1,222 research outputs found

    Multi labelled transition systems: a semantic framework for nominal calculi

    Get PDF
    Action Labelled transition systems (LTS) have proved to be a fundamental model for describing and proving properties of concurrent systems. In this paper, Multiple Labelled Transition Systems (MLTS) are introduced as generalizations of LTS that permit dealing also with systems features that are becoming more and more important when considering languages and models for network aware programming. MLTS permit describing not only the actions systems can perform but also system's resources usage and their handling (creation, revelation ...) of names. To show adeguacy of our proposal we show how MLTS can be used to describe the operational semantics of one of the most studied calculus for mobility: the asynchronous [pi]-calculus

    Space-Aware Ambients and Processes

    No full text
    Resource control has attracted increasing interest in foundational research on distributed systems. This paper focuses on space control and develops an analysis of space usage in the context of an ambient-like calculus with bounded capacities and weighed processes, where migration and activation require space. A type system complements the dynamics of the calculus by providing static guarantees that the intended capacity bounds are preserved throughout the computation

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    CPL: A Core Language for Cloud Computing -- Technical Report

    Full text link
    Running distributed applications in the cloud involves deployment. That is, distribution and configuration of application services and middleware infrastructure. The considerable complexity of these tasks resulted in the emergence of declarative JSON-based domain-specific deployment languages to develop deployment programs. However, existing deployment programs unsafely compose artifacts written in different languages, leading to bugs that are hard to detect before run time. Furthermore, deployment languages do not provide extension points for custom implementations of existing cloud services such as application-specific load balancing policies. To address these shortcomings, we propose CPL (Cloud Platform Language), a statically-typed core language for programming both distributed applications as well as their deployment on a cloud platform. In CPL, application services and deployment programs interact through statically typed, extensible interfaces, and an application can trigger further deployment at run time. We provide a formal semantics of CPL and demonstrate that it enables type-safe, composable and extensible libraries of service combinators, such as load balancing and fault tolerance.Comment: Technical report accompanying the MODULARITY '16 submissio

    On Designing Multicore-aware Simulators for Biological Systems

    Full text link
    The stochastic simulation of biological systems is an increasingly popular technique in bioinformatics. It often is an enlightening technique, which may however result in being computational expensive. We discuss the main opportunities to speed it up on multi-core platforms, which pose new challenges for parallelisation techniques. These opportunities are developed in two general families of solutions involving both the single simulation and a bulk of independent simulations (either replicas of derived from parameter sweep). Proposed solutions are tested on the parallelisation of the CWC simulator (Calculus of Wrapped Compartments) that is carried out according to proposed solutions by way of the FastFlow programming framework making possible fast development and efficient execution on multi-cores.Comment: 19 pages + cover pag

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    We present a white-box conceptual framework for adaptation. We called it CODA, for COntrol Data Adaptation, since it is based on the notion of control data. CODA promotes a neat separation between application and adaptation logic through a clear identification of the set of data that is relevant for the latter. The framework provides an original perspective from which we survey a representative set of approaches to adaptation ranging from programming languages and paradigms, to computational models and architectural solutions

    Dagstuhl News January - December 2005

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic
    corecore