30,949 research outputs found

    Talking Helps: Evolving Communicating Agents for the Predator-Prey Pursuit Problem

    Get PDF
    We analyze a general model of multi-agent communication in which all agents communicate simultaneously to a message board. A genetic algorithm is used to evolve multi-agent languages for the predator agents in a version of the predator-prey pursuit problem. We show that the resulting behavior of the communicating multi-agent system is equivalent to that of a Mealy finite state machine whose states are determined by the agents’ usage of the evolved language. Simulations show that the evolution of a communication language improves the performance of the predators. Increasing the language size (and thus increasing the number of possible states in the Mealy machine) improves the performance even further. Furthermore, the evolved communicating predators perform significantly better than all previous work on similar preys. We introduce a method for incrementally increasing the language size which results in an effective coarse-to-fine search that significantly reduces the evolution time required to find a solution. We present some observations on the effects of language size, experimental setup, and prey difficulty on the evolved Mealy machines. In particular, we observe that the start state is often revisited, and incrementally increasing the language size results in smaller Mealy machines. Finally, a simple rule is derived that provides a pessimistic estimate on the minimum language size that should be used for any multi-agent problem

    Reachability Analysis of Communicating Pushdown Systems

    Full text link
    The reachability analysis of recursive programs that communicate asynchronously over reliable FIFO channels calls for restrictions to ensure decidability. Our first result characterizes communication topologies with a decidable reachability problem restricted to eager runs (i.e., runs where messages are either received immediately after being sent, or never received). The problem is EXPTIME-complete in the decidable case. The second result is a doubly exponential time algorithm for bounded context analysis in this setting, together with a matching lower bound. Both results extend and improve previous work from La Torre et al

    The complexity of asynchronous model based testing

    Get PDF
    This is the post-print version of the final paper published in Theoretical Computer Science. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2012 Elsevier B.V.In model based testing (MBT), testing is based on a model MM that typically is expressed using a state-based language such as an input output transition system (IOTS). Most approaches to MBT assume that communications between the system under test (SUT) and its environment are synchronous. However, many systems interact with their environment through asynchronous channels and the presence of such channels changes the nature of testing. In this paper we investigate the situation in which the SUT interacts with its environment through asynchronous channels and the problems of producing test cases to reach a state, execute a transition, or to distinguish two states. In addition, we investigate the Oracle Problem. All four problems are explored for both FIFO and non-FIFO channels. It is known that the Oracle Problem can be solved in polynomial time for FIFO channels but we also show that the three test case generation problems can also be solved in polynomial time in the case where the IOTS is observable but the general test generation problems are EXPTIME-hard. For non-FIFO channels we prove that all of the test case generation problems are EXPTIME-hard and the Oracle Problem in NP-hard, even if we restrict attention to deterministic IOTSs

    Control dependence for extended finite state machines

    Get PDF
    Though there has been nearly three decades of work on program slicing, there has been comparatively little work on slicing for state machines. One of the primary challenges that currently presents a barrier to wider application of state machine slicing is the problem of determining control dependence. We survey existing related definitions, introducing a new definition that subsumes one and extends another. We illustrate that by using this new definition our slices respect Weiser slicing’s termination behaviour. We prove results that clarify the relationships between our definition and older ones, following this up with examples to motivate the need for these differences
    • …
    corecore