1,941 research outputs found

    Learning to automatically detect features for mobile robots using second-order Hidden Markov Models

    Get PDF
    In this paper, we propose a new method based on Hidden Markov Models to interpret temporal sequences of sensor data from mobile robots to automatically detect features. Hidden Markov Models have been used for a long time in pattern recognition, especially in speech recognition. Their main advantages over other methods (such as neural networks) are their ability to model noisy temporal signals of variable length. We show in this paper that this approach is well suited for interpretation of temporal sequences of mobile-robot sensor data. We present two distinct experiments and results: the first one in an indoor environment where a mobile robot learns to detect features like open doors or T-intersections, the second one in an outdoor environment where a different mobile robot has to identify situations like climbing a hill or crossing a rock.Comment: 200

    Obstacle Avoidance Based on Stereo Vision Navigation System for Omni-directional Robot

    Get PDF
    This paper addresses the problem of obstacle avoidance in mobile robot navigation systems. The navigation system is considered very important because the robot must be able to be controlled from its initial position to its destination without experiencing a collision. The robot must be able to avoid obstacles and arrive at its destination. Several previous studies have focused more on predetermined stationary obstacles. This has resulted in research results being difficult to apply in real environmental conditions, whereas in real conditions, obstacles can be stationary or moving caused by changes in the walking environment. The objective of this study is to address the robot’s navigation behaviors to avoid obstacles. In dealing with complex problems as previously described, a control system is designed using Neuro-Fuzzy so that the robot can avoid obstacles when the robot moves toward the destination. This paper uses ANFIS for obstacle avoidance control. The learning model used is offline learning. Mapping the input and output data is used in the initial step. Then the data is trained to produce a very small error. To support the movement of the robot so that it is more flexible and smoother in avoiding obstacles and can identify objects in real-time, a three wheels omnidirectional robot is used equipped with a stereo vision sensor. The contribution is to advance state of the art in obstacle avoidance for robot navigation systems by exploiting ANFIS with target-and-obstacles detection based on stereo vision sensors. This study tested the proposed control method by using 15 experiments with different obstacle setup positions. These scenarios were chosen to test the ability to avoid moving obstacles that may come from the front, the right, or the left of the robot. The robot moved to the left or right of the obstacles depending on the given Vy speed. After several tests with different obstacle positions, the robot managed to avoid the obstacle when the obstacle distance ranged from 173 – 150 cm with an average speed of Vy 274 mm/s. In the process of avoiding obstacles, the robot still calculates the direction in which the robot is facing the target until the target angle is 0

    Development of a Mobile Robot Local Navigation System Based on Fuzzy-Logic Control and Actual Virtual Target Switching

    Get PDF
    Robot local path planning in an unknown and changing environment with uncertainties is one of the most challenging problems in robotics which involves the integration of many different bodies of knowledge. This makes mobile robotics a challenge worldwide which for many years has been investigated by researchers. Therefore in this thesis, a new fuzzy logic control system is developed for reactive navigation of a behavior-based mobile robot. The motion of a Pioneer 3TM mobile robot was simulated to show the algorithm performance. The robot perceives its environment through an array of eight sonar range finders and self positioning-localization sensors. The robot environment consists of walls and dead end traps from any size and shape, as well as other stationary obstacles and it is assumed to be fully unknown. Robot behaviors consist of obstacle avoidance, target seeking, speed control, barrier following and local minimum avoidance. While the fuzzy logic body of the algorithm performs the main tasks of obstacle avoidance, target seeking, and speed adjustment, an actual-virtual target switch strategy integrated with the fuzzy logic algorithm enables the robot to show wall following behavior when needed. This combinational approach which uses a new kind of target shift, significantly results in resolving the problem of multiple minimum in local navigation which is an advantage beyond the pure fuzzy logic approach and the common virtual target switch techniques. In this work, multiple traps may have any type of shape or arrangement from barriers forming simple corners and U-shape dead ends to loops, maze, snail shape, and many others. Under the control of the algorithm, the mobile robot makes logical trajectories toward the target, finds best ways out of dead ends, avoids any types of obstacles, and adjusts its speed efficiently for better obstacle avoidance and according to power considerations and actual limits. From TRAINER Software and Colbert Program which were used in the simulation work, the system managed to solve all the problems in sample environments and the results were compared with results from other related methods to show the effectiveness and robustness of the proposed approach

    Mobile Robotics, Moving Intelligence

    Get PDF

    Sensor based real-time control of robots

    Get PDF

    Laser range data based semantic labeling of places

    Full text link
    Extending metric space representations of an environment with other high level information, such as semantic and topological representations enable a robotic device to efficiently operate in complex environments. This paper proposes a methodology for a robot to classify indoor environments into semantic categories. Classification task, using data collected from a laser range finder, is achieved by a machine learning approach based on the logistic regression algorithm. The classification is followed by a probabilistic temporal update of the semantic labels of places. The innovation here is that the new algorithm is able to classify parts of a single laser scan into different semantic labels rather than the conventional approach of gross categorization of locations based on the whole laser scan. We demonstrate the effectiveness of the algorithm using a data set available in the public domain. Š2010 IEEE

    Autonomous Drone Landings on an Unmanned Marine Vehicle using Deep Reinforcement Learning

    Get PDF
    This thesis describes with the integration of an Unmanned Surface Vehicle (USV) and an Unmanned Aerial Vehicle (UAV, also commonly known as drone) in a single Multi-Agent System (MAS). In marine robotics, the advantage offered by a MAS consists of exploiting the key features of a single robot to compensate for the shortcomings in the other. In this way, a USV can serve as the landing platform to alleviate the need for a UAV to be airborne for long periods time, whilst the latter can increase the overall environmental awareness thanks to the possibility to cover large portions of the prevailing environment with a camera (or more than one) mounted on it. There are numerous potential applications in which this system can be used, such as deployment in search and rescue missions, water and coastal monitoring, and reconnaissance and force protection, to name but a few. The theory developed is of a general nature. The landing manoeuvre has been accomplished mainly identifying, through artificial vision techniques, a fiducial marker placed on a flat surface serving as a landing platform. The raison d'etre for the thesis was to propose a new solution for autonomous landing that relies solely on onboard sensors and with minimum or no communications between the vehicles. To this end, initial work solved the problem while using only data from the cameras mounted on the in-flight drone. In the situation in which the tracking of the marker is interrupted, the current position of the USV is estimated and integrated into the control commands. The limitations of classic control theory used in this approached suggested the need for a new solution that empowered the flexibility of intelligent methods, such as fuzzy logic or artificial neural networks. The recent achievements obtained by deep reinforcement learning (DRL) techniques in end-to-end control in playing the Atari video-games suite represented a fascinating while challenging new way to see and address the landing problem. Therefore, novel architectures were designed for approximating the action-value function of a Q-learning algorithm and used to map raw input observation to high-level navigation actions. In this way, the UAV learnt how to land from high latitude without any human supervision, using only low-resolution grey-scale images and with a level of accuracy and robustness. Both the approaches have been implemented on a simulated test-bed based on Gazebo simulator and the model of the Parrot AR-Drone. The solution based on DRL was further verified experimentally using the Parrot Bebop 2 in a series of trials. The outcomes demonstrate that both these innovative methods are both feasible and practicable, not only in an outdoor marine scenario but also in indoor ones as well
    • …
    corecore