
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2019

Describing Images by Semantic Modeling using Attributes and Describing Images by Semantic Modeling using Attributes and

Tags Tags

Mahdi Mahmoudkalayeh
University of Central Florida

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Mahmoudkalayeh, Mahdi, "Describing Images by Semantic Modeling using Attributes and Tags" (2019).
Electronic Theses and Dissertations, 2004-2019. 6296.
https://stars.library.ucf.edu/etd/6296

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F6296&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/6296?utm_source=stars.library.ucf.edu%2Fetd%2F6296&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

DESCRIBING IMAGES BY SEMANTIC MODELING USING ATTRIBUTES AND TAGS

by

MAHDI M. KALAYEH
M.S. Illinois Institute of Technology, 2010

B.S. Amirkabir University of Technology (Tehran Polytechnic), 2009

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Spring Term
2019

Major Professor: Mubarak Shah

c© 2019 Mahdi M. Kalayeh

ii

ABSTRACT

This dissertation addresses the problem of describing images using visual attributes and textual

tags, a fundamental task that narrows down the semantic gap between the visual reasoning of hu-

mans and machines. Automatic image annotation assigns relevant textual tags to the images. In this

dissertation, we propose a query-specific formulation based on Weighted Multi-view Non-negative

Matrix Factorization to perform automatic image annotation. Our proposed technique seamlessly

adapt to the changes in training data, naturally solves the problem of feature fusion and handles the

challenge of the rare tags. Unlike tags, attributes are category-agnostic, hence their combination

models an exponential number of semantic labels. Motivated by the fact that most attributes de-

scribe local properties, we propose exploiting localization cues, through semantic parsing of human

face and body to improve person-related attribute prediction. We also demonstrate that image-level

attribute labels can be effectively used as weak supervision for the task of semantic segmentation.

Next, we analyze the Selfie images by utilizing tags and attributes. We collect the first large-scale

Selfie dataset and annotate it with different attributes covering characteristics such as gender, age,

race, facial gestures, and hairstyle. We then study the popularity and sentiments of the selfies given

an estimated appearance of various semantic concepts. In brief, we automatically infer what makes

a good selfie. Despite its extensive usage, the deep learning literature falls short in understanding

the characteristics and behavior of the Batch Normalization. We conclude this dissertation by

providing a fresh view, in light of information geometry and Fisher kernels to why the batch nor-

malization works. We propose Mixture Normalization that disentangles modes of variation in the

underlying distribution of the layer outputs and confirm that it effectively accelerates training of

different batch-normalized architectures including Inception-V3, Densely Connected Networks,

and Deep Convolutional Generative Adversarial Networks while achieving better generalization

error.

iii

EXTENDED ABSTRACT

The real world image databases such as Flickr, Tumblr, Google Images, Instagram or Facebook are

characterized by continuous addition of new images. The recent approaches for automatic image

annotation, i.e. the problem of assigning tags to images, have two major drawbacks. First, either

models are learned using the entire training data, or to handle the issue of dataset imbalance, tag-

specific discriminative models are trained. Such models become obsolete and require relearning

when new images and tags are added to database. Second, the task of feature-fusion is typically

dealt using ad-hoc approaches. In this dissertation, we propose a weighted extension of Multi-

view Non-negative Matrix Factorization (NMF) to address the aforementioned drawbacks. The

key idea is to learn query-specific generative model on the features of nearest-neighbors and tags

where a consensus constraint is imposed on the coefficient matrices across different features. This

results in coefficient vectors across features to be consistent and, thus, naturally solves the problem

of feature fusion, while the weight matrices introduced in the proposed formulation alleviate the

issue of dataset imbalance. Furthermore, our approach, being query-specific, is unaffected by

addition of images and tags to the database.

Semantically describing visual content using tags has an inherent problem though. That is the

number of concepts that a machine can describe is in one-to-one correspondence with its dictio-

nary of learned textual tags. Instead, attributes provide a much more powerful tool. Attributes are

semantically meaningful characteristics whose applicability widely crosses category boundaries

(e.g “happy” can describe both a “dog” and a “person”), and their combinations allow describing

an exponential number of concepts. They are particularly important in describing and recognizing

concepts for which no explicit training example is given, e.g., zero-shot learning. Additionally,

since attributes are human describable, they can be used for efficient human-computer interaction.

Furthermore, attributes once decently modeled, have shown to assist more natural forms of de-

iv

scription like image and video captioning. However, robustly detecting visual attributes is still far

from being solved in computer vision. In this dissertation, we propose to employ semantic seg-

mentation to improve person-related attribute prediction. The core idea lies in the fact that many

attributes describe local properties. In other words, the probability of an attribute to appear in an

image is far from being uniform in the spatial domain. For example, we expect one to focus on

the “hair” region once detecting if someone “has wavy hair”; similarly to the “mouth” region if

detecting “having goatee” is of interest. We build our attribute prediction model jointly with a deep

semantic segmentation network. This harnesses the localization cues learned by the semantic seg-

mentation to guide the attention of the attribute prediction to the regions where different attributes

naturally show up. As a result of this approach, in addition to prediction, we are able to localize the

attributes despite merely having access to image-level labels (weak supervision) during training.

We first propose semantic segmentation-based pooling and gating, respectively denoted as SSP and

SSG. In the former, the estimated segmentation masks are used to pool the final activations of the

attribute prediction network, from multiple semantically homogeneous regions. This is in contrast

to global average pooling which is agnostic with respect to where in the spatial domain activations

occur. In SSG, the same idea is applied to the intermediate layers of the network. Specifically, we

create multiple copies of the internal activations. In each copy, only values that fall within a certain

semantic region are preserved while outside of that, activations are suppressed. This mechanism

allows us to prevent pooling operation from blending activations that are associated with semanti-

cally different regions. SSP and SSG, while effective, impose heavy memory utilization since each

channel of the activations is pooled/gated with all the semantic segmentation masks. To circum-

vent this, we propose Symbiotic Augmentation (SA), where we learn only one mask per activation

channel. SA allows the model to either pick one, or combine (weighted superposition) multiple se-

mantic maps, in order to generate the proper mask for each channel. SA simultaneously applies the

same mechanism to the reverse problem by leveraging output logits of attribute prediction to guide

the semantic segmentation task. We evaluate our proposed methods for facial attributes on CelebA

v

and LFWA datasets, while benchmarking WIDER Attribute and Berkeley Attributes of People for

whole body attributes. Our proposed methods achieve superior results compared to the previous

works. Furthermore, we show that in the reverse problem, semantic face parsing significantly im-

proves when its associated task is jointly learned, through our proposed Symbiotic Augmentation,

with facial attribute prediction. We confirm that when few training instances are available, indeed

image-level facial attribute labels can serve as an effective source of weak supervision to improve

semantic face parsing. That reaffirms the need to jointly model these two interconnected tasks.

We can now exploit both tags, in form of concept scores, and attributes, to study how state-of-the-

art computer vision techniques can facilitate understanding the Selfie phenomenon. This massive

number of self-portrait images taken and shared on social media is revolutionizing the way people

introduce themselves and the circle of their friends to the world. While taking photos of oneself

can be seen simply as recording personal memories, the urge to share them with other people adds

an exclusive sensation to the selfies. Due to the Big Data nature of selfies, it is nearly impossible

to analyze them manually. In this dissertation, we provide, to the best of our knowledge, the first

selfie dataset for research purposes with more than 46,000 images, annotated with 36 different

attributes. We address interesting questions about selfies, including how appearance of certain

objects, concepts and attributes influences the popularity of selfies. We also study the correlation

between popularity and sentiment in selfie images. In a nutshell, from a large scale dataset, we

automatically infer what makes a selfie a good selfie.

Finally, we change gear and shift our focus towards a better understanding of fundamentals of deep

learning. This is extremely important as deep learning is the basis of almost all today’s computer

vision techniques, including those that are proposed in this dissertation. Particularly, we look into

Batch Normalization (BN) [1], which is essential to effectively train state-of-the-art deep Convolu-

tional Neural Networks (CNN). It normalizes the layer outputs during training using the statistics

of each mini-batch. BN accelerates training procedure by allowing to safely utilize large learning

vi

rates and alleviates the need for careful initialization of the parameters. In this dissertation, we

study BN from the viewpoint of Fisher kernels that arise from generative probability models. We

show that assuming samples within a mini-batch are from the same probability density function,

then BN is identical to the Fisher vector of a Gaussian distribution. That means batch normalizing

transform can be explained in terms of kernels that naturally emerge from the probability density

function that models the generative process of the underlying data distribution. Consequently, it

promises higher discrimination power for the batch-normalized mini-batch. However, given the

rectifying non-linearities employed in CNN architectures, distribution of the layer outputs shows

an asymmetric characteristic. Therefore, in order for BN to fully benefit from the aforementioned

properties, we propose approximating underlying data distribution not with one, but a mixture of

Gaussian densities. Deriving Fisher vector for a Gaussian Mixture Model (GMM), reveals that

batch normalization can be improved by independently normalizing with respect to the statistics

of disentangled sub-populations. We refer to our proposed soft piecewise version of batch nor-

malization as Mixture Normalization (MN). Through extensive set of experiments on CIFAR-10

and CIFAR-100, using both a 5-layers deep CNN and modern Inception-V3 architecture, we show

that mixture normalization reduces required number of gradient updates to reach the maximum

test accuracy of the batch-normalized model by ∼31%-47% across a variety of training scenarios.

Replacing even a few BN modules with MN in the 48-layers deep Inception-V3 architecture is suf-

ficient to not only obtain considerable training acceleration but also better final test accuracy. We

show that similar observations are valid for 40 and 100-layers deep DenseNet architectures as well.

We complement our study by evaluating the application of mixture normalization to the Genera-

tive Adversarial Networks (GANs), where “mode collapse” hinders the training process. We solely

replace a few batch normalization layers in the generator with our mixture normalization. Our ex-

periments using Deep Convolutional GAN (DCGAN) on CIFAR-10 show that mixture-normalized

DCGAN not only provides an acceleration of ∼58% but also reaches lower (better) “Fréchet In-

ception Distance” (FID) of 33.35 compared to 37.56 of its batch-normalized counterpart.

vii

To the one and only

who is friend of he who has no friend.

∼

To the love of my life

whose smile is the most beautiful thing in the world.

∼

To my beloved parents

whom I owe everything I am and will be.

∼

To my little brother

whom I miss so much.

∼

To my grandma

whom I just want to see one more time.

viii

ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Mubarak Shah for his great support throughout this jour-

ney. He taught me how to conduct research systematically, and reminded me to always maintain the

highest expectations of myself. Also, I would like to thank Prof. Gita Sukthankar, Prof. Nazanin

Rahnavard, and Prof. Teng Zhang for accepting to be a part of my committee, and their helpful

guidance throughout the process of proposing and defending my dissertation. I am thankful to

Dr. Rahul Sukthankar who, despite the short period of our collaboration, showed me that one’s

humbleness and knowledge must only simultaneously grow. I will always remember and cherish

interesting conversations I had with Dr. Ulas Bagci over coffee. Finally, I would like to thank all

of the past and present members of the Center for Research in Computer Vision (CRCV), Tonya

LaPrarie, Kenneth Davis, Amir Roshan Zamir, Afshin Dehghan, Subhabrata Bhattacharya, Enrique

Ortiz, Haroon Idrees, Nasim Souly, Gonzalo Vaca, Berkan Solmaz, Khurram Soomro, Waqas Sul-

tani, Sarfaraz Hussein, Shayan Modiri, Shervin Ardeshir, Amir Mazaheri, Aidean Sharghi, Aisha

Orooj Khan, Krishna Regmi, Dong Zhang, Yonatan Tariku, Ruben Villegas, and Emrah Basaran

for their support, the good times, and the great memories.

ix

TABLE OF CONTENTS

LIST OF FIGURES . xv

LIST OF TABLES .xxiii

CHAPTER 1: INTRODUCTION . 1

1.1 Automatic Image Annotation . 2

1.2 Person-related Attribute Prediction . 5

1.3 Describing Selfies . 11

1.4 Mixture Normalization . 13

1.5 Summary . 16

CHAPTER 2: LITERATURE REVIEW . 17

2.1 Image Annotation . 17

2.2 Attribute Prediction . 19

2.3 Semantic Segmentation . 22

2.4 Batch Normalization . 24

2.5 Summary . 30

x

CHAPTER 3: AUTOMATIC IMAGE ANNOTATION 31

3.1 Methodology . 32

3.1.1 Weighted Multi-view Non-negative Matrix Factorization 32

3.1.2 Boosting Mechanism for Rare Tags . 35

3.1.3 Recovering Tags of Query . 35

3.2 Experiments . 36

3.2.1 Datasets, Evaluation Metrics and Features 36

3.2.2 Results . 38

3.2.3 Computational Complexity . 41

3.3 Summary . 42

CHAPTER 4: ON SYMBIOSIS OF ATTRIBUTE PREDICTION AND SEMANTIC SEG-

MENTATION . 44

4.1 Methodology . 45

4.1.1 SSP: Semantic Segmentation-based Pooling 46

4.1.2 SSG: Semantic Segmentation-based Gating 47

4.1.3 A Simple Unified View to SSP and SSG 49

4.1.4 Semantic Segmentation Network . 52

xi

4.1.5 Basic Attribute Prediction Network . 53

4.1.6 Backbone Architecture for Symbiotic Augmentation(SA) 54

4.2 Experiments . 56

4.2.1 Datasets and Evaluation Measures . 56

4.2.2 Evaluation of Facial Attribute Prediction 58

4.2.3 Evaluation of Person Attribute Prediction 65

4.2.4 Visualizations . 66

4.2.5 Attribute Prediction for Semantic Segmentation 70

4.3 Summary . 72

CHAPTER 5: ANALYSIS OF SELFIE IMAGES . 75

5.1 Selfie Dataset . 76

5.2 Attribute Prediction . 78

5.3 Experiments . 79

5.3.1 What Makes a Selfie Popular? . 79

5.3.2 Sentiment-Popularity Correlation . 80

5.3.3 Effect of Post-processing on Popularity 82

5.4 Summary . 83

xii

CHAPTER 6: TRAINING FASTER BY SEPARATING MODES OF VARIATION IN BATCH-

NORMALIZED MODELS . 84

6.1 Methodology . 85

6.1.1 Kernels from Generative Probability Models 85

6.1.2 Mixture Normalization . 88

6.2 Experiments . 97

6.2.1 Datasets . 99

6.2.2 CIFAR CNN . 99

6.2.3 Inception-V3 . 104

6.2.4 DenseNet . 110

6.2.5 Mixture Normalization in GANs . 111

6.3 Computational Complexity and Detailed Analysis 114

6.3.1 Computational Complexity Analysis . 114

6.3.2 Evolution of Mixture Components . 117

6.3.3 Effective Number of Mixture Components 118

6.4 Summary . 120

CHAPTER 7: CONCLUSION AND FUTURE WORK 121

xiii

7.1 Conclusion . 121

7.2 Future Work . 122

LIST OF REFERENCES . 124

xiv

LIST OF FIGURES

Figure 1.1: Schematic illustration of the proposed method: Given a query image, we ex-

tract different features which are used to find its nearest-neighbors. Then,

using Non-negative Matrix Factorization using all the features X, includ-

ing tags, we find basis U and coefficient matrices V′. The factorization for

all matrices is done in a joint fashion by imposing a consensus constraint

(red double arrows). Furthermore, to handle dataset imbalance, we introduce

weight matrices T and W within the formulation. Using the basis matrices

and corresponding features of the query, we find coefficient vector for each

view (green lines). The matrix product of the tag-basis U(tag) and mean of

coefficient vectors from all views gives score for each tag (blue lines). 3

Figure 1.2: Examples of how contextual layout assists attribute prediction in wild. The

person (on left) and the dog (on right) should be respectively labeled with

the attributes eating and catching. This is hard to agree upon if we would

have taken these object instances in isolation, out of their contexts i.e food

and frisbee. 6

Figure 1.3: Examples of the segmentation masks generated by our semantic segmenta-

tion network [2] for previously unseen images. From left to right: back-

ground, hair, face skin, eyes, eyebrows, mouth and nose. 7

Figure 1.4: Examples of images in the Selfie dataset. 12

xv

Figure 3.1: Example images from ESP Game dataset are illustrated in 3.1(a). Figures

3.1(b) and 3.1(c) share many tags, although they are conceptually and visu-

ally different. 37

Figure 3.2: Example images from ESP Game dataset and the corresponding top 5 tags

predicted using NMF-KNN are shown in this figure. Predicted tags in green

appear in the ground truth while red ones do not. In many cases, even though

the proposed method has predicted relevant tags to the image, those tags are

missing in the ground truth. That is because the tag lists are not complete and

are generally a subset of relevant tags. 38

Figure 3.3: Evaluating the effect of Weight Matrices: Evaluated on Corel5k dataset,

3.3(a) shows the effect of using weight matrices, before (blue) and after

(yellow), on the annotation performance. Tags are grouped based on their

frequency of appearance in the dataset. The first bin groups words that have

between 1 to 5 images related to them. The second bin is associated with tags

with the images between 6 to 10, and so on. In 3.3(b) we show the same for

first group of 3.3(a) to analyze the recall of tags with 1 to 5 related images.

3.3(c) and 3.3(d) give the fraction of tags in each bin of 3.3(a) and 3.3(b),

respectively. This shows that we can improve the recall of rare tags without

sacrificing that of frequent tags. 41

xvi

Figure 4.1: Left: Semantic segmentation-based Pooling (SSP). Right: Semantic segmentation-

based Gating (SSG). K indicates the number of semantic regions and Cout in

SSP equals the number of labels in the main task. We assume that the output

tensor of activations from the previous layer to either SSP or SSG is of shape

Cin×Hin×Win where Cin, Hin and Win, respectively represent the number of

channels, height and width of the activations. 47

Figure 4.2: Architecture of the Symbiotic Augmentation (SA). The embedding layers,

ΦS and ΦA, respectively utilize the output of semantic segmentation and at-

tribute prediction classifiers, to augment the other task. Details of their com-

ponents are shown in the bottom. FS and FA, are the corresponding classifiers

with NS and NA number of output labels. Similarly, lS and lA indicate the

loss functions of semantic segmentation and attribute prediction tasks respec-

tively. For self-expressiveness, we have used different notations here than in

Figure 4.1, but in fact NS and NA, respectively equal K and Cout of SSP in

Figure 4.1. 49

Figure 4.3: Backbone architecture used in the Symbiotic Augmentation (SA) experi-

ments. For attribute prediction, we use the final representation obtained at

the end of the Inception-V3 architecture. It is indicated as XA. For semantic

segmentation, we first concatenate final activations of the backbone with two

intermediate representations, but only after scaling (with learnable parame-

ters) them using ϕ0, ϕ1 and ϕ2. Then, we reduce the dimensionality of repre-

sentation to 2048 using a 1×1 convolution, followed by batch normalization

and ReLU. Ψ represents the concatenation and dimensionality reduction op-

erations. XS will be passed to the semantic segmentation classifier. 55

xvii

Figure 4.4: Examples of the Helen face dataset [3] supplemented with segment label an-

notations [4] and then grouped into 7 semantic classes. In bottom row, colors

indicate different class labels. 58

Figure 4.5: Contribution of semantic regions in predicting different attributes as learned

by the localization branch of SSP. Values are averaged over multiple random

mini-batches of 32 images. 69

Figure 4.6: Top fifty activation maps of the last convolution layer sorted in descending or-

der w.r.t the average activation values. Top: Basic attribute prediction model

using global pooling. Bottom: SSP. 69

Figure 4.7: Learned weights of ΦA in Symbiotic Augmentation (SA), trained on CelebA

and Helen. Note: 9 values associated with 3× 3 kernels are averaged. For

better visualization, values in each row are normalized between 0 and 1. . . . 70

Figure 4.8: Learned weights of embedding convolution layers in Symbiotic Augmenta-

tion (SA), trained on WIDER and LIP. Note: 9 values associated with 3× 3

kernels are averaged. For better visualization, values in each row are normal-

ized between 0 and 1. 71

Figure 4.9: Learned weights of ΦS in Symbiotic Augmentation (SA), trained on CelebA

and Helen. Note: 9 values associated with 3× 3 kernels are averaged. For

better visualization, values in each row are normalized between 0 and 1. . . . 74

Figure 5.1: Number of labeled positive and negative images in the Selfie dataset for dif-

ferent attributes. 76

Figure 5.2: Attribute prediction performance of different features on the Selfie dataset. . . 76

xviii

Figure 5.3: Normalized regression coefficients of SVR for popularity score prediction. . . 81

Figure 5.4: Importance of different attributes in predicting popularity, employing differ-

ent Instagram filters. Original indicates no filter is applied. 81

Figure 5.5: Sentiment-popularity scatter plot. 82

Figure 6.1: Visualizing Mixture Normalization: Given a random mini-batch in the mid-

way of training on CIFAR-100, we illustrate the underlying distribution of

activations (output of convolution) associated with a random subset of 128

channels in the layer “conv2” of CIFAR CNN architecture (detailed in Ta-

ble 6.1). Solid teal curve indicates the probability density function. Dashed

curves represent different mixture components shown in various colors. Note

that similar colors across multiple subfigures, simply index mixture compo-

nents and do not indicate any association. We observe that mixture normal-

ization, shown by MN:2 and MN:3 (2 and 3 respectively represent the number

of components in the mixture of Gaussians), provides better approximation,

p(x), illustrated by solid teal curve, to the underlying distribution. Also,

mixture normalized activations, in comparison to the batch normalized ones,

are considerably closer to the normal distribution and illustrate less skewed

probability densities. 97

Figure 6.2: Test error curves when CIFAR CNN architecture (ref. Table 6.1) is trained

under different learning rate and weight decay settings. We observe that

on CIFAR-10 and CIFAR-100, MN performs consistently in both small and

large learning rate regimes. 102

xix

Figure 6.3: Left: effect of the number of EM iterations on test error. Right: effect of uti-

lizing MN at different layers, on test error. We show that more EM iterations

and utilizing MN at multiple layers, increase the convergence rate of mixture

normalized models. 103

Figure 6.4: Test error curves when Inception-V3 architecture is trained under different

settings. Figures 6.4(a) and 6.4(b) show the small learning rate regime, re-

spectively, on CIFAR-10 and CIFAR-100. Figure 6.4(c) shows the large

learning rate regime on CIFAR-100. Figure 6.4(d) illustrates test error curves

of CIFAR-100 when Inception-V3 architecture is trained using Nesterov’s

accelerated gradient [5] (all other experiments use RMSprop [6]), with two

different learning rate drop policies. Mixture normalization modules have

been employed in “inc2/1” and “inc3/0” layers. We observe that across a

variety of choices such as the number of mixture components, number of

EM iterations, learning rate regime and drop policy, optimization technique,

and the layer where MN is applied, mixture normalized models consistently

accelerate their batch normalized counterparts and achieve better final test

accuracy. 106

Figure 6.5: DenseNet [7] experiments on CIFAR-100. Figures 6.5(a) and 6.5(b) respec-

tively illustrate the training error and cross entropy loss. Figures 6.5(c) and

6.5(d) respectively illustrate the test error and cross entropy loss. We observe

from 6.5(a) and 6.5(b) that mixture normalization facilitates the training pro-

cess by accelerating the optimization. Meanwhile it provides better general-

ization (ref. 6.5(c), and 6.5(d)) by continuously maintaining a large gap with

respect to its batch normalized counterpart. We show 1 standard deviation

(shaded area) computed within a window of 3 epochs for all the curves. . . . 112

xx

Figure 6.6: Mixture normalization in deep convolutional GAN (DCGAN)[8]. We ob-

serve that employing our proposed mixture normalization in the generator

of DCGAN (DCGAN-MN) facilitates the training process. In comparison

with the standard DCGAN which uses batch normalization (DCGAN-BN),

DCGAN-MN not only converges faster (a reduction of∼58%) but also achieves

better (lower) FID (33.35 versus 37.56). For better visualization, we show

one standard deviation (shaded area) computed within a window of 30K iter-

ations (3 adjacent FID evaluation points). 113

Figure 6.7: Samples of generated images by batch and mixture normalized DCGAN

models, at their best (lowest) evaluated FID, are respectively illustrated in

Figure 6.7(a) and 6.7(b). DCGAN-BN and DCGAN-MN, respectively achieve

FID of 37.56 and 33.35. 114

Figure 6.8: Evolution of mixture normalization associated to “inc2/0/2/4” layer as train-

ing MN-4 on CIFAR-100 progresses. As argued before, we observe that the

underlying distribution is comprised of multiple modes of variation. While

these sub-populations are of relatively uniform importance at the beginning,

as training procedure goes on, mixture components evolve where some get

closer, while others are pushed away from each other creating more distinct

components. Here, different colors index mixture components, when sorted

according to λk values. 118

xxi

Figure 6.9: Effect of the number of mixture components in MN-4 using Inception-V3

when trained on CIFAR-10 and CIFAR-100. For the sake of better visualiza-

tion, curves are smoothed using running average and one standard deviation

is shown as the shaded area. We can see that the majority of MN modules

fully utilize all (K=5) their mixture components, indicating that the need for

better approximation using mixture model does not disappear, rather slightly

diminishes, as the training procedure continues. 119

xxii

LIST OF TABLES

Table 3.1: Performance evaluation on Corel5k dataset 40

Table 3.2: Performance evaluation on ESP Game dataset 40

Table 4.1: Configuration of the Semantic Segmentation Network. For all the convolu-

tion and deconvolution layers, kernel size and stride value are respectively

set to 3 and 1. We compute the semantic segmentation loss at four different

scales and aggregate them prior to the backpropagation. To prevent confu-

sion, we are not showing the side loss layers, namely Deconv43, Deconv33

and Deconv23. 51

Table 4.2: Attribute prediction performance evaluated by the classification error, aver-

age precision and balanced classification accuracy [9] on the CelebA [10]

original and pre-cropped image sets. 60

Table 4.3: Attribute prediction performance evaluated by the classification error and the

average precision (AP) on LFWA [10] dataset. 61

Table 4.4: Detailed per-attribute classification accuracy(%) and average precision(%)

results of our proposed models for facial attribute prediction. Note that

SSP+SSG? indicates the experiment using pre-cropped images of CelebA. . . 64

Table 4.5: Attribute prediction performance evaluated by the average precision(%) on

WIDER Attribute [11] dataset. 65

xxiii

Table 4.6: Attribute prediction performance evaluated by the average precision(%) on

Berkeley Attributes of People [12] dataset. 66

Table 4.7: Detailed per-attribute AP(%) results of our proposed models for person at-

tribute prediction. 67

Table 4.8: Effect of leveraging image-level attribute supervision for semantic face pars-

ing, evaluated on the test split of Helen face [3][4]. Here, all the models were

trained with the input image resolution of 448×448. 72

Table 6.1: CIFAR CNN architecture . 100

Table 6.2: Experiments on CIFAR-10 and CIFAR-100 using CIFAR CNN architecture

(ref. Table 6.1). We observe that irrespective of the weight decay and learning

rate, not only MN models converge faster but also achieve better final test

accuracy, compared to their corresponding BN counterparts. When mixture

normalization is applied to multiple layers (i.e MN-8), we use the same K

and EM iter. values for all the corresponding layers. 101

Table 6.3: For batch normalization and the mixture-normalized variants using CIFAR

CNN architecture (ref. Table 6.1), the number of training steps required to

reach the maximum accuracy of batch-normalized model alongside with the

maximum accuracy achieved by each variant. 104

xxiv

Table 6.4: Experiments on CIFAR-10 and CIFAR-100 using Inception-V3 architecture.

Notation: “red1” (“red2”) refers to the first (second) grid reduction mod-

ules. Similarly “inc2/0” (“inc3/0”) refers to the first inception layer in sec-

ond (third) inception block of the architecture. In MN-∗ settings, we only

replace the last batch normalization in each branch of the corresponding In-

ception layer with our mixture normalization. When mixture normalization

is applied to multiple layers, we use the same K and EM iter. values for all

the corresponding layers. 107

Table 6.5: For batch normalization and the mixture-normalized variants using Inception-

V3, the number of training steps required to reach the maximum accuracy of

batch-normalized model, and the maximum accuracy achieved by each variant.108

Table 6.6: Training Inception-V3 using Nesterov’s accelerated gradient [5] on CIFAR-

100, the number of training steps required to reach the maximum accuracy

of batch-normalized model along with the maximum accuracy achieved by

each model. 108

Table 6.7: Computation cost comparison of mixture normalization against natively im-

plemented (no CUDA-kernel) batch normalization [1]. Experiments are con-

ducted on a Titan X (Pascal) GPU. 116

xxv

CHAPTER 1: INTRODUCTION

An extremely large number of images is being created at this very moment by different people

from all around the world. And this only adds to what has been aggregated and preserved so far.

Hence, it is very much expected to ask how are we going to represent, organize and search through

our images? The scenario can be as simple as finding a particular photo on our cellphones from

a backpacking trip, which we enthusiastically want to show it to a friend. Given the scale of the

problem, we have no choice but to design algorithmic techniques which effectively harness the

modern computation power. Meanwhile, to shrink the semantic gap and moving towards more

seamless and natural human-computer interaction, we should prioritize models that provide a se-

mantic description of images. Such perspective facilitates our understanding of how machines

infer visual content and paves the way for explainability of well-performing but complex models.

It is in this spirit that the current dissertation addresses the problem of semantically describing im-

ages. It mainly does so through the lens of textual tags and visual attributes as means for semantic

modeling of visual content.

This dissertation contributes to semantic modeling of images by proposing: (1) an automatic image

annotation framework that assigns relevant textual tags (e.g. “car”, “building”, “sunny”, “old”)

to images, allowing for natural content-based search through a large and continuously growing

collection of images, (2) effective person-related attribute prediction models that robustly detect

the appearance of fine-grained visual traits (e.g. “big lips”, “mouth slightly open”, “wearing long

sleeves”) in human images, (3) the first large-scale Selfie dataset, and exploring the limits of current

algorithms to automatically analyze the popularity and sentiment of Selfies, which very well reflect

the mood, preferences and interests of our society, (4) a simple yet effective approach to accelerate

training of deep convolutional neural networks, as the backbone of all today’s computer vision

frameworks.

1

1.1 Automatic Image Annotation

Image annotation refers to the task of assigning relevant tags to query images based on their visual

content [13, 14]. The problem is difficult because an arbitrary image can capture a variety of

visual concepts, each of which would require separate detection. Each image can be represented

using multiple features which may be low-level, e.g. RGB histograms and HOG, or mid-level such

as object concepts, e.g. human, dog, sky etc., or even high-level denoting the broader class to

which the image belongs, e.g., structures, animal, food. These different features capture different

aspects or views1 of the image, thereby, providing complementary information. However, since

each feature represents the same image, they all capture the same underlying latent structure. That

is, it is possible to transform feature vectors for each image so that the new representations, with

respect to some pre-defined distance metric, are consistent across all the views.

Automatic image annotation is crucial for searchable databases like Flickr, Tumblr, Google Images,

Instagram or Facebook. One of the key characteristics of real world databases is the continuous

addition of new images, which contain new tags as well. Till 2011, 6 billion images had been

uploaded to Flickr2 while almost a quarter trillion images have been shared on Facebook3 with a

total of 300 million images uploaded every day. For a method to be practical for such databases,

it has to rely on minimal training as the addition of new images and tags can render the learned

models less effective over time. This holds true for both the methods that learn a direct mapping

from features to tags [15, 16], or those that learn tag-specific discriminative models [14, 17, 18]

where positive set is comprised of images which contain a particular tag and the negative set

include images which do not have that tag.

1For consistency with Machine Learning literature, “views” means features in this Section.
2http://tinyurl.com/q4zdshq

3http://tinyurl.com/pktnba2

2

http://tinyurl.com/q4zdshq
http://tinyurl.com/pktnba2

Figure 1.1: Schematic illustration of the proposed method: Given a query image, we extract dif-
ferent features which are used to find its nearest-neighbors. Then, using Non-negative Matrix
Factorization using all the features X, including tags, we find basis U and coefficient matrices V′.
The factorization for all matrices is done in a joint fashion by imposing a consensus constraint (red
double arrows). Furthermore, to handle dataset imbalance, we introduce weight matrices T and W
within the formulation. Using the basis matrices and corresponding features of the query, we find
coefficient vector for each view (green lines). The matrix product of the tag-basis U(tag) and mean
of coefficient vectors from all views gives score for each tag (blue lines).

Obviously, as new images and tags are introduced into the database, the positive set for each

tag will change, requiring retraining of the models. Inspired by the success of the recent nearest-

neighbor approaches for image annotation [13, 14], we propose a novel method that learns a query-

specific generative model using the nearest-neighbors. The proposed approach is illustrated in

Figure 1.1.

The key idea of our approach is to treat tags as another view in addition to visual features, and

find a joint factorization of all views into basis and coefficient matrices such that the coefficients of

each training image are similar across views. This forces each basis vector to capture same latent

concept in each view as well. After the factorization, the tags are transferred using both the model

(basis) and the visual features of the query. Thus, given a query image, we first extract different

visual features and find its nearest-neighbors. Then, using Non-negative Matrix Factorization on

3

all views, i.e., visual features as well as tags, we find basis and coefficient matrices. The coefficient

vectors from all views, recovered using visual features of the query and the corresponding basis,

are then averaged to get a unique coefficient vector. The matrix product of the final vector with

basis for tags gives the scores for individual tags.

Non-negative Matrix Factorization [19] is a well-studied problem where the aim is to decompose a

matrix into non-negative basis and coefficient matrices. The non-negative coefficients can then be

seen as a soft assignment in terms of discovered basis [20, 21]. For the case of image annotation

where multiple views are available, this problem requires NMF across all views. This is severely

under-constrained and since the views capture the same latent structure, a consensus regularization

can enforce the solution to discover a consistent latent structure for all views [22]. Each basis in

each view then represents the same latent concept across views. In this work, we treat annotated

tags as another view of the image and learn a set of basis across all views that correspond to the

same underlying concepts. Note that, these concepts may not have any semantics associated with

them, all that is implied is consistency in terms of the abstraction they capture.

One important issue in image annotation as encountered by all previous works is that of rare tags,

those that do not occur frequently in the training data. For that, we introduce two weight matrices

within the Multi-view NMF framework that increase the importance of both the rare tags and the

images that contain rare tags. By assigning suitable weights, the NMF learns consistent latent

concepts that are forced to capture the rare tags well, thus, allowing us to alleviate the issue of

dataset imbalance by increasing recall for the rare tags. In summary, we propose to use Multi-view

NMF for image annotation which learns a generative model specific to a particular query. The

factorization is performed in such a way that ensures consistency in coefficients across features.

This yields an elegant solution to the problem of feature fusion. Furthermore, we introduce weight

matrices which increase the recall of the rare tags, without requiring tag-specific discriminative

models. The proposed solution is practical for real world datasets characterized by continuous

4

addition of images and tags.

Although effective, using tags to describe images imposes certain inherent limitations. Next, we

explain these challenges, and will describe how attributes as sharable concepts can provide a better

alternative. We focus on person-related attributes and propose to employ semantic face and body

parsing to harness localization cues in order to improve attribute prediction task.

1.2 Person-related Attribute Prediction

Nowadays, state-of-the-art computer vision techniques allow us to teach machines different classes

of objects, actions, scenes, and even fine-grained categories. However, to learn a certain notion,

we usually need positive and negative examples from the concept of interest. This creates a set of

challenges as the instances of different concepts are not equally easy to collect. Also, the number

of learnable concepts is linearly capped by the cardinality of the training data. Therefore, being

able to robustly learn a set of sharable concepts that go beyond rigid category boundaries is of

tremendous importance. Visual attributes are one particular type of these sharable concepts. They

are human describable and machine detectable. We can use attributes to describe a variety of

objects, scenes, actions, and events. For example, we associate a person who is lying on a beach

with the attribute relaxed or a cat that is chasing after a wool ball with the attribute playing.

Attributes are different from category labels in three major aspects. First, category labels are

agnostic with respect to the intra-class variations that exist among different instances of a single

category. Such flat representation cannot distinguish between a grumpy cat and a joyful one as it

only sees them as cats.

5

Figure 1.2: Examples of how contextual layout assists attribute prediction in wild. The person (on
left) and the dog (on right) should be respectively labeled with the attributes eating and catching.
This is hard to agree upon if we would have taken these object instances in isolation, out of their
contexts i.e food and frisbee.

Second, attributes go across category boundaries. Hence, they can be used to potentially describe

an exponential number of object categories (via different combinations) even if the associated cat-

egory has never been observed before (e.g zero-shot learning). Third, unlike category labels that

can be effectively inferred from the object itself, humans heavily rely on the contextual cues for

the attribute prediction. Take the examples shown in Figure 1.2. If we only consider the bounding

box around the dog, one would not assign catching to it. Instead, running may even be a valid

attribute. However, leveraging contextual layout where the dog is floating in air, and close to a

frisbee, provides human with sufficient indications to not only rule out the attribute running but

also confidently label the dog with catching. Similarly, the table, food and plate, collectively serve

as the context, building the ground to attribute the person with eating. Considering the aforemen-

tioned characteristics of attributes, we hypothesize that the attribute prediction task would benefit

from contextual cues if they are properly represented. One can organize the context supervision

into three levels: image-level, instance-level and pixel-level. Image-level supervision represents

the context as a binary vector indicating whether an instance of a certain category appears some-

where in the context.

6

Figure 1.3: Examples of the segmentation masks generated by our semantic segmentation network
[2] for previously unseen images. From left to right: background, hair, face skin, eyes, eyebrows,
mouth and nose.

Therefore, it is blind to the spatial relationships that exist between underlying components i.e

object instances in the scene. In the instance-level supervision, context is available in terms of

a set of category label and bounding box tuples. That is, unlike the image-level, instance-level

context supervision can model the spatial relationships in the scene. Lastly, in the pixel-level

context supervision, we have access to the category labels in a per-pixel fashion. Obviously, this

provides a much stronger supervision signal compared to the other two alternatives. In this work,

we propose augmenting attribute prediction by transferring weakly pixel-level context supervision,

from an auxiliary semantic segmentation task.

7

So far, we’ve explained attributes in general when they describe an instance of an object in a scene.

However, the same is valid when attributes characterize variations of a certain object category. In

this dissertation, we are interested in person-related, specifically facial and full body attributes.

We view the concept of contextual cues, previously detailed for attributes of objects in the scene,

as the natural correspondence of object attributes to the object parts and their associated layout in

the spatial domain of the object boundary. Naturally, attributes are “additive” to the objects (e.g.,

glasses for person). It means that an instance of an object may or may not take a certain attribute,

while in either case the category label is preserved (e.g., a person with or without glasses is still

labeled as person). Hence, attributes are especially useful in problems that aim at modeling intra-

category variations such as fine-grained classification. Despite their additive character, attributes

do not appear in arbitrary regions of the objects (e.g., hat if appears, is highly likely to show

up on the top of person’s head). This notion is the basis of our work. We hypothesize that the

attribute prediction can benefit from localization cues. Specifically, to detect an attribute, instead of

processing the entire spatial domain at once, one should focus on the region in which that attribute

naturally shows up. However, not all attributes have precise correspondences. For example, it is

ambiguous from where in the face, we as humans, infer if a person is young or attractive. Hence,

instead of hard-coding the correspondences, even where those seem clear (e.g. glasses with nose

and eyes), we allow the model to learn how to leverage the localization cues that are transferred

from a relevant auxiliary task to the attribute prediction problem.

Using bounding boxes to show the boundary limits of objects is a common practice in computer

vision. However, regions that different attributes are associated to drastically vary in terms of

appearance. For example, in a face image, one cannot effectively put a bounding box around the

region associated to “hair”. In fact, the shape of the region can be used as an indicative signal on

the attribute. On top of that, we have the partial occlusion of object parts which introduces further

challenges by arbitrarily deforming visible regions. Therefore, we need an auxiliary task that learns

8

detailed pixel-wise localization information without restricting the corresponding regions to be of

certain pre-defined shapes. Semantic segmentation has all the aforementioned characteristics. It is

the problem of assigning class labels to every pixel in an image. As a result, a successful semantic

segmentation approach has to learn pixel-level localization cues which implicitly encode color,

structure, and geometric characteristics in fine detail. In this dissertation, since we are interested

in person-related attributes, we take face [4] and human body [23] semantic parsing problems as

auxiliary tasks to steer the spatial focus of the attribute prediction methods accordingly.

To perform attribute prediction, we feed an image to a fully convolutional neural network which

generates feature maps that are ready to be aggregated and passed to the classifier. However,

global pooling [24] is agnostic to where, in spatial domain, the attribute-discriminative activations

occur. Hence, instead of propagating the attribute signal to the entire spatial domain, we funnel

it into the semantic regions. By doing so, our model learns where to attend and how to aggregate

the feature map activations. We refer to this approach as Semantic Segmentation-based Pooling

(SSP), where activations at the end of the attribute prediction pipeline are pooled within differ-

ent semantic regions. Alternatively, we can incorporate the semantic regions into earlier layers

of the attribute prediction network with a gating mechanism. Specifically, we propose augment-

ing max pooling operations such that they do not mix activations that reside in different semantic

regions. Our approach generates multiple versions of the activation maps that are masked differ-

ently and presumably discriminative for various attributes. We refer to this approach as Semantic

Segmentation-based Gating (SSG).

Since the semantic regions are not available for the attribute benchmarks, we learn to estimate

them using a deep semantic segmentation network. For semantic face parsing [2], we take a con-

ceptually similar approach to [25] in which an encoder-decoder model is built using convolution

and deconvolution layers. However, considering the relatively small number of available data for

the auxiliary segmentation task, we have to modify the network architecture. Despite being much

9

simpler than [25], we found our semantic segmentation network [2] to be very effective in solv-

ing the auxiliary task of semantic face parsing. Examples of the segmentation masks generated

for previously unseen images are illustrated in Figure 1.3. Once trained, such network is able to

provide localization cues in the form of masks (decoder output) that decompose the spatial domain

of an image into mutually exclusive semantic regions. We show that both SSP and SSG mecha-

nisms outperform almost all the existing state-of-the-art facial attribute prediction techniques while

employing them together results in further improvements.

One issue with SSP and SSG is their memory utilization. Since both architectures use the output

of semantic segmentation to create K (referring to the number of semantic regions) copies of the

previous convolution layer activations. Given limited GPU memory budget, this can restrict the

application of these layers when K grows to large values. Instead, we can circumvent this by learn-

ing the proper mask per channel. In contrast to SSP and SSG which mask each and every channel

of activations with all the K semantic probability maps, we propose to learn one mask per channel,

as weighted superposition of different semantic probability maps (output of semantic segmentation

network). Such workaround that can be simply implemented by a 1× 1 convolution, adds mini-

mum memory utilization overhead and also allows simplifying the SSP and SSG, yielding a single

unified architecture which based on where it is applied in the architecture, mimics the behavior of

SSP and SSG.

Following the recent trend in semantic segmentation, instead of an encoder-decoder approach, we

then move to a fully convolutional architecture, specifically Inception-V3 [26]. Hence, we can

unify attribute prediction and semantic segmentation networks by full weight sharing. This results

in significant reduction in the number of model parameters and we no more need to pretrain the

semantic segmentation network prior to deploying it in the attribute prediction pipeline. Instead,

both tasks are learned simultaneously in an end-to-end fashion within a single architecture. We go

beyond facial attributes and demonstrate the effectiveness of employing semantic segmentation in

10

person-related attributes on multiple benchmarks (ref. Chapter 4). Furthermore, we provide com-

prehensive quantitative evaluation for the case where attributes are jointly trained with semantic

segmentation with the aim to boost the latter task.

So far, we have covered how visual attributes and textual tags can be used to describe visual content

in images. We also briefly introduced our proposed methods for automatic image annotation and

person-related attribute prediction. Next, we explain how both tags, in form of concepts and object

scores, along with attributes can automate understanding and facilitate describing Selfies, a global

socio-cultural phenomenon, that is beyond traditional computer vision problems.

1.3 Describing Selfies

According to the Oxford Dictionary, Selfie is a photograph that one has taken of oneself, typically

one taken with a smartphone or webcam and shared via social media. In the past few years, taking

selfies has become very popular. People from different socio-economic, gender, race and age

groups take selfies in various occasions. Google recently reported4 that there are 93 million selfies

taken every day only on Android devices. This gigantic data can reveal interesting statistics about

the preferences, moods and feelings of the members of our society, if it is properly analyzed. Due

to the large scale and continuous growth of the data, it is appropriate to employ machine learning

and computer vision techniques to study selfie images. We assume that when someone takes a

selfie, he/she considers two major aspects among many possible others to make it a good selfie,

popularity and sentiment. Popularity refers to the log2 normalized view counts while sentiment

indicates the feeling that viewers infer by looking at a selfie. Typically, a social media user desires

to increase the popularity of his/her selfie and imply a positive sentiment.

4http://goo.gl/53ZOjG

11

http://goo.gl/53ZOjG

Figure 1.4: Examples of images in the Selfie dataset.

In this work, we introduce, to the best of our knowledge, the first selfie dataset for research pur-

poses with more than 46,000 images, annotated with 36 different attributes (ref Figure 1.4). We

also address the following questions: (1) How do different attributes, such as gender, race or hair

color, influence the popularity of selfies? (2) How does the appearance of certain objects or par-

ticular concepts affect the popularity of selfies? (3) Is there a relationship between the sentiment

inferred from a selfie and its popularity? (4) How does post-processing, such as applying different

Instagram filters, influence the popularity of selfies?

Recently, Khosla et al. [27] proposed a framework to predict the popularity of a photograph before

being uploaded on social media. They use about 2.3 million images from Flickr to predict the

normalized number of views for images. Exploiting both visual content and social cues, Khosla et

al. predict the popularity of an image with about 0.81 rank correlation to its ground truth. Borth

et al. [28] have proposed sentiment prediction based on both visual content and tags associated

12

to the images. They [28] use SentiBank, a library of visual concept detectors based on more

than 2,000 Adjective Noun Pairs (ANP) to predict the implied emotion of a photograph. While

these studies are valuable, they deal with photographs in general. We believe that studying selfies

as the current most popular type of shared content on social media deserves an exclusive study.

Knowing that photos with human faces are respectively 38% and 32% more likely to receive likes

and comments, Bakhshi et al. [29], further demonstrate the importance of this work. Our study

does not focus on improving the popularity score prediction or boosting the sentiment prediction

performance. Instead, we are using state-of-the-art techniques in these areas to simply answer the

four aforementioned questions.

Almost all today’s deep convolutional neural architectures, including those that we propose in this

dissertation, use Batch Normalization [1], yet the characteristics of it are not sufficiently studied

in the literature. In the next section, we introduce a novel approach to the batch normalization [1]

from the viewpoint of Fisher kernels [30] that suggests acceleration in training batch-normalized

models can be achieved via disentangling modes of variation in the layer outputs.

1.4 Mixture Normalization

In the context of deep neural networks, the distribution of inputs to each layer is not only heav-

ily dependent on the the previous layers but it also changes as the the network evolves through

the training procedure. Ioffe and Szegedy [1] referred to this phenomenon as internal covariate

shift. Another source of variation comes from the family of optimization techniques, specifically

Stochastic Gradient Descent (SGD), that is used to train the deep neural networks. Although we

can normalize a mini-batch at the input to the network, it will not remain normalized after multiple

rounds of non-linear operations as we proceed from early layers to deeper ones. Batch Normaliza-

tion (BN) [1] was proposed to alleviate the internal covariate shift by normalizing layer outputs

13

for each training mini-batch with respect to its very own statistics, specifically mean and variance.

Batch normalization has been successful in dramatically accelerating training procedure of deep

neural networks and is now a standard component in almost all deep convolutional architectures.

In fact, it is hard to imagine the possibility of effectively training state-of-the-art architectures such

as Inception [26][31], Residual [32] and Densely connected [7] networks, with hundreds of layers,

without employing batch normalization.

Batch normalization [1] and its few extensions [33][34][35][36], follow a general form (ref. Equa-

tion 2.6) to normalize a mini-batch, yet differ in the construction of the population over which

mini-batch statistics are computed. In this dissertation, we provide a fresh view on the aforemen-

tioned general form of normalization, demonstrating its strong relation to the natural kernels that

arise from generative probability models. Specifically, we show that assuming samples within a

mini-batch are from the same probability density function, the general form of normalization is

identical to the Fisher vector of a Gaussian distribution. Jaakkola and Haussler [30] proved that

given classification labels as latent variables, Fisher kernel is asymptotically never inferior to the

maximum a posteriori (MAP) decision rule. Therefore, the general form of normalization used in

BN and its extensions, not only naturally emerges from the probability density function that mod-

els the generative process of the underlying data distribution, but also improves the discrimination

power of the representation5.

However, for BN [1] to truly enjoy theses properties, its input activations should follow a Gaussian

distribution. We argue that due to the rectifying non-linearities employed in deep neural networks,

it is unlikely that such condition is fully satisfied. Specifically, it is hard to believe that, in expec-

tation, a linear combination (convolution operation) of multiple (different channels) distributions

5This is established on the basis of the discriminative derivations of Fisher kernel (ref. Theorem 1 of [30]). The
mathematical derivations can be found in Appendix A of the longer version of [30], available at https://people.
csail.mit.edu/tommi/papers/gendisc.ps.

14

https://people.csail.mit.edu/tommi/papers/gendisc.ps
https://people.csail.mit.edu/tommi/papers/gendisc.ps

with semi-infinite support (output of previous e.g ReLU [37]), with at least two modes of variation

one for the rectified values mapped to zero and one for the positive values, results in a single Gaus-

sian distribution. We visualize internal activations of both a shallow and very deep architecture,

and observe that indeed corresponding activations very often illustrate asymmetric characteristic

and are better approximated by a mixture model rather than a single Gaussian distribution. This

observation builds the core of our work.

To equip batch normalization with characteristics which Fisher kernel promises, we must first

properly approximate the probability density function of the internal representations. From [38],

we know that any continuous distribution can be approximated with arbitrary precision using a

Gaussian Mixture Model (GMM). Hence, instead of computing one set of statistical measures

from the entire population (of instances in the mini-batch) as BN does, we propose normalization

on sub-populations which can be identified by disentangling modes of the distribution, estimated

via GMM. We refer to our proposed technique as Mixture Normalization (MN). While BN can

only scale and/or shift the whole underlying probability density function, mixture normalization

operates like a soft piecewise normalizing transform, capable of completely re-structuring the data

distribution by independently scaling and/or shifting individual modes of distribution.

We show that mixture normalization can effectively accelerate its batch normalization [39] coun-

terpart, through reducing required number of gradient updates to reach the maximum test accuracy

of the batch normalized model by ∼31%-47%, across a variety of training scenarios on CIFAR-10

and CIFAR-100. Mixture normalization handles training in large learning rate regime considerably

better than batch normalization, and in majority of cases reaches even a better final test accuracy.

It is worth pointing out that such acceleration in training procedure is obtained by solely replacing

a few batch normalization modules with mixture normalization along the depth of the architecture.

This is true both for shallow and very deep and modern architectures such as Inception-V3 [26]

and DenseNet [7].

15

1.5 Summary

In this Chapter, we introduced the automatic image annotation problem in Section 1.1 where the

task is to assign relevant tags to the query images based on their visual content. We then explained

the limitations of describing images using textual tags and discussed how attributes provide more

powerful alternative in Section 1.2. This section was focused on person-related attribute prediction

and provided a glimpse to our proposed method which exploits cues obtained via semantic face

and body parsing. Section 1.3 presented application of tags and attributes in describing Selfie

images. Finally, we introduced Mixture Normalization (MN) in Section 1.4. Our proposed view to

the batch normalization [1] puts this widely-used deep learning component in a completely novel

light and suggests how it can be improved in a diverse set of applications.

The rest of this dissertation is structured as follows:

In Chapter 2, we review existing literature on automatic image annotation, attribute prediction,

semantic segmentation as well as batch normalization. In Chapter 3, we present our proposed

approach for automatic image annotation based on weighted non-negative matrix factorization.

In Chapter 4, we begin by detailing our novel methods which employ semantic segmentation to

improve person-related attribute prediction. We then extend to its reverse problem where visual

attributes are utilized to boost semantic segmentation. Chapter 5 explains how textual tags and vi-

sual attributes can be leveraged to computationally address the Selfie phenomenon in large-scale.

Finally, in Chapter 6, we propose mixture normalization where disentangling modes of variation

accelerates training batch-normalized deep convolutional neural networks. We conclude this dis-

sertation in Chapter 7.

16

CHAPTER 2: LITERATURE REVIEW

Here, we provide comprehensive literature review for three computer vision tasks, namely auto-

matic image annotation in Section 2.1, attribute prediction in Section 2.2, and semantic segmenta-

tion in Section 2.3. These are the major research problems, studied in this dissertation, which focus

on semantically describing visual content in images. We then discuss batch normalization, a very

widely-used component in all the modern deep neural network architectures. We detail in Section

2.4, how batch normalization and its various extensions are related through a general normalization

formulation and what factors distinguish them from each other. These would build the ground for

the next few chapters where we detail our novel methods to address the aforementioned problems.

2.1 Image Annotation

Over the past decade, significant efforts have been devoted to the task of image annotation. Many

approaches are generative in nature consisting of either the topic or mixture models. In mixture

model-based approaches, each annotated image is modeled as a mixture of topics over visual and

tag features, where the mixture proportions are shared between different features or views. Exam-

ples include latent Dirichlet allocation [40], probabilistic latent semantic analysis [41], hierarchi-

cal Dirichlet processes [42], machine translation methods [43], and canonical correlation analysis

[44]. The approach by Xiang et al. [45] also performs query-specific training using Markov ran-

dom fields but it has expensive testing as one MRF is generated per tag. Mixture models define a

joint distribution over image features and annotations. Given a query image, these models compute

the conditional probability over tags given the visual features by marginalizing the joint likelihood.

Carneiro et al. [46] use a fixed number of mixture components over visual features per tag, while

in [47], it is defined by using the training images as components over visual features and tags.

17

Yavlinsky et al. [48] annotate images using only global features and perform nonparametric den-

sity estimation over the features. Besides generative approaches, discriminative models have also

been used including SVM [49, 17], ranking SVM by Grangier et al. [50] and the method by Hertz

et al. [51] which uses boosting.

A number of recent papers have reported better results with simple data-driven approaches by

finding visually similar training images for a given query followed by transfer of tags from those

images. Joint Equal Contribution (JEC) by Makadia et al. [13] was one of the first papers to high-

light the effectiveness of the nearest-neighbors (NN) for image annotation. The paper presented

an ad-hoc but simple procedure to transfer annotations from NN to the query image. The authors

found that equal contributions from different features (mean of distances) performs on par with

computationally expensive L1-regularized Logistic Regression (Lasso). In contrast, we propose to

fuse features using Multi-view NMF and show that it improves results. Guillaumin et al. [14] in-

troduced TagProp which also uses nearest-neighbors to transfer tags. They showed that using large

number of features, metric learning and special handling of rare tags (tag-specific models) improve

results of image annotation. The nearest-neighbors are employed both during training and testing.

Verma and Jawahar [52] presented two-pass kNN to find neighbors in semantic neighborhoods be-

sides metric learning which learns weights for combining different features. The nearest-neighbor

search they require for their method scales superlinearly with the number of training images, as a

single image can occur in multiple semantic neighborhoods.

Non-negative matrix factorization has been successfully applied to various domains including text

(document clustering [53]) and vision (face recognition [54]) and, in general, is an active area of

research in clustering. Unlike PCA, the non-negativity of coefficients can be readily translated

as weighted-assignment to basis or clusters. To understand the relationship between PCA, VQ

and single-view NMF, the reader is referred to [55, 54]. The work by [56] proposes to integrate

multiple views but the optimization is not performed jointly among views. They also propose a

18

model selection strategy for identifying the correct number of clusters (basis). The work by Liu et

al. [22] proposes a multi-view extension of NMF along with a novel normalization which makes

all the basis to have unit sum permitting interpretation in terms of pLSA [20, 21]. Our approach

[57] is a weighted extension of [22], and differs in three aspects. First, [22] uses Multi-view NMF

for unsupervised data clustering, i.e. they assume all data is available. For the task of image

annotation which is supervised multi-label concept detection, testing data is not known. Thus, we

need to recover coefficients for the query image during testing. Second, in our formulation, we

introduce weight matrices to handle imbalanced data. The third and most important difference

is that, while [22] only uses visual features, we use tags as another feature and force Multi-view

NMF to learn a set of basis across visual features and tags that are consistent across views. The

key insight is that if we learn basis across features enforcing consistency on coefficients, then it is

possible to use learned tag basis and query’s visual features to obtain tags.

The proposed use of Multi-view NMF, introduced in Section 1.1, is also related to Relaxed Collab-

orative Representation [58], but rather than using features of training images directly as dictionar-

ies, we learn a query-specific set of basis in each view and use that to transfer tags from annotated

nearest-neighbors to the query image. One can also see our proposed approach as a multi-view

extension with multiple weight matrices of the weighted but single-view NMF [59].

2.2 Attribute Prediction

Early works in modeling attributes [60][61][62] came around with the intention to change the

recognition paradigm from naming objects to describing them. Therefore, instead of directly learn-

ing the object categories, one begins with learning a set of attributes that are shared among different

categories. Object recognition can then be built upon the attribute scores. Hence, novel categories

19

are seamlessly integrated, via attributes, with previously observed ones. This can be used to ame-

liorate label misalignment between train and test data. Considering the importance of human cat-

egory, research in person-related attribute prediction [63][64][10][65][66][12] has flourished over

the years. To perform attribute prediction, some of the previous works have invested in model-

ing the correlation among attributes [67][68][69][70], while others have focused on leveraging the

category information [71][72][73]. There are also efforts to exploit the context [11].

Another way to view the attribute prediction literature is to divide it into holistic versus part-based

methods. The common theme among the holistic models is to take the entire spatial domain into

account when extracting features from images. On the other hand, part-based methods begin with

an attribute-related part detection and then use the located parts, in isolation from the rest of spatial

domain, to extract features. It has been shown that part-based models generally outperform the

holistic methods. However, they are prone to the localization error as it can affect the quality of the

extracted features. Although, there are works that have taken a hybrid approach benefiting from

both the holistic and part-based cues [74][10]. Our proposed methods fall in between the two ends

of the spectrum. While we process the image in a holistic fashion, we employ localization cues in

form of pixel-level semantic representations.

Among earlier works we refer to [63][66][12][75] as successful examples of part-based attribute

prediction models. More recently, in an effort to combine part-based models with deep learning,

Zhang et al. [75] proposed PANDA, a pose-normalized convolutional neural network (CNN) to

infer human attributes from images. PANDA employs poselets [12] to localize body parts and

then extracts CNN features from the located regions. These features are later used to train SVM

classifiers for attribute prediction. Inspired by [75], while seeking to also leverage the holistic cues,

Gkioxari et al. [74] proposed a unified framework that benefits from both holistic and part-based

models through utilizing a deep version of poselets [12] as part detectors. Liu et al. [10] have taken

a relatively different approach. They show that pre-training on massive number of object categories

20

and then fine-tuning on image level attributes is sufficiently effective in localizing the entire face

region. Such weakly supervised method provides them with a localized region where they perform

facial attribute prediction. In another part-based approach, Singh et al. [76] use spatial transformer

networks [77] to localize the most relevant region associated to a given attribute. They encode such

localization cue in a Siamese architecture to perform localization and ranking for relative attributes.

Rudd et al. [78] have addressed the widely recognized data imbalance issue in attribute prediction,

by introducing mixed objective optimization network (MOON). The proposed loss function mixes

multiple task objectives with domain adaptive re-weighting of propagated loss. [9] and [79] are

more examples of recent works that have tried similarly to address the class imbalance in the

multi-label problem of attribute prediction. Li et al. have recently proposed lAndmark Free Face

AttrIbute pRediction (AFFAIR) [80], a hierarchy of spatial transformation networks that initially

crop and align the face region from the entire —assumed to be in the wild —input image and then

localize relevant parts associated with different attributes. Separate neural network architectures

then extract feature representations from global and part-based regions where their fusion is used

to predict different facial attributes.

Our proposed person-related attribute detection, introduced in Section 1.2, employs semantic seg-

mentation to capture local characteristics in images. Specifically, for facial attributes, we utilize

semantic masks, obtained from a separate pre-trained semantic segmentation network, to gate and

pool the activations, respectively at middle and the end of the attribute prediction architecture.

We then extend and improve the proposed framework beyond faces, and to the full human body.

Meanwhile, unlike facial attribute detection model that uses two separate networks for the main

and auxiliary tasks, here we employ a heavy weight sharing strategy, unifying the semantic seg-

mentation and attribute prediction architectures. This yields a significant drop in the computation

cost of the framework. Next, we discuss the semantic segmentation literature.

21

2.3 Semantic Segmentation

Semantic segmentation can be seen as a dense pixel-level multi-class classification problem, where

the spatial (spatio-temporal) domain of images (videos) is partitioned using fine contours (volumes)

into clusters of pixels (voxels) with homogeneous class labels. Prior to the wide-spread popular-

ity of deep convolutional neural networks (CNN), semantic segmentation used to be solved via

traditional classifiers such as Support Vector Machine (SVM) or Random Forest applied to the

super-pixels [81][82]. Conditional Random Field (CRF) was often used in these methods as the

post processing technique to smooth the segmentation results, based on the assumption that pixels

which fall within a certain vicinity, with similar color intensity, tend to be associated with the same

class labels.

Among earlier efforts in using deep convolutional neural networks for semantic segmentation, we

can refer to Ciresan et. al [83] work on automatic segmentation of neuronal structures in elec-

tron microscopy images. Although, since the number of classes was limited to only membrane and

non-membrane, their problem in fact reduces to foreground detection task. Later, upon tremendous

success of deep convolutional neural networks in image classification, researchers began designing

semantic segmentation models on the top of CNN models, which were previously trained for other

tasks, mainly image classification [84][85][86][87][88]. These methods, by leveraging supervised

pre-training on strongly correlated tasks (e.g. often labels in two tasks have some overlap), were

able to facilitate training procedure for semantic segmentation. However, such an adoption intro-

duces its very own challenges.

Unlike image classification where the activations just before the classifier are flattened via fully

connected layer or global average pooling, semantic segmentation task requires the spatial domain

to be maintained, specifically the output segmentation maps should be at least of the same size as

the input image. Fully Convolutional Networks[84] popularized CNN architectures for semantic

22

segmentation. Long et. al [84] proposed transforming fully connected layers into convolution lay-

ers along with up-sampling intermediate and final activations, whose spatial domain have reduced

due to pooling layers through the network architecture. These techniques enable a classification

model to output segmentation maps of arbitrary size when operating on input images of any size.

Almost all the subsequent state-of-the-art semantic segmentation methods adopted this paradigm.

The performance of semantic segmentation task will be compromised if the spatial information is

not well preserved through the network architecture. In contrast, architectures designed for image

classification very often use pooling layers to aggregate the context activations while discarding

the precise spatial coordinates. To alleviate this conceptual discrepancy, two different classes of

architectures have evolved.

First is the encoder-decoder based approach [25] in which the encoder gradually reduces the spatial

domain through successive convolution and pooling layers, to generate the bottleneck representa-

tion. Then the decoder recovers the spatial domain by applying multiple layers of deconvolution or

convolution followed by up-sampling, to the aforementioned bottleneck representation. There are

usually shortcut connections from the encoder to the decoder, leveraging details at multiple scales,

in order to help decoder recovering fine characteristics more accurately. U-Net[89] SegNet[85],

and RefineNet[90] are the popular architectures from this class.

The second class of architectures developed around the idea of Dilated or Atrous convolutions

[86]. Specifically, one can avoid using pooling layers in order to preserve detailed spatial informa-

tion, but this will dramatically increase the computation cost as the following layers must operate

on larger activation maps. However, using Atrous convolution [86] with dilation rate equal to the

stride of the avoided pooling layer, results in the exact same number of operations as the regular

convolution operating on pooled activations1. In other words, dilated or Atrous convolution layer

1It is worth pointing out that while the computation cost remains the same, employing dilated convolution demands
more memory since the size of activation maps remains intact.

23

allows for an exponential increase in effective receptive field without reducing the spatial resolu-

tion. In a series of works [91][87], Chen et. al. demonstrated how Atrous convolution and its

multi-scale variation, namely Atrous spatial pyramid pooling (ASPP) can be utilized within the

framework of fully convolutional neural networks to improve the performance of the semantic seg-

mentation task. While in earlier efforts [87], Dense CRF [88] has been used, more recent works

[91] have shown comparable results without using such post-processing technique.

Semantic segmentation can be applied at a finer granularity where instead of the entire scene, an

object is semantically parsed into its parts. Among popular examples, readers are encouraged to

refer to [4, 3, 92, 93] for face, [94, 95, 96, 97, 98, 99] for general objects, and [23, 100, 101, 102,

103, 104, 105, 106, 107] for human body and clothing semantic parsing.

In this dissertation, since we are interested in attributes describing human, when alluding to se-

mantic segmentation, we specifically mean face and human body semantic parsing. To obtain

localization cues from full human body, our semantic segmentation model is a fully convolutional

neural network based on Inception-V3 [26] architecture, where following [87][91] we have also

incorporated Atrous spatial pyramid pooling (ASPP). In addition to utilizing semantic parsing for

person-related attribute prediction, we will provide results on semantic face parsing as well. We

show that, training an attribute prediction network with image-level supervision can effectively

serve as an initialization for semantic parsing task, when the the number of training instances is

limited.

2.4 Batch Normalization

Let’s consider x ∈ RN×C×H×W , a 4-D activation tensor in a convolutional neural network where

N, C, H and W are respectively the batch, channel, height and width axes. BN [1] computes

24

the mini-batch mean (µB) and standard deviation (σB), formulated in Equation 2.1, over the set

B = {x1...m : m ∈ [1,N]× [1,H]× [1,W]}, where x is flattened across all but channel axis, and ε is

used for numerical stability.

µB =
1
m

m

∑
i=1

xi σB =

√
1
m

m

∑
i=1

(xi−µB)2 + ε (2.1)

If we assume that samples within the mini-batch are from the same distribution, the transform

x→ x̂ shown in Equation 2.2, generates a zero mean and unit variance distribution. Then, BN uses

learnable scale (γ) and shift (β) parameters to transform the normalized distribution into one with

β mean and γ standard deviation.

x̂i =
1

σB
(xi−µB) yi = γ x̂i +β (2.2)

Following Ioffe and Szegedy’s [1] terminology, we refer to the transform

BNγ,β : x1...m→ y1...m (2.3)

as the Batch Normalizing Transform. In most of its applications, BN normalizes the output of a

convolution layer just before the non-linear activation function (e.g ReLU [37]), which separates

two consecutive convolution layers. As we discussed before, normalized activations, x̂1...m, under

the assumption that x1...m are from the same distribution, are of zero mean and unit variance. Hence,

applying ReLU function to x̂1...m can be approximately seen as rectifying half of the distribution.

This may not necessarily be the optimum case from the perspective of minimizing the objective

function during training. That is why the learnable scale (γ) and more crucially shift (β) parameter

are important, as they allow the training procedure to shape the behavior of the non-linearity and

25

consequently the entire model. It is easy to see (ref. Equation 2.4) that BN enables the the model

to alternate between two extreme cases of ignoring the non-linearity and completely clipping the

activations. While in the former, the effective depth of the network reduces as two back-to-back

linear operations can be seen as one, the latter prevents the activations from propagating to the next

layer.

{
∀γ∃η lim

β→+η

ReLU
(
BNγ,β (x)

)
= BNγ,β (x)|0 < γ,η � ∞

}
,

{
∀γ∃η lim

β→−η

ReLU
(
BNγ,β (x)

)
= 0|0 < γ,η � ∞

}
.

(2.4)

The behavior of BN at inference is slightly different from training phase. To cope with potential

discrepancy between distributions and dependency of each normalized activation to other instances

in the mini-batch, BN accumulates a running average of the statistics at the training phase and uses

them for normalizing mini-batches at inference. Hence, unlike training, where each mini-batch is

normalized with respect to its very own statistics, all the mini-batches at inference use the same

running average statistics for normalization while the scale and shift parameters are freezed. This

workaround is effective when the size of the mini-batch is large, its instances are i.i.d. samples from

training distribution and pre-computed statistics do not change [39]. However, in the absence of

these conditions, estimation of mean and variance becomes less accurate at mini-batch level, hence

affecting the running average statistics, and consequently results in performance degradation. To

address these drawbacks, Ioffe [39] proposed Batch Renormalization where a per-dimension affine

transformation is applied to the normalized activations as

xi−µ

σ
=

xi−µB

σB
· r+d, wherer =

σB

σ
, d =

µB−µ

σ
. (2.5)

Note that the parameters of the transformation, r and d, are not trainable, instead they, in expec-

26

tation, compensate for the difference between per mini-batch and over-population statistics. If the

expected values of the per mini-batch statistics match the moving average ones, then the affine

transformation reduces to an Identity resulting in batch renormalization [39] to behave identical to

the batch normalization [1].

Large batch training of the neural networks is very well motivated as it reduces the training time

by effectively leveraging the parallel and/or distributed computation. Yet the common practices

and previous empirical observations [108] used to suggest that large batch training would not

generalize as well as small batch training. Recently, Hoffer et. al [109] showed that there is no

inherent generalization gap associated with large batch training once the number of iterations and

learning rate are properly adapted. However, they noticed that the dependency of statistics used

by batch normalization [1], to the entire mini-batch, can affect the generalization of large batch

training. To ameliorate that, Ghost Batch Normalization [109] was proposed, where a large batch

is first scattered over multiple small virtual (“ghost”) batches. Then, each sample is normalized

with respect to the mean and standard deviation of the ghost batch to which it belongs to. At

inference, normalization is done via a weighted running average that aggregates the statistics of all

ghost batches during training.

Similarly, concerned with the dependency of batch-normalized activations on the entire mini-batch,

Salimans et. al [110] proposed Weight Normalization, which operates on the weight vectors in-

stead of activations. Hence, it does not introduce any dependencies between the samples within a

mini-batch. At core, it decouples the norm from the direction of the weight vectors. Specifically,

considering w as a weight vector in a standard artificial neural network, weigh normalization per-

forms optimization over g and v using w = g
‖v‖v reparameterization. Salimans et. al [110] present

weight normalization as a cheaper and less noisy approximation to the batch normalization [1]

because first, convolutional neural networks usually have much fewer weights than activations and

second, norm of v is non-stochatic but mini-batch statistics can have high variance for small batch

27

sizes. Unfortunately, the guarantees that [110] provides on the activations and gradients do not

extend to models with arbitrary non-linearities or when the architecture contains layers without

weight normalization [39].

Recently, a few extensions on batch normalization have been proposed, specifically, Layer Normal-

ization (LN) [33], Instance Normalization (IN) [34], Group Normalization (GN) [35], and Divisive

Normalization (DN) [36]. In this section, we loosely adopt notations from [36] and [35] to show

what distinguishes all the aforementioned methods is solely the set on which sample statistics are

computed. This unifying view was initially presented by Ren et al.[36] in an attempt to describe

the relationship between BN, LN, and DN. Here we further extend it to IN and GN as well.

Let’s consider i = (iN , iC, iL) as a vector indexing the tensor of activations x ∈ RN×C×L associated

to a convolution layer, where the spatial domain has been flattened (L = H×W). Then the general

normalization, x→ x̂, is in form of

vi = xi−EBi[x], x̂i =
vi√

EBi[v2]+ ε
, (2.6)

while similar to BN, γ and β parameters can be further applied to the normalized activations.

Before describing the extensions to the batch normalization using Equation 2.6, it is worth pointing

out that given

Bi = { j : jN ∈ [1,N], jC ∈ [iC], jL ∈ [1,L]}, (2.7)

the general normalization form reduces to the original batch normalization formulated in Equations

2.1 and 2.2.

Layer Normalization (LN) was proposed by Ba et al. [33], where they remove the inter-dependency

of batch-normalized activations to the entire mini-batch. Despite its effectiveness in recurrent net-

works, LN underperforms BN when applied to the convolution layers. That is because LN enforces

28

the same distribution on the entire spatial domain and along channel axis which is not natural in

case of convolution layers as the visual information can dramatically vary over the spatial domain.

LN can be formulated as Equation 2.6 when

Bi = { j : jN ∈ [iN], jC ∈ [1,C], jL ∈ [1,L]}. (2.8)

Instance Normalization (IN) was proposed by Ulyanov et al. [34] for the problem of image

style transfer [111]. While enjoying no inter-dependency to other samples in the mini-batch, IN

[34] uses more relaxed conditions than LN [33], by computing the statistics only over the spatial

domain generating different mean and standard deviations for each sample and each channel. IN

can be formulated as Equation 2.6 when

Bi = { j : jN ∈ [iN], jC ∈ [iC], jL ∈ [1,L]}. (2.9)

Group Normalization (GN) [35] is somewhere in between LN and IN. GN divides the channels

into multiple groups (G= 32 by default), then computes the statistics along L axis but only within a

subgroup of the channels. Therefore, when the number of groups matches the channel size (G=C),

GN is identical to IN. On the other hand, when there is only one group (G = 1), GN reduces to LN.

GN has shown to be effective on image classification, object detection and segmentation, when

batch size is very small (2 and 4) while providing comparably good results with BN on typical

batch sizes. GN can be formulated as Equation 2.6 when

Bi = { j : jN ∈ [iN], jC ∈ [1,C], jL ∈ [1,L] |

b jC
C/G

c= b iC
C/G

c},
(2.10)

where b jC
C/Gc ensures that normalizing xi is only influenced by the activation vectors which fall

29

within the same group as xi.

Divisive Normalization (DN) [36] can be seen as a local version of LN, where in normalizing xi,

instead of all the activation vectors within the same layer, only those that are in a certain vicinity

of xi contribute. This very well addresses the aforementioned drawback of LN, when applied to

the convolution layer. DN is formulated slightly different from the aforementioned normalization

methods, specifically as

vi = xi−EAi[x] x̂i =
vi√

ρ2 +EBi[v2]
, (2.11)

when

Ai = { j : d(xi,x j)≤ RA } Bi = { j : d(vi,v j)≤ RB}, (2.12)

where d denotes an arbitrary distance between two hidden units, ρ is the normalizer bias, and R

denotes the neighbourhood radius. Ren et al. [36] have shown how varying ρ would allow DN

followed by ReLU to alternate within a wide range of non-linear behaviors. DN shows promising

results both on convolutional and recurrent networks and can be easily implemented as a convolu-

tional operator where RA and RB are determined by the kernel size.

2.5 Summary

This Chapter began with a detailed literature review to the problem of automatic images annotation

in Section 2.1. We then provided a comprehensive survey on the attribute prediction and semantic

segmentation, various settings for each problem along with a wide range of techniques that have

been employed by the research community to address these tasks, respectively in Sections 2.2 and

2.3. Finally, we concluded this Chapter by offering a detailed review of batch normalization and

its various extensions in Section 2.4.

30

CHAPTER 3: AUTOMATIC IMAGE ANNOTATION

The results of this Chapter have been published in the following paper:

Mahdi M. Kalayeh, Haroon Idrees, Mubarak Shah, “NMF-KNN: Image Annotation using Weighted

Multi-view Non-negative Matrix Factorization,” in Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2014, pp. 184–191.[57]

Automatic image annotation assigns relevant textual tags to the images. This task is of extreme

importance when it comes to organizing large gallery of images or conducting content-based im-

age retrieval. We propose a mathematical framework based on Non-negative Matrix Factorization

to perform automatic image annotation. Our proposed technique can seamlessly adapt to the con-

tinuous growth of datasets, meanwhile being built on the features of nearest-neighbors and tags,

it functions in a query-specific fashion with no training per se. It naturally solves the problem of

feature fusion and handles the challenge of rare tags by introducing weight matrices that penalize

for incorrect modeling of less frequent tags and images that are associated with them.

In this Chapter, we begin by formulating the weighted non-negative matrix factorization in Section

3.1. This includes the optimization steps and details of integrating tags as an additional view in

Section 3.1.1. We then propose a mechanism in Section 3.1.2 to handle the rare tags followed by

the process of recovering tags associated with the query image. Experimental results and compu-

tational complexity analysis will be then provided in Section 3.2 to conclude this chapter.

31

3.1 Methodology

Given a query image, we first find its nearest-neighbors in the database which are assumed to

be annotated with tags. Each image is represented in terms of visual features which we treat as

different views of the image. We also treat tags as another view by obtaining binary vectors with

length equal to the vocabulary size of tags. Then, the matrices from all views are decomposed to

obtain basis in each view such that the coefficient vector of each NN image is consistent across

all views. This gives a query-specific generative model from which the tags of query image are

generated using its visual features.

3.1.1 Weighted Multi-view Non-negative Matrix Factorization

Given a query image represented with multiple visual features, we compute its distance to images

in the database in each view using pre-defined distance metrics (see Sec. 3.2). Next, the distance

is normalized to lie between 0 and 1 for all the images for each view. Then, the distances across

views are combined by taking their average and the N images with the smallest average distance

are selected as nearest-neighbors.

Let X(f) ∈ RM f×N represent the matrix obtained by horizontal concatenation of features vectors

of length M f from N images in f -th view, with a total of F views. Since we treat tags as another

view, we let X(F+1) = X(tag). The goal of Multi-view NMF is to decompose each X(f) into a basis

matrix U(f) ∈ RM f×K and a coefficient matrix V(f) ∈ RN×K , where the parameter K defines the

number of basis or latent concepts in each view. The factorization is subjected to soft-consensus

regularization which enforces coefficient vectors corresponding to each image to be similar to a

consensus vector in all views. This also results in the basis vectors to capture similar contents in

their respective views. This is particularly desirable for image annotation as the coefficient vectors,

32

recovered using the basis and the visual features of the query, are comparable across views.

Furthermore, to improve predictability of rare tags, we introduce two weight matrices in Multi-

view NMF formulation which bias the factorization towards improved reconstruction for rare tags.

Weight matrix T(f) ∈RM(f)×M(f) is identity for views corresponding to visual features. However, it

is a diagonal matrix for tag-view and is used to increase weight of rare tags so that reconstruction

is biased towards a solution which results in improved performance on such tags. The matrix

W ∈ RN×N gives more weight to images containing rare tags and is applied to all views.

The objective function for Weighted Multi-view NMF which constitutes reconstruction and regu-

larization terms is given by:

L =
F+1

∑
f=1
‖T
(
X(f)−U(f)V′(f))W‖2

F

+
F+1

∑
f=1

λ f ‖W′
(
V(f)Q(f)−V∗

)
‖2

F (3.1)

s.t. ∀1≤ f ≤ F +1, U(f),V(f),V∗ ≥ 0,

where (.)′ denotes transpose operator. Since the factorization obtained by NMF is not unique, i.e.,

UV′ = UQ−1QV′, we use the Q to normalize U so that each basis vector sums to 1, i.e., ‖U:,i‖= 1.

The diagonal matrix Q(f) ∈ RK×K is defined as:

Q(f)=Diag
(M

∑
m=1

U(f)
m,1,

M

∑
m=1

U(f)
m,2 . . .

M

∑
m=1

U(f)
m,K

)
. (3.2)

The minimization is performed through an iterative procedure. First, we minimize L over U(f)

and V(f) keeping V∗ fixed. In the next step, we minimize L over V∗ keeping U(f) and V(f) fixed.

33

The procedure is repeated for a fixed number of iterations. Both U(f) and V(f) are initialized with

non-negative values. Since the function is non-convex, optimization converges to a local minima.

Minimize over U(f) and V(f), given V∗: With V∗ fixed, U(f) does not depend on U(f ′) and

V(f ′) for f ′ 6= f . In the following treatment, we drop notation of feature for clarity. The objective

function for a particular feature for fixed V∗ is given by,

‖T
(
X−UV′

)
W‖2

F +λ f ‖W′(VQ−V∗
)
‖2

F s.t. U,V≥ 0. (3.3)

Compute U(f), given V(f) and V∗: We obtain the following multiplicative update rule (similar to

[22]):

Ui,k← Ui,k∇Ui,k and ∇Ui,k =
(T′TXWW′V)i,k +λ f ∑

N
n=1 W2

n,nVn,kV∗n,k
(T′TUV′WW′V)i,k +λ f ∑

M
m=1 Um,k ∑

N
n=1 W2

n,nV2
n,k

(3.4)

Compute V(f), given U(f) and V∗: We obtain the following multiplicative update rule (similar to

[22]):

V j,k← V j,k∇V j,k and ∇V j,k =
(WW′X′T′TU) j,k +λ f W2

j, jV∗j,k
(WW′VU′T′TU)i,k +λ f W2

j, jV j,k
(3.5)

Minimize over V∗, given U(f) and V(f): Once U(f) and V(f) have been updated for each view in

a particular iteration, we take derivative of (3.1) w.r.t V∗, set it equal to 0 and obtain the following

closed-form solution to V∗:

V∗ =
∑

F
f=1 λ f WW′V(f)Q(f)

∑
F
f=1 λ f WW′ (3.6)

34

3.1.2 Boosting Mechanism for Rare Tags

Since rare tags appear with low frequency, they are overshadowed by frequent tags during training

which leads to low recall for rare tags. The matrices T(tag) and W introduced in the NMF improve

recall and address the issue of dataset imbalance. Weight matrix T(tag) is a diagonal matrix with

T(tag)
i,i set to 1/frequency of i-th tag in a query’s neighborhood. T(tag) penalizes inaccurate matrix

factorization in Eq.3.1 severely for rare tags to ensure that the learned U(tag) accurately models the

rare tags. Thus, all tags contribute equally to the loss function. Furthermore, the diagonal matrix

W is embedded in Eq.3.1 to bias the learned basis matrices towards a more accurate factorization

of images with rare tags. W j, j equals the summation of 1/frequency of tags of j-th NN example.

The images annotated with rare tags are more important for an accurate generative model around

a query as they capture co-occurrence of rare tags with the more frequent ones.

3.1.3 Recovering Tags of Query

Given the factorized basis using features and tags of nearest-neighbors of a particular query im-

age, we recover the coefficients for visual features of the query in terms of learned basis using

GPSR[112], which gives stable results than least squares especially when basis matrix is ill-

conditioned. Next, the coefficient vectors from all views are combined using weighted average

with weight for view f equal to λ f to estimate the coefficient vector Ṽ(tag). In our experiments,

those were set to 0.01 for visual features and 1 for tags, so that basis for visual features are aligned

with those of tags. Finally, the product of Ṽ(tag) with the U(tag) which was learned during training,

i.e., U(tag)(Ṽ(tag)
)′ gives the scores for predicted tags. The desired number of tags can be obtained

by ranking the tags according to the obtained scores.

35

3.2 Experiments

In this section, we first explain the datasets used in our experiments as well as metrics used for

evaluation. Next, we present the experimental results of proposed method on different datasets and

compare them to previous works. Finally, we evaluate the effect of weight matrices and conclude

the section with a brief discussion on the complexity of the proposed method.

3.2.1 Datasets, Evaluation Metrics and Features

We performed experiments on two popular and publicly available datasets Corel5K and ESP Game.

Initially used by [43], Corel5K is the most common dataset for tag-based image annotation and

retrieval. The training and testing sets consist of 4,500 and 499 images, respectively. Images are

manually annotated with, 3.4 tags on average, from a dictionary of 260 tags. ESP Game contains

images annotated through an on-line game [113] in which players had to predict the same tags for

images to gain points. Training and testing sets of ESP Game contain 18,689 and 2,081 images,

respectively, with each image has 4.7 tags on average, from a dictionary of 268 tags. Figure 3.1

shows some example images from ESP Game dataset where we also illustrate the tag ambiguity

for two images which share many tags while being visually and conceptually dissimilar.

We follow the evaluation metrics used in [14]. We automatically annotate each image with 5 tags

and then compute precision and recall for each tag. The average precision (P) and average recall

(R) across all tags in addition to the number of tags with non-zero recall (N+) is reported for

performance evaluation. The F1 measure, defined as harmonic mean of P and R (F1 = 2 P∗R
P+R), is

also reported.

36

(a)

(b) circle, orange,
round

(c) circle, music, orange, red,
round, white

Figure 3.1: Example images from ESP Game dataset are illustrated in 3.1(a). Figures 3.1(b) and
3.1(c) share many tags, although they are conceptually and visually different.

We used the publicly available features1 provided by [14]. These are categorized as global and

local descriptors. Global descriptors consist of GIST [114] and color histograms of RGB, Lab and

HSV. Local descriptors include SIFT and robust (invariant to lighting geometry and specularities)

hue descriptor [115] extracted around multi-scale grid and Harris-Laplacian interest points. Color

histograms, SIFT and hue descriptors are also computed over three equal horizontal partitions

(denoted by V3H1) for each image to encode spatial information. This provides a total of F = 15

features representing each image. To compare two features, we used L1 for color histograms, L2

for GIST and χ2 for SIFT and hue descriptors, as was done in [14].

1Features: GIST, DenseSIFT, DenseSIFTV3H1, HarrisSIFT, HarrisSIFTV3H1, DenseHue, DenseHueV3H1, Har-
risHue, HarrisHueV3H1, RGB, RGBV3H1, Lab, LabV3H1, HSV, HSVV3H1 - available at http://tinyurl.
com/l5d68sj

37

http://tinyurl.com/l5d68sj
http://tinyurl.com/l5d68sj

Figure 3.2: Example images from ESP Game dataset and the corresponding top 5 tags predicted
using NMF-KNN are shown in this figure. Predicted tags in green appear in the ground truth while
red ones do not. In many cases, even though the proposed method has predicted relevant tags to
the image, those tags are missing in the ground truth. That is because the tag lists are not complete
and are generally a subset of relevant tags.

3.2.2 Results

Table 3.1 compares the performance of the proposed NMF-KNN framework to existing approaches

on Corel5k dataset. We can see that NMF-KNN significantly outperforms other image annota-

tion algorithms including the ML variant of TagProp which does not use tag-specific discrimina-

tive models. This indicates that the proposed approach is more effective than weighted nearest-

neighbor based approaches. To handle the issue of rare tags and boost their recall, TagProp [14]

learns discriminant models for each tag given by the variant TagProp-σML, which is the state-of-

the-art algorithm on this dataset. Although, TagProp-σML has a higher N+ with a difference of

10, the proposed method gives a much higher P, R, and F1 making it competitive to TagProp-σML.

Table 3.2 shows the results of the proposed and comparison methods on ESP Game dataset. The

proposed method provides competitive results w.r.t R and N+ to TagProp-σML. This shows that

learning a model around a query is more useful and the natural capabilities of features fusion and

38

handling rare tags, without requiring training on entire datasets, makes our approach superior to

the previous methods. NMF-KNN performs slightly worse than FastTag [16], however, at constant

time complexity during testing. Figure 3.2 illustrates qualitative results of image annotation using

proposed method on some example images from ESP Game dataset. True positives, i.e., the tags

predicted by our method that also occur in ground truth are shown in green, while false positives

are shown in red. It is evident that many of the predicted tags are relevant to the image content,

even though, they are not annotated in the ground truth. Another important difference between our

method and existing methods [13, 14, 52] is the number of nearest-neighbors used to propagate

the tags. These methods retrieve around N = 200 neighbors per query while we use only N =

40 neighbors. This suggests that NMF-KNN can build a reliable model around the query with

20% data compared to the competitive methods. To measure the effect of K, we evaluated the

performance of NMF-KNN by increasing the value of K from 10 to 150 when N is fixed to 40.

We observed that, for K beyond 50, R does not improve significantly while P initially increases

and then reaches a plateau. Meanwhile, a larger K increases the computational complexity of the

model and therefore is not desirable. We also studied the effect of neighborhood size, N, on the

performance of our proposed method. For N larger than 40, we did not observe a considerable

change in R, however P begins to decrease. A possible explanation is that for large neighborhood

sizes, we allow irrelevant training examples to participate in construction of our query-specific

model and therefore, learned basis become contaminated.

To evaluate the proposed boosting mechanism for rare tags, we study the effect of W and T in the

Multi-view NMF. In Fig. 3.3(a) and 3.3(b), the y-axis shows the frequency with which tags appear

in the training dataset. In Fig. 3.3(a), they have been grouped, while in Fig. 3.3(b), we show them

individually. The x-axis shows the value of recall and the blue and yellow bars represent the before

and after effect of W and T, respectively.

39

Table 3.1: Performance evaluation on Corel5k dataset

Method P R F1 N+

CRM[116] 16 19 17.3 107
InfNet[117] 17 24 19.9 112
NPDE[48] 18 21 19.3 114
SML[46] 23 29 25.6 137
MBRM[47] 24 25 24.4 122
TGLM[118] 25 29 26.8 131
JEC[13] 27 32 29.2 139
TagProp-ML[14] 31 37 33.7 146
TagProp-σML[14] 33 42 36.9 160
Group Sparsity[15] 30 33 31.4 146
FastTag[16] 32 43 36.7 166
NMF-KNN 38 56 45.2 150

Table 3.2: Performance evaluation on ESP Game dataset

Method P R F1 N+

MBRM[47] 18 19 18.4 209
JEC[13] 22 25 23.4 224
TagProp-σSD[14] 39 24 29.7 232
TagProp-ML[14] 49 20 28.4 213
TagProp-σML[14] 39 27 31.9 239
FastTag[16] 46 22 29.7 247
NMF-KNN 33 26 29.0 238

In Figure 3.3(c) and 3.3(d), the fraction of tags that belong to each group are shown. Boosting

mechanism improves the mean recall of tags in five groups (Fig. 3.3(a)) by 1.91%, 1.48%, 0.94%,

1.82% and 1.67%, respectively. The first group contains tags with frequency less than 6 while the

last one with frequency greater than 100. Fig. 3.3(c) shows that the majority (70.38%) of tags are

assigned to less than 6 images in the dataset. From Fig. 3.3(d), we can see that tags with only 1

relevant image in the dataset are dominant. The proposed boosting mechanism increased the recall

of tags with 1, 2 and 3 relevant tags in the dataset by 2.47%, 2.13% and 3.70%, respectively.

40

(a) (b)

(c) (d)

Figure 3.3: Evaluating the effect of Weight Matrices: Evaluated on Corel5k dataset, 3.3(a) shows
the effect of using weight matrices, before (blue) and after (yellow), on the annotation performance.
Tags are grouped based on their frequency of appearance in the dataset. The first bin groups words
that have between 1 to 5 images related to them. The second bin is associated with tags with the
images between 6 to 10, and so on. In 3.3(b) we show the same for first group of 3.3(a) to analyze
the recall of tags with 1 to 5 related images. 3.3(c) and 3.3(d) give the fraction of tags in each bin
of 3.3(a) and 3.3(b), respectively. This shows that we can improve the recall of rare tags without
sacrificing that of frequent tags.

In summary, Fig. 3.3(a) shows that for the tags belonging to all frequencies, the boosting mech-

anism improves the recall. This is different from TagProp [14] which sacrifices recall of frequent

tags to boost that of rare tags.

3.2.3 Computational Complexity

As noted by [119, 16, 15], [14]’s training complexity is quadratic, O(n2), where n is the number of

training images. Since it relies on sophisticated training procedures and per tag optimizations, it is

41

not scalable on large datasets. Adding new images or tags to the dataset influences the performance

of trained models as both positive and negative instances change for discriminative classifiers.

JEC [13] and FastTag [16] are comparable with proposed method in terms of complexity but [13]

provides considerably lower performance. Since [16] performs a global co-regularized learning,

regressor (W) and enricher (B) matrices have to be re-trained when a new set of samples or tags

are introduced to the dataset.

The proposed Multi-view NMF framework does not require any training but has O(n) test-time

complexity due to nearest-neighbor look up for the query image where n is the total number of

training examples. The complexity of Weighted Multi-view NMF is linear with respect to the

cardinality of chosen nearest-neighborhood that results in O(n) complexity for the proposed ap-

proach. In our experiments, query-specific training usually converges after 15−20 iterations. The

computation cost breakdown of NMF-KNN follows: 80% for finding the nearest-neighbors, 19%

for learning the model and 1% for predicting tags. Sub-linear time complexity can be achieved by

employing approximate NN search methods e.g. FLANN [120] or k-d trees in the implementation

of NMF-KNN.

3.3 Summary

In this chapter, we addressed automatic image annotation task, the problem of assigning relevant

textual keywords to images based on their visual content. Our proposed approach is suitable to

real-world databases which are characterized by a continuous increase in both the images and

tags assigned to those images. It is a hybrid of nearest-neighbor and generative approaches and

does not require any training in the form of global mapping between features and tags or tag-

specific discriminant models. NMF-KNN allows feature-fusion in a mathematically coherent way

by discovering a set of basis using both the visual features and annotated tags. The proposed weight

42

matrices handle the issue of dataset imbalance by increasing the recall of rare tags. Our proposed

approach offers a practical solution to real world datasets and performs competitively with state-

of-the-art methods without requiring any training. This is due to the proposed Weighted Multi-

view NMF which learns a superior model specific to each query while requiring fewer number of

nearest-neighbors for tag transfer.

Next, we detail our proposed technique for person-related attribute detection by harnessing local-

ization cues obtained from semantic face and body parsing.

43

CHAPTER 4: ON SYMBIOSIS OF ATTRIBUTE PREDICTION AND

SEMANTIC SEGMENTATION

The results of this Chapter have been partially published in the following paper:

Mahdi M. Kalayeh, Boqing Gong, Mubarak Shah, “Improving Facial Attribute Prediction using

Semantic Segmentation,” in Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017, pp. 6942–6950.[2]

While attribute prediction measures the likelihood of multiple labels appearing in an image as a

whole, semantic segmentation assigns class labels, in a multi-class classification fashion, to every

single pixel in the image. We hypothesize that integrating pixel-level semantic parsing of the face

and human body should improve person-related attribute prediction. In this regard, we propose

Semantic Segmentation-based Pooling (SSP) and Gating (SSG). In SSP, the estimated segmenta-

tion masks pool the output activations of the last (before classifier) convolutional layer at multiple

semantically homogeneous regions, unlike global average pooling that is spatially agnostic. In

SSG, we create multiple copies where each preserves the activations within a single semantic re-

gion and suppresses otherwise. This mechanism prevents max-pooling from mixing semantically

inconsistent regions. SSP and SSG while effective, impose heavy memory utilization. To tackle

that, Symbiotic Augmentation (SA) is proposed, where we learn to generate only one mask per

activation channel.

In this Chapter, we demonstrate the effectiveness of employing semantic segmentation to improve

person-related attribute prediction. Specifically, we present semantic segmentation-based pool-

ing (SSP) and gating (SSG), respectively in Section 4.1.1 and Section 4.1.2. Focusing on mini-

44

mizing the memory utilization overhead, we then propose, in Section 4.1.3, a simple alternative

architecture that approximately mimics the behavior of SSP and SSG, with considerably lower

computation cost. We also unify semantic segmentation and attribute prediction in Section 4.1.6

through multi-tasking a single network and training it in an end-to-end fashion. Section 4.2 details

our experiments where we achieve state-of-the-art results in person-related attribute prediction on

CelebA, LFWA, WIDER Attributes, and Berkeley Attributes of People datasets. We conclude

this Chapter in Section 4.2.5 by providing comprehensive experiments, detailing how to improve

semantic segmentation task by leveraging image-level attribute annotations.

4.1 Methodology

The underlying idea of this work is to exploit semantic segmentation in order to improve person-

related attribute prediction. To do so, we first propose semantic segmentation-based pooling (SSP)

and gating (SSG). These two layers, when employed in a basic convolutional backbone, assist the

attribute prediction by integrating detailed localization cues. The downside though is the additional

computation cost. Hence, we follow by proposing a considerably simpler architecture, which uni-

fies SSP and SSG designs while approximately mimicking their behavior with drastically smaller

memory footprint. Furthermore, instead of two networks, one for semantic segmentation and the

other for attribute prediction, we explore fully sharing the weights among two tasks, and train a

single multi-tasking architecture in an end-to-end fashion. We then further improve our frame-

work by replacing the convolutional backbone, initially similar to VGG-16 [121], with the more

modern Inception-V3 [26]. This choice will allow us to further push performance boundaries in

person-related attribute prediction task.

45

4.1.1 SSP: Semantic Segmentation-based Pooling

We argue that attributes usually have a natural correspondence to certain regions within the object

boundary. Hence, aggregating the visual information from the entire spatial domain of an image

would not capture this property. This is the case for the global average pooling used in our baseline

as it is agnostic to where, in the spatial domain, activations occur. Instead of pooling from the

entire activation map, we propose to first decompose the activations of the last convolution layer

into different semantic regions and then aggregate only those that reside in the same region. Hence,

rather than a single vector representation, we obtain multiple features, each representing only one

semantic region. This approach has an interesting intuition behind it. In fact, SSP funnels the back-

propagation of the label signals, via multiple paths, associated with different semantic regions,

through the entire network. This is in contrast with global average pooling that rather equally

affects different locations in the spatial domain. We later explore this by visualizing the activation

maps of the final convolution layer.

We can simply concatenate the representations associated with different regions and pass it to

the classifier; however, it is interesting to observe if attributes indeed prefer one semantic region

to another. Also, whether what our model learns matches human expectation on what attribute

corresponds to which region. To do so, we take a similar approach to [122] where Bilen and

Vedaldi employed a two branch network for weakly supervised object detection. We pass the

vector representations, each associated with a different semantic region, to two branches one for

recognition and another for localization. We implement these branches as linear classifiers that map

vector representations to the number of attributes. Hence, we have multiple detection scores for

an attribute each inferred based on one and only one semantic region. To combine these detection

scores, we normalize outputs of the localization branch using softmax non-linearity across different

semantic regions. This is a per-attribute operation, not an across-attribute one. We then compute

46

the final attribute detection scores by a weighted sum of the per-region logits (i.e. outputs of

recognition branch) using weights generated by the localization branch. Figure 4.1 (Left) shows

the SSP architecture.

Cin	x	Hin	x	Win		

Conv(3x3,	Cout)	

BN	

PReLU	

Max	Pooling	

K	x	Hin	x	Win		

(K	x	Cout)	x	Hin	x	Win		

Conv(1x1,	Cout)	

BN	

PReLU	

Cout	x	Hout	x	Wout		

Sum	

1	x	Cout		

FC	(Cin,	Cout)	

K	x	Cout		

K	x	Cin	

Global	Average	Pooling	

Cin	x	Hin	x	Win		

K	x	Cin	x	Hin	x	Win		

K	x	Hin	x	Win		

Softmax	

FC	(Cin,	Cout)	

K	x	Cout		

Figure 4.1: Left: Semantic segmentation-based Pooling (SSP). Right: Semantic segmentation-
based Gating (SSG). K indicates the number of semantic regions and Cout in SSP equals the number
of labels in the main task. We assume that the output tensor of activations from the previous layer
to either SSP or SSG is of shape Cin×Hin×Win where Cin, Hin and Win, respectively represent the
number of channels, height and width of the activations.

4.1.2 SSG: Semantic Segmentation-based Gating

Max pooling is used to compress the visual information in the activation maps of the convolution

layers. Its efficacy has been proven in many computer vision tasks, such as image classification and

object detection. However, attribute prediction is inherently different from image classification. In

47

image classification, we want to aggregate the visual information across the entire spatial domain

to come up with a single label for the image. In contrast, many attributes are inherently localized to

specific image regions. Consequently, aggregating activations that reside in the “hair" region with

the ones that correspond to “mouth”, would confuse the model in detecting “smiling" and “wavy

hair" attributes. We propose SSG to cope with this challenge.

Figure 4.1 (Right), shows our proposed SSG architecture. To gate the output activations of the

convolution layer, we broadcast element-wise multiplication for each of the semantic regions with

the entire activation maps. This generates multiple copies of the activations that are masked dif-

ferently. In other words, such mechanism spatially decomposes the activations into copies, where

high values cannot simultaneously occur in two semantically different regions. For example, gat-

ing with the semantic mask that corresponds to the “mouth” region, would suppress the activations

falling outside its area while preserving those that reside inside it. However, the area which a

semantic region occupies varies from one image to another.

We observed that, directly applying the output of the semantic segmentation network results in

instabilities in the middle of the network. To alleviate this, prior to the gating procedure, we

normalize the semantic masks such that the values of each channel sums up to 1. We then gate

the activations right after the convolution and before the batch normalization [1]. This is very

important since the batch normalization [1] enforces a normal distribution on the output of the

gating procedure. Then, we can apply max pooling on these gated activation maps. Since, given a

channel, activations can only occur within a single semantic region, max pooling operation cannot

blend activation values that reside in different semantic regions. We later restore the number of

channels using a 1× 1 convolution. It is worth noting that SSG can potentially mimic the stan-

dard max pooling by learning a sparse set of weights for the 1× 1 convolution. In a nutshell,

semantic segmentation-based gating allows us to process the activations of convolution layers in a

per-semantic region fashion while it also learns how to blend the pooled values back in.

48

ΦS	
batch	
norm.	

Convolution:	
NA	x	NS	x	3	x	3	

softmax	 spatial	
softmax	

ΦA	
log-

softmax	
batch	
norm.	

Convolution:	
NS	x	NA	x	3	x	3	

sigmoid	

xS	 FS	
lS	

ΦA	

FA	

ΦS	

lA	xA	

Figure 4.2: Architecture of the Symbiotic Augmentation (SA). The embedding layers, ΦS and
ΦA, respectively utilize the output of semantic segmentation and attribute prediction classifiers, to
augment the other task. Details of their components are shown in the bottom. FS and FA, are the
corresponding classifiers with NS and NA number of output labels. Similarly, lS and lA indicate
the loss functions of semantic segmentation and attribute prediction tasks respectively. For self-
expressiveness, we have used different notations here than in Figure 4.1, but in fact NS and NA,
respectively equal K and Cout of SSP in Figure 4.1.

4.1.3 A Simple Unified View to SSP and SSG

In both SSP and SSG architectures, we use the output of semantic segmentation to create K (refer-

ring to the number of semantic regions) copies of the activations. Each copy, assuming semantic

parsing outputs are perfect, preserves the activation values residing in one semantic region while

suppressing those that are outside that. Hence, both SSP and SSG should maintain K times the size

of activation maps in the memory. As K value grows, this can certainly become problematic due

to limited GPU memory budget.

A simple workaround for this is to learn the masks per channel. Specifically, instead of masking

each and every channels of the previous convolution activations by all the K semantic probability

49

maps, we learn one mask per channel (ref. ΦS in Figure 4.2). This can be simply implemented via

a 1×1 convolution on the top of semantic segmentation probability maps.

However, in practice, we observed that larger kernels can result in slight performance gain. Simi-

lar to SSG, the output logits of the semantic segmentation classifier must be normalized, via batch

normalization, prior to being passed to the embedding convolution layer. The output of the em-

bedding should also be spatially normalized (ref. last building block of ΦS in Figure 4.2). Such

embedding allows the model to either pick one or combine (weighted superposition) multiple se-

mantic maps, in order to generate proper mask for each channel. We initialize the convolution

kernels (NA×NS×3×3) of the embedding layers with zeros and no bias. This is inspired by the

idea that each channel should start by using all the semantic regions equally. However, through

training, it has the freedom to change towards combining only a selected number of regions. We

later visualize how the learned convolution kernels of ΦS look like in Figures 4.9 and 4.8(a).

We now go one step further as the same idea can be used when we reverse the roles of tasks. In

particular, we can use the output of attribute prediction to guide the semantic segmentation task. We

refer to this joint semantic augmenting model, illustrated in Figure 4.2, as Symbiotic Augmentation

(SA). The architecture of the embedding module in this case, ΦA, is the same as ΦS except the

normalization operations are done differently. Figure 4.2 shows that in Symbiotic Augmentation,

each task augments the other task’s representation, through its corresponding output logits, while

simultaneously being trained in an end-to-end fashion. This is different than SSP and SSG, where

only a pre-trained semantic segmentation model, while frozen at deployment, augments attribute

prediction task. Note that, in addition to a lower memory footprint, this approach allows us to

simplify the SSP by unifying the recognition and localization branches. That is because the learned

masks can properly weigh each channel and the order of consecutive linear operations (matrix

multiplication through fully connected layer and scaling through weights of localization branch) is

interchangeable.

50

Table 4.1: Configuration of the Semantic Segmentation Network. For all the convolution and de-
convolution layers, kernel size and stride value are respectively set to 3 and 1. We compute the
semantic segmentation loss at four different scales and aggregate them prior to the backpropaga-
tion. To prevent confusion, we are not showing the side loss layers, namely Deconv43, Deconv33
and Deconv23.

Layer Operations Output Size

Conv11 Conv, BN, PReLU 64×218×178
Conv12 Conv, BN, PReLU 64×218×178
MaxPool1 Max Pooling 64×109×89

Conv21 Conv, BN, PReLU 128×109×89
Conv22 Conv, BN, PReLU 128×109×89
MaxPool2 Max Pooling 128×55×45

Conv31 Conv, BN, PReLU 256×55×45
Conv32 Conv, BN, PReLU 256×55×45
MaxPool3 Max Pooling 256×28×23

Conv41 Conv, BN, PReLU 512×28×23
Conv42 Conv, BN, PReLU 512×28×23

Deconv41 Deconv, BN, PReLU 512×28×23
Deconv42 Deconv, BN, PReLU 512×28×23

UpSample3 Up Sampling 512×55×45
Deconv31 Deconv, BN, PReLU 256×55×45
Deconv32 Deconv, BN, PReLU 256×55×45

UpSample2 Up Sampling 256×109×89
Deconv21 Deconv, BN, PReLU 128×109×89
Deconv22 Deconv, BN, PReLU 128×109×89

UpSample1 Up Sampling 128×218×178
Deconv11 Deconv, BN, PReLU 64×218×178
Deconv12 Deconv, BN, PReLU 64×218×178
Deconv13 Deconv, BN, PReLU 7×218×178

51

4.1.4 Semantic Segmentation Network

We previously explained the rationale behind employing semantic segmentation to improve at-

tribute prediction. Our design for semantic segmentation network follows an encoder-decoder

approach, similar in concept to the deconvolution network proposed in [25]. However, considering

limited number of auxiliary data, we have made different design decisions to reduce the complex-

ity of the model while preserving its capabilities. The encoder consists of 8 convolution layers

in blocks of 2, separated with 3 max pooling layers. This is much smaller than 13 layers used in

the deconvolution network [25]. At the end of the encoder part, rather than collapsing the spatial

resolution as in [25], we maintain it at the scale of one-eighth of the input size.

The decoder is a mirrored version of the encoder replacing convolution layers with deconvolu-

tion and max pooling layers with up sampling. Unlike [25] that uses switch variables to store

the max pooling locations, we simply up sample the activation maps (repetition with i.e nearest

neighbor interpolation). We increase (decrease) the number of convolution (deconvolution) filters

by a factor of 2 after each max pooling (up sampling), starting from 64 (512) filters as we proceed

along the encoder (decoder) path. Every convolution and deconvolution layer is followed by Batch

Normalization [1] and PReLU [123] as the non-linearity.

To cope with the challenge of relatively small number of training data, we propagate the semantic

segmentation loss at different depths along the decoder path. That is, before each up sampling

layer, we compute the loss by predicting the semantic segmentation maps at different scales. We

then aggregate these losses with equal weights prior to backpropagation. Finally, while [25] em-

ploys VGG-16 [121] weights to initialize the encoder, we train our network from scratch. These

design decisions allow us to successfully train the semantic segmentation network with limited

number of training data. Detailed configuration of the semantic segmentation network is shown in

Table 4.1. In our experiments for SSP and SSG, we use the above semantic segmentation network

52

to generate localization cues in order to improve facial attribute prediction.

4.1.5 Basic Attribute Prediction Network

Our basic attribute prediction model is a fully convolutional neural network, similar in configura-

tion to the encoder part of the semantic segmentation network, detailed in Section 4.1.4. However,

we further augment it with four convolution layers. The first two are of size 512 while each of

the following ones consists of 1024 channels. Every convolution layer is followed by the Batch

Normalization [1] and PReLU [123]. We reduce the size of the activation maps using max pooling

when transitioning from 512 to 1024 filters. At the end of the pipeline, we aggregate the activa-

tions of the last convolution layer using global average pooling [24] to generate 1024-D vector

representations. These vectors will subsequently be passed to the classifier. We train the network

using sigmoid cross entropy loss. This architecture is the convolutional backbone in all of our SSP

and SSG experiment for facial attribute prediction. It also serves as the average pooling baseline

(ref. Section 3.2).

We use AdaGrad [124] with mini-batches of size 32 to train the attribute prediction models from

scratch. The learning rate and weight decay are respectively set to 0.001 and 0.0005. We follow

the same setting for training semantic segmentation network detailed in Section 4.1.4. At training,

we perform data augmentation by randomly flipping (horizontally) the input images. For SSP ex-

periments, we resize the output of the semantic segmentation network at Deconv23 layer to 14×12

(resolution of the final convolution layer). To do so, we use max and average pooling operations.

Since max pooling increases the spatial support of the region, we use it for the masks associated

with eyes, eyebrows, nose and mouth. This helps us to capture some context as well. We use aver-

age pooling for the remaining regions. We train the attribute prediction and semantic segmentation

networks for respectively 40K and 75K iterations. Next, we detail the backbone architecture that

53

has been used in Symbiotic Augmentation(SA). Unlike SSP and SSG experiments, for which we

pretrain the semantic segmentation network and then freeze and integrate it in attribute prediction,

here is a single architecture which multi-tasks both semantic segmentation and attribute prediction

and does not require any pretraining.

4.1.6 Backbone Architecture for Symbiotic Augmentation(SA)

We use Inception-V3 [26] as the convolutional backbone of Symbiotic Augmentation (SA), for

both semantic segmentation and attribute prediction models. Its architecture is 48 layers deep and

uses global average pooling instead of fully-connected layers which allows operating on arbitrary

input image sizes. Inception-V3 [26] has a total output stride of 32. However, to maintain low

computation cost and memory utilization, the size of activation maps quickly reduces by a factor of

8 in only first seven layers, referred to as STEM [26] in Figure 4.3. This is done by one convolution

and two max pooling layers that operate with the stride of 2. The network follows by three blocks

of Inception layers separated by two grid reduction modules. Spatial resolution of the activations

remains intact within the Inception blocks, while grid reduction modules halve the activation size

and increase the number of channels. For more details on the Inception-V3 architecture, readers

are encouraged to refer to [26].

Symbiotic Augmentation (SA) experiments use a single architecture to simultaneously learn se-

mantic parsing and attribute prediction tasks. This is different from SSP and SSG experiments

in which semantic segmentation model (ref. Section 4.1.4) was pretrained and then deployed

(weights were frozen) into attribute prediction pipeline (ref. Section 4.1.5). Specifically, we share

the weights of the Inception-V3 [26] while training with a mixed minibatch that is comprised of

equal instances associated to attribute prediction and semantic segmentation tasks.

54

STEM	

inception1	

reduction1	 inception2	

reduction2	

inception3	

φ0	

φ1	

φ2	

ψ	

image	

xS	

xA	

Figure 4.3: Backbone architecture used in the Symbiotic Augmentation (SA) experiments. For
attribute prediction, we use the final representation obtained at the end of the Inception-V3 archi-
tecture. It is indicated as XA. For semantic segmentation, we first concatenate final activations of
the backbone with two intermediate representations, but only after scaling (with learnable parame-
ters) them using ϕ0, ϕ1 and ϕ2. Then, we reduce the dimensionality of representation to 2048 using
a 1× 1 convolution, followed by batch normalization and ReLU. Ψ represents the concatenation
and dimensionality reduction operations. XS will be passed to the semantic segmentation classifier.

Figure 4.3 illustrates how we obtain feature representations for both tasks using a single architec-

ture. Note that each element in the minibatch has only one type of annotations, either attribute or

semantic segmentation labels. Hence, when XA and XS are passed to the Symbiotic Augmentation

(SA), shown in Figure 4.2, depending on the annotation type, either lS or lA are calculated.

55

4.2 Experiments

4.2.1 Datasets and Evaluation Measures

We evaluate our proposed attribute prediction models on multiple benchmarks. Specifically, we

use CelebA and LFWA [10] for facial attributes, while benchmarking on WIDER Attribute [11]

and Berkeley Attributes of People [12] for person attribute prediction. Liu et al. [10] have used

classification accuracy/error as the evaluation measure on CelebA and LFWA. However, we believe

that due to significant imbalance between the numbers of positive and negatives instances per

attribute, such measure cannot appropriately evaluate the quality of different methods. Similar

point has been raised by [78, 9, 79] as well. Therefore, in addition to the classification error,

we also report the average precision (AP) of the prediction scores. Following the literature, we

solely report AP for WIDER Attribute [11] and Berkeley Attributes of People [12]. Since attribute

benchmarks do not come with pixel-level labels, we train our semantic segmentation model on

auxiliary datasets. For experiments corresponding to facial attributes, we use Helen Face [3] along

with segment label annotations supplemented by [4]. For person attribute prediction experiments,

we train the semantic parsing model on Look into Person (LIP) [23] dataset. We use the standard

data split of each corresponding dataset.

CelebA [10] consists of 202,599 images partitioned into training, validation and test splits with

approximately 162K, 20K and 20K images in the respective splits. There are a total of 10K iden-

tities (20 images per identity) with no identity overlap between evaluation splits. However, we do

not use identity annotations. Images are annotated with 40 facial attributes such as, “wavy hair",

“mouth slightly open", and “big lips". In addition to the original images, CelebA provides a set of

pre-cropped images. We report our results on both of these image sets.

LFWA [10] has a total of 13,143 images of 5,749 identities with pre-defined train and test splits,

56

which divide the entire dataset into two approximately equal partitions. Each image is annotated

with the same 40 attributes used in CelebA[10].

WIDER Attribute [11] is collected from 13,789 WIDER images [125], containing usually many

people in each image with huge human variations. Each person in these images is then annotated

with a bounding box and 14 distinct human attributes such as “longhair”, “sunglasses”, “hat”,

“skirt”, and “facemask”. This results in a total of 57,524 boxes. Out of 13,789 images, WIDER

Attribute [11] is split into 5,509 training, 1,362 validation and 6,918 test images. There are 30

scene-level labels that each image is annotated with. However, we do not use them and solely train

and evaluate on bounding boxes of people. We evaluate on the 29,179 bounding boxes from testing

images, after training on 28,345 person boxes extracted from aggregation of training and validation

images. Unlike CelebA and LFWA [10], missing attributes are allowed in WIDER Attribute [11]

dataset.

Berkeley Attributes of People [12] contains 4,013 training and 4,022 test instances. The example

images are centered at the person and labeled with 9 attributes namely, “is male”, “has long hair”,

“has glasses”, “has hat”, “has tshirt”, “has long sleeves”, “has shorts”, “has jeans”, “has long

pants”. Similar to the WIDER Attribute [11], here unspecified attributes are also allowed.

Helen Face [3] consists of 2,330 images with highly accurate and consistent annotations of the

primary facial components. Smith et. al [4] have supplemented Helen Face [3] with 11 segment

label 1 annotations per image. Images are divided into splits of 2000, 230 and 100, respectively for

training, validation and test. Figure 4.4 illustrates a few instances of the input images along with

their corresponding segment label annotations. We train our semantic segmentation model on the

aggregation of training and validation splits and evaluate on the test split.

1“background”, “face skin” (excluding ears and neck), “left eyebrow”, “right eyebrow”, “left eye”, “right eye”,
“nose”, “upper lip”, “inner mouth”, “lower lip” and “hair”

57

Figure 4.4: Examples of the Helen face dataset [3] supplemented with segment label annotations
[4] and then grouped into 7 semantic classes. In bottom row, colors indicate different class labels.

LIP [23] consists of∼30,000 and 10,000 images respectively for train and validation. Each images

is annotated with 20 semantic labels2.

4.2.2 Evaluation of Facial Attribute Prediction

For all the numbers reported here, we want to point out that FaceTracer [64] and PANDA [75] use

groundtruth landmark points to attain face parts. Wang et al. [126] use 5 million auxiliary image

pairs, collected by the authors, to pre-train their model. Wang et al. [126] also use state-of-the-art

face detection and alignment to extract the face region from CelebA and LFWA images. However,

we train all our models with only attribute and auxiliary face/human parsing labels. We com-

pare our proposed method with the existing state-of-the-art attribute prediction techniques on the

CelebA [10]. To prevent any confusion and have a fair comparison, Table 4.2 reports the perfor-

2“Background”, “Hat”, “Hair”, “Glove”, “Sunglasses”, “Upper-clothes”, “Dress”, “Coat”, “Socks”, “Pants”,
“Jumpsuits”, “Scarf”, “Skirt”, “Face”, “Right-arm”, “Left-arm”, “Right-leg”, “Left-leg”, “Right-shoe” and “Left-
shoe”

58

mances in two separate columns distinguishing the experiments that are conducted on the original

image set from those where the pre-cropped image set have been used. Experimental results in-

dicate that under different settings and evaluation protocols, our proposed semantic segmentation-

based pooling and gating mechanisms can be effectively used to boost the facial attribute prediction

performance. That is particularly important given that our global average pooling baselines already

beat almost all the existing state-of-the-art methods. To see if SSP and SSG are complementary to

each other, we also report their combination where the corresponding predictions are simply aver-

aged. We observe that such process further boosts the performance. To investigate the importance

of aggregating features within the semantic regions, we replace the global average pooling in our

basic model with the spatial pyramid pooling layer [127]. We use a pyramid of two levels and

refer to this baseline as SPPNet∗. While aggregating the output activations in different locations,

SPPNet∗ does not align its pooling regions according to the semantic context that appears in the

image. This is in direct contrast with the intuition behind our proposed methods. Experimental

results shown in Table 4.2 confirm that simply pooling the output activations at multiple locations

is not sufficient. In fact, it results in a lower performance than global average pooling. This verifies

that the improvement obtained by our proposed models is due to their content aware pooling/gating

mechanisms.

Naive Approach A naive alternative approach is to consider the segmentation maps as additional

input channels. To evaluate its effectiveness, we feed the average pooling basic model with 10

input channels, 3 for RGB colors and 7 for different semantic segmentation maps. The input

is normalized using Batch Normalization [1]. We train the network using the same setting as

other aforementioned models. Our experimental results indicate that such naive approach cannot

leverage the localization cues as good as our proposed methods.

59

Table 4.2: Attribute prediction performance evaluated by the classification error, average precision
and balanced classification accuracy [9] on the CelebA [10] original and pre-cropped image sets.

Classification Error(%)

Method Original Pre-cropped

FaceTracer [64] 18.88 –
PANDA [75] 15.00 –
Liu et al. [10] 12.70 –
Wang et al. [126] 12.00 –
Zhong et al. [128] 10.20 –
Rudd et al. [78]: Separate – 9.78
Rudd et al. [78]: MOON – 9.06
AFFAIR [80] 8.55 –

SPPNet∗ – 9.49
Naive Approach 9.62 9.13
BBox – 8.76
Avg. Pooling 9.83 9.14
SSG 9.13 8.38
SSP 8.98 8.33
SSP + SSG 8.84 8.20
Inception-V3: baseline 8.68 –
Symbiotic Augmentation (SA) 8.53 –

Average Precision(%)

Method Original Pre-cropped

AFFAIR [80] 79.63 –

SPPNet∗ – 77.69
Naive Approach 76.29 79.74
BBox – 79.95
Avg. Pooling 77.16 79.74
SSG 77.46 80.55
SSP 78.01 81.02
SSP + SSG 78.74 81.45
Inception-V3: baseline 79.28 –
Symbiotic Augmentation (SA) 80.10 –

Balanced Accuracy(%) [9]

Method Original Pre-cropped

Huang et al. [9] – 84.00
CRL(C) [79] – 85.00
CRL(I) [79] – 86.00

Avg. Pooling – 86.73
SSG – 87.82
SSP – 88.24

60

Table 4.3: Attribute prediction performance evaluated by the classification error and the average
precision (AP) on LFWA [10] dataset.

Method Classification Error(%) AP(%)

FaceTracer [64] 26.00 –
PANDA [75] 19.00 –
Liu et al. [10] 16.00 –
Zhong et al. [128] 14.10 –
Wang et al. [126] 13.00 –
AFFAIR [80] 13.87 83.01

Avg. Pooling 14.73 82.69
SSG 13.87 83.49
SSP 13.20 84.53
SSP + SSG 12.87 85.28

Table 4.2 shows that at best, the naive approach is on par with the average pooling basic model. We

emphasize that feeding semantic segmentation maps along with RGB color channels to a convolu-

tional network results in blending the two modalities in an additive fashion. Instead, our proposed

mechanisms take a multiplicative approach by masking the activations using the semantic segmen-

tation probability maps.

Semantic Masks vs. Bounding Boxes To analyze the necessity of semantic segmentation, we gen-

erate a baseline, namely BBox, which is similar to SSP. However, we replace the semantic masks

in SSP with the bounding boxes on the facial landmarks. Note that we use the groundtruth location

of the facial landmarks, provided in CelebA dataset [10], to construct the bounding boxes. Hence,

to some extent, the performance of BBox is the upper bound of the bounding box experiment.

There are 5 facial landmarks including left eye, right eye, nose, left mouth and right mouth. We

use boxes with area 202 (402 gives similar results) and 1:1, 1:2 and 2:1 aspect ratios. Thus, there

are a total of 16 regions including the whole image itself. From Table 4.2, we see that our proposed

models, regardless of the evaluation measure, outperform the bounding box alternative, suggesting

61

that semantic masks should be favored over the bounding boxes on the facial landmarks.

Balanced Classification Accuracy Given the significant imbalance in the attribute classes, also

noted by [9, 78, 79], we suggested using average precision instead of classification accuracy/error

to evaluate attribute prediction. Instead, Huang et al. [9] and later [79] have adopted balanced

accuracy measure. To evaluate our proposed approach in balanced accuracy measure, we fine-

tuned our models with the weighted (∝ imbalance level) binary cross entropy loss. From Table

4.2, we observe that under such measure, all the variations of our proposed model outperform both

[9] and [79] with large margins.

To better understand the effectiveness of our proposed approach on facial attributes, we also report

experimental results on the LFWA dataset [10] in Table 4.3. Here, we observe a similar trend to

the one in CelebA, where all the proposed models which exploit localization cues successfully

improve the baseline. Specifically, SSP + SSG achieves considerably better performance than the

average pooling model with margins of 1.86% in classification accuracy and 2.59% in average

precision. Our best model also outperforms all other state-of-the-art methods.

Symbiotic Augmentation (SA) All the results reported so far were using a VGG16-like architec-

ture for attribute prediction and a separate pre-trained encoder-decoder architecture for semantic

segmentation [2]. However, in SA-based models, we have unified the two architectures and train

simultaneously with two objective functions. Table 4.2 shows that simply using a stronger con-

volutional backbone like Inception-V3 [26] boosts the performance on CelebA original image set.

Furthermore, SA-based model which is built on the top of such backbone, despite heavily sharing

all the weight across two tasks, can achieve even better results, outperforming SSP+SSG and cur-

rent state-of-the-art AFFAIR [80]. However, on LFWA dataset [10], we observed that Inception-V3

[26] baseline performs on par with Avg. Pooling baseline reported in Table 4.3 and SA cannot ob-

tain a meaningful gain over its counter global average pooling baseline. We also tried (not reported

62

here) solely using LFWA training instances, without pre-training on CelebA, and observed that SA

was indeed effective. However it was not able to reach the performance of the model initialized

with CelebA. Detailed per-attribute results of our top models for both CelebA and LFWA datasets

are shown in Table 4.4.

63

Table 4.4: Detailed per-attribute classification accuracy(%) and average precision(%) results of
our proposed models for facial attribute prediction. Note that SSP+SSG? indicates the experiment
using pre-cropped images of CelebA.

Method SS
P+

SS
G

SS
P+

SS
G
?

In
ce

pt
io

n
-V

3:
ba

se
lin

e

Sy
m

bi
ot

ic
A

ug
.(

SA
)

SS
P+

SS
G

SS
P+

SS
G

SS
P+

SS
G
?

In
ce

pt
io

n
-V

3:
ba

se
lin

e

Sy
m

bi
ot

ic
A

ug
.(

SA
)

SS
P+

SS
G

Dataset C
el

eb
A

C
el

eb
A

C
el

eb
A

C
el

eb
A

L
FW

A

C
el

eb
A

C
el

eb
A

C
el

eb
A

C
el

eb
A

L
FW

A

Classification Accuracy(%) Average Precision(%)

5 o Clock Shadow 94.50 95.07 94.34 94.62 79.72 80.36 83.96 80.42 81.63 83.61
Arched Eyebrows 83.06 84.56 83.88 84.12 83.74 77.98 81.17 78.93 79.64 73.07
Attractive 82.25 83.28 82.21 82.27 80.89 91.14 92.50 91.18 91.36 83.83
Bags Under Eyes 85.42 86.15 85.26 85.60 85.09 67.68 70.05 67.24 67.96 95.19
Bald 98.79 99.02 98.92 98.95 92.76 76.43 84.03 79.11 79.40 71.09
Bangs 95.51 96.23 95.72 95.86 91.82 93.86 95.54 94.16 94.65 82.46
Big Lips 71.67 72.45 71.35 72.16 80.20 62.85 62.97 62.30 63.01 81.83
Big Nose 84.50 85.38 84.77 85.01 84.67 68.62 72.25 69.13 71.43 95.92
Black Hair 90.06 90.63 89.96 90.15 92.81 89.75 90.79 89.55 90.13 77.13
Blond Hair 95.82 96.30 95.90 95.94 97.72 91.45 92.73 91.54 91.67 78.77
Blurry 95.67 96.44 95.65 95.85 87.49 53.61 65.87 53.95 57.03 63.88
Brown Hair 89.25 89.95 88.42 88.46 82.72 76.58 78.97 75.22 75.18 83.76
Bushy Eyebrows 92.36 93.20 92.34 92.50 85.77 76.47 81.00 76.36 76.91 94.45
Chubby 95.61 96.02 95.80 95.94 77.66 56.24 62.54 59.63 62.39 76.48
Double Chin 96.28 96.61 96.23 96.47 81.86 58.42 63.92 58.49 61.86 85.80
Eyeglasses 99.27 99.67 99.51 99.48 92.79 98.43 99.20 98.52 98.49 86.96
Goatee 97.28 97.58 97.41 97.55 84.08 74.89 81.64 79.08 80.86 75.74
Gray Hair 98.22 98.37 98.16 98.30 89.24 77.32 80.49 77.65 79.32 71.69
Heavy Makeup 90.83 92.17 91.03 90.99 95.90 96.26 97.31 96.29 96.30 88.80
High Cheekbones 87.13 88.13 87.09 87.48 89.48 94.94 95.78 94.92 95.23 91.68
Male 97.67 98.51 98.00 98.08 94.42 99.59 99.83 99.69 99.73 99.08
Mouth Slightly Open 92.25 94.19 92.61 92.79 84.29 97.97 98.87 98.10 98.29 88.36
Mustache 96.96 97.01 96.94 97.16 94.01 64.14 67.94 65.45 67.01 86.11
Narrow Eyes 86.68 87.92 86.86 87.17 84.68 52.35 59.31 53.22 55.11 95.22
No Beard 95.66 96.52 95.77 95.74 83.63 99.74 99.82 99.76 99.79 94.98
Oval Face 77.83 76.83 77.15 77.50 77.89 66.25 63.84 65.40 65.75 87.21
Pale Skin 97.08 97.29 96.78 96.69 91.15 67.25 70.65 60.60 60.32 97.77
Pointy Nose 76.50 77.86 77.14 77.45 84.99 60.67 65.93 62.74 63.67 95.69
Receding Hairline 93.31 94.14 93.42 93.81 86.60 60.24 67.80 62.05 63.79 95.57
Rosy Cheeks 94.78 95.39 94.75 94.77 86.28 67.66 72.40 64.33 65.41 74.02
Sideburns 97.70 98.00 97.75 97.82 83.21 82.92 86.78 83.16 85.17 81.54
Smiling 91.92 93.39 92.00 92.45 92.51 97.97 98.62 98.07 98.23 97.00
Straight Hair 83.59 84.46 85.16 85.21 81.58 63.56 66.22 68.82 69.21 83.26
Wavy Hair 84.79 84.62 86.13 85.93 81.22 88.46 88.73 90.15 90.27 87.69
Wearing Earrings 89.99 90.94 90.41 90.56 95.23 83.40 85.71 84.79 85.18 89.11
Wearing Hat 98.78 99.11 99.07 99.07 91.08 92.87 95.89 95.21 95.59 75.11
Wearing Lipstick 93.58 94.56 93.61 93.88 95.19 98.67 99.10 98.70 98.76 90.52
Wearing Necklace 88.72 88.01 89.65 89.57 90.15 59.05 52.89 62.92 62.71 82.38
Wearing Necktie 97.15 97.02 97.17 97.12 83.87 86.81 87.51 87.45 88.31 94.47
Young 87.85 89.01 88.52 88.37 86.95 96.89 97.60 97.13 97.19 74.02

Avg. 91.16 91.80 91.32 91.47 87.13 78.74 81.45 79.28 80.10 85.28

64

4.2.3 Evaluation of Person Attribute Prediction

Table 4.5 compares our proposed method with the state-of-the-art on WIDER Attribute [11] dataset.

We observe that the Inception-V3 [26] baseline, despite being considerably shallower, performs on

par with ResNet-101. Symbiotic Augmentation (SA) which employs semantic segmentation yields

a ∼2% performance gain over our Inception-V3 [26] baseline surpassing [129], the current state-

of-the-art. For detailed performance comparison between varieties of ResNet [32] and DenseNet

[7] architectures on WIDER Attribute [11] dataset, readers are encouraged to refer to [129]. Ta-

ble 4.6 compares our proposed method with the state-of-the-art on Berkeley Attributes of People

[12] dataset. Note that [11] leverages the context in the image while our method solely operates

on the bounding box of each person, yet it still outperforms [11] with 2.6% margin. Similar to

WIDER Attribute [11] dataset, here utilizing semantic segmentation through our proposed Symbi-

otic Augmentation (SA) results in 2% gain in AP over our already very competitive Inception-V3

[26] baseline. Detailed per-attribute results of our models are shown in Table 4.7.

Table 4.5: Attribute prediction performance evaluated by the average precision(%) on WIDER
Attribute [11] dataset.

Method AP(%)

Fast R-CNN [130] 80.00
R*CNN [131] 80.50
Deep Hierarchical Contexts [11] 81.30
VeSPA [132] 82.40
ResNet-101 [133] 85.00
ResNet-SRN-att [133] 85.40
ResNet-SRN [133] 86.20
Sarafianos et. al. [129] 86.40

Inception-V3: baseline 85.86
Symbiotic Augmentation (SA) 87.58

65

Table 4.6: Attribute prediction performance evaluated by the average precision(%) on Berkeley
Attributes of People [12] dataset.

Method AP(%)

Fast R-CNN [130] 87.80
R*CNN [131] 89.20
Gkioxari et al. [74] 89.50
Deep Hierarchical Contexts [11] 92.20

Inception-V3: baseline 92.87
Symbiotic Augmentation (SA) 94.80

4.2.4 Visualizations

Figure 4.5 illustrates per-attribute weights that the localization branch of the SSP has learned in

order to combine the detection scores associated with different semantic regions. We observe that

attributes such as “Black Hair", “Brown Hair", “Straight Hair" and “Wavy Hair" have strong bias

towards the hair region. This matches our expectation. However, attribute "Blond Hair" does

not behave similarly. We suspect that it is because the semantic segmentation network does not

performs as consistent on light hair colors as it does on the dark ones. Attributes such as "Goa-

tee", "Mouth Slightly Open", "Mustache" and "Smiling" are also showing a large bias towards the

mouth region. While these are aligned with our our human knowledge, "Sideburns" and "Wearing

Necklace" apparently have incorrect biases. We mentioned that semantic pooling funnels back-

propagation via multiple pathways, that are semantically aligned in spatial domain, through the

network. Unlike the global average pooling which equally affects a rather large spatial domain, we

expect SSP to generate activations that are semantically aligned.

66

Table 4.7: Detailed per-attribute AP(%) results of our proposed models for person attribute predic-
tion.

WIDER Attribute[11]

Inception-V3:
baseline

Symbiotic
Augmentation (SA)

Male 95.60 96.64
Long Hair 86.98 89.25
Sunglasses 70.56 78.31
Hat 92.87 95.04
T-shirt 83.36 84.77
Long Sleeve 96.71 97.64
Formal 83.82 85.38
Shorts 91.96 93.87
Jeans 79.60 81.76
Long Pants 97.18 97.74
Skirt 85.74 87.65
Face Mask 76.51 79.18
Logo 91.07 90.87
Stripe 70.15 68.04

Avg. 85.86 87.58

Berkeley Attributes of People [12]

Inception-V3:
baseline

Symbiotic
Augmentation (SA)

Is Male 96.29 96.73
Has Long Hair 93.71 94.41
Has Glasses 79.57 88.41
Has Hat 92.97 96.31
Has T-shirt 86.28 88.15
Has Long sleeves 96.96 98.01
Has Shorts 95.43 95.82
Has Jeans 95.34 95.80
Has Long Pants 99.33 99.55

Avg. 92.87 94.80

67

To evaluate our hypothesis, in Figure 4.6, we show the activations for the top fifty channels of

the last convolution layer. Top row corresponds to our basic network with global average pooling,

while the bottom row is generated when we replace global average pooling with SSP. We observe

that, activations generated by SSP are clearly more localized than those obtained from the global

average pooling.

To better understand how attribute prediction and semantic segmentation models have learned their

corresponding tasks, we visualize the embedding convolution layers in ΦS and ΦA (ref. Figure 4.2)

for simultaneously training of CelebA [10] (original image set) with Helen face [3], and WIDER

Attribute [11] with LIP [23]. Figure 4.9 shows how for each facial attribute (vertical axis), net-

work has learned to employ different semantic regions of face (horizontal axis) in order to predict

attributes. Note that these weights are learned through back-propagation and are not hard coded,

yet they reveal very interesting observations. First, almost all the attributes give “background” the

lowest importance, except attribute “Wearing Necklace” which makes sense as neck falls outside

the face region and counted as background in Helen face dataset [3]. Second, the learned im-

portance for the majority of attributes are aligned with human expectations. For instance, all the

hair-related attributes are inferred with the most attention of the model being paid to the “Hair”

region. The same is true for “Big Nose”, “Pointy Nose” and “Eyeglasses” as the model learns to

focus on the “Nose” region. Figure 4.7 illustrates ΦA for the reverse problem where attributes are

supposed to improve semantic face parsing. Figure 4.8(a) and 4.8(b) show the learned weights of

the embedding convolution layer for person attribute prediction and human semantic parsing tasks.

We observe that simultaneously training for attribute prediction and semantic segmentation within

Symbiotic Augmentation framework, in addition to the performance gains, provides us with mean-

ingful tools to study how a complex deep neural network infers and relate different semantic labels

across multiple tasks.

68

5	
o	
Cl
oc
k	
Sh
ad
ow

	
Ar
ch
ed

	 E
ye
br
ow

s	
A4

ra
c5
ve
	

Ba
gs
	 U
nd

er
	 E
ye
s	

Ba
ld
	

Ba
ng
s	

Bi
g	
Li
ps
	

Bi
g	
N
os
e	

Bl
ac
k	
Ha

ir	
Bl
on

d	
Ha

ir	
Bl
ur
ry
	

Br
ow

n	
Ha

ir	
Bu

sh
y	
Ey
eb

ro
w
s	

Ch
ub

by
	

Do
ub

le
	 C
hi
n	

Ey
eg
la
ss
es
	

Go
at
ee
	

Gr
ay
	 H
ai
r	

He
av
y	
M
ak
eu

p	
Hi
gh
	 C
he

ek
bo

ne
s	

M
al
e	

M
ou

th
	 S
lig
ht
ly
	 O
pe

n	
M
us
ta
ch
e	

N
ar
ro
w
	 E
ye
s	

N
o	
Be

ar
d	

O
va
l	 F
ac
e	

Pa
le
	 S
ki
n	

Po
in
ty
	 N
os
e	

Re
ce
di
ng
	 H
ai
rli
ne

	
Ro

sy
	 C
he

ek
s	

Si
de

bu
rn
s	

Sm
ili
ng
	

St
ra
ig
ht
	 H
ai
r	

W
av
y	
Ha

ir	
W
ea
rin

g	
Ea
rr
in
gs
	

W
ea
rin

g	
Ha

t	
W
ea
rin

g	
Li
ps
5c
k	

W
ea
rin

g	
N
ec
kl
ac
e	

W
ea
rin

g	
N
ec
k5
e	

Yo
un

g	
	

Nose	 Mouth	 Eyebrows	 Eyes	 Face	 skin	 Hair	 Background	

Figure 4.5: Contribution of semantic regions in predicting different attributes as learned by the
localization branch of SSP. Values are averaged over multiple random mini-batches of 32 images.

Figure 4.6: Top fifty activation maps of the last convolution layer sorted in descending order w.r.t
the average activation values. Top: Basic attribute prediction model using global pooling. Bottom:
SSP.

69

Figure 4.7: Learned weights of ΦA in Symbiotic Augmentation (SA), trained on CelebA and Helen.
Note: 9 values associated with 3×3 kernels are averaged. For better visualization, values in each
row are normalized between 0 and 1.

4.2.5 Attribute Prediction for Semantic Segmentation

In this work, we have established how semantic segmentation can be used to improve person-

related attribute prediction. What if we reverse the roles. Can attributes improve semantic parsing

problem? To evaluate this, we focus on facial attributes and compare the performance of semantic

face parsing on Helen face [3]. We consider three scenarios.

First, initializing Inception-V3 [26] backbone with ImageNet [134] pre-trained weights. Sec-

ond, training a baseline attribute prediction network on CelebA [10] and using the corresponding

weights, once training finished, to initialize semantic face parsing network. Third, training facial

attribute and semantic face parsing simultaneously through Symbiotic Augmentation (SA) frame-

work. For the sake of simplicity, solely in this experiment, SA only uses the final activations of the

CNN backbone instead of concatenating them with intermediate feature maps as shown in Figure

4.3. We observed that upgrading to full SA model boosts mean class accuracy by ∼5% and also

achieves similar mean IoU.

70

(a) ΦS (b) ΦA

Figure 4.8: Learned weights of embedding convolution layers in Symbiotic Augmentation (SA),
trained on WIDER and LIP. Note: 9 values associated with 3×3 kernels are averaged. For better
visualization, values in each row are normalized between 0 and 1.

Table 4.8 shows that pre-training on image-level facial attribute annotations delivers a large per-

formance gain over ImageNet based initialization. This shows that there exists an interrelated-

ness between attribute prediction and semantic segmentation. Furthermore, it suggests that while

collecting annotations for semantic parsing is laborious and expensive, instead one can use rele-

vant image-level attribute annotations to initialize a semantic parsing model. The last row in each

block of the Table 4.8 demonstrates how training facial attributes and semantic face parsing jointly,

through our proposed Symbiotic Augmentation (SA), can further push the performance boundary

with significant margin. Therefore, it is easy to see that when few training instances are available,

indeed image-level facial attribute labels can serve as an effective source of weak supervision to

71

improve semantic face parsing task. In fact such interrelatedness plays a major role in allowing us

to successfully unify semantic segmentation and attribute predictions networks (ref. Section 4.1)

without sacrificing the performance. Jointly training on LIP [23] and WIDER Attribute [11], we

did not observe meaningful gain in semantic segmentation task on LIP [23]. We hypothesize that,

this is due to the fact that LIP [23] itself already has huge (∼30,000 instances) number of training

annotations. In order to confirm this, conducting an experiment where only a small portion of LIP

[23] training instances are utilized is needed.

Table 4.8: Effect of leveraging image-level attribute supervision for semantic face parsing, evalu-
ated on the test split of Helen face [3][4]. Here, all the models were trained with the input image
resolution of 448×448.

Intersection over Union(%)

Method bkg face skin l-eyebrow r-eyebrow l-eye r-eye nose u-lip i-mouth l-lip hair Avg.

init: ImageNet 92.97 85.58 46.90 48.33 55.39 55.91 84.24 43.77 59.21 55.19 71.99 63.58
init: CelebA 93.20 86.40 51.31 51.11 56.22 58.81 84.82 49.32 60.01 58.95 73.13 65.75
SA 94.25 88.24 59.29 58.11 62.45 67.22 87.96 51.05 69.66 70.32 75.77 71.29

Class Accuracy(%)

method bkg face skin l-eyebrow r-eyebrow l-eye r-eye nose u-lip i-mouth l-lip hair Avg.

init: ImageNet 96.04 94.21 56.02 60.95 67.61 67.62 90.69 58.25 74.73 66.12 83.36 74.14
init: CelebA 95.96 94.09 63.31 67.71 67.30 69.79 90.06 66.80 75.27 72.83 85.22 77.12
SA 97.02 95.47 69.89 74.97 72.12 77.21 92.43 66.96 76.88 81.60 84.67 81.07

4.3 Summary

Aligned with the trend of part-based attribute prediction methods, we proposed employing se-

mantic segmentation to improve person-related attribute prediction. Specifically, we jointly learn

attribute prediction and semantic segmentation in order to mainly transfer localization cues from

the latter task to the former. To guide the attention of our attribute prediction model to the regions

which different attributes naturally show up, we introduced SSP and SSG. While SSP is used to

restrict the aggregation procedure of final activations to regions that are semantically consistent,

72

SSG carries the same notion but applies it to the earlier layers. We then demonstrate that there exist

a single unified architecture that can mimic the behavior of SSP and SSG, depending on where in

the network architecture it is being used. We evaluated our proposed methods on CelebA, LFWA,

WIDER Attribute and Berkeley Attributes of People datasets and achieved state-of-the-art perfor-

mance. We also showed that attributes can improve semantic segmentation (in case of few training

instances) when properly used through our Symbiotic Augmentation (SA) framework. We hope to

encourage future research works to invest more in the interrelatedness of these two problems.

In the next Chapter, we first introduce our very own Selfie dataset. Then, we follow through

by detailing our approach in analysing the Selfie images using state-of-the-art computer vision

techniques.

73

Figure 4.9: Learned weights of ΦS in Symbiotic Augmentation (SA), trained on CelebA and Helen.
Note: 9 values associated with 3×3 kernels are averaged. For better visualization, values in each
row are normalized between 0 and 1.

74

CHAPTER 5: ANALYSIS OF SELFIE IMAGES

The results of this Chapter have been published in the following paper:

Mahdi M. Kalayeh, Misrak Seifu, Wesna LaLanne, Mubarak Shah, “How to Take a Good Selfie?,”

in Proceedings of the 23rd ACM International Conference on Multimedia, 2015, pp. 923-926.[135]

The massive number of self-portrait images taken and shared on social media is revolutionizing the

way people introduce themselves and the circle of their friends to the world. The Big Data nature

of Selfies, naturally demands algorithmic approaches to automate understanding and inference

from Selfies, as it is nearly impossible to analyze them manually. We show that both textual tags

and visual attributes, as computational semantic tools can be effectively utilized to analyze Selfies

in scale. To do so, we begin by collecting the first Selfie dataset with more than 46K images

and annotate it with 36 visual attributes covering characteristics such as gender, age, race, and

hairstyle. We provide attribute prediction of Selfies, using SIFT and HOG, pre-trained AlexNet

on ImageNet, and Adjective Noun Pairs (e.g “smiling boy”) of SentiBank. In order to assess the

impact of different visual concepts or various Instagram filters on the popularity of Selfies, we train

`2-regularized Support Vector Regression (SVR) to estimate the log2-normalized view counts. We

also study how popularity and sentiment of Selfies are correlated.

This Chapter begins with the details of our proposed selfie dataset in Section 5.1. This includes

the collection and annotation processes. We then complement our dataset by providing baseline

attribute prediction in Section 5.2 using four different, including deep and non-deep feature repre-

sentations. This chapter continues as we address multiple research questions regarding popularity

and sentiment of selfies in Sections 5.3.1, 5.3.2, and 5.3.3, all experimented on our very own

proposed selfie dataset.

75

Figure 5.1: Number of labeled positive and negative images in the Selfie dataset for different
attributes.

Figure 5.2: Attribute prediction performance of different features on the Selfie dataset.

5.1 Selfie Dataset

Due to the massive number of selfies being uploaded on social media every minute, any study

aiming to provide insights about selfies has to be conducted on very large number of images to

ensure that it sufficiently captures the variations in the data. To the best of our knowledge, there

exists no selfie dataset publicly available for research purposes. Therefore, we collected our own

dataset. We downloaded 85,000 images from selfeed.com, a real-time update of #selfie on

Instagram. Despite being tagged with #selfie, we found that only 69,710 of those images are

actually selfie images. The remaining 15,290 images were either completely irrelevant or general

76

selfeed.com

photographs of people. This is an interesting observation, since different social media usually

report the number of selfies shared on their environment by counting the images tagged with #selfie.

However, in our data collection, at least 18% of images tagged with #selfie are not, in fact, selfies.

In preparation of the Selfie dataset [135], we made sure to discard any images that do not fall under

the definition of selfie. Clearly this is a subjective judgment and different annotators may disagree

in a few cases whether a photo is a selfie or not. In order to generate a uniform understanding

of selfie among our annotators, we asked them to annotate a fixed set of images containing about

2,000 images. Then, the images with mixed votes where discussed and disagreement was resolved

by clarifying the definition. About 32% of selfie images that we collected were showing multiple

faces either in form of group selfies or collages. Excluding multiple-face images yields to a total

number of 46,836 single-face selfies. Since we wanted to annotate selfies with attributes such as

age, gender, hair color and etc., we were mostly interested in selfies that do not show multiple faces.

Figure 1.4 shows some of the collected selfie images. We annotated 46,836 selfie images with 36

different attributes divided into several categories as follows: Gender: is female. Age: baby, child,

teenager, youth, middle age, senior. Race: white, black, asian. Face shape: oval, round, heart.

Facial gestures: smiling, frowning, mouth open, tongue out, duck face. Hair color: black, blond,

brown, red. Hair shape: curly, straight, braid. Accessories: glasses, sunglasses, lipstick, hat,

earphone. Misc.: showing cellphone, using mirror, having braces, partial face. Lighting condition:

harsh, dim. We asked annotators to look into a random subset (∼3,000 images) of the Selfie dataset

and create a list of attributes that they 1) frequently observe and 2) can easily detect. These two

conditions assure enough positive samples for each attribute and an acceptable performance for the

attribute detectors. Figure 5.1 shows the ground truth statistics of the collected Selfie dataset.

77

5.2 Attribute Prediction

To analyize selfie images outside our dataset, we have to be able to predict different attributes of in-

terest with an acceptable precision. Therefore, we provide a baseline for attribute prediction along

with introduction of our Selfie dataset. In our experimental setting, for every attribute, positive

instances were randomly divided into 3 folds. We do the same for the negative instances. Train-

ing split for each attribute consists of 2 out of 3 folds from both positive and negative instances.

The third folds from positive and negative instances, together create the testing split. For feature

extraction from images, we use

SIFT We densely extract SIFT descriptors from images at every 3 pixels and at 8 different scales.

To encode these descriptors into a single feature vector, we employ VLAD [136] with a codebook

size of 256. HOG We densely extract HOG descriptors from images with the cell size of 8 pix-

els. Descriptor encoding is the same as the one used for dense SIFT. Deep Features Using deep

convolutional neural networks (CNN) [137] trained on ImageNet dataset [138], we extract 4096-D

feature vectors from CNN’s last fully connected layer. We also use final 1000-D classification

layer as another feature representation. We employed the large network of OverFeat [139] to im-

plement CNN. SentiBank Authors in [28] have trained 2,089 visual concept detectors based on a

list of Adjective Noun Pairs (ANP). These ANPs are like smiling boy, lovely dress, scary face and

etc. Using SentiBank, we generate a 2089-D vector for each image where every dimension is the

detection score of its corresponding ANP concept detector.

We employed one-vs-all support vector machine (SVM) with linear kernel to train attribute detec-

tors. The performance of detectors is measured via average precision (AP). Figure 5.2 shows the

performance of different features for the task of attribute detection on the Selfie dataset. Deep fea-

tures extracted from last fully connected layer of CNN perform better (29.51% vs 24.03% meanAP)

than the 1000-D features from CNN’s classification layer. Features obtained by applying Sen-

78

tiBank ANP concept detectors achieve the best performance with 31.97% meanAP among three

different mid-level features. We expected to observe this since ANPs are very diverse and a very

large portion of them are relevant to human attributes. Using SIFT and HOG (low-level features)

with VLAD encoding results in 33.76% and 22.95% meanAP, respectively. We also fused 4096-D

deep features, SentiBank features and SIFT via mean and max pooling their detection scores (late

fusion). While max pooling was not helpful (32.49% meanAP), mean pooling further improved

the attribute prediction baseline to 35.79% meanAP.

5.3 Experiments

5.3.1 What Makes a Selfie Popular?

In this section, we attempt to answer the second question that we proposed in the beginning of

this paper. How does the appearance of certain objects or particular concepts influence the popu-

larity of selfie images? We discuss the effect of attributes in section 5.3.3. Here we study object

categories of ImageNet [138] and concepts associated with ANPs in SentiBank [28]. To evaluate

the correlation of each object/concept with popularity of selfie images, we use 1000-D output of

[139], pre-trained on ImageNet dataset, and 2089-D output of SentiBank ANP concept detectors as

mid-level features. We then train an L2-regularized support vector regression (SVR) to predict the

popularity score of the images. Regression coefficients corresponding to different objects/concepts

indicate their correlation to the popularity. We use object/concept detector responses with at least

0.5 confidence. This assures that we only consider images in which a particular object/concept is

confidently detected. We observed that among ImageNet object categories: maillot, lab coat, jer-

sey, fur coat, brassiere, wig, abaya, hair spray, suit, sunglasses, and lipstick (in decreasing order)

are the most relevant objects to the popularity of selfies. Among different ANPs in SentiBank: sexy

dress, lovely dress, fancy dress, traditional tattoo, smiling baby, shiny hair, sexy girls, cute baby,

79

strong legs, stupid hat and happy baby (in decreasing order) are the most relevant concepts to the

popularity score. Figure 5.3 illustrates the normalized regression coefficients (in decreasing order)

obtained from training SVR.

Popularity Score Prediction: Observing the performance of different features in attribute predic-

tion, we are also interested to see how they perform in predicting the popularity of selfie images.

Thus, we randomly divided the entire Selfie dataset using 3-fold cross validation where 2 folds

were used to train an L2-regularized SVR and we tested on the third fold. We evaluate the quality

of different features in terms of Spearman’s rank correlation between the predicted and the actual

popularity (generated by [27]). Using SIFT, we achieved 0.40 rank correlation. The 4096-D deep

features and 2089-D SentiBank features resulted in 0.41 and 0.54 rank correlation, respectively.

While max pooling of these features was not helpful (0.49 rank correlation), we observe that mean

pooling can further boost the rank correlation to 0.55.

5.3.2 Sentiment-Popularity Correlation

In this section we explore the correlation between the popularity of selfie images and their implied

sentiments. Each ANP in SentiBank is associated with a sentiment measure where negative, close

to zero and positive numbers depict negative, neutral and positive sentiments, respectively.

Out of 2,089 ANPs, we manually select 126 of them that are relevant to selfie images and their cor-

responding detectors have acceptable performance (AP≥ 0.3). We compute implied sentiment of a

selfie image I as S (I) = ∑i γisiω
T
i x, where γi, si and ωi, respectively, represent the AP, sentiment

measure and linear detector corresponding to the ith ANP. Given x as the feature representation

of image I, ωT
i x is the confidence score for which ith ANP concept appears in the image I. We

generate the scatter plot of the popularity versus sentiment using our entire dataset.

80

Figure 5.3: Normalized regression coefficients of SVR for popularity score prediction.

Figure 5.4: Importance of different attributes in predicting popularity, employing different Insta-
gram filters. Original indicates no filter is applied.

81

Figure 5.5 illustrates the scatter plot in which a more positive sentiment, on average, results in a

higher popularity. We observe, on average, up to 65% higher popularity comparing the two ends

of the sentiment spectrum, shown in color. Another interesting observation is how the range of

popularity changes as the sentiment measure increases. From bluish to green/yellow parts of the

spectrum, increasing sentiment yields a larger range of popularity score (the blue cone). How-

ever, moving toward more reddish parts of the spectrum, the range of the popularity decreases.

Therefore, we conclude that while at two ends of the sentiment spectrum there exist a direct cor-

relation between sentiment and popularity, this is not true for the middle of the spectrum. In other

words, unless the sentiment is too high or too low, one cannot estimate the popularity based on the

sentiment with high precision.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
1

2

3

4

5

6

7

Sentiment

P
o
p
u
la

it
y

Figure 5.5: Sentiment-popularity scatter plot.

5.3.3 Effect of Post-processing on Popularity

This section addresses the last question that we proposed in the beginning of this paper: How does

post-processing, such as applying different Instagram filters, influence the popularity of selfies?

We randomly select about 10,000 images from our Selfie dataset and apply 7 different Instagram

filters to them. We observe that for a given selfie, applying some filters boosts the popularity

82

while others have a counter-effect. We found that there is no definite ranking of filters in terms of

improving the popularity, rather ranking varies from one image to another. Figure 5.4 shows the

relevance of different attributes to popularity of selfies when various Instagram filters are applied.

Therefore, the choice of the most effective filter varies according to the content of a selfie. We

obtain the importance of different attributes using SVR in a similar strategy discussed in section

5.3.1.

5.4 Summary

Interested in the utilizing computer vision to analyze greater social behaviors, in this chapter, we

addressed, for the first time, the Selfie phenomenon from a machine learning and computer vision

perspective. We conducted a series of experiments addressing four distinct questions about selfie

images. Our work shed light on how to take a good selfie, a selfie that becomes popular and

delivers a positive sentiment. We have collected, to the best of our knowledge, the first Selfie

dataset for research purposes with more than 46,000 images, annotated with 36 relevant attributes

that describe detail local properties of human. Our work has attracted researchers from other

disciplines to extend their studies on the selfie phenomenon to a larger-scale.

Next, we present our mixture normalization, a novel soft piece-wise alternative to batch normal-

ization, that attempts to accelerate training deep convolutional neural networks by disentangling

modes of variation in output activations of the intermediate layers.

83

CHAPTER 6: TRAINING FASTER BY SEPARATING MODES OF

VARIATION IN BATCH-NORMALIZED MODELS

The results of this Chapter have been published in the following paper:

Mahdi M. Kalayeh, Mubarak Shah, “Training Faster by Separating Modes of Variation in Batch-

normalized Models,” in IEEE transactions on Pattern Analysis and Machine Intelligence (PAMI),

2019.[140]

Today, Batch Normalization (BN) [1] is the de facto standard in almost every deep learning archi-

tecture. However, despite its wide usage, the literature falls short when it comes to comprehen-

sively studying its characteristics and behavior. We revisit BN from a perspective, orthogonal to

what previous extensions to BN have proposed. We show that assuming samples within a mini-

batch are from the same probability density function, then BN is identical to the Fisher vector of

a Gaussian distribution. That means batch normalizing transform can be explained in terms of

kernels that naturally emerge from the probability density function that models the generative pro-

cess of the underlying data distribution. Specifically, we theoretically demonstrate how BN can be

improved by disentangling modes of variation in the underlying distribution of layer outputs.

In this Chapter, we start by showing how the formulation of batch normalization and its extensions

is related to the kernels from generative probability models, and more specifically Fisher kernel,

in Section 6.1.1. Then, Section 6.1.2 explains why in the context of deep neural networks, due to

the non-linearities, distribution of the activations is almost certainly of multiples modes of varia-

tion. This is followed by proposing Mixture Normalization, where we employ Gaussian mixture

model to identify sub-populations and normalize with respect to not one, but multiple components

84

that comprise the data distribution. We conclude this Chapter in Section 6.2 where we show that

our proposed Mixture Normalization, not only effectively accelerates training of different batch-

normalized architectures including Inception-V3, DenseNet, and DCGAN, but also achieves better

generalization error.

6.1 Methodology

6.1.1 Kernels from Generative Probability Models

So far, we’ve described variations of batch normalization in an unifying framework and shown

what distinguishes them is the set of samples over which certain statistics, specifically mean and

standard deviation are computed. In this section, we revisit Fisher kernel, the seminal work of

Jaakkola and Haussler [30], in order to demonstrate how the general form of normalization, spec-

ified in Equation 2.6, is related to the kernels that naturally arise from the generative probability

models.

Fisher Kernel Let B = {x1...m}, regardless of how the tensor of activations has been indexed

(ref. Section 2.4), be a set of m observations xi ∈ X , associated to a sample mini-batch, and

P = {pθ ,θ ∈ Θ} be a suitably regular parametric family of distributions, where pθ models the

generative process of samples in X 1. Based on the theory of information geometry [141], P

defines a Riemanninan manifold MΘ, with a local metric given by the Fisher Information Matrix

Fθ = Ex∼pθ
[GB

θ GBT

θ], (6.1)

1In other words, X is an unknown generative process which is modeled by pθ , and we assume that instances in a
mini-batch are sampled from it.

85

where

GB
θ = ∇θ log pθ (B), (6.2)

the gradient of the log-likelihood of pθ at B, also known as Fisher score, determines the direction

of steepest ascent in log pθ (B) along the manifold. In other words, GB
θ

describes modifications

which the current model parameters θ need in order to maximize log pθ (B) [30]. The natural

gradient [142] is then defined as

φB = F−1
θ

GB
θ , (6.3)

based on which [30] proposes natural kernel, the inner product between natural gradients relative

to the local Riemannian metric:

K(B j,Bi) ∝ φ
T
B j

Fθ φBi = G
BT

j
θ

F−1
θ

GBi
θ
. (6.4)

Jaakkola and Haussler [30] refer to this as Fisher kernel and prove that given classification la-

bels as latent variable, Fisher kernel is asymptotically never inferior to the maximum a posteriori

(MAP) decision rule (ref. Theorem 1 in [30]). Hence, we arrive at a similarity measure which is

naturally induced from the probability density function that models the generative process of X

and simultaneously improves the discrimination power of the model.

Sanchez et. al [143] have beautifully pointed out that since Fθ is positive semi-definite, its inverse

has a Cholesky decomposition F−1
θ

= LT
θ

Lθ , which allows re-writing Equation 6.4 as

K(B j,Bi) = G
BT

j
θ

G Bi
θ

, (6.5)

where

G B
θ = Lθ ∇θ log pθ (B), (6.6)

86

the normalized gradient vector of B, is known as Fisher vector [143]. Such explicit transformation

B→ G B
θ

enjoys all the interesting characteristics of Fisher kernel [30], while being tailored for

linear operations.

Fisher Vector for Gaussian Distribution In order to derive Fisher kernel [30], we noted that

pθ only needs to be of a family of regular parametric distributions. However, we have not yet

parameterized it. Let’s consider pθ to be modelled by Gaussian distribution

pθ (x) =
1

(2π)D/2|Σ|1/2 exp
{
− 1

2
(x−µ)T

Σ
−1(x−µ)

}
, (6.7)

where x ∈ RD and θ = {µ,Σ} is the set of model parameters. The gradients of the log-likelihood

of pθ (x) with respect to µ and Σ are then formulated as

∇µ log pθ (x) =−1
2

(
∂ (x−µ)T

Σ−1(x−µ)
∂ µ

)
= Σ−1(x−µ),

∇Σ log pθ (x) =−1
2

(
∂ log(|Σ|)

∂Σ
+ ∂ (x−µ)T

Σ−1(x−µ)
∂Σ

)
,

=−1
2

(
Σ−1−Σ−1(x−µ)(x−µ)T

Σ−1
)
.

(6.8)

If we assume Σ to be diagonal 2 with Σi,i = σ2
i,i, we can re-write the gradients as

∇µ log pθ (x) =
1

σ2 (x−µ),

∇σ log pθ (x) =−
1
σ
+

1
σ3 (x−µ)2.

(6.9)

Substituting Equation 6.9 in Equation 6.2 results in

Gx
θ =

∇µ log pθ (x)

∇σ log pθ (x)

=

 1
σ2 (x−µ)

− 1
σ
+

1
σ3 (x−µ)2

 . (6.10)

2Such assumption is motivated by the fact that computing full covariance matrix and its inverse makes both the
normalization and the back-propagation calculations very expensive [1].

87

We then use non-central moments of univariate normal distribution to calculate Equation 6.1 given

Equation 6.10, arriving at

Fθ =

 1
σ2 0

0
2

σ2

 , (6.11)

the Fisher information matrix of Gaussian distribution. Finally, the Fisher vector for Gaussian

distribution (ref. Equation 6.6) can be characterized as

G x
θ =

G x
µ

G x
σ

 ,
=

σ 0

0 1√
2
σ

 1

σ2 (x−µ)

− 1
σ
+

1
σ3 (x−µ)2

 ,

=

1
σ
(x−µ)

1√
2

(
−1+

(x−µ)2

σ2

)
 .

(6.12)

We observe that the general form of normalization, formulated in Equation 2.6, has in fact emerged

in G x
µ . Hence, we have shown that indeed batch normalization and its various extensions are

closely related to the natural kernel that arises from generative probability model, describing the

underlying data distribution 3.

6.1.2 Mixture Normalization

We believe that in the context of deep neural networks, due to non-linear activation functions,

distribution of layer outputs are very likely asymmetric. That is, the hypothesis which a Gaus-

3Based on our derivations, we “expect” that integrating G x
σ in addition to G x

µ further improves the normalization.
Yet, at the time, we do not have experimental results to support this.

88

sian distribution can model pθ is less likely to be valid. Therefore, to properly approximate the

probability density function, we propose employing generative mixture models. Consequently, in-

stead of computing one set of statistical measures from the entire population, we propose to frame

batch normalizing transform on sub-populations which can be identified by disentangling modes

of variation.

Intuition Let’s consider xl ∈RN×Cl×Hl×Wl to be the input activation tensor to the lth layer, denoted

by ωl , in a convolutional neural network. Again, N, Cl , Hl and Wl are respectively batch, channel,

height and width axes at the corresponding layer. Batch normalization layers are indexed similarly.

Since the batch size is fixed throughout the network, we drop the subscript l from Nl . For the sake

of simplicity, we ignore pooling layers and assume the non-linearity activation functions to be

rectified linear units (ReLU) [37], since pooling layers can be trivially added to the formulation.

Similarly, other non-linearity functions can partially or fully replace ReLU throughout the network.

Given these,

xl−1 = ReLU
(

BNl−2(xl−2 ∗ωl−2)
)
,

xl = ReLU
(

BNl−1(xl−1 ∗ωl−1)
)
,

xl+1 = ReLU
(

BNl(xl ∗ωl)
)
,

(6.13)

formulate three consecutive layers in the aforementioned convolution neural network where ∗ rep-

resents the convolution operation. In Section 6.1.1, given the hypothesis x ∼N (µ, σ2), the gen-

eral form of normalization in Equation 2.6 emerges as the Fisher vector with respect to the mean

of the distribution, namely G x
µ . This means that the input to BNl at the lth layer in Equation 6.13,

specifically xl ∗ωl , is of a Gaussian distribution. Since, convolution is a linear operation, and

Gaussian distribution is closed under linear combination, it further implies that xl ∼N (µl, σ2
l).

However, xl is the output of ReLU from the (l− 1)th layer with semi-infinite support on [0,+∞).

Hence, assuming that a symmetric probability density function, like Gaussian distribution, with

89

support on the whole Real line can model the linear combination of outputs of multiple rectified

linear units, is not very well justified.

Based on this observation, we propose to parameterize the probability density function, pθ (ref.

Section 6.1.1), as a Gaussian Mixture Model (GMM). From [38], we know that any continuous

distribution can be approximated with arbitrary precision using a GMM. Since our input distri-

bution is generated by linear combination (through convolution operation) of rectified Gaussian

distributions, it is not necessarily continuous and contains, at least two modes, one for the rectified

values mapped to zero and one for the positive values. Therefore, we expect a mixture model to

provide us with a better approximation of such distribution than a single Gaussian model.

Fisher Vector for Gaussian Mixture Model In the following, to prevent clutter, we drop subscript

θ where θ = {λk,µk,Σk : k = 1, . . . ,K}. Then, for x ∈ RD, without loss of generality, consider

p(x) =
K

∑
k=1

λk pk(x) s.t.∀k : λk ≥ 0,
K

∑
k=1

λk = 1, (6.14)

where

pk(x) =
1

(2π)D/2|Σk|1/2 exp
{
− 1

2
(x−µk)

T
Σ
−1
k (x−µk)

}
, (6.15)

represents kth Gaussian in the mixture model p(x). To remove the probability simplex constraint

on λ in Equation 6.14, a commonly used change of variables [144] is employed as

αk = log

(
λk

λK

)
, k = 1, . . . ,K. (6.16)

Assume αK = 0 to be constant, then we can re-write Equation 6.14 as

p(x) =
K

∑
k=1

(exp(αk)

∑
K
j=1 exp(α j)

)
pk(x). (6.17)

90

Following similar derivations as in Section 6.1.1, given diagonal covariance assumption, the gra-

dients of the log-likelihood of p(x) with respect to µk and σk can be written as

∇µk log p(x) = νk(x)

(
x−µk

σ2
k

)
,

∇σk log pθ (x) = νk(x)

(
− 1

σk
+

(x−µk)
2

σ3
k

)
.

(6.18)

where

νk(x) =
λk pk(x)

∑
K
j=1 λ j p j(x)

, (6.19)

is the probability that x has been generated by the kth Gaussian component in the mixture model.

Given soft assignment distribution in Equation 6.19, Perronnin et. al [145] proposed a closed form

approximation to the Fisher information matrix of GMM4 as

Fk =

λk

σ2
k

0

0
2λk

σ2
k

 , (6.20)

4For more detailed derivation of Fisher information matrix and Fisher vector in Gaussian mixture models, readers
are encouraged to refer to [145] and [143].

91

resulting in

G x
k =

G x
µk

G x
σk

 ,

=

σk√

λk
0

0
σk√
2λk

νk(x)

(
x−µk

σ2
k

)

νk(x)

(
− 1

σk
+

(x−µk)
2

σ3
k

)
 ,

=
νk(x)√

λk

1
σk

(x−µk)

1√
2

(
−1+

(x−µk)
2

σ2
k

)
 .

(6.21)

Comparing Equation 6.21 with Equation 6.12, we observe that Fisher vector for each component

of a GMM is very similar to the one obtained from a single Gaussian distribution. However, there

are two main differences:

• νk(x) in a soft-assignment mechanism, scales the kth Fisher vector based on the posterior

probability of x being generated by the corresponding Gaussian component.

• λk normalizes the kth Fisher vector based on the contribution of the kth mixture component

in approximating the underlying data distribution.

We have previously shown (ref. Section 6.1.1) that the normalization formulated in batch nor-

malization and its extensions emerges as natural kernel, if we assume that the underlying data

distribution can be modelled by a single Gaussian distribution. We then explained that due to

non-linear activation functions, such hypothesis cannot properly address the characteristics of the

distribution. We employed Gaussian mixture model as an alternative and showed that natural ker-

nel induced from GMM, follows a similar normalization mechanism, except normalization is done

92

with respect to multiple sets of statistics obtained from different sub-populations.

Formulation Based on the aforementioned observations, we propose Mixture Normalization.

Let’s consider i = (iN , iC, iL) as a vector indexing the tensor of activations x ∈ RN×C×L associ-

ated to a convolution layer, where the spatial domain has been flattened (L = H×W). Then the

Mixture Normalizing Transform is defined as

x̂i =
K

∑
k=1

νk(xi)√
λk
· x̂k

i , (6.22)

given

vk
i = xi−EBi[ν̂k(x) · x], x̂k

i =
vk

i√
EBi[ν̂k(x) · (vk)

2
]+ ε

, (6.23)

where

ν̂k(xi) =
νk(xi)

∑ j∈Bi νk(x j)
, (6.24)

is the normalized contribution of xi over Bi in estimating statistical measures of the kth Gaussian

component. Similar to batch normalization, we can also include additional parameters by slightly

modifying Equation 6.23 using

EBi[ν̂k(x) · x] → EBi[ν̂k(x) · x]+β ,

EBi[ν̂k(x) · (vk)
2
] → EBi[ν̂k(x) · (vk)

2
] · γ,

(6.25)

where β and γ respectively indicate scale and shift. Our formulation is general (e.g. H,W = 1 for

fully-connected layers) and can be applied to all the variations of batch normalization, detailed in

Section ??, simply by constructing Bi accordingly.

During training, we fit a Gaussian mixture model to B = {x1...m : m∈ [1,N]× [1,L]} by Maximum

Likelihood Estimation (MLE). This is a two-stage process where we use the seeding procedure of

K-means++ [146] to initialize the centers of the mixture component. Then, the parameters of the

93

mixture model, θ = {λk,µk,Σk : k = 1, . . . ,K}, are estimated by Expectation-Maximization (EM)

[147]. In practice, one or two EM iterations are sufficient, thanks to proper and efficient initializa-

tion by K-means++ [146]. We then normalize x1,x2, . . .xm with respect to the estimated parameters

(Equations 6.23) and aggregate using posterior probabilities (Equations 6.22). At inference, fol-

lowing the batch normalization [1], we want to normalize a sample mini-batch with respect to the

statistics of the training data. To do so, we can maintain last T mini-batches from the training

stage. This can be simply implemented by a queue of length T . We aggregate all instances in the

queue into a large pool of samples and fit a Gaussian mixture model to it. Estimated parameters

are then used to normalize all the mini-batches of the test set. While being effective, the above

strategy is not very desirable as it always maintains T mini-batch of samples in GPU memory.

Yet, there is a very simple workaround to significantly improve this. Specifically, during train-

ing, instead of the samples, we only need to keep the estimated parameters resulting in the queue

{θ0,θ1 . . .θT−1}, where the subscript indicates the position in the queue. Note that in this case,

queue always maintains (2KC+K)×T values in the GPU memory which is orders of magnitude

smaller than (mC)×T of the previous strategy. The normalization will then be performed via

x̂i =
T−1

∑
t=0

K

∑
k=1

1√
τ tλ t

k

τ tλ t
k pt

k(xi)

∑
T−1
q=0 ∑

K
j=1 τqλ

q
j pq

j(xi)

(xi−µ t
k

σ t
k

)
, (6.26)

where

τ
t =

(1−ζ)

(1−ζ T)
ζ
(T−t−1) (6.27)

is the decay factor normalized with respect to the sum of its geometric series. Here, estimated

mixture models from last T mini-batch of training stage are aggregated with a scale proportional

to their chronological order in the queue. By default, ζ and T are respectively set to 0.9 and 10.

Differentiability and Gradient Propagation Despite our end-to-end training, K-means++ [146]

seeding procedure and EM iterations (to fit the Gaussian mixture model) are performed outside

94

the computational graph of the neural network5. Hence, MN is not fully differentiable. In the

following, we explain how gradient back-propagates through MN.

Let ν ∈Rm×K be a matrix where its (i, j)th element represents the probability that xi, the ith row of

x ∈Rm×D (B in matrix format), has been generated by the jth Gaussian component in the mixture

model (Equation 6.19). The process of obtaining ν is not differentialble because of K-means++

and following EM iterations, yet we can write MN equations such that with exception of ν , it is

fully differentiable.

Following Equation 6.24, we obtain the normalized contribution of each sample point xi in estimat-

ing statistical measures of every Gaussian component via dividing each column of ν by the sum of

its elements. This results in ν̂ , the matrix of responsibilities using which we calculate µ = ν̂T x and

σ2 = ν̂T x2−µ2 where µ ∈ RK×D, σ2 ∈ RK×D, and λk is obtained by averaging the kth column of

ν . As we can see, all these calculations are simple differentiable operations. Hence, while gradient

stops at ν , it seamlessly back-propagates through the rest of MN equations, relating parameters of

the mixture component with samples and their posterior.

Effect of Non-linearity When mixture normalization is followed by ReLU [37] or similar non-

linearity activation functions, rectifying should be applied to the per-component normalized acti-

vations (i.e. x̂k
i) as

ReLU
(

MN(xi)
)

:=
K

∑
k=1

νk(xi)√
λk
·ReLU(x̂k

i), (6.28)

where MN stands for mixture normalization. In practice, given K≥ 3, ν(xi)=
[
ν1(xi), ν2(xi), . . . , νK(xi)

]
is mostly very sparse, meaning that only 1 out of K elements is considerably larger than zero. As

a result, we have
K

∑
k=1

νk(xi)√
λk
·ReLU(x̂k

i)≈ ReLU
(K

∑
k=1

νk(xi)√
λk
· x̂k

i

)
, (6.29)

5In future, we are going to explore mixture normalization, when estimating GMM via batch and stochastic Rie-
mannian optimization [148].

95

a format which is the same as how ReLU follows batch normalization. However, when Gaussian

components considerably overlap, the aforementioned approximation is less accurate.

Local vs. Global Normalization Batch normalization is an Affine transform on the whole prob-

ability density function of the underlying distribution. In other words, all the samples from the

distribution are normalized using the same mean and standard deviation, estimated from the entire

population. In contrast, in proposed mixture normalization, we transform each sample using mean

and standard deviation of the mixture component to which the sample belongs to. Therefore, one

can see mixture normalization as a soft piecewise normalizing transform. Figure 6.1 illustrates

the aforementioned differences. Note how in case of batch normalization, p(x), modeled by a

Gaussian density function, fails to properly approximate the underlying data distribution. This

problem is more severe when the distribution is skewed. Mixture normalization instead, is capable

of handling these challenges as it disentangles the modes of variation. In Figure 6.1, we show

mixture normalization with K set to 2 and 3. Obviously, when the number of components is set to

1, mixture normalization reduces to the general form of normalization. We observe that even with

two components, mixture normalization provides a better approximation to the underlying data

distribution. However, in some cases (e.g. columns correspond to the 4th and 28th channels), we

can benefit from increasing the number of mixture components. Mixture normalized activations,

in comparison to the batch normalized ones, are considerably closer to the normal distribution, and

illustrate less skewed probability densities.

96

BN
	

af
te
r	

be
fo
re
	

M
N
:2
	

af
te
r	

be
fo
re
	

M
N
:3
	

af
te
r	

be
fo
re
	

Figure 6.1: Visualizing Mixture Normalization: Given a random mini-batch in the midway of train-
ing on CIFAR-100, we illustrate the underlying distribution of activations (output of convolution)
associated with a random subset of 128 channels in the layer “conv2” of CIFAR CNN architecture
(detailed in Table 6.1). Solid teal curve indicates the probability density function. Dashed curves
represent different mixture components shown in various colors. Note that similar colors across
multiple subfigures, simply index mixture components and do not indicate any association. We
observe that mixture normalization, shown by MN:2 and MN:3 (2 and 3 respectively represent the
number of components in the mixture of Gaussians), provides better approximation, p(x), illus-
trated by solid teal curve, to the underlying distribution. Also, mixture normalized activations, in
comparison to the batch normalized ones, are considerably closer to the normal distribution and
illustrate less skewed probability densities.

6.2 Experiments

To evaluate the effectiveness of our proposed mixture normalization, we conduct extensive set of

experiments on CIFAR-10 and CIFAR-100 datasets [149]. We compare mixture normalization

against its batch normalization counterpart in a variety of settings given four backbone choices,

namely a 5-layers deep fully convolutional neural network, the Inception-V3 [26], along with the

40-layers and 100-layers deep DenseNet [7] architectures. According to the literature [35][36][39],

97

when mini-batch size is sufficiently large (e.g 32), standard batch normalization [1] outperforms

its variants in image classification. Although, this is not valid in recurrent networks. Therefore,

here, we only compare against standard batch normalization [1].

It is important to emphasize, that we do not aim at achieving state-of-the-art results as it requires

employing computationally expensive architectures, and involves careful tuning of many hyper-

parameters and heuristics. Instead, we are interested in understanding the behavior of mixture

normalization. We focus on demonstrating that solely replacing a few batch normalization with our

proposed mixture normalization, can dramatically increase the convergence rate, and in majority

of cases even yields a better final test accuracy.

In summary, in this section:

• We compare BN and MN, in small and large learning rate regimes, using both shallow and

very deep CNN architectures.

• We show the effect of applying MN to different layers, while varying the number of mixture

components and EM iterations.

• We quantify the acceleration obtained using MN, by measuring required number of gradient

updates for mixture normalized model, in order to reach the best test accuracy of its batch

normalized counterpart.

• We demonstrate, that our findings are consistent with respect to the choice of the optimiza-

tion technique (adaptive v.s non-adaptive) and learning rate decay policies.

• We finish this section by demonstrating the application of mixture normalization in Genera-

tive adversarial networks (GANs) [150].

98

6.2.1 Datasets

For our experiments, we use popular CIFAR [149] datasets. Images are 32×32 and labeled with

10 and 100 classes, respectively for CIFAR-10 and CIFAR-100. We follow the standard data split

where 50K images are used for training and 10K for testing. As for preprocessing, we normalize

images with respect to the mean and standard deviation of the dataset. Also, similar to the previous

works [32][7][151][152][24] on CIFAR, we adopt horizontal flipping and random cropping for data

augmentation.

6.2.2 CIFAR CNN

We begin with a small 5-layers deep convolutional neural network architecture detailed in Table

6.1, where we later replace batch normalization in certain layers with mixture normalization. Fol-

lowing [1], we experiment using two different learning rates, one 5 times larger than the other.

Additionally, we do the same with the weight decay to very well cover various training regimes.

We use RMSprop [6] with 0.9 momentum and exponentially reduce the initial learning rate ev-

ery two epochs with the decay rate of 0.93. The size of mini-batch is set to 256 and we train all

the models for 100 epochs. To facilitate comparison between different training settings, we index

experiments accordingly, where BN and MN, respectively, indicate usage of batch and mixture

normalization.

In the first set of experiments, for different mixture normalization variations, shown in Table 6.2

by MN-1 to MN-4, we replace the batch normalization in the “conv3” layer (ref. Table 6.1) with

mixture normalization while keeping the remaining layers intact. From Table 6.2 and Figure 6.2,

we observe that irrespective of the weight decay and learning rates, not only MN models converge

much faster than their corresponding BN counterparts, but they achieve a better test accuracy after

99

100 epochs.

Table 6.1: CIFAR CNN architecture

layer type size kernel (stride, pad)

input input 3×32×32 – –
conv1 conv+bn+relu 64×32×32 5×5 (1, 2)
pool1 max pool 64×16×16 3×3 (2, 0)
conv2 conv+bn+relu 128×16×16 5×5 (1, 2)
pool2 max pool 128×8×8 3×3 (2, 0)
conv3 conv+bn+relu 128×8×8 5×5 (1, 2)
pool3 max pool 128×4×4 3×3 (2, 0)
conv4 conv+bn+relu 256×4×4 3×3 (1, 1)
pool4 avg pool 256×1×1 4×4 (1, 0)
linear linear 10 or 100 – –

Large learning rate: When we increase the learning rate from 0.01 to 0.05, the convergence gap is

even larger (ref. Table 6.2 and Figure 6.2), demonstrating the capability of mixture normalization

to better utilize larger learning rates for training. Note, that for the large learning rate regime to

eventually match the final learning rate of small learning rate regime, either the exponential decay

rate should be reduced (e.g 0.91 instead of 0.93) or the number of times it is applied must be

increased (e.g every epoch instead of every 2 epochs). However, here we keep the same learning

rate decay policy to probe the sole effect of increasing the learning rate.

Stability: Another observation is with regards to the uncertainty of the model predictions. Figure

6.2 shows one standard deviation (shaded area) computed within a window of 10 epochs for all

the test error curves. We see mixture-normalized models illustrate a considerably more stable test

error, meaning from one epoch to another, it is less likely that the performance fluctuates abruptly.

This alongside faster convergence [153] is reminiscent of relatively flat minima in the optimization

landscape [154], where the classification margin of the model, as a whole, is robust with respect to

small changes (gradient updates) to the model parameters. Note that in all these experiments, we

have solely replaced one batch normalization layer with mixture normalization.

100

Table 6.2: Experiments on CIFAR-10 and CIFAR-100 using CIFAR CNN architecture (ref. Table
6.1). We observe that irrespective of the weight decay and learning rate, not only MN models
converge faster but also achieve better final test accuracy, compared to their corresponding BN
counterparts. When mixture normalization is applied to multiple layers (i.e MN-8), we use the
same K and EM iter. values for all the corresponding layers.

CIFAR-10

mixture norm. setting training setting maximum test accuracy(%) after

model (layer, K, EM iter.) (lr, weight decay) 25 epochs 50 epochs 75 epochs 100 epochs

BN-1 – (0.01, 1e-4) 79.37 84.34 86.24 86.74
BN-2 – (0.01, 2e-5) 84.11 86.92 87.65 87.95
BN-3 – (0.05, 1e-4) 68.77 71.68 75.25 77.35
BN-4 – (0.05, 2e-5) 73.84 77.84 81.43 82.58

MN-1 (conv3, 3, 2) (0.01, 1e-4) 81.91 85.10 86.51 87.08
MN-2 (conv3, 3, 2) (0.01, 2e-5) 85.56 87.28 88.05 88.47
MN-3 (conv3, 3, 2) (0.05, 1e-4) 67.84 73.09 74.80 77.33
MN-4 (conv3, 3, 2) (0.05, 2e-5) 76.70 80.82 83.31 83.87

CIFAR-100

mixture norm. setting training setting maximum test accuracy(%) after

model (layer, K, EM iter.) (lr, weight decay) 25 epochs 50 epochs 75 epochs 100 epochs

BN-1 – (0.01, 1e-4) 52.54 57.83 60.37 62.11
BN-2 – (0.01, 2e-5) 56.09 60.05 61.46 62.14
BN-3 – (0.05, 1e-4) 23.13 28.12 33.21 36.80
BN-4 – (0.05, 2e-5) 36.98 43.89 46.95 49.08

MN-1 (conv3, 3, 2) (0.01, 1e-4) 55.30 60.47 61.46 62.20
MN-2 (conv3, 3, 2) (0.01, 2e-5) 59.04 60.86 61.77 62.29
MN-3 (conv3, 3, 2) (0.05, 1e-4) 29.80 36.30 40.66 43.77
MN-4 (conv3, 3, 2) (0.05, 2e-5) 42.31 48.96 51.98 52.62
MN-5 (conv3, 3, 4) (0.01, 2e-5) 59.05 61.94 62.56 62.76
MN-6 (conv3, 3, 8) (0.01, 2e-5) 58.98 61.83 62.67 63.12
MN-7 (conv2, 3, 2) (0.01, 2e-5) 57.63 61.23 62.15 62.63
MN-8 ((conv2,conv3), 3, 2) (0.01, 2e-5) 59.79 61.67 62.50 62.96

Effect of parameters: Solving for the parameters of GMM begins with an initialization using

K-means clustering. To obtain the best initial seeds, we use 2+ log(K) trials and then perform

standard K-means clustering for a certain number of iterations. The result is then used to initiate

the GMM parameters, which is later followed by a fixed number of EM updates.

101

(a) small learning rate regime

(b) large learning rate regime

Figure 6.2: Test error curves when CIFAR CNN architecture (ref. Table 6.1) is trained under
different learning rate and weight decay settings. We observe that on CIFAR-10 and CIFAR-100,
MN performs consistently in both small and large learning rate regimes.

In our experiments, we use the same number of iterations at two phases and report their summation

as “EM iter.” in Table 6.2 (and later in Table 6.4). From Figure 6.3 (left) and Table 6.2, we observe

that more EM iterations, provides faster convergence and better final test accuracy.

102

Figure 6.3: Left: effect of the number of EM iterations on test error. Right: effect of utilizing MN
at different layers, on test error. We show that more EM iterations and utilizing MN at multiple
layers, increase the convergence rate of mixture normalized models.

This is aligned with our expectation as more EM iterations translates to better approximation of the

underlying data distribution. However, the downside is that more EM iterations results in increas-

ing the computation time. So far, we have only modified one layer in CIFAR CNN architecture. In

Figure 6.3 (right), we illustrate that similar behavior can be observed when mixture normalization

is employed at earlier layers like “conv2”. Furthermore, model enjoys even faster convergence rate

in addition to better final test accuracy (ref. Table 6.2), when more layers (“conv2” and “conv3”)

are equipped with mixture normalization.

Quantifying Acceleration: We illustrate in Figure 6.2, that indeed using mixture normalization

accelerates the convergence and results in lower final test error. Table 6.2 also indicates the same

when we report the maximum test accuracy after 25%, 50%, 75% and 100% of total number of

epochs. To provide a precise comparison, we follow Ioffe and Szegedy [1] and report the number of

steps (gradient descent updates) for mixture normalization variants in order to reach the maximum

test accuracy achieved by their batch-normalized counterparts.

103

Table 6.3: For batch normalization and the mixture-normalized variants using CIFAR CNN archi-
tecture (ref. Table 6.1), the number of training steps required to reach the maximum accuracy of
batch-normalized model alongside with the maximum accuracy achieved by each variant.

CIFAR-10

model steps to 87.95% max. acc.(%)

BN-2 1.95 × 104 87.95
MN-2 1.34 × 104 88.47

CIFAR-100

model steps to 62.14% max. acc.(%)

BN-2 1.81 × 104 62.14
MN-2 1.77 × 104 62.29
MN-5 1.07 × 104 62.76
MN-6 1.09 × 104 63.12
MN-7 1.34 × 104 62.63
MN-8 1.03 × 104 62.96

Table 6.3 shows that on CIFAR-10, mixture normalization reduces the number of training steps

in order to reach 87.95% test accuracy by ∼31%. Similarly, on CIFAR-100, the best performing

variant of mixture normalization, MN-6, reduces the number of training steps in order to reach

62.14% test accuracy by∼40%, meanwhile its very own maximum test accuracy outperforms BN-

2 by ∼1%. This further affirms that, our proposed mixture normalization is not only effectively

accelerating the training procedure, but also reaches better local minima.

6.2.3 Inception-V3

So far, we have shown that mixture normalization can improve the convergence rate of batch-

normalized models. However, our experiments were conducted on a shallow 5-layers deep archi-

tecture. Hence, it is reasonable to question whether the same behavior can be observed in very

deep and more modern architectures? To address this, we choose Inception-V3 [26]. Its archi-

104

tecture is 48 layers deep and uses global average pooling instead of fully-connected layers, which

allows operating on arbitrary input image sizes. Inception-V3 [26] has a total output stride of 32.

However, to maintain low computation cost and memory utilization, the size of activation maps

quickly reduces by a factor of 8 in only first seven layers. This is done by one convolution and

two max pooling layers that operate with the stride of 2. The network is followed by three blocks

of Inception separated by two grid reduction modules. Each Inception block consists of multiple

Inception layers that are sequentially stacked. Specifically, first, second and third Inception blocks

are respectively comprised of 3, 4 and 2 Inception layers. Spatial resolution of the activations

remains intact within the Inception blocks, while grid reduction modules halve the activation size

and increase the number of channels.

To make Inception-V3 [26] architecture effectively applicable to images in CIFAR-10 and CIFAR-

100, that are only 32×32, we need to slightly modify the architecture. Specifically, we change the

stride of the first convolution layer from 2 to 1 and remove the first max pooling layer. This way,

the output stride of Inception-V3 architecture reduces to 8. That is, activations maintain sufficient

resolution throughout the network’s depth, with the final activation (before the global average

pooling) be of size 3×3. From now on, when we refer to the Inception-V3, we mean this modified

version. To train our models, we use RMSprop [6] with 0.9 as momentum and exponentially reduce

the initial learning rate every four epochs with the decay rate of 0.93. The size of mini-batch is

set to 128, weight decay to 0.0005 and we train all the models for 200 epochs. In our preliminary

experiments, we observed that learning rate of 0.001 gives the best final test accuracy for batch

normalized models. Therefore, we use it for all the experiments except in one case which aims at

analyzing large learning rate regime.

105

(a) (b)

(c) (d)

Figure 6.4: Test error curves when Inception-V3 architecture is trained under different settings.
Figures 6.4(a) and 6.4(b) show the small learning rate regime, respectively, on CIFAR-10 and
CIFAR-100. Figure 6.4(c) shows the large learning rate regime on CIFAR-100. Figure 6.4(d) illus-
trates test error curves of CIFAR-100 when Inception-V3 architecture is trained using Nesterov’s
accelerated gradient [5] (all other experiments use RMSprop [6]), with two different learning rate
drop policies. Mixture normalization modules have been employed in “inc2/1” and “inc3/0” layers.
We observe that across a variety of choices such as the number of mixture components, number of
EM iterations, learning rate regime and drop policy, optimization technique, and the layer where
MN is applied, mixture normalized models consistently accelerate their batch normalized counter-
parts and achieve better final test accuracy.

106

Table 6.4: Experiments on CIFAR-10 and CIFAR-100 using Inception-V3 architecture. Notation:
“red1” (“red2”) refers to the first (second) grid reduction modules. Similarly “inc2/0” (“inc3/0”)
refers to the first inception layer in second (third) inception block of the architecture. In MN-∗
settings, we only replace the last batch normalization in each branch of the corresponding Inception
layer with our mixture normalization. When mixture normalization is applied to multiple layers,
we use the same K and EM iter. values for all the corresponding layers.

CIFAR-10

mixture norm. setting training setting maximum test accuracy(%) after

model (layer, K, EM iter.) (lr, weight decay) 50 epochs 100 epochs 150 epochs 200 epochs

BN-1 – (0.001, 5e-4) 89.18 90.62 91.08 91.50

MN-1 ((red1,red2), 3, 8) (0.001, 5e-4) 89.47 91.03 91.70 91.91
MN-2 ((red1,red2,inc3/0), 3, 4) (0.001, 5e-4) 89.73 91.69 92.09 92.55
MN-3 ((inc2/0,inc3/0), 3, 2) (0.001, 5e-4) 90.49 91.52 92.17 92.30
MN-4 ((inc2/0,inc3/0), 5, 2) (0.001, 5e-4) 90.26 91.77 92.00 92.25

CIFAR-100

mixture norm. setting training setting maximum test accuracy(%) after

model (layer, K, EM iter.) (lr, weight decay) 50 epochs 100 epochs 150 epochs 200 epochs

BN-1 – (0.001, 5e-4) 66.88 69.44 71.03 71.30
BN-5 – (0.005, 5e-4) 40.68 47.47 51.13 52.63

MN-1 ((red1,red2), 3, 8) (0.001, 5e-4) 66.6 68.86 70.01 70.43
MN-2 ((red1,red2,inc3/0), 3, 4) (0.001, 5e-4) 68.26 70.78 71.78 72.23
MN-4 ((inc2/0,inc3/0), 5, 2) (0.001, 5e-4) 68.4 70.99 71.98 72.74
MN-5 ((inc2/0,inc3/0), 5, 2) (0.005, 5e-4) 50.41 55.69 57.88 59.10

Table 6.4 and Figure 6.4 compare mixture normalization with its standard batch normalization

counterparts. We observe that, with the exception of MN-1 on CIFAR-100, all the MN variants are

not only successfully accelerating BN variants, but also achieve superior final test accuracy. As

expected, and similar to the shallow network case, there is a benefit in using mixture normalization

at multiple layers in different depth. Table 6.4 also recommends using mixture normalization in

later layers, closer to the classifier, to reach a better convergence rate and final test accuracy.

107

Table 6.5: For batch normalization and the mixture-normalized variants using Inception-V3, the
number of training steps required to reach the maximum accuracy of batch-normalized model, and
the maximum accuracy achieved by each variant.

CIFAR-10

model steps to 91.50% max. acc.(%)

BN-1 7.34 × 104 91.50
MN-1 4.29 × 104 91.91
MN-2 3.86 × 104 92.55
MN-3 3.82 × 104 92.30
MN-4 3.58 × 104 92.25

CIFAR-100

model steps to 71.30% max. acc.(%)

BN-1 7.34 × 104 71.30
MN-1 – 70.43
MN-2 4.57 × 104 72.23
MN-4 3.93 × 104 72.74

Table 6.6: Training Inception-V3 using Nesterov’s accelerated gradient [5] on CIFAR-100, the
number of training steps required to reach the maximum accuracy of batch-normalized model
along with the maximum accuracy achieved by each model.

lr decay policy: (0.1,0.5,0.75)

model steps to 75.75% max. acc.(%)

BN 2.78 × 104 75.75
MN 1.52 × 104 77.30

lr decay policy: (0.2,0.3,0.6,0.8)

model steps to 75.20% max. acc.(%)

BN 2.41 × 104 75.20
MN 1.79 × 104 77.32

108

Effect of parameters: We can observe from MN-3 versus MN-4 on CIFAR-10, that mixture

normalization’s performance is not sensitive to the number of mixture components assuming K

is large enough. We have discussed above that the number of EM iterations directly affect the

computation time. However, Table 6.4 and Figure 6.4, demonstrate that by employing mixture

normalization even with 2 EM updates, training a modern 48-layers deep architecture such as

Inception-V3 will enjoy decent acceleration.

Large learning rate: To analyze the behavior of mixture normalization in large learning rate

regime, we experiment training our models with the learning rate of 0.005 (5×0.001). Figure

6.4(c) illustrates that MN-5 handles large learning rate better than BN-5, its batch normalized

counterpart. Note that, to probe the sole effect of increasing the learning rate, here we keep the

same learning rate decay policy (decay rate of 0.93 every four epochs) as the small learning rate

regime.

Quantifying Acceleration: Similar to the case of CIFAR CNN architecture, we report the number

of steps (gradient descent updates) mixture normalization variants require in order to reach the

maximum test accuracy obtained by their batch-normalized counterparts. Table 6.5 shows that the

best performing variants of mixture normalization, MN-2 on CIFAR-10 and MN-4 on CIFAR-100,

reduce the number of training steps towards 91.50% and 71.30% test accuracy, respectively on

CIFAR-10 and CIFAR-100, by ∼47%. Similar to the case of shallow CIFAR CNN architecture,

here, mixture normalization, also improves the final test accuracy by ∼1-1.5%.

Choice of optimization technique: We evaluate whether the performance of mixture normaliza-

tion is consistent using different choices of optimization technique. That is, instead of RMSprop

[6], we use Nesterov’s accelerated gradient [5], with 0.9 as momentum and decay the learning rate

in two different fashions. First, following the policy adopted in ResNet [32] and DenseNet [7], we

reduce the learning rate twice by a factor of 10 at 50% and 75% of the total number of epochs.

109

Second, following Wide Residual networks [151], we reduce the learning rate three times with a

factor of 5 at 30%, 60% and 80% of the total number of epochs. For MN models, mixture normal-

ization is employed at “inc2/1” and “inc3/0” layers. Mini-batch size and the initial learning rate

are respectively set to 256 and 0.14 and we train all the models for 150 epochs.

Figure 6.4(d) shows the test error curves on CIFAR-100. Similar to the previous experiments, in

Table 6.6, we compare the required number of gradient updates in order to reach the maximum test

accuracy of batch normalized model. In both learning rate decay scenarios, mixture normalization

is not only able to considerably accelerate training procedure, but also achieves ∼2% better final

test accuracy. Finally, in comparison with the state-of-the-art architectures of comparable depth,

our MN model, with a test error of 22.68% on CIFAR-100, performs on par with Wide Residual

networks [151] while outperforming DenseNet [7] (ref. Table 2 in [7]).

6.2.4 DenseNet

We conclude our experimental results by evaluating the effectiveness of mixture normalization in

DenseNet [7] architectures. We use two basic architectures with 40 and 100 layers. There are three

dense blocks and two transition layers. Both architectures are using a growth rate of 12. All models

are trained for 200 epochs on CIFAR-100, with the batch size of 64 using Nesterov’s accelerated

gradient [5]. Learning rate is initialized at 0.1 and is divided by 10 at 50% and 75% of the total

number of training epochs. We set the weight decay and momentum values to 10−4 and 0.9, re-

spectively. Figure 6.5 illustrates the classification error and cross entropy loss of training and test.

For mixture normalized models, denoted by MN, we solely replace the batch normalization lay-

ers of two transition layers and the last (after the third dense block), with mixture normalization.

The number of components and EM iterations for MN variants are set to 5 and 2, respectively.

From Figure 6.5, we observe that mixture normalization not only facilitates training by acceler-

110

ating the optimization, but also consistently provides better generalization on both architecture

settings. In fact, the benefit of mixture normalization is more clear on the deeper setting of the

DenseNet architecture. Using DenseNet {L=40, k=12} on CIFAR-100, the best test error achieved

by the BN variant is 25.10% versus 24.63% of its MN counterpart. When we switch to deeper

DenseNet {L=100, k=12}, architecture, this number reduces to 21.93% for BN-based model while

MN variant reaches the best test error of 20.97%.

6.2.5 Mixture Normalization in GANs

Generative adversarial networks (GANs) [150] have recently shown amazing progress in generat-

ing new realistic images [8][155][156][157]. The training process is a minimax game between gen-

erator and discriminator. Discriminator learns to separate real images from the fake ones, created

by the generator. Meanwhile, generator attempts to impede discriminator’s job by progressively

generating more realistic images. Hence, at convergence, generator, theoretically, must be able to

generate images, whose distribution matches the distribution of the real images. However, in prac-

tice, “mode collapse”[158][159][160][161][162][163] problem prevents generator from learning a

diverse set of modes with high probability, as is in the distribution of real images. Therefore, since

our proposed mixture normalization, normalizes internal activations, independently over multiple

disentangled modes of variation, we hypothesize that employing it in generator, should improve

the training procedure of GANs.

To evaluate our hypothesis, we consider popular Deep Convolutional GAN (DCGAN) [8] architec-

ture. Its generator consist of one linear and four deconvolution layers. The first three deconvolution

layers are separated from each other by batch normalization [1] followed by ReLU[37] activation

function. We replace the batch normalization layers associated with the first two deconvolution

layers with mixture normalization (K=3, EM iter=2).

111

(a) (b)

(c) (d)

Figure 6.5: DenseNet [7] experiments on CIFAR-100. Figures 6.5(a) and 6.5(b) respectively il-
lustrate the training error and cross entropy loss. Figures 6.5(c) and 6.5(d) respectively illustrate
the test error and cross entropy loss. We observe from 6.5(a) and 6.5(b) that mixture normaliza-
tion facilitates the training process by accelerating the optimization. Meanwhile it provides better
generalization (ref. 6.5(c), and 6.5(d)) by continuously maintaining a large gap with respect to
its batch normalized counterpart. We show 1 standard deviation (shaded area) computed within a
window of 3 epochs for all the curves.

112

Figure 6.6: Mixture normalization in deep convolutional GAN (DCGAN)[8]. We observe that em-
ploying our proposed mixture normalization in the generator of DCGAN (DCGAN-MN) facilitates
the training process. In comparison with the standard DCGAN which uses batch normalization
(DCGAN-BN), DCGAN-MN not only converges faster (a reduction of ∼58%) but also achieves
better (lower) FID (33.35 versus 37.56). For better visualization, we show one standard deviation
(shaded area) computed within a window of 30K iterations (3 adjacent FID evaluation points).

We train all the models on CIFAR-10 for 100K updates (iterations) using Adam [164] with α =

0.0002, β1 = 0 and β2 = 0.9 for both generator and discriminator. The quality of GANs are

measured using “Fréchet Inception Distance”(FID) [165], evaluated every 10K updates for com-

putational efficiency. Figure 6.6 demonstrates that mixture normalized DCGAN (DCGAN-MN)

not only converges faster than its batch normalized counterpart but also achieves better (lower)

FID. While DCGAN-BN reaches the lowest FID of 37.56 (very close to 37.7 reported in [165])

after 60K steps (gradient updates). It only takes 25K steps, a reduction of ∼58%, for DCGAN-

MN to reach 37.56. Furthermore, the lowest FID obtained by DCGAN-MN is 33.35, a significant

improvement over the batch normalized model. Figure 6.7 illustrates samples of generated images

by batch and mixture normalized DCGANs at their lowest evaluated FID.

113

(a) DCGAN-BN (b) DCGAN-MN

Figure 6.7: Samples of generated images by batch and mixture normalized DCGAN models, at
their best (lowest) evaluated FID, are respectively illustrated in Figure 6.7(a) and 6.7(b). DCGAN-
BN and DCGAN-MN, respectively achieve FID of 37.56 and 33.35.

6.3 Computational Complexity and Detailed Analysis

In this section, we provide in-depth analysis on the behavior of the mixture normalization. Specif-

ically, we provide computational complexity analysis of mixture normalization, both in theory and

practice. We discuss how representation of mixture components evolves and whether the rationale

to utilize mixture model remains valid as we pass early stages of the training process.

6.3.1 Computational Complexity Analysis

The computational overhead of mixture normalization, in comparison to the batch normalization

[1], is in estimating the parameters of the Gaussian mixture model. This is a two-stage process

where, we use a seeding procedure to initialize the centers of the mixture components, followed by

estimating the parameters of the mixture model through iterations of Expectation-Maximization

114

(EM).

In our implementation6, we use K-means++ [146] as the seeding procedure. Without any assump-

tion on the data, it is in expectation O(logk)-competitive with the optimal K-means clustering so-

lution [146], and has a complexity of Θ(nkd) where, n is the number of data points, k is the number

of cluster centers and d is the dimensionality of the data [168]. However, there is a rich literature on

algorithms that speed up K-means++ [146] seeding procedure. For example, Bachem et. al [168]

have proposed a MCMC-based sampler to approximate the full seeding step of K-means++ with

complexity of Θ(mk2d). Under some light assumptions, the authors prove that their proposed so-

lution is in expectation O(logk)-competitive with the optimal solution, if we have the chain length

m ∈Θ(k log2 n logk). In this case, the total computational complexity will be O(k3dn logk), which

is sublinear in the number of data points. Authors in [169] show that an assumption-free version

of [168] with lower complexity is also achievable. Finally, to ameliorate the inherent sequential

passes over data, Scalable K-means++ [170] with nice theoretical support [171] can be used. These

all indicate that the initial seeding procedure used in mixture normalization can be implemented

with low computational complexity while maintaining provably good seeding. It is easy to show

that assuming diagonal covariance, each EM iteration to fit the GMM parameters is of complexity

O(nkd) [172], where n can significantly be reduced using coresets [173]. In practice, we found

that one does not need to use all the data points to estimate the parameters of the mixture model.

Instead a simple random sampling that maintains at least 25% of the data points is sufficiently

accurate. Hence, we confirm that estimating the parameters of the Gaussian mixture model can be

done efficiently in scale.

In order to see how the above complexity analysis translates in practice, we compared the com-

putation cost of mixture normalization against native implementation of batch normalization [1].

6Mixture Normalization is implemented in Chainer [166], and thanks to CUPY [167], the entire computation
including K-means++ and EM iterations are performed in GPU.

115

Table 6.7: Computation cost comparison of mixture normalization against natively implemented
(no CUDA-kernel) batch normalization [1]. Experiments are conducted on a Titan X (Pascal)
GPU.

model K batch size dim. iteration/sec.

BN 1 64 196 16.40
MN 2 64 196 14.46
MN 3 64 196 14.42
MN 4 64 196 13.91
MN 5 64 196 13.69

BN 1 64 448 9.26
MN 2 64 448 8.83
MN 3 64 448 8.51
MN 4 64 448 8.52
MN 5 64 448 8.41

BN 1 128 448 7.35
MN 2 128 448 6.59
MN 3 128 448 6.51
MN 4 128 448 6.41
MN 5 128 448 6.38

Experiments are conducted on CIFAR-100 using Densenet [7] architecture where, MN replaces the

last (after the third dense block) BN layer. We tried Densenet (3 blocks and growth rate of 12) with

20 and 40 layers which result in the number of input channels to batch/mixture normalization to

be respectively 196 and 448. This allows us to evaluate the effect of dimensionality of data points.

We also used batch sizes of 64 and 128 in order to study the effect of the number of data points.

Finally, we varied the number of mixture components (K) from 2 to 5 to analyze its effect on the

computation cost. Note that the iteration/sec. counts for the computation of the entire network not

just the batch/mixture normalization layer. Table 6.7 indicates that in practice, the computation

cost of MN scales very well with respect to the number of datapoints, dimensionality of data and

the number of mixture components.

116

6.3.2 Evolution of Mixture Components

To better understand how mixture normalized models evolve, we visualize in Figure 6.8, the mix-

ture components associated to “inc2/0/2/4”7 layer as training MN-4 (ref. Table 6.4) on CIFAR-100

progresses. We show a random subset of 192 channels at 20%, 40%, 60%, 80% and 100% of total

training iterations.

There are two main observations here. First, in early stages of training, multiples modes captured

by different mixture components are of relatively similar weights (λk in Equation 6.14). That is

aligned with our argument that due to non-linearities, underlying distributions are comprised of

multiple modes of variation. However, as training procedure goes on, mixture components evolve

as some get closer, while others are pushed away from each other creating more distinct compo-

nents. Second, notice how the horizontal axis, associated with the activation values, reduces in

range. This alongside with distribution of λks morphing from relatively uniform into one with a

dominant bin (component in olive), demonstrates that mixture normalization, as intended, tries to

transform the underlying distribution of activations from a wide distribution comprised of multiple

large components into a narrow one with a single dominant mode. Notice that despite a domi-

nant component emerging, other components do not necessarily vanish rather their contribution

diminishes. We will later show that such imbalance between λk of various components is not large

enough to trigger major mode collapse. These observations confirm that our hypothesis regarding

the nature of the underlying distribution is valid and mixture normalization in practice, follows

what its formulation is advocating.

7It refers to when the fifth batch normalization in the third branch of the first inception layer in second inception
block is replaced with mixture normalization.

117

@
	1
5.
6K

	it
er
.	

@
	3
1.
2K

	it
er
.	

@
	4
6.
8K

	it
er
.	

@
	6
2.
4K

	it
er
.	

@
	7
8.
0K

	it
er
.	

12th	channel	 24th	channel	 36th	channel	 72th	channel	60th	channel	48th	channel	

Figure 6.8: Evolution of mixture normalization associated to “inc2/0/2/4” layer as training MN-
4 on CIFAR-100 progresses. As argued before, we observe that the underlying distribution is
comprised of multiple modes of variation. While these sub-populations are of relatively uniform
importance at the beginning, as training procedure goes on, mixture components evolve where
some get closer, while others are pushed away from each other creating more distinct components.
Here, different colors index mixture components, when sorted according to λk values.

6.3.3 Effective Number of Mixture Components

One of the hyperparameters of mixture normalization is the number of its components, K, which

must be specified as a choice of design. In some cases, K-means clustering or GMM may generate

components with very small λk, meaning that the corresponding component is not very represen-

tative. Therefore, we, in our implementation, have opted heuristics to discard components whose

normalized λk is less than 0.01, where samples associated to those are then merged with the re-

118

maining components. If the underlying data distribution is sufficiently well approximated using a

single Gaussian distribution, which is against our proposal, then we should expect mixture normal-

ization to not utilize all the K components. Figure 6.9 illustrates the actual number of components

that mixture normalization has used through the entire training procedure of MN-4 (ref. Table 6.4)

on CIFAR-10 and CIFAR-100. We show the curves associated to all the 10 mixture normalization

modules in “inc2/0” and “inc3/0”. We observe that except two cases, the rest of mixture normaliza-

tion modules consistently utilize all the K=5 components. This suggests that despite the potential

appearance of a dominant component (ref. Section 6.3.2), properly estimating the underlying dis-

tribution of activations, still prefers a mixture model over a single Gaussian distribution.

Figure 6.9: Effect of the number of mixture components in MN-4 using Inception-V3 when trained
on CIFAR-10 and CIFAR-100. For the sake of better visualization, curves are smoothed using
running average and one standard deviation is shown as the shaded area. We can see that the
majority of MN modules fully utilize all (K=5) their mixture components, indicating that the need
for better approximation using mixture model does not disappear, rather slightly diminishes, as the
training procedure continues.

119

6.4 Summary

In this Chapter, we demonstrated how normalizing transform, employed in batch normalization

and its variants, is related to the kernels from generative probability models. We showed that, the

distribution of activations associated with internal layers of deep convolutional neural networks,

illustrates an asymmetric characteristic and is very likely to be better estimated using a mixture

model. We proposed Mixture Normalization (MN), where a Gaussian mixture model initially

identifies modes of variation in the underlying distribution, and then each sample in the mini-batch

is normalized using mean and standard deviation of the mixture component to which it belongs to.

We confirmed through extensive set of experiments on CIFAR-10 and CIFAR-100, that Mixture

Normalization not only significantly accelerates convergence of batch normalized models but also

achieves better final test accuracy.

120

CHAPTER 7: CONCLUSION AND FUTURE WORK

Here we highlight the concluding remarks on this dissertation, and expand on potential future work

in this direction of research.

7.1 Conclusion

In this dissertation, we addressed the problem of semantically describing images using textual tags

and visual attributes. In Chapter 3, we proposed a mathematical framework based on non-negative

matrix factorization to perform automatic image annotation such that the proposed technique can

seamlessly adapt to the continuous growth of datasets. Our proposed approach can be seen as a

query-specific technique which is built on the features of nearest-neighbors and tags. It naturally

solves the problem of feature fusion and handles the challenge of rare tags by introducing weight

matrices that penalize for incorrect modeling of less frequent tags and images that are associated

with them. Despite their effectiveness, tags have an inherent problem. That is, the number of se-

mantic concepts they can represent is identical to the number of labels the model has learned. In

contrast, attributes are category agnostic. Hence, their combination can be used to model exponen-

tial number of semantic classes. Given the above superiority, in Chapter 4, we focused on visual

attributes. We proposed that integrating semantic segmentation in form of semantic face and body

parsing improves person-related attribute prediction task. This is being done through exploiting

localization cues that corresponding semantic parsing task would provide. Our view is motivated

by the fact that most attributes describe local characteristics in images. We evaluated our proposed

novel approach on multiple face and full body person attributes and achieved state-of-the-art per-

formance. We also demonstrated that image-level attribute labels can be exploited to boost the

semantic parsing task once the number of annotations for training is limited. This indicates that

121

labels for semantic segmentation can be obtained in a significantly cheaper procedure. Next, in

Chapter 5, we used both textual tags and visual attributes as semantic descriptors to analyse the

large-scale selfie phenomenon from a computer vision and machine learning standpoint. Particu-

larly, we illustrated how the appearance of certain objects or concepts can influence the popularity

and sentiment of selfies. Meanwhile, we collected the first of its kind selfie dataset for the research

purposes. Finally, in Chapter 6, we provided a fresh view, in light of information geometry, to why

the widely-used Batch Normalization layer works. This layer is used in almost all today’s state-of-

the-art architectures including those that were proposed in this dissertation. Specifically, we gave

theoretic grounds on how such a normalization layer can be improved by disentangling modes of

variation in the underlying distribution of internal layers. Our experiments confirmed that the pro-

posed mixture normalization effectively accelerates training of different batch-normalized archi-

tectures including Inception-V3, DenseNet with 40 and 100 layers, and DCGAN, while achieving

better generalization error.

7.2 Future Work

In Chapter 4, we proposed integrating semantic segmentation task with person-related attribute

prediction. However, a similar joint learning paradigm can be imagined for any task, which es-

pecially relies on detailed localization cues. For instance, fine-grained image classification, or

learning fine-grained image similarity are among potential candidates. In addition, problems such

as image caption generation or visual question answering ,that require spatial attention to various

parts of the image would certainly enjoy semantic localization cues, which semantic segmentation

task provides. Furthermore, given that a few video semantic segmentation datasets have recently

been introduced, one may extend similar approaches as those that were proposed in this disserta-

tion, from image domain to the video.

122

Another line of future work is to reduce our reliance on expensive supervised annotations, which

semantic segmentation task usually requires. Generating dense pixel-level annotations of relevant

categories for a new recognition task is extremely laborious and costly. Instead, we can move from

dense to coarse labeling. Particularly, we will have to only label a small portion of pixels. This

introduces the research challenge of maintaining the quality of segmentation masks in the above

weekly supervised paradigm, so the main recognition task still enjoys a reasonable performance

gain.

In Chapter 6, we proposed to accelerate training of batch-normalized deep convolutional neural

architecture by disentangling modes of variation in the distribution of layer outputs. We realized

it using Gaussian mixture model (GMM). However, the number of mixture components are fixed

a priori, as a design choice. This is certainly sub-optimal because not only different layers are

of different complexities, but also the associated distributions change as we proceed through the

training procedure. In an orthogonal approach, instead of GMM, we can estimate the underlying

distribution of layer outputs with Skew-normal distribution. It is close enough to Gaussian density

function yet offers sufficient room to model the asymmetry in the probability density function.

123

LIST OF REFERENCES

[1] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by re-

ducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[2] M. M. Kalayeh, B. Gong, and M. Shah, “Improving facial attribute prediction using seman-

tic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017, pp. 6942–6950.

[3] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang, “Interactive facial feature localiza-

tion,” in European Conference on Computer Vision. Springer, 2012, pp. 679–692.

[4] B. M. Smith, L. Zhang, J. Brandt, Z. Lin, and J. Yang, “Exemplar-based face parsing,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013,

pp. 3484–3491.

[5] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in optimizing recurrent

networks,” in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International

Conference on. IEEE, 2013, pp. 8624–8628.

[6] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running average

of its recent magnitude,” COURSERA: Neural networks for machine learning, vol. 4, no. 2,

pp. 26–31, 2012.

[7] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolu-

tional networks.” in CVPR, vol. 1, no. 2, 2017, p. 3.

[8] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep

convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

124

[9] C. Huang, Y. Li, C. Change Loy, and X. Tang, “Learning deep representation for imbalanced

classification,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016, pp. 5375–5384.

[10] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Pro-

ceedings of International Conference on Computer Vision (ICCV), 2015.

[11] Y. Li, C. Huang, C. C. Loy, and X. Tang, “Human attribute recognition by deep hierarchical

contexts,” in European Conference on Computer Vision. Springer, 2016, pp. 684–700.

[12] L. Bourdev, S. Maji, and J. Malik, “Describing people: A poselet-based approach to attribute

classification,” in 2011 International Conference on Computer Vision. IEEE, 2011, pp.

1543–1550.

[13] A. Makadia, V. Pavlovic, and S. Kumar, “A new baseline for image annotation,” in European

conference on computer vision. Springer, 2008, pp. 316–329.

[14] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, “Tagprop: Discriminative metric

learning in nearest neighbor models for image auto-annotation,” in Computer Vision, 2009

IEEE 12th International Conference on. IEEE, 2009, pp. 309–316.

[15] S. Zhang, J. Huang, Y. Huang, Y. Yu, H. Li, and D. N. Metaxas, “Automatic image annota-

tion using group sparsity,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE

Conference on. IEEE, 2010, pp. 3312–3319.

[16] M. Chen, A. Zheng, and K. Weinberger, “Fast image tagging,” in International conference

on machine learning, 2013, pp. 1274–1282.

[17] Y. Verma and C. Jawahar, “Exploring svm for image annotation in presence of confusing

labels.” in BMVC, 2013, pp. 25–1.

125

[18] X. Xu, A. Shimada, and R.-i. Taniguchi, “Image annotation by learning label-specific dis-

tance metrics,” in International Conference on Image Analysis and Processing. Springer,

2013, pp. 101–110.

[19] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Advances

in neural information processing systems, 2001, pp. 556–562.

[20] E. Gaussier and C. Goutte, “Relation between plsa and nmf and implications,” in Proceed-

ings of the 28th annual international ACM SIGIR conference on Research and development

in information retrieval. ACM, 2005, pp. 601–602.

[21] C. Ding, T. Li, and W. Peng, “On the equivalence between non-negative matrix factoriza-

tion and probabilistic latent semantic indexing,” Computational Statistics & Data Analysis,

vol. 52, no. 8, pp. 3913–3927, 2008.

[22] J. Liu, C. Wang, J. Gao, and J. Han, “Multi-view clustering via joint nonnegative matrix

factorization,” in Proceedings of the 2013 SIAM International Conference on Data Mining.

SIAM, 2013, pp. 252–260.

[23] K. Gong, X. Liang, D. Zhang, X. Shen, and L. Lin, “Look into person: Self-supervised

structure-sensitive learning and a new benchmark for human parsing,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 932–940.

[24] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv:1312.4400, 2013.

[25] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic segmentation,”

in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1520–

1528.

126

[26] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception

architecture for computer vision,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2016, pp. 2818–2826.

[27] A. Khosla, A. Das Sarma, and R. Hamid, “What makes an image popular?” in ACM WWW,

2014.

[28] D. Borth, R. Ji, T. Chen, T. Breuel, and S.-F. Chang, “Large-scale visual sentiment ontology

and detectors using adjective noun pairs,” in ACM MM, 2013.

[29] S. Bakhshi, D. A. Shamma, and E. Gilbert, “Faces engage us: Photos with faces attract more

likes and comments on instagram,” in ACM CHI, 2014.

[30] T. Jaakkola and D. Haussler, “Exploiting generative models in discriminative classifiers,” in

Advances in neural information processing systems, 1999, pp. 487–493.

[31] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet and

the impact of residual connections on learning.” 2017.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.

770–778.

[33] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint

arXiv:1607.06450, 2016.

[34] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Improved texture networks: Maximizing quality

and diversity in feed-forward stylization and texture synthesis.”

[35] Y. Wu and K. He, “Group normalization,” arXiv preprint arXiv:1803.08494, 2018.

127

[36] M. Ren, R. Liao, R. Urtasun, F. H. Sinz, and R. S. Zemel, “Normalizing the nor-

malizers: Comparing and extending network normalization schemes,” arXiv preprint

arXiv:1611.04520, 2016.

[37] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”

in Proceedings of the 27th international conference on machine learning (ICML-10), 2010,

pp. 807–814.

[38] D. M. Titterington, A. F. Smith, and U. E. Makov, Statistical analysis of finite mixture

distributions. Wiley„ 1985.

[39] S. Ioffe, “Batch renormalization: Towards reducing minibatch dependence in batch-

normalized models,” in Advances in Neural Information Processing Systems, 2017, pp.

1942–1950.

[40] K. Barnard, P. Duygulu, D. Forsyth, N. d. Freitas, D. M. Blei, and M. I. Jordan, “Matching

words and pictures,” Journal of machine learning research, vol. 3, no. Feb, pp. 1107–1135,

2003.

[41] F. Monay and D. Gatica-Perez, “Plsa-based image auto-annotation: constraining the latent

space,” in Proceedings of the 12th annual ACM international conference on Multimedia.

ACM, 2004, pp. 348–351.

[42] O. Yakhnenko and V. Honavar, “Annotating images and image objects using a hierarchical

dirichlet process model,” in Proceedings of the 9th International Workshop on Multimedia

Data Mining: held in conjunction with the ACM SIGKDD 2008. ACM, 2008, pp. 1–7.

[43] P. Duygulu, K. Barnard, J. F. de Freitas, and D. A. Forsyth, “Object recognition as machine

translation: Learning a lexicon for a fixed image vocabulary,” in European conference on

computer vision. Springer, 2002, pp. 97–112.

128

[44] R. Socher and L. Fei-Fei, “Connecting modalities: Semi-supervised segmentation and anno-

tation of images using unaligned text corpora,” in Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 966–973.

[45] Y. Xiang, X. Zhou, T.-S. Chua, and C.-W. Ngo, “A revisit of generative model for automatic

image annotation using markov random fields,” in Computer Vision and Pattern Recogni-

tion, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 1153–1160.

[46] G. Carneiro, A. B. Chan, P. J. Moreno, and N. Vasconcelos, “Supervised learning of seman-

tic classes for image annotation and retrieval,” IEEE transactions on pattern analysis and

machine intelligence, vol. 29, no. 3, pp. 394–410, 2007.

[47] S. Feng, R. Manmatha, and V. Lavrenko, “Multiple bernoulli relevance models for image

and video annotation,” in null. IEEE, 2004, pp. 1002–1009.

[48] A. Yavlinsky, E. Schofield, and S. Rüger, “Automated image annotation using global fea-

tures and robust nonparametric density estimation,” in International Conference on Image

and Video Retrieval. Springer, 2005, pp. 507–517.

[49] C. Cusano, G. Ciocca, and R. Schettini, “Image annotation using svm,” in Internet imaging

V, vol. 5304. International Society for Optics and Photonics, 2003, pp. 330–339.

[50] D. Grangier and S. Bengio, “A discriminative kernel-based model to rank images from text

queries,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 10,

no. LIDIAP-ARTICLE-2008-010, 2008.

[51] T. Hertz, A. Bar-Hillel, and D. Weinshall, “Learning distance functions for image retrieval,”

in Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004

IEEE Computer Society Conference on, vol. 2. IEEE, 2004, pp. II–II.

129

[52] Y. Verma and C. Jawahar, “Image annotation using metric learning in semantic neighbour-

hoods,” in European Conference on Computer Vision. Springer, 2012, pp. 836–849.

[53] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-negative matrix factoriza-

tion,” in Proceedings of the 26th annual international ACM SIGIR conference on Research

and development in informaion retrieval. ACM, 2003, pp. 267–273.

[54] D. Guillamet, B. Schiele, and J. Vitria, “Analyzing non-negative matrix factorization for

image classification,” in Pattern Recognition, 2002. Proceedings. 16th International Con-

ference on, vol. 2. IEEE, 2002, pp. 116–119.

[55] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factoriza-

tion,” Nature, vol. 401, no. 6755, p. 788, 1999.

[56] D. Greene and P. Cunningham, “A matrix factorization approach for integrating multiple

data views,” in Joint European Conference on Machine Learning and Knowledge Discovery

in Databases. Springer, 2009, pp. 423–438.

[57] M. M. Kalayeh, H. Idrees, and M. Shah, “Nmf-knn: Image annotation using weighted multi-

view non-negative matrix factorization,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2014, pp. 184–191.

[58] M. Yang, L. Zhang, D. Zhang, and S. Wang, “Relaxed collaborative representation for pat-

tern classification,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Con-

ference on. IEEE, 2012, pp. 2224–2231.

[59] D. Guillamet, M. Bressan, and J. Vitria, “A weighted non-negative matrix factorization for

local representations,” in Computer Vision and Pattern Recognition, 2001. CVPR 2001. Pro-

ceedings of the 2001 IEEE Computer Society Conference on, vol. 1. IEEE, 2001, pp. I–I.

130

[60] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, “Describing objects by their attributes,” in

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,

2009, pp. 1778–1785.

[61] C. H. Lampert, H. Nickisch, and S. Harmeling, “Learning to detect unseen object classes by

between-class attribute transfer,” in Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on. IEEE, 2009, pp. 951–958.

[62] A. Farhadi, I. Endres, and D. Hoiem, “Attribute-centric recognition for cross-category gen-

eralization,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference

on. IEEE, 2010, pp. 2352–2359.

[63] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, “Attribute and simile classifiers for

face verification,” in 2009 IEEE 12th International Conference on Computer Vision. IEEE,

2009, pp. 365–372.

[64] N. Kumar, P. Belhumeur, and S. Nayar, “Facetracer: A search engine for large collections

of images with faces,” in European conference on computer vision. Springer, 2008, pp.

340–353.

[65] J. Liu, B. Kuipers, and S. Savarese, “Recognizing human actions by attributes,” in Computer

Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011, pp. 3337–

3344.

[66] T. Berg and P. Belhumeur, “Poof: Part-based one-vs.-one features for fine-grained catego-

rization, face verification, and attribute estimation,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2013, pp. 955–962.

[67] H. Chen, A. Gallagher, and B. Girod, “Describing clothing by semantic attributes,” in Euro-

pean conference on computer vision. Springer, 2012, pp. 609–623.

131

[68] S. J. Hwang, F. Sha, and K. Grauman, “Sharing features between objects and their at-

tributes,” in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on.

IEEE, 2011, pp. 1761–1768.

[69] D. Jayaraman, F. Sha, and K. Grauman, “Decorrelating semantic visual attributes by re-

sisting the urge to share,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2014, pp. 1629–1636.

[70] A. Vedaldi, S. Mahendran, S. Tsogkas, S. Maji, R. Girshick, J. Kannala, E. Rahtu, I. Kokki-

nos, M. B. Blaschko, D. Weiss et al., “Understanding objects in detail with fine-grained

attributes,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2014, pp. 3622–3629.

[71] Y. Wang and G. Mori, “A discriminative latent model of object classes and attributes,” in

European Conference on Computer Vision. Springer, 2010, pp. 155–168.

[72] D. Parikh and K. Grauman, “Interactively building a discriminative vocabulary of nameable

attributes,” in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference

on. IEEE, 2011, pp. 1681–1688.

[73] C. Gan, T. Yang, and B. Gong, “Learning attributes equals multi-source domain generaliza-

tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2016, pp. 87–97.

[74] G. Gkioxari, R. Girshick, and J. Malik, “Actions and attributes from wholes and parts,” in

Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 2470–

2478.

132

[75] N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. Bourdev, “Panda: Pose aligned networks

for deep attribute modeling,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2014, pp. 1637–1644.

[76] K. K. Singh and Y. J. Lee, “End-to-end localization and ranking for relative attributes,” in

European Conference on Computer Vision. Springer, 2016, pp. 753–769.

[77] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer networks,” in Ad-

vances in Neural Information Processing Systems, 2015, pp. 2017–2025.

[78] E. Rudd, M. Günther, and T. Boult, “Moon: A mixed objective optimization network for the

recognition of facial attributes,” arXiv preprint arXiv:1603.07027, 2016.

[79] Q. Dong, S. Gong, and X. Zhu, “Class rectification hard mining for imbalanced deep learn-

ing,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp.

1851–1860.

[80] J. Li, F. Zhao, J. Feng, S. Roy, S. Yan, and T. Sim, “Landmark free face attribute prediction,”

IEEE Transactions on Image Processing, vol. 27, no. 9, pp. 4651–4662, 2018.

[81] J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton forests for image categorization

and segmentation,” in Computer vision and pattern recognition, 2008. CVPR 2008. IEEE

Conference on. IEEE, 2008, pp. 1–8.

[82] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook, and

R. Moore, “Real-time human pose recognition in parts from single depth images,” Commu-

nications of the ACM, vol. 56, no. 1, pp. 116–124, 2013.

[83] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Deep neural networks

segment neuronal membranes in electron microscopy images,” in Advances in neural infor-

mation processing systems, 2012, pp. 2843–2851.

133

[84] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmen-

tation,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

2015, pp. 3431–3440.

[85] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-

decoder architecture for image segmentation,” IEEE transactions on pattern analysis and

machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[86] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” arXiv

preprint arXiv:1511.07122, 2015.

[87] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic

image segmentation with deep convolutional nets, atrous convolution, and fully connected

crfs,” IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 4, pp.

834–848, 2018.

[88] C. Liang-Chieh, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille, “Semantic im-

age segmentation with deep convolutional nets and fully connected crfs,” in International

Conference on Learning Representations, 2015.

[89] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical im-

age segmentation,” in International Conference on Medical image computing and computer-

assisted intervention. Springer, 2015, pp. 234–241.

[90] G. Lin, A. Milan, C. Shen, and I. Reid, “Refinenet: Multi-path refinement net-

works with identity mappings for high-resolution semantic segmentation,” arXiv preprint

arXiv:1611.06612, 2016.

[91] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for

semantic image segmentation,” arXiv preprint arXiv:1706.05587, 2017.

134

[92] A. Kae, K. Sohn, H. Lee, and E. Learned-Miller, “Augmenting crfs with boltzmann machine

shape priors for image labeling,” in Computer Vision and Pattern Recognition (CVPR), 2013

IEEE Conference on. IEEE, 2013, pp. 2019–2026.

[93] S. Liu, J. Yang, C. Huang, and M.-H. Yang, “Multi-objective convolutional learning for

face labeling,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 3451–3459.

[94] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille, “Detect what you can:

Detecting and representing objects using holistic models and body parts,” in IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), 2014.

[95] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. L. Yuille, “Joint object and part segmen-

tation using deep learned potentials,” in Proceedings of the IEEE International Conference

on Computer Vision, 2015, pp. 1573–1581.

[96] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Hypercolumns for object segmen-

tation and fine-grained localization,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2015, pp. 447–456.

[97] X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan, “Semantic object parsing with graph lstm,”

in European Conference on Computer Vision. Springer, 2016, pp. 125–143.

[98] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention to scale: Scale-aware

semantic image segmentation,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 3640–3649.

[99] F. Xia, P. Wang, L.-C. Chen, and A. L. Yuille, “Zoom better to see clearer: Human and object

parsing with hierarchical auto-zoom net,” in European Conference on Computer Vision.

Springer, 2016, pp. 648–663.

135

[100] K. Yamaguchi, M. H. Kiapour, L. E. Ortiz, and T. L. Berg, “Parsing clothing in fashion

photographs,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference

on. IEEE, 2012, pp. 3570–3577.

[101] X. Liang, S. Liu, X. Shen, J. Yang, L. Liu, J. Dong, L. Lin, and S. Yan, “Deep human

parsing with active template regression,” IEEE transactions on pattern analysis and machine

intelligence, vol. 37, no. 12, pp. 2402–2414, 2015.

[102] X. Liang, C. Xu, X. Shen, J. Yang, S. Liu, J. Tang, L. Lin, and S. Yan, “Human parsing

with contextualized convolutional neural network,” in Proceedings of the IEEE Interna-

tional Conference on Computer Vision, 2015, pp. 1386–1394.

[103] J. Dong, Q. Chen, W. Xia, Z. Huang, and S. Yan, “A deformable mixture parsing model with

parselets,” in Computer Vision (ICCV), 2013 IEEE International Conference on. IEEE,

2013, pp. 3408–3415.

[104] S. Liu, X. Liang, L. Liu, K. Lu, L. Lin, X. Cao, and S. Yan, “Fashion parsing with video

context,” IEEE Transactions on Multimedia, vol. 17, no. 8, pp. 1347–1358, 2015.

[105] W. Yang, P. Luo, and L. Lin, “Clothing co-parsing by joint image segmentation and label-

ing,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

2014, pp. 3182–3189.

[106] K. Yamaguchi, M. H. Kiapour, and T. L. Berg, “Paper doll parsing: Retrieving similar styles

to parse clothing items,” in Computer Vision (ICCV), 2013 IEEE International Conference

on. IEEE, 2013, pp. 3519–3526.

[107] S. Liu, X. Liang, L. Liu, X. Shen, J. Yang, C. Xu, L. Lin, X. Cao, and S. Yan, “Matching-

cnn meets knn: Quasi-parametric human parsing,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2015, pp. 1419–1427.

136

[108] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On large-

batch training for deep learning: Generalization gap and sharp minima,” arXiv preprint

arXiv:1609.04836, 2016.

[109] E. Hoffer, I. Hubara, and D. Soudry, “Train longer, generalize better: closing the general-

ization gap in large batch training of neural networks,” in Advances in Neural Information

Processing Systems, 2017, pp. 1731–1741.

[110] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization to

accelerate training of deep neural networks,” in Advances in Neural Information Processing

Systems, 2016, pp. 901–909.

[111] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convolutional neural

networks,” in Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on.

IEEE, 2016, pp. 2414–2423.

[112] M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse recon-

struction: Application to compressed sensing and other inverse problems,” IEEE Journal of

selected topics in signal processing, vol. 1, no. 4, pp. 586–597, 2007.

[113] L. Von Ahn and L. Dabbish, “Labeling images with a computer game,” in Proceedings of the

SIGCHI conference on Human factors in computing systems. ACM, 2004, pp. 319–326.

[114] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic representation of

the spatial envelope,” International journal of computer vision, vol. 42, no. 3, pp. 145–175,

2001.

[115] J. Van De Weijer and C. Schmid, “Coloring local feature extraction,” in European confer-

ence on computer vision. Springer, 2006, pp. 334–348.

137

[116] V. Lavrenko, R. Manmatha, and J. Jeon, “A model for learning the semantics of pictures,”

in Advances in neural information processing systems, 2004, pp. 553–560.

[117] D. Metzler and R. Manmatha, “An inference network approach to image retrieval,” in Inter-

national Conference on Image and Video Retrieval. Springer, 2004, pp. 42–50.

[118] J. Liu, M. Li, Q. Liu, H. Lu, and S. Ma, “Image annotation via graph learning,” Pattern

recognition, vol. 42, no. 2, pp. 218–228, 2009.

[119] H. Fu, Q. Zhang, and G. Qiu, “Random forest for image annotation,” in ECCV, 2012.

[120] M. Muja and D. G. Lowe, “Fast matching of binary features,” in Computer and Robot Vision

(CRV), 2012 Ninth Conference on. IEEE, 2012, pp. 404–410.

[121] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

[122] H. Bilen and A. Vedaldi, “Weakly supervised deep detection networks,” in CVPR, 2016.

[123] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification,” in Proceedings of the IEEE International

Conference on Computer Vision, 2015, pp. 1026–1034.

[124] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and

stochastic optimization,” Journal of Machine Learning Research, vol. 12, no. Jul, pp. 2121–

2159, 2011.

[125] Y. Xiong, K. Zhu, D. Lin, and X. Tang, “Recognize complex events from static images

by fusing deep channels,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2015, pp. 1600–1609.

138

[126] J. Wang, Y. Cheng, and R. Schmidt Feris, “Walk and learn: Facial attribute representation

learning from egocentric video and contextual data,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2016, pp. 2295–2304.

[127] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional net-

works for visual recognition,” in European Conference on Computer Vision. Springer,

2014, pp. 346–361.

[128] Y. Zhong, J. Sullivan, and H. Li, “Leveraging mid-level deep representations for predicting

face attributes in the wild,” in Image Processing (ICIP), 2016 IEEE International Confer-

ence on. IEEE, 2016, pp. 3239–3243.

[129] N. Sarafianos, X. Xu, and I. A. Kakadiaris, “Deep imbalanced attribute classification using

visual attention aggregation,” in The European Conference on Computer Vision (ECCV),

September 2018.

[130] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on computer

vision, 2015, pp. 1440–1448.

[131] G. Gkioxari, R. Girshick, and J. Malik, “Contextual action recognition with r* cnn,” in

Proceedings of the IEEE international conference on computer vision, 2015, pp. 1080–

1088.

[132] M. S. Sarfraz, A. Schumann, Y. Wang, and R. Stiefelhagen, “Deep view-sensitive pedestrian

attribute inference in an end-to-end model,” arXiv preprint arXiv:1707.06089, 2017.

[133] F. Zhu, H. Li, W. Ouyang, N. Yu, and X. Wang, “Learning spatial regularization with image-

level supervisions for multi-label image classification,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2017, pp. 5513–5522.

139

[134] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge,” Inter-

national Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[135] M. M. Kalayeh, M. Seifu, W. LaLanne, and M. Shah, “How to take a good selfie?” in

Proceedings of the 23rd ACM international conference on Multimedia. ACM, 2015, pp.

923–926.

[136] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descriptors into a compact

image representation,” in CVPR, 2010, pp. 3304–3311.

[137] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-

tional neural networks,” in NIPS, 2012.

[138] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recog-

nition Challenge,” 2014.

[139] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat: Inte-

grated recognition, localization and detection using convolutional networks,” in ICLR, 2014.

[140] M. M. Kalayeh and M. Shah, “Training faster by separating modes of variation in batch-

normalized models,” IEEE transactions on pattern analysis and machine intelligence, 2019.

[141] S.-i. Amari and H. Nagaoka, Methods of information geometry. American Mathematical

Soc., 2007, vol. 191.

[142] S.-I. Amari, “Natural gradient works efficiently in learning,” Neural computation, vol. 10,

no. 2, pp. 251–276, 1998.

140

[143] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classification with the fisher

vector: Theory and practice,” International journal of computer vision, vol. 105, no. 3, pp.

222–245, 2013.

[144] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the em algorithm,”

Neural computation, vol. 6, no. 2, pp. 181–214, 1994.

[145] F. Perronnin and C. Dance, “Fisher kernels on visual vocabularies for image categorization,”

in Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on. IEEE,

2007, pp. 1–8.

[146] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,” in Pro-

ceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society

for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[147] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data

via the em algorithm,” Journal of the royal statistical society. Series B (methodological), pp.

1–38, 1977.

[148] R. Hosseini and S. Sra, “An alternative to em for gaussian mixture models: Batch and

stochastic riemannian optimization,” arXiv preprint arXiv:1706.03267, 2017.

[149] A. Krizhevsky, “Learning multiple layers of features from tiny images,” 2009.

[150] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing

systems, 2014, pp. 2672–2680.

[151] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint

arXiv:1605.07146, 2016.

141

[152] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep networks with stochastic

depth,” in European Conference on Computer Vision. Springer, 2016, pp. 646–661.

[153] M. Hardt, B. Recht, and Y. Singer, “Train faster, generalize better: Stability of stochastic

gradient descent,” in International Conference on Machine Learning, 2016, pp. 1225–1234.

[154] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang, “Stronger generalization bounds for deep nets

via a compression approach,” arXiv preprint arXiv:1802.05296, 2018.

[155] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani,

J. Totz, Z. Wang et al., “Photo-realistic single image super-resolution using a generative

adversarial network,” arXiv preprint, 2016.

[156] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional

adversarial networks,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017, pp. 1125–1134.

[157] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint

arXiv:1701.07875, 2017.

[158] M. Arjovsky and L. Bottou, “Towards principled methods for training generative adversarial

networks,” arXiv preprint arXiv:1701.04862, 2017.

[159] T. Che, Y. Li, A. P. Jacob, Y. Bengio, and W. Li, “Mode regularized generative adversarial

networks,” arXiv preprint arXiv:1612.02136, 2016.

[160] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “Infogan: Inter-

pretable representation learning by information maximizing generative adversarial nets,” in

Advances in Neural Information Processing Systems, 2016, pp. 2172–2180.

[161] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative adversarial net-

works,” arXiv preprint arXiv:1611.02163, 2016.

142

[162] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved

techniques for training gans,” in Advances in Neural Information Processing Systems, 2016,

pp. 2234–2242.

[163] A. Ghosh, V. Kulharia, V. Namboodiri, P. H. Torr, and P. K. Dokania, “Multi-agent diverse

generative adversarial networks,” arXiv preprint arXiv:1704.02906, 2017.

[164] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Proceedings of the

3rd International Conference on Learning Representations (ICLR) arXiv:1412.6980, 2015.

[165] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by

a two time-scale update rule converge to a local nash equilibrium,” in Advances in Neural

Information Processing Systems, 2017, pp. 6629–6640.

[166] S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: a next-generation open source

framework for deep learning,” in Proceedings of Workshop on Machine Learning Systems

(LearningSys) in The Twenty-ninth Annual Conference on Neural Information Processing

Systems (NIPS), 2015. [Online]. Available: http://learningsys.org/papers/LearningSys_

2015_paper_33.pdf

[167] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, “Cupy:

A numpy-compatible library for nvidia gpu calculations,” in Proceedings of

Workshop on Machine Learning Systems (LearningSys) in The Thirty-first Annual Con-

ference on Neural Information Processing Systems (NIPS), 2017. [Online]. Available:

http://learningsys.org/nips17/assets/papers/paper_16.pdf

[168] O. Bachem, M. Lucic, S. H. Hassani, and A. Krause, “Approximate k-means++ in sublinear

time.” 2016.

143

http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf

[169] O. Bachem, M. Lucic, H. Hassani, and A. Krause, “Fast and provably good seedings for

k-means,” in Advances in Neural Information Processing Systems, 2016, pp. 55–63.

[170] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, “Scalable k-means++,”

Proceedings of the VLDB Endowment, vol. 5, no. 7, pp. 622–633, 2012.

[171] O. Bachem, M. Lucic, and A. Krause, “Distributed and provably good seedings for k-means

in constant rounds,” in International Conference on Machine Learning, 2017, pp. 292–300.

[172] J. J. Verbeek, N. Vlassis, and B. Kröse, “Efficient greedy learning of gaussian mixture mod-

els,” Neural computation, vol. 15, no. 2, pp. 469–485, 2003.

[173] M. Lucic, M. Faulkner, A. Krause, and D. Feldman, “Training gaussian mixture models at

scale via coresets,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 5885–

5909, 2017.

144

	Describing Images by Semantic Modeling using Attributes and Tags
	STARS Citation

	ABSTRACT
	EXTENDED ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Automatic Image Annotation
	1.2 Person-related Attribute Prediction
	1.3 Describing Selfies
	1.4 Mixture Normalization
	1.5 Summary

	CHAPTER 2: LITERATURE REVIEW
	2.1 Image Annotation
	2.2 Attribute Prediction
	2.3 Semantic Segmentation
	2.4 Batch Normalization
	2.5 Summary

	CHAPTER 3: AUTOMATIC IMAGE ANNOTATION
	3.1 Methodology
	3.1.1 Weighted Multi-view Non-negative Matrix Factorization
	3.1.2 Boosting Mechanism for Rare Tags
	3.1.3 Recovering Tags of Query

	3.2 Experiments
	3.2.1 Datasets, Evaluation Metrics and Features
	3.2.2 Results
	3.2.3 Computational Complexity

	3.3 Summary

	CHAPTER 4: ON SYMBIOSIS OF ATTRIBUTE PREDICTION AND SEMANTIC SEGMENTATION
	4.1 Methodology
	4.1.1 SSP: Semantic Segmentation-based Pooling
	4.1.2 SSG: Semantic Segmentation-based Gating
	4.1.3 A Simple Unified View to SSP and SSG
	4.1.4 Semantic Segmentation Network
	4.1.5 Basic Attribute Prediction Network
	4.1.6 Backbone Architecture for Symbiotic Augmentation(SA)

	4.2 Experiments
	4.2.1 Datasets and Evaluation Measures
	4.2.2 Evaluation of Facial Attribute Prediction
	4.2.3 Evaluation of Person Attribute Prediction
	4.2.4 Visualizations
	4.2.5 Attribute Prediction for Semantic Segmentation

	4.3 Summary

	CHAPTER 5: ANALYSIS OF SELFIE IMAGES
	5.1 Selfie Dataset
	5.2 Attribute Prediction
	5.3 Experiments
	5.3.1 What Makes a Selfie Popular?
	5.3.2 Sentiment-Popularity Correlation
	5.3.3 Effect of Post-processing on Popularity

	5.4 Summary

	CHAPTER 6: TRAINING FASTER BY SEPARATING MODES OF VARIATION IN BATCH-NORMALIZED MODELS
	6.1 Methodology
	6.1.1 Kernels from Generative Probability Models
	6.1.2 Mixture Normalization

	6.2 Experiments
	6.2.1 Datasets
	6.2.2 CIFAR CNN
	6.2.3 Inception-V3
	6.2.4 DenseNet
	6.2.5 Mixture Normalization in GANs

	6.3 Computational Complexity and Detailed Analysis
	6.3.1 Computational Complexity Analysis
	6.3.2 Evolution of Mixture Components
	6.3.3 Effective Number of Mixture Components

	6.4 Summary

	CHAPTER 7: CONCLUSION AND FUTURE WORK
	7.1 Conclusion
	7.2 Future Work

	LIST OF REFERENCES

