664 research outputs found

    Novel Trends in Scaling Up Machine Learning Algorithms

    Get PDF
    Big Data has been a catalyst force for the Machine Learning (ML) area, forcing us to rethink existing strategies in order to create innovative solutions that will push forward the field. This paper presents an overview of the strategies for using machine learning in Big Data with emphasis on the high-performance parallel implementations on many-core hardware. The rationale is to increase the practical applicability of ML implementations to large-scale data problems. The common underlying thread has been the recent progress in usability, cost effectiveness and diversity of parallel computing platforms, specifically, the Graphics Processing Units (GPUs), tailored for a broad set of data analysis and Machine Learning tasks. In this context, we provide the main outcomes of a GPU Machine Learning Library (GPUMLib) framework, which empowers researchers with the capacity to tackle larger and more complex problems, by using high-performance implementations of wellknown ML algorithms. Moreover, we attempt to give insights on the future trends of Big Data Analytics and the challenges lying ahead

    Real-Time Human Detection Using Deep Learning on Embedded Platforms: A Review

    Get PDF
    The detection of an object such as a human is very important for image understanding in the field of computer vision. Human detection in images can provide essential information for a wide variety of applications in intelligent systems. In this paper, human detection is carried out using deep learning that has developed rapidly and achieved extraordinary success in various object detection implementations. Recently, several embedded systems have emerged as powerful computing boards to provide high processing capabilities using the graphics processing unit (GPU). This paper aims to provide a comprehensive survey of the latest achievements in this field brought about by deep learning techniques in the embedded platforms. NVIDIA Jetson was chosen as a low power system designed to accelerate deep learning applications. This review highlights the performance of human detection models such as PedNet, multiped, SSD MobileNet V1, SSD MobileNet V2, and SSD inception V2 on edge computing. This survey aims to provide an overview of these methods and compare their performance in accuracy and computation time for real-time applications. The experimental results show that the SSD MobileNet V2 model provides the highest accuracy with the fastest computation time compared to other models in our video datasets with several scenarios

    PERICLES Deliverable 4.3:Content Semantics and Use Context Analysis Techniques

    Get PDF
    The current deliverable summarises the work conducted within task T4.3 of WP4, focusing on the extraction and the subsequent analysis of semantic information from digital content, which is imperative for its preservability. More specifically, the deliverable defines content semantic information from a visual and textual perspective, explains how this information can be exploited in long-term digital preservation and proposes novel approaches for extracting this information in a scalable manner. Additionally, the deliverable discusses novel techniques for retrieving and analysing the context of use of digital objects. Although this topic has not been extensively studied by existing literature, we believe use context is vital in augmenting the semantic information and maintaining the usability and preservability of the digital objects, as well as their ability to be accurately interpreted as initially intended.PERICLE

    Signal and image processing methods for imaging mass spectrometry data

    Get PDF
    Imaging mass spectrometry (IMS) has evolved as an analytical tool for many biomedical applications. This thesis focuses on algorithms for the analysis of IMS data produced by matrix assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometer. IMS provides mass spectra acquired at a grid of spatial points that can be represented as hyperspectral data or a so-called datacube. Analysis of this large and complex data requires efficient computational methods for matrix factorization and for spatial segmentation. In this thesis, state of the art processing methods are reviewed, compared and improved versions are proposed. Mathematical models for peak shapes are reviewed and evaluated. A simulation model for MALDI-TOF is studied, expanded and developed into a simulator for 2D or 3D MALDI-TOF-IMS data. The simulation approach paves way to statistical evaluation of algorithms for analysis of IMS data by providing a gold standard dataset. [...

    Describing Images by Semantic Modeling using Attributes and Tags

    Get PDF
    This dissertation addresses the problem of describing images using visual attributes and textual tags, a fundamental task that narrows down the semantic gap between the visual reasoning of humans and machines. Automatic image annotation assigns relevant textual tags to the images. In this dissertation, we propose a query-specific formulation based on Weighted Multi-view Non-negative Matrix Factorization to perform automatic image annotation. Our proposed technique seamlessly adapt to the changes in training data, naturally solves the problem of feature fusion and handles the challenge of the rare tags. Unlike tags, attributes are category-agnostic, hence their combination models an exponential number of semantic labels. Motivated by the fact that most attributes describe local properties, we propose exploiting localization cues, through semantic parsing of human face and body to improve person-related attribute prediction. We also demonstrate that image-level attribute labels can be effectively used as weak supervision for the task of semantic segmentation. Next, we analyze the Selfie images by utilizing tags and attributes. We collect the first large-scale Selfie dataset and annotate it with different attributes covering characteristics such as gender, age, race, facial gestures, and hairstyle. We then study the popularity and sentiments of the selfies given an estimated appearance of various semantic concepts. In brief, we automatically infer what makes a good selfie. Despite its extensive usage, the deep learning literature falls short in understanding the characteristics and behavior of the Batch Normalization. We conclude this dissertation by providing a fresh view, in light of information geometry and Fisher kernels to why the batch normalization works. We propose Mixture Normalization that disentangles modes of variation in the underlying distribution of the layer outputs and confirm that it effectively accelerates training of different batch-normalized architectures including Inception-V3, Densely Connected Networks, and Deep Convolutional Generative Adversarial Networks while achieving better generalization error

    Optimización de la factorización de matrices no negativas en Bioinformática

    Get PDF
    En los últimos años se ha incrementado el interés de la comunidad científica en la Factorización de matrices no negativas (Non-negative Matrix Factorization, NMF). Este método permite transformar un conjunto de datos de grandes dimensiones en una pequeña colección de elementos que poseen semántica propia en el contexto del análisis. En el caso de Bioinformática, NMF suele emplearse como base de algunos métodos de agrupamiento de datos, que emplean un modelo estadístico para determinar el número de clases más favorable. Este modelo requiere de una gran cantidad de ejecuciones de NMF con distintos parámetros de entrada, lo que representa una enorme carga de trabajo a nivel computacional. La mayoría de las implementaciones de NMF han ido quedando obsoletas ante el constante crecimiento de los datos que la comunidad científica busca analizar, bien sea porque los tiempos de cómputo llegan a alargarse hasta convertirse en inviables, o porque el tamaño de esos datos desborda los recursos del sistema. Por ello, esta tesis doctoral se centra en la optimización y paralelización de la factorización NMF, pero no solo a nivel teórico, sino con el objetivo de proporcionarle a la comunidad científica una nueva herramienta para el análisis de datos de origen biológico. NMF expone un alto grado de paralelismo a nivel de datos, de granularidad variable; mientras que los métodos de agrupamiento mencionados anteriormente presentan un paralelismo a nivel de cómputo, ya que las diversas instancias de NMF que se ejecutan son independientes. Por tanto, desde un punto de vista global, se plantea un modelo de optimización por capas donde se emplean diferentes tecnologías de alto rendimiento..
    • …
    corecore