

values of n greater than or equal to in. The density function of Wm  (n, .7) was first derived by 

Wishart [91], hence the name given to the distribution. The properties of Wishart matrices are 

of considerable, interest to the beamformirig community. If Z is as a matrix of array data, then 

the matrix (1/n) S is termed the sample covariance matrix and represents the estimate of the 

data covariance matrix formed from n snapshots. The first moment of Wm  (n, .) is given by 

E{S} = n.E. 	 (B.1) 

Theorem B.6 If  15 Wm  (n, Z) and M is n x k of rank k, then MHSM  is Wk (n, .E). 0 

An interesting example of this theorem is the case when k = 1, i.e. M is a vector, then the ratio 

MHSM/MH.EM has the x distribution, provided MH.EM > 0. The form of MHSM  is 

familiar in beamforming, since it gives the power output for a given weighting vector. In [83] 

Capon and Goodman used the Goodman [79] theory on complex Wishart distributions to find 

probability distributions of several estimators, similar in form to this ratio. Later, Reed et 

a]. [84] applied similar ideas to predict the convergence of an adaptive clutter cancellation 

filter. Many other papers have examined expressions similar to this [73,80,92-104]. 

Theorem B.7 If  is W m  (n, E) and S and .E are partitioned as 

	

= S11 512 	 = 	.E11  .E12  

	

521 S22 	 .E21 .E22 
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where 511  and Ell  are k x k, then S 11  is Wk (n, 	 0 

This theorem stems directly from theorem B.1. In general any diagonal submatrix of S is 

Wishart distributed, although their distributions will not in general be independent. 

Definition B.3 If  is W m  (n, X) then the distribution of S' is called the inverted Wishart 

distribution, denoted by W; 1  (n, L'). 	 0 

The expectation of S is 

E{S} 
= 	1 

n — rn  — i 
(B.2) 

This is one of the most useful expressions relating to the use of sample covariance matrices, 

since the adaptive weights in many adaptive algorithms (e.g. maximised signal—to—noise ratio) 

are formed by inverting an estimated covariance matrix. This distribution, through the mean, 

allows predictions to be made about the expected convergence performance. 

Theorem B.8 If  is Wm (n, ), and M is n x k of rank Ic, then (M"S_'M) has distri-

bution given by Wk (n - rn + k, (M'M)). o 

Until now, no definition has been given for the density function of a Wishart matrix. The actual 

expression has a rather cumbersome form, however, for completeness the complex Wishart 

probability density function is defined as [4, pp.  302] 

p(S)
'  = sin__  exp l 	I —tr(L'S)} 

l/2(m+l)mr(n) r (n - 1) . . . r(n - m) 	
, 	n m, 	(B.3) 

where 

['(Ic) = (k—i)! 

This completes our brief review of multivariate statistics. 
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A SPARSE APPROACH IN PARTIALLY ADAPTIVE LINEARLY 
CONSTRAINED ARRAYS 

lain Scott and Bernard Muigrew 

Department of Electrical Engineering, 
The University of Edinburgh, 

Mayfield Road, Edinburgh E149 33L 

ABSTRACT 

In conventional partially adaptive linearly constrained mini-
mum variance (LCMV) beamforiner design the approach has 
been to represent the noise subspace with some reduced set of 
vectors, typically the eigenvectors associated with the largest 
eigenvalues of the noise covariance matrix. This, whilst yield-
mg good performance, will not give the optimum perfor-
mance for a given partially adaptive dimension. 

This paper presents an alternative method for selecting 
the "best" degrees of freedom to be retained in a partially 
adaptive design. The iterative algorithm described selects 
those degrees of freedom which minimise the beamformer 
output mean square error. This approach leads to a sparse 
structure for the transformation matrix, which when imple-
mented in a generalized sidelobe canceller (GSC) structure 
will reduce the computational load. This approach also al-
lows a reduction in adaptive dimension as compared to the 
eigenvector based approach. An illustrative example demon-
strates the effectiveness of this method. 

I. INTRODUCTION 

This paper is concerned with developing a simple technique 
for the selection of the adaptive degrees of freedom (DOF) to 
be retained in a partially adaptive beamforming algorithm. 
The computational complexity associated with linearly con-
strained adaptive arrays quickly becomes prohibitive when 
element numbers are increased, forcing consideration of tech-
niques which employ only a subset of the available DOF. 
Fortunately, most interference suppression problems are rank 
deficient in nature, that is they require less adaptive DOF 
than are offered by the array. By appropriate design, the ad-
ditional DOF which are not required can be discaxded so that 
only those that are important are retained. This is termed 
partially adaptive beamforming. 

The array studied is assumed to be a linearly constrained 
array having N elements each with L temporal samples pro-
cessed. Array response is subject to a total of K linear con-
straints. As a result the total adaptive DOF will be NL— K, 
which may be much greater than the number that can be 
implemented in the processor. This limitation may arise be-
cause of restricted computational hardware or the desire for 
real—time performance. The necessary reduction in adaptive 
dimension is performed by inserting a transformation matrix  

before the adaptive weights, which maps the fully adaptive 
space to some reduced dimension space. Previously reported 
techniques have fallen into three groups, a sub—optimum se-
quential approach based on output power minimization [1], 
eigenstructure based schemes [2], and a reduction in available 
DOF by the addition of linear constraints [3]. 

In this paper we describe a sparse approach for specify-
ing the DOF to be retained in a partially adaptive design. 
The primary results reported here are the reduction in re-
quired adaptive dimension facilitated by the approach, and 
the reduced computational load engendered by a sparse so-
lution. As such it offers several advantages over eigenvector 
approaches which are based upon the structure of the noise 
subspace. Simulation of a partially adaptive GSC illustrates 
the effectiveness of this approach. 

II. PARTIALLY ADAPTIVE BEAMFORMER 
MSE 

For an adaptive array, the output y(n) can be expressed as 
the inner product of a data vector x(n), and a weight vector 
w(n), that is 

y(n) = w(n)x(n), 	 (1) 

where the dagger f denotes Hermitian transpose. For gener-
ality both the data vector and the weight vector are assumed 
complex valued. For a broadband linear array of N elements 
each with L taps, x(n) and w(n) are NL dimensional vec-
tors. In a LCMV beamformer the array output power is 
minimized subject to a set of K linear constraints. This is 
expressed mathematically as - 

	

min w t R.w subject to Ctw = f, 	(2) 

where R.. denotes the covariance matrix of x(n), the con-
straint matrix C contains K column vectors whilst the re-
sponse vector f contains the scalar constraint value for each 
vector. The solution to (2) is obtained via Lagrange multi-
pliers as 

w = R,O, '  c (C' R,O ' c)' f 	(3) 

The constraint equations in (2) describe a NL - K di-
mensional hyperplane in the N L dimensional space which is 
termed the adaptive weight vector solution space. This ter-
minology reflects the fact that all weight vectors must lie 

- 

- 
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in this subspace. The adaptive weight vector will converge 
to an optimum weight vector which lies on the hyperplane 
and simultaneously minimizes the output power. A large 
array will have a large value A'L, but may not have a corre-
spondingly large number of constraints K, so that the solu-
tion space may be overly large meaning the adaptive proces-
sor may have a long reaction time and require prohibitively 
large computation. The desire for fast convergence rates and 
real time operation leads to the study of arrays which em-
ploy reduced dimensional weight vectors - so called partially 
adaptive arrays. The objective in this paper is to reduce 
the dimension of the solution space in some sparse manner 
whilst maintaining an adequate level of array performance. 

The LCMV beamformer can be implemented in either 
of two equivalent structures. In the first the adaptive 
weights are computed then applied directly to the array data. 
Frost [4] proposed an efficient gradient—based algorithm for 
updating the adaptive weight vector. In a generalised side-
lobe canceller (GSC) implementation the weight vector w is 
decomposed into two orthogonal components, one which lies 
in the range space of C called w 5 , and one which lies in the 
null space of C given as —C,,w 0 . The orthogonality ensures 
the lower branch's response to the desired signal is zero. The 
signal blocking matrix C is full rank and satisfies C,C = 0. 
The adaptive weight vector w,, is chosen as a solution of the 
unconstrained minimization problem 

min(wg - C,,Wo)tRxx(Wq - 	 (4) 

the optimal weight vector being given by 

W0  = 	 (5) 

The important feature of the beamformer outlined in [4] 
was the use of broad—band steering delays at each element. 
The desired signal was identified by time—delay steering the 
sensor outputs so that any signal incident from the direc-
tion of interest (look direction) would appear as an identical 
replica at the output of the steering delays. All other sig-
nals which did not have this property would be processed 
as noise or interference. As far as the desired signal is con-
cerned the array then appears as a single tapped delay line, 
with tap weights given by the sum of the corresponding ele-
mental tap weights for that particular tap. The pre-steering 
delays therefore allow control of the frequency response in 
the look direction. 

More importantly broad—band steering delays allow a 
very simple structure for the constraint and signal block-
ing matrices C and C,,. The constraint matrix will be of the 
form 

iN ON 

ON iN 
C= 	. 	. 	. 	 (6) 

ON 
iN 

and the response vector f will specify the equivalent tapped 
delay line weights. In (6) the column vector IN consists of 

N unity entries and the vector ON  contains N zeros. With 
the above structure for the constraint matrix the problem 

of finding an orthogonal signal blocking matrix is greatly 
simplified. One example is the diagonal matrix with L sub-
matrices w shown below. 

w 

Wt  

W 

C,= 	 .. 	 ; 	= 	
SD2 

W  

w 
W 	 toN_I 

(7) 
The columns wi of w should sum to zero and be mutually or-
thogonal to ensure that C. is full rank. A physically simple 
and elegant example of w is shown below. In this example 
each of the columns involves only a simple difference opera-
tion between adjacent elemental outputs, ensuring that the 
beamformer hardware will be simple to implement. 

—1 	1 	 0 

	

—1 	1 

W = 	 ... 	 ( 8) 

—1 - - 

A signal blocking matrix whose elements consist entirely 
of ones and zeros has several computational advantages. 
Firstly a matrix multiplication which involves a sparse ma-
trix can be implemented more efficiently than one which does 
not. Secondly, if the only non—zero entries are either 1 or 
-1 then the matrix multiplication consists wholly of addi-
tion/subtraction operations. These are faster and simpler to 
implement than multiplications. If we can then subsequently 
reduce the adaptive dimension, also in some sparse manner, 
then we can still exploit these desirable features. The inputs 
to the adaptive processor would therefore be derived through 
simple differencing of adjacent elements. 

In a partially adaptive generalized sidelobe canceller [2] 
a IV  - K x J transformation matrix T,,, which maps the 
fully adaptive problem to a lower (J) dimensional space, is 
inserted after the signal blocking matrix. The problem now 
becomes that a designing T,, so as to minimize any degra-
dation in array performance. The performance measure em-
ployed in this paper is output mean square error. 

The beamformer output mean square error is defined 
as [5] 

MSE = E [I - wtxl 2 ] = WtIt nn W, 	 (9) 

in which the desired signal a = ws is the beaznformer out-
put in the absence of noise for the desired signal vector a, 
and B.,,,, is the covariance matrix of noise and interference. 
For the partially adaptive GSC the mean square error can 
be shown to be 

MSE = WitnnW q  

(10) 
Our task now is to minimize this by appropriate design of 
T,,. 
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III. A SPARSE APPROACH 

Analytic minimization of the mean square error over all in-
terference scenarios of interest presents a formidable prob-
lem, and has been discussed [2]. Our problem in a sparse 
design of T,, is that of choosing which degrees of freedom 
should be retained, and which should be discarded. Here 
a sub—optimum iterative approach based upon minimization 
of the output MSE of the partially adaptive array is pre-
sented. Once the desired adaptive dimension is specified the 
algorithm iteratively searches for degrees of freedom which 
will best minimize the output MSE. Recall that the solution 
space has dimension NL - K. A sparse solution means that 
a reduced number of dimensions, those that have most in-
fluence upon the adaption, will be selected for the optimiza-
tion. This results in a transformation matrix that will be 
composed of a selection of unit vectors, the non—zero entries 
indicating the degrees of freedom selected. Table I summa-
rizes the proposed algorithm. 

If we denote the transformation matrix of dimension 
('IL - K x i as T,, and the set of allowed degrees of freedom 
as {e'} , 1 < j ~ NL - K, and the selected degrees of free-
dom as {P}, 1 < j 3, then our selection procedure can 
be described as follows. 

Initially the algorithm selects the first of the set of al-
lowed vectors and forms T, as a matrix with the single col-
umn e'. The output mean square error is computed for this 
transformation matrix and stored. The column e 1  is now re-
placed with the second vector in the allowed set e 2 , and the 
output mean square is evaluated once more. This procedure 
is repeated until all the vectors in the allowed set have been 
tried. The column to be selected is chosen as the allowed 
vector which resulted in the smallest output MSE. This se-
lected column i 1 , is then deleted from the allowed set and the 
algorithm commences upon a search for additional vectors. 
At any state the transformation matrix can be partitioned 
into two portions - the previously selected columns and the 
allowed vector for which the output MSE is currently be-
ing evaluated. This iterative search for vectors which best 
minimize the output MSE is continued until all the allowed 
columns have been added, or until the output MSE reaches 
an acceptable level. The simulations presented later show 
that often only a small number of the allowed columns are 
required, and that addition of further columns does little to 
further improve the output MSE performance. 

In the fully adaptive case T will be an identity ma-
trix (or some column—wise permutation), but in the partially 
adaptive case the columns of T. will be those degrees of free-
dom that have most influence upon the output MSE. At each 
step the algorithm searches the remaining DOF for one that 
results in the greatest reduction in output MSE. 

This technique is similar to the orthogonal least squares 
algorithm described by Chen et al. [6]. In this radial basis 
function centres are chosen one by one so that each addi-
tional centre minimizes the least square error. After a centre 
is chosen the remaining basis vectors (columns) are made 
orthogonal to the chosen vector. This procedure is iterated 
until the output error is sufficiently small. The algorithm 

o At the first step, for 1 <j < NL - K, compute 

T = e 

MSE" w,Rnn wq  - 

Find MSE ')  = min {MSE1", 1 <j < NL - K) 

then select T, = i'. 

o At the kt'  step, k > 2, for I < j <NL - K, 
e' 	....... k_1 compute 

T,= [T -1  e'] 

MSE "  = WItnnW q  - 

wR 0  CT(Tt 	 W 5  

Find MSE&) = min{MSE", 1 < j <NL - K, 
e'  

then select T = 	: ik] 

o The procedure is terminated at the J step when 

MSENL_K 
> 

	

MSEj 	
° 

where 0 < p < 1 is some performance measure. This 
gives a beainformer of adaptive dimension J. 

Table 1: The selection algorithm 

described above is simpler because the allowed set of vectors 
are already mutually orthogonal, removing the need to or-
thogonalise the remaining columns after one is selected. The 
iterative nature of these algorithms does lead to a "good" set 
of vectors, but not may not yield the optimum selection. In 
the future some form of back—tracking may need to be added 
to the algorithm to allow an improved set to be chosen. 

IV. EXAMPLE 

The performance of the new algorithm is now examined for 
the suppression of ground clutter received at an airborne ar-
ray radar. A computer simulation shows the performance of 
this sparse algorithm as compared to a more conventional 
eigenstructure based technique. The clutter returns at a 16 
element array with each element having 8 taps were com-
puted. A GSC implementation with a 8 (K = L) linear con-
straints was employed, giving a solution space of fully adap-
tive dimension 120. The transformation matrix was designed 
with a covariance matrix that would result from an omnidi-
rectional transmit pattern, i.e. one in which all Doppler fre-
quencies along the diagonal of the Doppler—cosine azimuth 
are illuminated equally. Figure 1 shows the eigenspectra for 
the clutter covariance matrix. The step—like nature of the 
eigenspectra is useful in this application because the rank 

- 
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a 

of the interference covariance matrix is well defined. In this 
case the rank of the correlated portion of the interference co-
variance matrix is approximately 33. For partially adaptive 
dimensions less than this number we might expect the new 
algorithm to have superior performance. 

Figure 2 compares the output MSE of the new sparse al-
gorithm with that of the eigenstructure based technique dur-
ing the training procedure. As can be seen, for low partially 
adaptive dimensions, the new algorithm has a lower output 
MSE than that of the eigenvector technique. What is also in-
teresting is that the new algorithm tends to the fully adaptive 
MSE more quickly than the eigenvector approach. In fact, 
for an output MSE of -35.5dB only 43 DOF are required in 
the sparse design, as opposed to 79 in the eigenvector case. It 
should be remebered though, that the eigenstructure based 
design does this at a considerably greater implementational 
expense. 

SUMMARY 

The problem of selecting the degrees of freedom to be re-
tained in a partially adaptive beamformer has been investi-
gated. It has been shown that an iterative method which 
gives a sparse solution for the transformation matrix can re-
duce the required partially adaptive dimension, whilst also 
reducing the computational complexity of the partially adap-
tive beamformer. The usefulness of this technique has been 
demonstrated through computer simulation. 
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A Sparse Approach to Partially Adaptive Airborne Radar 
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Abstract. This paper is concerned with linearly constrained minimum variance (LCMV) beamforming. Partially adaptive 
LCMV beamformers are designed by determining a transformation which maps the fully adaptive weight space into a lower 
dimension partially adaptive weight space, usually so that some set of performance measures is optimised. One common method 
is to utilise the eigenvectors associated with the interference data covariance matrix. An iterative design technique which 
satisfies the dual goals of mimimum output mean squared error (MSE), and reduced adaptive dimension was first presented 
in [1]. This paper extends these results by considering the convergence performance of the resultant beamformer. Simulation 
results demonstrate that this iterative approach leads to a lower converged MSE whilst retaining simplicity in the beamforming 
structure. 

1. Introduction 

The computational requirement of each update in ad-
aptive beamforming algorithms increases rapidly with 
the number of elements in the array. In many situ-
ations the beamformer will have an overly large number 
of degrees of freedom, "degrees of freedom" denoting the 
number of unconstrained or "free" weights that must be 
computed. For example, an LCMV beamformer with 
L constraints upon N elements has N - L degrees of 
freedom, the generalised sidelobe canceller (GSC) [2] 
implementation would separate these into an uncon-
strained adaptive weight vector Wm. A fully adaptive 
beamformer uses all of these degrees of freedom whilst 

a partially adaptive beamformer will utilise only a sub-
set of these degrees of freedom. When the system has 
too many degrees of freedom several undesirable results 

arise: 

the system will require many iterations before con-
vergence; and 
the computational burden per iteration will in-
crease quickly as the number of weights. 

It is therefore of great importance that we reduce the 
number of degrees of freedom available to the processor. 
Fortunately, most interference suppression problems are 
rank deficient in nature, i.e. they require less adaptive 
degrees of freedom than are offered by the array. By ap-
propriate design the additional degrees of freedom can 
be discarded so that only those that are important are 
retained. This is the goal in partially adaptive beam-

forming. 
This paper will consider a method for designing par-

tially adaptive beamformers first reported in [1]. Al-
though only applied to the GSC in this paper, this tech-
nique can be used in a variety of prediction/estimation  

problems in which low-rank representations of signals 
are required. The case considered here is the suppres-
sion of ground clutter received at an airborne pulse-
Doppler radar. This interference is two dimensional in 
nature, the clutter returns being a function of both azi-
muth (bearing) and Doppler (frequency). 

In this paper we describe an iterative algorithm for 
specifying the degrees of freedom to be retained in a 
partially adaptive design. Additionally we examine the 
convergence performance using a simple least squares 
algorithm. The primary results reported here are the 
reduction in required adaptive dimension facilitated by 
an iterative solution and the improved convergence per-
formance achieved by this structure. As such it offers 
several advantages over the eigenstructure approaches 
which are based upon the structure of the interference 
subspace. Simulation of a partially adaptive GSC illus-
trates the effectiveness of this structure. 

2. Background 

Let the N-dimensional vector a(k) denote the received 
data in the beamformer structure. The beamformer out-

put y(k) is formed as a linear combination of the com-
ponents of z(k), i.e. y(k) = w"x(k). Here to is the 
weight vector and is typically chosen to minimise the 
output power whilst maintaining a specified response to 
the desired signal. Formally this is, 

minw 11 R,w subject to C"w=f, 	(1) 

in which R. is the data covariance matrix, C is an N X L 

constraint matrix, and / is an N x 1 response vector. 

The superscript H indicates Hermitian transpose. The 
GSC implementation decomposes the weight vector to 
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Figure 1: Partially adaptive generalised sidelobe canceller 

into two orthogonal components, 

ii = V)5  - CnWm, 	 (2) 

where as5  E range (C) satisfies C 1 w, = f, and the 

full rank N x (N - L) signal blocking matrix C. sat-

isfies CC = 0. The orthogonality ensures the de-
sired signal is excluded from the adaptive portion of the 

beamformer. The (N—L) dimensional weight vector w. 
represents the available adaptive degrees of freedom and 
satisfies the minimisation problem 

mm (as5 - CnWm )H R(w5 - Cn wm). 	(3) 

The optimal weight vector is given by 

tern = (CnHR r Cn )_ I CnHRx W5 . 	(4) 

In a partially adaptive GSC the number of available ad-
aptive weights is reduced from (N - L) to K. This is 

done by inserting the (N - L) x K matrix Tn after the 

signal blocking matrix (as in Fig. 1). If T = C.T. is 

full rank then the partially adaptive GSC weight vector 
is as = as5  - Tin., for which the optimal solution is 

Wrn = ( T"RT) '  T 11  Ra w q . 	 (5) 

The data present in the array consists of a portion 8(k) 

due to the desired signal and a portion n(k) due to 

the interference and noise, i.e. z(k) = s(k) + n(k). Let 

s(k) denote the desired signal at the beamformer output. 
We assume the constraints C 1 v, = / are chosen to 

ensure that as passes the desired signal with unit gain. 
Thus, (k) = w7s(k) = as"s(k). In other words, s(k) 

is the beamformer output in the absence of noise and 

interference, n(k) = 0. Now, the output mean squared 

error is defined as 

E{Is(k)_w"z(k))12}. 	 (6) 

Substitution of z(k) = 8(k) + n(k) and application of 

the constraint s(k) = w"s(k) yield 

en = E {Is(k) - wHs(k) - w"n(k)12} 

= E{Iw"n(k)I 2 } 

= w 11 R,w, 	 (7)  

in which Rn  is the covariance matrix of noise and in-
terference. For the partially adaptive GSC the MSE is 
given by 

en = w7Rn wq  

_ W7R n T(THR n T)' THR n W5 . (8) 

The output MSE therefore consists of two components 
which are related specifically to the adaptive and non-
adaptive processing paths in the GSC. 

3. Beamformer Design 

Partially adaptive techniques are used to reduce the 
implemental and computational complexity of adaptive 
beamformers. It is therefore of primary importance that 
we maintain a simple structure for the matrix operations 
shown in Fig. 1. Otherwise the reduction in adaptive di-
mension will be negated by the over-complexity of the 
network effecting this reduction. The two important ele-
ments of Fig. 1 are the signal blocking matrix C and 
the transformation matrix T. - together they form the 

transformation T. If each of the components C. and 

T. are simple then the overall beamforming structure 
will be easy to implement. 

Figure 2: The GSC broadband beamformer. 

Fig. 2 depicts a physical realisation of the basic GSC 
structure. Each circle indicates a weight and each square 
box a time delay. The wideband steering delays r1 steer 
the elemental outputs so that the desired signal appears 
identically at the input to as5  and W. The quiescent 

weight vector as5  is a simple summation (as5  = 1). The 
subsequent tap weights are used to identify the Doppler 
of target signals. The matrix W performs the signal 
blocking operation by simply differencing the outputs 
of the steering delays. Typically the matrix W, has the 

form 
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- - W, = ... ](9) - - - 

This is a sparse bidiagonal matrix in which the only non-
zero entries are either 1 or -1. The iteratively designed 
transformation matrix described in [1] identifies those 
adaptive weights in the lower path that have greatest 
influence on the output, and sets the remainder to zero. 
This implies that T will be a matrix in which each 
column has only one non-zero entry of value 1. 

A large array will have a transformation matrix which 
contains a large number of free elements. Global op-
timisation over each element is therefore an unrealistic 
proposition. Van Veen and others considered this in sev-
eral papers [3,4] and suggested employing iterative tech-
niques. The algorithm described in [1] is one example of 
these iterative techniques which is particularly pertin-
ent to our current problem. A mathematical definition 
of the algorithm can be found in this reference, but it 
will be useful to summarise it here. 

At the outset the matrix T has dimension zero, i.e. 
no columns (weights) have been selected. At each it-
eration the algorithm appends each of the remaining 

weights in turn to T and evaluates the output MSE. 
The weight that achieves the best reduction in output 
MSE is then selected. This process is iterated until 
either the output MSE has reached an acceptable level, 
or until the required partially adaptive dimension has 
been reached. For comparison, we will also consider 
the eigenstructure based beamformer described in [4]. 
In this design the transformation is non-sparse, being 
formed from the eigenvectors of the matrix C," R. C,. 

4. Training 

The scenario considered within this paper is that of an 
airborne look down pulse-Doppler radar. The aim is 
to identify low flying aircraft in both bearing and fre-
quency. Ground clutter echoes are generated as the 
summation of independent identically distributed Gaus-
sian scatterers on a single radar range ring. A GSC 
beamformer with sixteen elements in a linear equispaced 
geometry, with eight tap FIR filters in each channel is 
employed. Fig. 3 shows the ordered eigenspectrum for 
the matrix In this case the rank would ap-
pear to be between 20 and 30. 
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Figure 3: Eigenspectrum for the correlated portion of 
C,HR,. C,.. 

Fig. 4 compares the output MSE of the iterative ap-
proach with that of the eigenstructure technique dur-
ing the training procedure. The iterative technique per-
forms significantly better - for an output MSE of-35.5dB 
only 43 degrees of freedom are required in the iterative 
design, as opposed to 78 in the eigenstructure beam-
former. 

eigenstructure approach 
iterative approach 
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Figure 4: Output mean square error for iterative design and 
eigenstructure approach during training phase. 

5. Convergence Performance 

In practice the covariance matrix R is unknown and 

must be estimated from the data. Assume that there 
are M data vectors n(n),n = 1, 2, ,M available. 

The sample covariance matrix estimate of Rn  is 

in = 	
( 10) 

-28 

-29 

-30 
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Additionally we define the data matrix as X = 
[n(1)n(2) ... n(M)), then (10) can be rewritten in 

matrix form as 

= .XX". 	 (11) 

Substitution of (11) in (8) yields the sample MSE ê,, as 

= 

- wXX11T (THXXHT) '  T"XX 11 ID5 }. 

(12) 

These expressions can be used as the basis of an un-
weighted least squares problem. In [5) an expression for 
the mean value of the sample MSE was given as 

	

E{ê} = M_K en , 	 ( 13) 

where K is the adaptive dimension as before. The ra-

tio (M - K)/M determines the adaptive convergence of 
the mean when viewed as a function of the number of 

snapshots M. Eqn. (13) shows that the expected value 
of the excess MSE will be within 3dB of the optimum 
after M = 2K data vectors. However, the eigenspec-
trum of Fig. 3 demonstrates the rank deficient nature of 
this problem. The adaptive weight vector will lie in a 
space whose dimension is no larger than the input data. 
We would therefore expect E } to be within 3dB of 
the optimum after approximately 50 snapshots. 

Sample MSE is plotted against M for a single realisa-
tion in Fig. 5. Both beamformer types have an adaptive 
dimension of 43. For comparison E {e} is drawn for 

the case K = 23. The estimated covariance matrix is 
rendered invertible by augmenting the leading diagonal 
by a small term as follows 

)I + 	XX". 	 (14) 

In practice ) should be made equal to the mean value of 
uncorrelated noise. All three curves have attained near 
optimum performance after 46 snapshots. Both beam-
former types differ only slightly from the mean, verifying 
the initial estimate of the clutter dimensionality made 
in section 4. The iteratively designed beamformer has a 
lower final value of MSE validating it as a design tech-

nique. 

6. Summary 

The design of a partially adaptive beamformer which is 
effective in cancelling two dimensional interferences has 
been considered. It has been shown that an iterative 
method which gives a sparse solution for the transform-
ation matrix can reduce the required partially adaptive 

eigenstructure approach - 
iterative approach ..... 

K = 23 --- 

0 	 40 	50 	120 	160 
N 

Figure 5: Output sample mean square error of iterative and 
eigenstruct are beam formers versus data matrix 
size. 

dimension, whilst also ensuring a simple beamforming 
structure. The convergence performance of the resultant 
beamformer has also been examined and demonstrated 
through computer simulation. 

Acknowledgement 

The authors wish to thank the Science and Engineer-
ing Research Council and GEC Marconi Avionics Ltd, 
Edinburgh, for their financial support. 

References 

I. Scott and B. Mulgrew, "A sparse approach in par-
tially adaptive linearly constrained arrays", presen-
ted at ICASSP-94, April 1994. 

L.J. Griffiths and C.W. Jim, "An alternative ap-
proach to linearly constrained adaptive beamform-
ing", IEEE Trans. Antennas and Propagation, vol. 

AP-30, no. 1, pp.  27-34, January 1982. 

B.D. Van Veen and R.A. Roberts, "Partially adapt-
ive beamformer design via output power minimiz-
ation", IEEE Trans. Acoustics, Speech and Signal 
Processing, vol. ASSP-35, no. 11, pp. 1524-1532, 
November 1987. 

B.D. Van Veen, "Eigenstructure based partially ad-
aptive array design", IEEE Trans. Antennas and 

Propagation, vol. AP-36, no. 3, pp. 357-362, March 
1988. 

[51 B.D. Van Veen, "Adaptive convergence of linearly 
constrained beamformers based on the sample co-
variance matrix", IEEE Trans. Signal Processing, 

vol. 39, no. 6, pp. 1470-1473, June 1991. 

PQ 
'p 

{0 
3: 
a 

a a 
C, 

-35 

-40 

-45 

-50 

-55 

-60 

137 



Appendix D 

Additional results 

This appendix contains additional simulation results for the selection algorithm presented in 

chapter 4. Four additional scenarios are considered. A variety of beamformer dimensions 

are examined, along with the influence of range, velocity and depression angle. Table D.1 

summarises the simulation parameters. All other radar parameters are as in Table 3.1. For 

brevity, the estimated rank of the correlated portion of the matrix C .I C, has been included 

in Table D.1. 

Scenario 4 1  Scenario 5 Scenario 6 Scenario 7 

NL, K 4,4 8,4 8, 8 16, 8 

range llOOm 2000m 3000m 1200m 

depression angle 65.40 30 0  19.5 0  56.4 0  

velocity 150ms 1  100ms 1  100ms 1  150ms 1  

rank C"RC 8 14 19 35 

Table D.1: Parameters for additional training scenarios. 

Eigenstructure Sparse Saving 

% 

Scenario 

Je Multiplies 

Additions! 

Subtract. J5  Multiplies 

Additions! 

Subtract. Multiplies 

Additions/ 

Subtract. 

4 11 11011 11011 11 4323 7612 61 31 

5 25 107625 107625 24 39168 65856 64 39 

6 50 857800 857800 30 151800 279420 83 68 

7 90 5763240 1 	5763240 45 834165 1584990 86 73 

Table D.2: Operational expense of eigenstructure and iterative beamformers - Scenarios 4-7. 

The performance of the design procedures are depicted in Figures D.1—D.4. it is apparent 

that all the additional scenarios exhibit similar performance to that found in chapter 4. The 

new sparse selection approach attains a lower output MSE at virtually all partially adaptive 

dimensions, which suggests that this technique is robust to changing radar parameters and 
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beamformer dimensions. The greatest improvements in performance occur for the larger beam-

formers. Table D.2 shows the operational expense of the sparse and eigenstructUre beamformers 

found for scenarios 4-7. The operational expenses were computed from (4.40) and (4.41). 
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Figure D.1: 
Output mean squared error for new iterative design and existing techniques during 

training phase - Scenario 4. 
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Figure D.2: Output mean squared error for new iterative design and existing techniques during 

training phase - Scenario 5. 
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Figure D.3: Output mean squared error for new iterative design and existing techniques during 
training phase - Scenario 6. 
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Figure D.4: Output mean squared error for new iterative design and existing techniques during 
training phase - Scenario 7. 
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