
Novel Trends in Scaling Up Machine Learning
Algorithms

Noel Lopes
UDI, Polytechnic of Guarda, Portugal

CISUC, University of Coimbra, Portugal
Email: noel@ipg.pt

Bernardete Ribeiro
CISUC, Department of Informatics Engineering,

University of Coimbra, Portugal
Email: bribeiro@dei.uc.pt

Abstract—Big Data has been a catalyst force for the Machine
Learning (ML) area, forcing us to rethink existing strategies
in order to create innovative solutions that will push forward
the field. This paper presents an overview of the strategies for
using machine learning in Big Data with emphasis on the high-
performance parallel implementations on many-core hardware.
The rationale is to increase the practical applicability of ML
implementations to large-scale data problems. The common
underlying thread has been the recent progress in usability,
cost effectiveness and diversity of parallel computing platforms,
specifically, the Graphics Processing Units (GPUs), tailored for
a broad set of data analysis and Machine Learning tasks. In
this context, we provide the main outcomes of a GPU Machine
Learning Library (GPUMLib) framework, which empowers
researchers with the capacity to tackle larger and more complex
problems, by using high-performance implementations of well-
known ML algorithms. Moreover, we attempt to give insights on
the future trends of Big Data Analytics and the challenges lying
ahead.

I. INTRODUCTION

Big Data realization has sparked numerous challenges in a
wide range of areas. At present, Machine Learning (ML) is
the best way to exploit the opportunities encompassed in Big
Data. From a more general point of view, ML field embodies
the potential to extract context-aware valuable information
from the ubiquitous volumes of data, leveraging strategic and
competitive advantages to organizations and offer a solution to
improve most human life activities. However, the rise of Big
Data also exposed the limitations of traditional CPU-based
Machine Learning algorithms’ implementations, since most
tools fail to process large amounts of data in a reasonable time
frame. Moreover, ML algorithms are typically designed with
emphasis on effectiveness (e.g. classification performance)
rather than on efficiency (e.g. time required to produce a
classifier) [1].

Rationally, as ML problems become more complex and
computationally demanding, the pressure to shift to high
throughput parallel architectures is increased. Subsequently,
the Graphics Processing Unit (GPU) represents a compelling
and feasible solution to address the increasing needs of compu-
tational performance, due to its inherent high-parallelism. We
have taken on this challenge and developed a high performance
open-source GPU Machine Learning Library (GPUMLib),
available at http://gpumlib.sourceforge.net/, which aims to
empower the ML community with the tools needed to explore

larger datasets, by tapping into the GPU enormous compu-
tational power. Since its release, GPUMLib has attracted the
interest of numerous people, using a wide-range of platforms
and benefited researchers worldwide.

In this paper, Section II presents the strategies for dealing
with Big Data in the context of ML problems addressing data
analysis (feature selection and instance selection), predictive
analytics (incremental and batch learning) and distributed
and high-throughput parallel implementations. Moreover, in
Section III we address the GPU computing challenges and
how they can be approached with scalability in mind and
are one way of modern computing. We show in Section IV
the advantages of using GPUMLib (an open source GPU
Machine Learning Library) in practical scenarios as well as
the distinct ways it can be successfully used in a varied
number of problems. In Section V we describe novel trends
in advanced analytics and unify them in a common structure.
Finally, in Section VI we present final remarks and emphasize
how important are GPU computing tools for the scientific
community in general.

II. STRATEGIES FOR MACHINE LEARNING BIG DATA

To cope with the increasingly challenging and compu-
tationally demanding problems, several strategies are being
employed, as depicted in Figure 1. Since the volume of data
to process has a significant impact (sometimes exponential) in
the computational requirements of ML algorithms, an obvious
approach consists of reducing the size and complexity of the
dataset (i.e. the number of samples and/or features).

In order to reduce the number of samples, instance selection
methods, which aim at obtaining a representative subset of
the original training data, can be used. The challenge is to
identify which samples (instances) are more relevant (useful)
for the learning process. López et al. [2] presented a review
of instance selection methods dividing them into wrapper and
filter methods, depending respectively on whether the selection
criterion is based on the accuracy of a classifier or not.
Although instance selection methods can effectively reduce
the volume of data, their application may be time consuming
(in particular for wrapper methods) and in some situations we
may be simply transferring the complexity from the learning
methods to the instance selection methods.
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Fig. 1. Strategies for addressing large-scale datasets Machine Learning
problems.

In addition to lowering computational complexity of algo-
rithms, reducing the number of features has also the potential
benefit of improving the generalization performance of ML
models. Reducing the feature space can be accomplished
by using dimensionality reduction techniques, which include
both feature extraction and feature selection approaches [3].
Feature extraction techniques (e.g. Principal Component Ana-
lysis (PCA), Linear Discriminant Analysis (LDA)) project the
original features into a new lower dimensional space, whose
features are usually generated by combinations of the original
ones. A review of those can be found in van der Maaten
et al. [4]. Unfortunately, these methods are computationally
demanding and therefore its application to large datasets may
not be feasible when scaling up ML algorithms. Feature
selection techniques (e.g. Information Gain, Fisher Score)
have a different approach: they attempt to identify highly-
discriminant features that are expected to be more useful to
the learning process while minimizing redundancy. Likewise
instance selection methods, feature selection methods can
also be divided into wrapper and filter methods. As in the
case of instance selection, wrapper methods (based on a
classifier accuracy) should be avoided when tackling large-
scale problems, since they are prohibitively expensive to run
on sizable datasets [3].

A different strategy for dealing with Big Data consists of
using incremental learning algorithms. These are designed
to rapidly update their models, in order to incorporate new
information on a sample-by-sample basis and therefore have
the potential to handle also data streams and concept drifts.
Moreover, incremental algorithms can be used for stream
learning, since they typically, run in resource-aware envi-
ronments, constructing decision models that are continuously
evolving and tracking changes in the environment generating

the data [5]. An example of such algorithm is the Incremental
Hypersphere Classifier (IHC) [6], which yields good classifi-
cation performance results and can also be used as an instance
selection method with proven results [7], [8].

Naturally, developing new batch and incremental algorithms
and modifying existing ones, in order to expedite the learning
process, also plays an important role in scaling up ML algo-
rithms. For existing algorithms, the driven motivation can be at
least one of the following: to speed up the algorithm’s conver-
gence; to allow more parallelizable implementations; to make
the algorithm easier to distribute through the available compu-
tational resources. One algorithm that combines all these three
facets, while reducing the risk of creating unfitted/inadequate
models is the Semi-Supervised NMF (SSNMF) [9], which is
based on the Non-Negative Matrix Factorization (NMF) [10].

Finally, high-throughput parallel and distributed ML imple-
mentations will be crucial for scaling up algorithms and facing
the more challenging and demanding problems that are yet to
come. In this context, novel computational platforms both in
terms of hardware and software will hold the key to lift up the
potential of ML and Big Data Analytics, among other areas.
In this scenario, a promising architecture consists of using the
GPU for general purpose programming.

Ultimately, no single strategy will solve on its own this
problematic as Big Data keeps on getting bigger and successful
applications will most likely require a combination of these
approaches.

III. MANY-CORE GPU COMPUTING

Over the last decade the performance and capabilities of
the GPUs have been significantly augmented and today’s
GPUs, included in mainstream computing systems, are po-
werful, massively parallel and general-purpose programmable
devices [11], [12]. The peak performance of GPUs is over one
order of magnitude larger than the corresponding performance
of modern Central Processing Units (CPUs) and trend is for
this gap to continue to increase in the future [12]. This aspect
is depicted in Figure 2, updated from Owens et al. [13].1

In addition, GPUs are widely available and relatively inex-
pensive, since they are mass produced and regularly replaced
by newer generations with additional levels of programmabi-
lity and increasing computational power [14], [15], [16].

Applications and algorithms that present a high-degree of
parallelism and large computational requirements can benefit
the most from GPU implementations. It is not uncommon for
these to obtain speedups of one or even two-orders magnitude,
as compared with the corresponding CPU implementations.
For example, weeks of processing on the CPU may be trans-
formed into hours on the GPU [17]. Recognizing the potential
of General-Purpose computing on Graphics Processing Units
(GPGPU), hardware manufacturers saw the opportunity for a
new market and developed novel platforms for simplifying
the development process in this devices. Subsequently, the

1Figure 2 is a courtesy of Professor John Owens, from the University of
California, Davis, USA.
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Fig. 2. Peak floating point performance disparity between the CPU and the
GPU, over the years, in billions (109) of floating-point operations per second
(GFLOPS).

NVIDIA Compute Unified Device Architecture (CUDA), ra-
pidly gain wide adoption and become the elected platform
of the scientific community for solving numerous problems
that could not otherwise be solved in a realistic time frame,
using the CPU. With CUDA, instead of using graphics Appli-
cation Programming Interfaces (APIs), we can take advantage
of industry-standard languages, such as C++, coupled with
specific extensions to express GPU parallel computations. The
CUDA architecture exposes the GPU as a massive-parallel
device that operates as a co-processor to the host (CPU)
as depicted in Figure 3. The rationale is to offload data
parallel workloads to the GPU, where analogous operations
are executed over large quantities of data. Hence, the challenge
is to break down the original workload tasks into independent
processing blocks that can be carried out in parallel in the
thousands of cores available in a GPU, with occupancy and
scalability in mind.

The fundamental principles to identify the algorithms that
can benefit the most from a CUDA implementation are high-
lighted in Ryoo et al. [18]. Among other things, a very large
number of threads (thousands or even millions, depending
on the problem) are required to hide the global memory
latency. Moreover, they must be grouped appropriately to
avoid memory conflicts and non-sequential memory accesses,
which may downgrade significantly the overall performance.
Additionally, the adequate use of on-chip (shared memory) to
reduce bandwidth usage and redundant execution is extremely
important to speedup computations [12].

IV. SCALING UP MACHINE LEARNING USING GPUMLIB

Although most ML algorithms match the requirements for
obtaining significant speedups from a GPU parallel imple-
mentation, mapping algorithms to the GPU is far from being
an easy task. Moreover, being an excellent ML researcher
does not necessary imply being an excellent programmer [19].
Therefore we have taken on the challenge of developing GPU
parallel implementations of ML algorithms by developing
an open-source GPU Machine Learning Library (GPUMLib),
available at http://gpumlib.sourceforge.net/. GPUMLib aims
at empowering the ML community with a high-performance

TABLE I
MACHINE LEARNING (ML) GPU IMPLEMENTATIONS’ SPEEDUPS

(GPUMLIB).

Algorithm CPU GPU Speedups (≈)

BP Intel Core 2 Quad (2.50GHz) GTX 280 (240 cores) 28× to 175×
MBP Intel Core 2 Quad (2.50GHz) GTX 280 (240 cores) 33× to 179×
NMF and SSNMF Intel Core 2 Quad (2.50GHz) GTX 280 (240 cores) 56× to 707×
SVM Intel Quad Core i5 (3.33GHz) GTX 570 (480 cores) 14× to 165×
RBMs and DBNs Intel Dual Core i5 (2.70GHz) GTX 460 (336 cores) 22× to 465×

library that they can use to build real-world applications.
Moreover, by making the library open-source we aim at
promoting cooperation among researchers since they can build,
share and improve on top of existing resources rather than
having to re-implementing them. This assumes particular re-
levance, because the speed at which a given scientific field
advances depends on how well researchers collaborate with
one another [20].

Currently, GPUMLib implements the following ML algo-
rithms: Back Propagation (BP); Multiple Back Propagation
(MBP); Neural Selective Input Model (NSIM), which al-
lows Neural Networks (NNs) to handle missing data directly
without any pre-processing (e.g. imputation); Autonomous
Training System (ATS) for Neural Networks; Support Vec-
tor Machine (SVM); Radial Basis Function (RBF); NMF;
SSNMF; Self-Organizing Maps (SOM) networks; Restricted
Boltzmann Machines (RBMs); and Deep Belief Networks
(DBNs). Many of these provide speedups of one or even two-
orders magnitude. The speedup measures how many times
faster is the GPU implementation in comparison with the
corresponding CPU implementation (e.g. a speedup of 60×
means the GPU is 60 times faster than the CPU and therefore
is able to do in one minute the same amount of work that is
performed by the CPU in one hour).

Table I presents the GPUMLib speedups, collected
from Lopes and Ribeiro [12], that were obtained by
some of the above mentioned algorithms. These results
cover several distinct problem types, including bench-
marks obtained from the UCI Machine Learning Reposi-
tory [21], face recognition (e.g. ORL (http://www.cl.cam.ac.
uk/research/dtg/attarchive/facedatabase.html), Yale (http://cvc.
yale.edu/projects/yalefaces/yalefaces.html)) and hand-written
digits/symbols (e.g. MNIST (http://yann.lecun.com/exdb/
mnist/), HHreco (http://embedded.eecs.berkeley.edu/research/
hhreco/)) domains, as well as real-world problems (e.g. ven-
tricular arrhythmias detection, financial distress prediction).

Naturally, the speedups depend not only on the hardware
used but also on the characteristics of the actual problem
being handled. Nevertheless, as Figure 4 demonstrates, more
complex problems (in this case with a larger number of
samples, features and neurons, i.e. with a larger number of
threads) will typically yield bigger GPU speedups, making
GPU ML implementations more scalable.

Since its release, GPUMLib has attracted the interest of
numerous people in the ML community, benefiting researchers
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worldwide and contributing to the development of real-world
applications, by extending the applicability of Machine Lear-
ning methods to much larger datasets than it is possible with
traditional CPU implementations.

V. NOVEL TRENDS IN BIG DATA ANALYTICS

In an effort to identify trends in this data-driven world we
present a unifying structure in Figure 5. The aim is to detect
patterns and glean valuable findings in the growing sizes of
modern datasets, which play an important role due to many
interesting challenges posed so far.

As an attempt to underline the trends of Big Data Analytics
in terms of large-scale learning it presents at its core triangle,
from center to side, three main large-scale learning approa-
ches: batch supervised and unsupervised, and incremental. On
the top of the larger triangle side, scalable distributed learning
platforms and heterogeneous many-core hardware need to be
developed to ensure the sought implementation. From another
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Fig. 5. Novel Trends in Big Data Analytics.

perspective, six smaller triangles focus on novel problems
to handle big data (e.g. big data visualization, large-scale
deep learning, anomaly detection over concept drifts in data
streams, large-scale social analysis, graph mining in Big Data,
etc.) [12]. More specifically, on the left bottom main triangle
side, three trends on data shape and form (visualization,
privacy protection and anomaly detection) and on the right
bottom triangle side trends more related to structure (deep
layer networks, graph data and social networks).

Above areas will provide promising avenues of research.
Nevertheless, the future Big Data Learning real-word applica-
tions will most likely require advanced computing hardware
and software capabilities (e.g. using heterogeneous scalable
parallel and distributed platforms).
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VI. FINAL REMARKS

This paper pointed out the strategies in machine learning
and pattern recognition needed to handle the novel challenges
posed by the large-scale data we have available nowadays.
It also emphasizes the performance peak rates achieved in
a number of problems by many-core GPU computing. Pa-
rallelizing ML algorithms is crucial for the development of
successful real-world applications, in particular for a class of
problems lying on the crossroads of several research topics
including data sensing, data mining and data visualization [12].
In this scenario, GPUMLib is valuable for the scientific
community, presenting several relevant aspects in machine
learning for adaptive many-core machines. Altogether these
challenges and opportunities launch new trends in machine
learning computing that need to be tackled in a near future.

As a consequence of some of the above aspects, extension
work in GPUMLib will include both the development of multi-
GPU parallel and distributed ML implementations, to further
enhance the scalability and performance of algorithms and
extend their applicability to larger datasets.
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