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Summary

As robots are becoming more and more widespread in manufacturing,

the desire and need for more advanced robotic solutions are increasingly

expressed. This is especially the case in Denmark where products with natural

variances like agricultural products takes up a large share of the produced

goods. For such production lines, it is often not possible to use primitive

preprogrammed industrial robots to handle the otherwise repetitive tasks due

to the uniqueness of each product.

To handle such products it is necessary to use sensors to determine the size,

shape, and position of the product before a proper trajectory can be calculated

in real-time for the robot to execute. This introduces a multitude of different

challenges, some of which this project seeks to find the answer to.

The production environment of agricultural products is not very well suited

for advanced machinery. Handling crops often releases a lot of dust, livestock

releases bodily fluids, and all naturally grown products plays host to different

kinds of bacterial flora. To ensure food safety it is thus necessary to clean the

production facilities daily. This is often done with high-pressure water which

can easily cause small changes in the position or orientation of sensors and

robots if hit, which in turn corrupts their internal relative calibration. And if

the entire robot motion is based on a miscalibrated sensor measurement, the

end result could easily be suboptimal or destroyed products, or even destroyed

machinery.
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To avoid such outcomes and thus make sensor based control more reliable,

an accurate calibration method has been developed as part of this project. After

initial placement of a calibration target mounted on the robot end effector

under a laser range scanner, the method can autonomously control the robot

to determine the transformation between the laser scanner and the robot. And

once the robot has a rough idea of the position of the scanner, the method can

be used complete autonomously to correct for small misalignment after the

daily cleaning cycle.

Furthermore, the method makes it possible to calculate the worst case

error of the calibration. This can help in guaranteeing end product uniformity,

i.e. as part of a ISO9000 certification.

Once the robot knows the pose of the product that needs manipulation, it

needs to do a real-time calculation of an appropriate trajectory. The trajectory

does not only need to be accurate with respect to the end pose of the robot, it

also needs to be temporally accurate so the robot can manipulate the product

without stopping the conveyor belt and thus possibly the entire production.

To achieve temporal accuracy, it is necessary to know the delay throughout

the entire system from acquisition delays in the sensor to actuation delays in

the robot. To that end a method for measuring the actuation and response

delay of an industrial robot manipulator, relative to the joint configuration

of the robot, is presented. It is also shown how modern machine learning

algorithms can be trained to build model based on the measurements.

Once a model of the delay is constructed, it is furthermore shown how the

model can be used for both forward and inverse predictions as well as current

state corrections and thus improve on the temporal accuracy of an industrial

robot manipulator.

When using predefined trajectories for the robot, it is possible to simulate

every motion and through prediction minimize the number of issues to ensure

high uptime. With real-time generated trajectories and varying product shapes,

this is not possible to the same extend. The robot could end up in singular
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configurations, the risk of a grasp failing when a product is lifted is increased,

a sensor could malfunction or foreign objects could end up on the conveyor.

A production system needs to be able to handle all these issues to ensure

robustness and high uptime of the production facility. To accomplish this it

is shown how an expert system can be used to monitor a robot executing a

task and ensure that the system can either handle issues or at least degrade

in the least obstructive way. This is ensured through rules that defines the

boundaries for solving the given task, and how the system must react if the

boundary is crossed.

Due to the generality of the methods presented in this project they consti-

tutes a significant contribution towards using sensors for real-time control of

robots, both in conjunction with industrial robots as well as in other robotic

contexts.





Resumé

I takt med at udbredelsen af robotter i industrien øges, stiger ønsket og

behovet for mere avancerede robotløsninger også. Dette er især tilfældet i

Danmark, hvor produkter med en naturlig variation, såsom landbrugsproduk-

ter, udgør en stor del af de producerede varer. Til sådan produktion er det ofte

ikke muligt at benytte primitive forprogrammerede industrirobotter, da hvert

enkelt produkt er forskelligt.

For at håndtere sådanne varierende produkter er det nødvendigt at bruge

sensorer til at måle størrelse, form og position af hvert enkelt emne, således at

en korrekt bane for robotten kan udregnes i realtid og derefter udføres. Dette

introducerer en stribe forskellige udfordringer, hvortil dette projekt søger at

løse nogle af dem.

Avancerede maskiner er generelt ikke særlig velegnede til det produktions-

miljø der ofte findes ved forarbejdning af landbrugsprodukter. Håndtering af

afgrøder støver, dyrene afgiver kropsvæsker og der er en naturlig forekomst

af mange forskellige bakterier på alle naturskabte produkter. Alt dette nød-

vendiggør en daglig rengøring af hele produktionsapparatet af hensyn til

fødevaresikkerheden. Dette gøres ofte med højtryksspulere, hvilket kan med-

føre at sensorer og robotter drejer eller rykker sig en smule, hvis de bliver

ramt. Denne forskydning ødelægger den relative kalibrering der er imellem de

to apparater. Hvis robottens bevægelse dermed er baseret på en fejlkalibreret

sensors målinger vil det medføre mindre udbytte eller deciderede ødelagte
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slutprodukter, hvis det da ikke ligefrem resulterer i at produktionslinjen bliver

beskadiget.

For at undgå sådanne hændelser, og dermed gøre sensorbaseret styring

mere pålideligt, er der som en del af dette projekt udviklet en præcis kali-

breringsmetode. Ved at montere en kalibreringsskive for enden af en robot og

derefter bevæge den ind under en laserbaseret afstandsmåler, er kan metoden

styre robotten autonomt og derved finde transformationen mellem robotten

og afstandsmåleren. Og så længe at robotten har en omtrentligt ide om

hvorhenne afstandsmåleren er, kan robotten fuldstændig autonomt foretaget

en rekalibrering efter den daglige rengøring.

Derudover er det også muligt at beregne den største fejl der kan forekomme

i kalibreringen. Derved kan en graden af ensformighed i slutproduktet lettere

bestemmes, f.eks. i forbindelse med en ISO9000 certificering.

Når robotten først ved hvorhenne produktet den skal bearbejde befinder

sig, skal den foretage en realtidsudregning af en passende bane. Denne bane

skal ikke blot være præcis i forhold til position og orientering, den skal også

være tidsmæssig præcis således at robotten kan bearbejde produktet uden at

stoppe produktionslinjen og dermed potentielt hele produktionen.

For at sikre at timingen er korrekt er det nødvendigt at kende forsinkelserne

igennem hele systemet, fra måleforsinkelser i sensorerne til aktiveringsforsinkelser

i robotten. Til at gøre dette præsenteres en metode der kan måle aktiverings-

og svarforsinkelserne for en industrirobot, afhængig af positionen af hvert

enkelt af robottens led. Det er også vidst hvordan moderne maskinlæringsme-

toder kan bruge de målte forsinkelser til at lære en model af forsinkelserne.

Det er også vist hvordan en sådan model kan bruges til direkte og invers

forudsigelse af forsinkelser samt til at give en mere præcis beskrivelse af

robottens nuværende tilstand, hvilket kan bruges til at forbedre timingen for

industrirobotter.

Når man bruger forprogrammerede baner til at styre en robot, er det

muligt at simulere hvert enkelt bevægelse. Derved kan man forudsige og
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efterfølgende minimere mængden af mulige problemer og således sikre en høj

oppetid. Når man derimod bruger realtidsgenererede baner og skal håndtere

produkter der varierer i form og størrelse er dette ikke muligt i samme omfang.

Robotten kan komme ud i singulære positioner, risikoen for at robotten ikke

får ordentlig fat og dermed mister sit greb i produktet er større, en sensor kan

fejle eller et fremmedobjekt kan havne på transportbåndet.

Et produktionsapparat skal kunne håndtere alle disse problemer, således

at det kører robust og derved sikrer en høj oppetid. For at opnå er det vist

hvordan et ekspertsystem kan bruges til at overvåge en opgave og sikre at

systemet enten kører videre uafhængigt at sådanne problemer, eller i hvert

fald reagerer mest hensynsfuldt. Dette er opnået gennem regler der definerer

grænserne for hvad der er nødvendigt for at løse en opgave og grænserne for

hvordan en opgave kan løses, samt hvordan systemet skal reagere hvis en af

disse regler ikke kan overholdes.

Metoderne der er præsenteret i dette projekt kan anvendes så bredt at de

både i forbindelse med industrielle robotter og i andre sammenhænge bidrager

væsentligt til at fremme sensorbaseret realtidsstyring af robotter.





Preface

This thesis is written as a partial fulfilment of the requirements for the

PhD degree in engineering. The PhD project was conducted at the Technical

University of Denmark’s Department of Electrical Engineering in the Automa-

tion and Control group. The project was carried out from December 2012 to

November 2015. The project was co-funded by the Innovation Fund Denmark

through project "11-118482 Real-time controlled robots for the meat industry"

and DTU.

The supervisors of the project were Associate Professor Ole Ravn (main

supervisor) and Associate Professor Nils Axel Andersen, both from the Automa-

tion and Control group at DTU Electrical Engineering. Part of the research

was conducted at the Cognitive Robotics Lab at Georgia Institute of Technol-

ogy’s College of Computing with Professor Henrik Iskov Christensen acting as

supervisor.

The thesis constitutes a collection of papers, which has been submitted

for conferences and journals during the project period as well as methods

developed during further research.

Thomas Timm Andersen

Kongens Lyngby, November 2015





List of Publications

Papers included in the thesis

(A) T. T. Andersen, N. A. Andersen, and O. Ravn. “Exception detection and

handling in mission control for mobile robots”. In: Proceedings of 8th
IFAC Symposium on Intelligent Autonomous Vehicles. Vol. 8. IFAC Proceed-

ings Volumes (IFAC-PapersOnline). Elsevier Science, 2013, pp. 187–192.

Published

(B) T. T. Andersen, N. A. Andersen, and O. Ravn. “Calibration between

a laser range scanner and an industrial robot manipulator”. In: 2014
IEEE Symposium on Computational Intelligence in Control and Automation
(CICA). IEEE. 2014, pp. 1–8. Published

(C) T. T. Andersen, N. A. Andersen, and O. Ravn. “Optimizing the au-

tonomous self-calibration between a robot and a distance sensor”. In:

Robotics and Computer-Integrated Manufacturing (2016). Submitted

(D) T. T. Andersen, H. B. Amor, N. A. Andersen, and O. Ravn. “Measuring

and Modelling Delays in Robot Manipulators for Temporally Precise

Control using Machine Learning”. In: 14th IEEE International Conference
on Machine Learning and Applications (ICMLA). IEEE. 2015. Presented



xii

Other publications

• H. Wu, W. Tizzano, T. T. Andersen, N. A. Andersen, and O. Ravn. “Hand-

Eye Calibration and Inverse Kinematics of Robot Arm Using Neural

Network”. English. In: Robot Intelligence Technology and Applications
2. Ed. by J.-H. Kim, E. T. . Matson, H. Myung, P. Xu, and F. Karray.

Vol. 274. Advances in Intelligent Systems and Computing. Springer

International Publishing, 2014, pp. 581–591. Published

• O. Ravn, N. A. Andersen, and T. T. Andersen. UR10 Performance Analysis.
Tech. rep. Technical University of Denmark, Department of Electrical

Engineering, 2014. Published

• T. T. Andersen. Optimizing the Universal Robots ROS driver. Tech. rep.

Technical University of Denmark, Department of Electrical Engineering,

2015. Published



Acknowledgments

I would like to thank my supervisors Associate Professor Ole Ravn and

Associate Professor Nils Axel Andersen for their continues guidance and sup-

port through my many years of studying all the different and interesting fields

of robotics at DTU and for giving me the opportunity to work on this excit-

ing project. They have also always been very helpful and open minded for

discussing new possibilities and solutions.

I would also like to sincerely thank Professor Henrik Iskov Christensen for

my very interesting research stay at Georgia Institute of Technology’s College

of Computing just as I would also like to thank all the RoboGrads from GT for

both fruitful discussions as well as a very pleasant time in Atlanta. I especially

owe Research Scientist Heni Ben Amor huge gratitude for his company, interest

in my project and especially his very competent advice both throughout and

after my stay.

The representatives from the other members of the innovation consortium,

DIKU, Linco, IHFood, Butina, Robotcenter Danmark, Rose Poultry, Danpo,

Danish Crown, Tican, and DMRI, I would like to thank for an inspiring collab-

oration, as well as for giving me the opportunity to work on some real world

challenges.

The staff at the automation group I would like to thank for various assis-

tance and good colleagueship throughout the years. I would especially like to

thank Lisbeth Winter, Henrik Poulsen and Susanne Andersen for always being



xiv

ready to help with matters large and small, as well as my office mate postdoc

Haiyan Wu for many fruitful discussions.

Finally, I would like to express my gratefulness to my friends and family

for their continuous support and help throughout this project.



Table of Contents

Summary i

Resumé v

Preface ix

List of Publications xi

Acknowledgments xiii

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Motivation and aim . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Reliability and automation . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Sensor based real-time control of robots 7

2.1 Typical robot operation in the industry . . . . . . . . . . . . . . 7

2.2 Task phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Interfacing between systems . . . . . . . . . . . . . . . . . . . . 14

2.4 Delays in distributed robotics systems . . . . . . . . . . . . . . . 17

2.5 Measuring the delay . . . . . . . . . . . . . . . . . . . . . . . . 23



xvi Table of Contents

2.6 Using the delay models . . . . . . . . . . . . . . . . . . . . . . . 25

3 Published research 33

3.1 Real-time task monitoring . . . . . . . . . . . . . . . . . . . . . 33

3.2 Robot to laser calibration . . . . . . . . . . . . . . . . . . . . . 37

3.3 Modelling robot delay . . . . . . . . . . . . . . . . . . . . . . . 41

4 Conclusions 45

4.1 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Paper A Exception detection and handling in mission control for

mobile robots 49

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.2 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.4 Behaviours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Paper B Calibration between a laser range scanner and an indus-

trial robot manipulator 67

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Paper C Optimizing the autonomous self-calibration between a robot

and a distance sensor 89

C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

C.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

C.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



Table of Contents xvii

C.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Paper D Measuring and Modelling Delays in Robot Manipulators

for Temporally Precise Control using Machine Learning 105

D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

D.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

D.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

D.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

D.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

D.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Bibliography 127





List of Figures

1.1 Example of the physical product variance in agricultural products . 3

2.1 Typical industrial robot setup. . . . . . . . . . . . . . . . . . . . . . 8

2.2 ABB’s cobot YuMi R©. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Example of tasks for bin picking and their phases . . . . . . . . . . 12

2.4 Chart of the different delays in a distributed robotic system . . . . 17

2.5 Comparison of the performance of the two different drivers. Note

that there is 10 lines for both drivers, which explains why the line

for the old driver looks slightly wider. . . . . . . . . . . . . . . . . 22

2.6 Plot of logged data from a delay measurement. Reprint of Figure D.5. 24

2.7 Two (left and right) example trajectories. Top row: Desired posi-

tional trajectory. Middle row: Actual predicted positional trajectory

based on forward temporal prediction. Bottom row: Optimal posi-

tional trajectory based on inverse temporal prediction. The dotted

lines are the predicted resulting positions. . . . . . . . . . . . . . . 26

2.8 Boxplot of individual joints’ actuation delay and a combined for of

all joints of the Kuka 5 Sixx. Reprint of Figure D.8 left. . . . . . . . 30

3.1 System overview of MobotWare and Jess. Reprint from [1] . . . . . 34

3.2 Test setup with up-scaled calibration target. Reprint from [2] . . . 38

3.3 Distance measured by laser scanner while moving target under-

neath in 1 µm steps. The red lines denotes a 12 µm interval. Reprint

from [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



xx List of Figures

3.4 Delays of the Motoman 5-sixx robot’s joint 1 moving in positive

direction at two different positions, as a function of the positions

of joint 2 and joint 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A.1 Overview of the Jess-Mobotware framework . . . . . . . . . . . . . 55

A.2 Approximate map of office space . . . . . . . . . . . . . . . . . . . 56

A.3 Map plot of a demonstration test run . . . . . . . . . . . . . . . . . 62

A.4 Path suddenly blocked by an opening door . . . . . . . . . . . . . . 63

A.5 The robot has to search for the landmarks . . . . . . . . . . . . . . 64

B.1 Tool frame orientation . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.2 Laser frame orientation . . . . . . . . . . . . . . . . . . . . . . . . 73

B.3 Laser frame orientation . . . . . . . . . . . . . . . . . . . . . . . . 74

B.4 Calibration target. Two laser scans are shown in red, and the three

triangles of interest are drawn in blue, green and yellow . . . . . . 77

B.5 Concept photo showing a robot holding a calibration target under-

neath a laser scanner . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.6 Simulated rotations as seen from the laser scanner. Left: Rotation

around xL. Right: Rotation around yL . . . . . . . . . . . . . . . . . 81

B.7 Simulated rotations as seen from the laser scanner. Left: Rotation

around zL. Right: Rotation around xL, yL and zL . . . . . . . . . . . 82

C.1 Calibration target with overlaid geometric features. Reprint from [2] 92

C.2 Frame notation and ideal location. Reprint from [2] . . . . . . . . 94

C.3 Finding p1 and p2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

C.4 Pod rotated around YT and moved distance d along the YT axis . . . 96

C.5 Left: Test setup with up-scaled calibration target. Right: Distance

measured by laser scanner while moving target underneath in 1 µm
steps. The red lines denotes a 12 µm interval . . . . . . . . . . . . . 99



List of Figures xxi

D.1 Temporally precise control of an industrial robot is realized by

modelling the inherent delay in the system. The picture depicts

a fast robot movement during data acquisition. Recorded data is

processed using machine learning algorithms to generate predictive

models for system and response delay. . . . . . . . . . . . . . . . . 108

D.2 Left: Delays during the control of a robot manipulator. Transmis-

sion delay affects information flow between main control computer

and the robot control box. Actuation delay and response delay

are introduced in the communication between the control box and

the physical robot. Right: For delay modelling an external sensor

is mounted, e.g. a gyroscope, to measure discrepancies between

command times and execution times. . . . . . . . . . . . . . . . . . 109

D.3 Gyroscope readings are filtered using a FIR filter. A 60 second

datastream (green), recorded without moving the robot, is passed

through the filter to remove noise (blue). The frequency component

of the data before and after filtering is shown in red and black,

calculated using Welch’s power spectrum density estimate[47] . . . 115

D.4 The Universal Robot UR10 with mounted measuring equipment.

The enclosure keeps the sensor at a stable temperature thus avoid-

ing temperature-related drift in measurements. . . . . . . . . . . . 117

D.5 Typical plot of logged data from a single trial. 33,500 trials were

completed on each robot. . . . . . . . . . . . . . . . . . . . . . . . 118

D.6 Actuation and response delay for joint 3 moving in positive direc-

tion as a function of varying joint 2 and 3. The red graph is the

mean and the gray area is ±2 standard deviations, corresponding

to a 95% confidence interval. Note the different y axis interval.

Left: Kuka. Right: Universal Robot. . . . . . . . . . . . . . . . . . . 119

D.7 Combined distribution of the actuation delay of all joints. Note the

different x axis interval. Left: Kuka. Right: Universal Robot. . . . . 119

D.8 Boxplot of individual joint’s actuation delay. Note the different y

axis interval. Left: Kuka. Right: Universal Robot. . . . . . . . . . . 120



xxii List of Figures

D.9 Combined distribution of the response delay of all joints. Left:

Kuka. Right: Universal Robot. . . . . . . . . . . . . . . . . . . . . . 120

D.10 Boxplot of individual joint’s response delay. Left: Kuka. Right:

Universal Robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



List of Tables

3.1 Comparison of performance between the two scan method from [2]

and the single beam method from [3]. K is number of scans when

measuring the distance from the scanner to the target. Reprint

from [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Mean error in milliseconds of model fit for actuation delay. Results

from [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Mean Error in milliseconds of model fit for reaction delay. Results

from [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

C.1 Comparison of performance between the two scan method from

[2] and the single beam method from this paper . . . . . . . . . . . 102

D.1 Mean error in milliseconds of model fit for actuation delay. . . . . . 122

D.2 Mean Error in milliseconds of model fit for reaction delay. . . . . . 122





Chapter 1

Introduction

This thesis addresses the subject of using sensory information in a real-

time manner to control robots. The real-time controlling constraint should be

understood in the sense presented in [8]: "control[ling] an environment by

receiving data, processing them, and returning the results sufficiently quickly

to affect the environment at that time" and thus not in the classical computer

science (CS) definition of a strict guaranteed timing constraint deadline.

1.1 Motivation and aim

Robots in all sizes and shapes are becoming more and more common in

our society. From thinking of robots as something fairly dumb constrained

to the factory floor, we now have autonomous public transportation systems,

drones are taking to the sky for both recreational and military purposes, and

entire warehouses are controlled by robots. There are surgical robots, cleaning

robots, and farming robots. We have robots exploring the bottom of the

ocean, the hostile environment of space, and nuclear disaster sites. Even robot

prosthetics, robot pets, and robot competitions are no longer restricted to

science fiction. In short, robots are spreading faster and faster into more and

more domains.

The reasons for this spread are obviously many and often domain specific.
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One of the multi-domain reasons are the increases in computer computational

power, another the advances in sensor technology and processing algorithms.

However, while all these advances have brought robotics forward at a blinding

pace, the applications for the classical industrial robot does not seem to

have grown significantly more advanced alongside this knowledge revolution.

Although they have been optimized in terms of both accuracy, repeatability,

speed, and maximum load, they are still mostly left to do one or more of the

classical 4D tasks; Dumb, Dirty, Dull and Dangerous. And while it is certainly

a good thing to have robots handle these kind of tasks, there seems no good

reason to limit industrial robots to neither dumb nor dull and repetitious tasks.

One place with many repetitious tasks that would thus seem obvious to

automate is in the food industry with processing of agricultural products.

This is mostly labour intensive tasks with many workers at a production line

doing the same repetitious task over and over again. But as it can be seen on

figure 1.1 there is a very large natural variation in agricultural products and

compensating autonomously for this variation requires quite a few sensors and

real-time planning to handle. And getting robots to solve tasks using advanced

sensors and a high degree of real-time planning in a reliable and autonomous

fashion are often both difficult and expensive, and in an industrial setting

reliability and automation are key requirements.

There are human operators monitoring and instructing the drones, the

exploring robots, the transportation systems, the surgical and farming robots

as well as the prosthetics. And the consequences of a failing pet or battle robot,

or a badly or wrongly stacked pallet are usually acceptable.

But in a factory, where an trained robot operator is more expensive than

most assembly line workers, where downtime can halt an entire production

line, and where small inaccuracies can damage or destroy the end product,

this is not an option. Before any factory owner would thus allow a robot to

take over a task, be it simple or complex, he needs to be certain that the robot

can do so both reliably and autonomously.
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Figure 1.1: Example of the physical product variance in agricultural products

The motivation for and aim of the research done as part of this theses is

to find ways which can improve this reliability and autonomous operation

of robots while using sensors to handle non-uniform products. And while

the emphasis and baseline might be on industrial robot manipulators, any

such findings will obviously also be usable in advancing other areas within

robotics. Therefore, I have not limited myself to only consider industrial robot

manipulators, but am also looking into other major areas like mobile robots.

1.2 Reliability and automation

There are countless ways to increase the level of autonomous operation

and reliability of a system, some of them are solution specific, while others

can be applied in a more general manner.

The first included paper, paper A, presents a method for monitoring the

execution of a task. By introducing an expert system, it is shown to be possible

to increase the robustness of task solving by writing rules that defines the

boundary of how a task should be solved. Besides monitoring the internal

state of the robot and how the mission is progressing it can also monitor

exterior conditions, and based on a knowledge of the entire environment both
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detect and handle arising situations and either prevent errors or at least help

in ensuring a meaningful and autonomous degradation of operation.

As mentioned, one of the driving factors in the increased use of robots is

the improved sensor technology. For combining exteroceptive sensors with

robots and then getting them to relate their measurements to the robot system,

a calibration is obviously a necessity. In paper B I present a method for

calibrating a laser range scanner to a robot manipulator. The accuracy of the

method is further improved in paper C.

Besides calibration, the methods presented in the two papers also gives a

measure of the worst-case accuracy based on sensor resolution and -accuracy as

well as the calibration target design parameters. In ensuring and documenting

the consistency of a product, i.e. in relation to a ISO 9000 specification, it is

very valuable to know that based on the calibration, the robot will perform to

within a defined threshold.

Another very important aspect of reliable automation is accuracy. Positional

accuracy has received a lot of attention, making robots far more accurate than

humans will ever be. This is also reflected in the manufacturers’ specification

of all industrial robots, where both accuracy and repeatability is given. But

temporal accuracy or reaction speed seems more like a complete unknown,

with not even resellers or the manufacturers’ customer support being able

to supply this number. It is not difficult to imagine why, as it is simply not

relevant for the current operations done by industrial robots where uniform

objects makes it relatively easy to predict the required timing. However, for

handling objects of varying sizes, which requires online planning, timing is

crucial if the object is moving.

And with a trend in automation going towards using robots for smaller

production batches and even single series products, knowing this number

rather than measuring it in a static status is increasingly important.

In paper D I present a method for doing a rough mapping of this delay and

then based on these mapping measurements, model the delay of the robot.
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The importance and usefulness of knowing this delay is further elaborated

in a separate chapter.

By covering these topics I hope to have made significant contributions

towards better sensor based real-time control of robots. The scope of the title

topic is so broad, though, that it is not realistic to hope to cover the entire field.

My research is rather aimed at giving some tools that can aid in developing

robust real-time control for robots based on sensory input with a focus on

the main challenges identified as part of the innovation project "Real-time

controlled robots for the meat industry". I will thus also use examples from

and relate my results to automation of the meat industry.

1.3 Thesis structure

In the current chapter, I have presented the overall motivation and aim of

this thesis and how it relates to my published research.

Chapter 2 describes what is meant by sensor based real-time control of

robots and how it relates to the motivation and aim of this thesis. As temporal

accuracy is an important part of achieving good sensor based real-time control,

a large part of the chapter is also dedicated to elaborate on this topic.

In chapter 3 I present the actual work done in my published papers as well

as conclude on what it adds to the problem at hand.

Chapter 4 will conclude on the thesis while the included papers have been

reformatted and are included in the back as Paper A through D.

As the included papers and this thesis is the result of several years of work,

it has not been possible to ensure a consistent nomenclature throughout all

texts. Thus I use the expressions industrial robot, industrial manipulator, and

(industrial) robot arm interchangeably throughout this thesis and the included

papers. Unless otherwise explicitly stated, the expressions all cover the same



6 Chapter 1. Introduction

general type of robot, namely the type of high precision robot arm commonly

found in industry with 6 revolute joints including a spherical wrist and 6

degrees of freedom.



Chapter 2

Sensor based real-time
control of robots

In this chapter I will explain what is meant by the expression Sensor based
real-time control of robots and how it can contribute to the field of robotics.

To establish a base to talk from, I will focus on industrial robots, but the

conclusions is applicable to most other areas of robotics as well.

2.1 Typical robot operation in the industry

In the usual industrial setup involving robot manipulators used in industry

today, and in the last decades, robot manipulators are placed along an assembly

line where the product is moving along and manipulated by the robots one

station at a time. A typical example of this can be seen on Figure 2.1. In

some settings, the conveyor belt is moving while the robot interacts with the

product, in others the line is stopped while the robot work. This is mostly

defined by how accurate the work needs to be done and naturally what else is

being done along the line. If the robot needs to spray paint a product, timing

is not that critical as the nozzle can be opened before the product is at the

robot and then the robot can continue to paint until it is certain the product

has fully cleared the station. On the other hand, if timing is important for the
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accuracy, the product is usually stopped. This could be the case for screwing in

a bolt which is quite difficult to do on something that is continuously moving,

both for robots and for humans. Thus, such two operations should optimally

not be done on the same continuous production line.

Figure 2.1: Typical industrial robot setup.

Regardless of the product motion, the robot is often using preplanned

trajectories for solving its task, commonly referred to as offline operation. In

the well-defined and static environment of an assembly line, it is not difficult

to define the movements a robot should make to handle uniform products.

With the product placed in fixtures so the pose is well defined, it is simply

a matter of detecting when the object is at the station and the robot should

start to execute its trajectories. As the starting time is determined by either

starting before the product is at the station or stopping the entire line, timing

is not an issue. Alternately, encoders can be used for synchronization. For a
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successful operation, it is thus only a matter of ensuring that the product is

at the exact expected position on the conveyor belt. This is often the most

difficult thing to ensure in pick and place operations, but the problem can

usually be solved routinely by applying mechanical constrains like the before

mentioned fixtures.

The fact that these solutions are dependent on the uniformity of the product

and the assumption that the product is always at the exact same pose on the

conveyor is clearly limiting what can be automated in the industry with an

offline approach. The opposite is an online approach, where sensors are used

to measure the shape, size, and position of the product, and based on this

a trajectory is calculated in real-time. This is useful in industries where the

above constraints does not hold true, for instance in the food industry with

processing of agricultural products. Here, the natural variance of the products

makes it impossible to use a predefined trajectory.

With agriculture being one of Denmark’s largest export areas, any advances

towards doing online control and thus being able to add more automation

is especially important for the future competitiveness of Denmark. This is

obviously true for many western countries where manual labor is expensive,

and for that same reason, automatic solutions to different tasks have appeared

all over the world over the last years where this project has been done. They

are still quite few though, and still far from a turnkey solution.

Products that can handle unstructured positions, best exemplified with bin

picking, have also started to appear on the marked in the last couple of years.

They have yet to show good marked penetration, which also goes to show the

difficulty in doing online planning reliably and at an acceptable speed.

Another trend that has been emerging within industrial robotics in the last

couple of years is cooperation between humans and robots. Instead of building

and designing the factory around the robots, the idea with cooperative robots,

or cobots, is that they should cooperate with humans in a human environment

using sensors for perception. One of the advantages of this is a more flexible
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production, because cobots is naturally better suited for changes due to their

sensor based awareness of the surroundings as well as the fact that they usually

don’t need to be installed in an enclosure.

All these emerging solutions and trends thus relies on sensor based real-

time control of robots.

Figure 2.2: ABB’s cobot YuMi R©.

2.2 Task phases

Regardless of the required operation, the robot task can usually be divided

into three different phases: cruise, approach and contact. Note that not all

robot setups necessarily goes through all phases, and in some cases, it can be

difficult to establish exactly when the transition occurs. Below I give an overall

description of the terms, knowing that it is in no way a complete description

of all kinds of robot operation.
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2.2.1 Cruise

Cruising is done whenever the robot needs to move from one pose to

another as fast as possible and are thus usually planned in joint space. The

first and last part of an operation is often done cruising, as the robot then gets

ready to process the next product. Waiting idle is thus also part of this phase.

The trajectory planning and execution is usually done without much input

from sensors, except verifying that the working area around the robot is clear

so the trajectory can be executed safely. This can be done very advanced using

cameras, distance sensors and proximity sensors, or very simple with a cage.

Many preplanned trajectories can be said to be done in the cruising phase and

can usually be defined pretty naively.

2.2.2 Approach

The robot is in the approach phase when it is aligning itself with the

product. The phase is triggered when the product is detected to be at a

certain position near the robot, and is intended to bring the robot’s tool close

enough that it can start working on the product. In a ’dumb’ setup where

the assembly line is stopped before the robot starts handling the product, the

stopping of the line usually triggers this phase where the robot then moves

to a new pose under more strict constraints to avoid collisions. Thus defining

these trajectories usually takes a bit more effort. In an advanced setup, visual

servoing or other sensor-feedback based approaches could be used to bring

the tool into the correct pose for manipulating the product.

2.2.3 Contact

The contact phase is when the robot is actually doing something to the

product. This is when the robot closes its gripper and pick up the product but

can also be when a painting robot is actually spraying or the current is flowing

on a welding robot. Motion in the contact phase is usually highly constrained

physically to ensure proper treatment of the product. For a pick-and-place
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robot, the constraint prevents dropping or damaging the product due to too

high forces or moments, a deburring tool should not exert to much force on

the product and a welding or painting robot should move at a correct and

uniform velocity to ensure a good end result. This phase usually requires some

calculations for proper execution, and is impossible to do robustly without

sensors on non-uniform products.

2.2.4 Alternating between phases

From the above description it is clear that not all phases are used equally

often. While a preprogrammed robot working at a stop-and-go assembly line

will continuously change between the three phases, an optimal bin-picking

robot will alternate between approach and contact for long periods of time

and only change to cruising if the bin needs to be swapped with a full one or

if the outfeed is full.

Move 
to 

home

Wait 
for bin

Find 
part

Move 
to part

Close 
gripper

Verify 
grip

Move 
part

Release 
part

No more parts

No grip

Cruise Approach Contact

Figure 2.3: Example of tasks for bin picking and their phases

The sensors commonly used for online control in each phase also varies.

For the cruising phase, the robot just needs to know that the area is clear, and

so just like for the offline approach only LIDAR’s, light curtains or other analog

safety enclosure equipment is necessary.

When the robot approaches the product, it needs a sensor that can locate

the product relative to the robot. If the shape and size of the product is known
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beforehand, monocular vision is sufficient. Otherwise, a sensor solution that

gives 3D information is necessary. If the target is moving at a predictive

velocity, which most products on a conveyor does, the data rate of the sensor

doesn’t need to be very high and 10-30 Hz will usually suffice.

As the robot gets nearer to the product and actually starts to manipulate

it, higher data rate is often required to guarantee the accuracy. If the robot is

physically manipulating the product, a force torque sensor (F/T sensor) could

be valuable to make sure that the product is handled within the boundaries.

This way a product can be moved at an optimal velocity relative to the product’s

mass.

As the required data input as well as the rate of data input changes be-

tween the phases, care has to be taken when changing between the controllers

responsible for controlling the robot in each phase. The controller for vi-

sual servoing might be trying to move the robot in one direction while the

impedance controller that uses the F/T sensor might want the robot to move

in the opposite direction, leading to a very uneven transition between phases.

Thus, some kind of adaptive controller like sliding weighting of the controllers’

influence is needed for smooth transition and operation.

Even if data rates can be quite low in some of the phases, it is still very

important that the delay from the data acquisition at the sensors to the

actuation of the robot is low enough to make sure that the robot reacts while

the sensed information is still relevant. For the safety-related input, this

maximum reaction time is well defined and ensured for industrial robots.

However, when it comes to reacting to the sensory information used to guide

the robot in the approach and contact phases, the reaction time can vary

quite a bit between different robots and even different control methods of the

same robot. In optimizing performance in sensor based real-time control of

robots it is therefore important to know the limitations imposed by the system

components and their interfaces.
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2.3 Interfacing between systems

When a robot needs to be interfaced to sensor systems like vision or a

F/T sensor, some robotic manufactures sell readymade subsystems made for

seamless integration of sensor based solutions. This has the advantage of

relatively easy deployment and a single supplier of support. It is also fair to

assume that this offers the best performance attainable with that particular

robot.

The disadvantage of this approach is the increased cost associated with the

vendor lock-in and the limited applications. If the offered solution does not fit,

it can be very difficult and expensive to get it customized.

As the robotic manufactures obviously can’t supply solutions for all in-

dustries and all use cases, most manufacturers of industrial robots provide

instructional languages for their robot systems [9]. This way both researches

and professional implementers can develop custom solutions to non-trivial

and advanced tasks, while still maintaining a fairly high performance.

This approach still has the disadvantage of vendor lock-in due to the usage

of proprietary instructions. If an implementer has a bin-picking solution with

a code base that is optimized for one kind of robot controller and arm with a

specific type of camera, it might be difficult for sell that solution to a company

that only uses another brand of manipulators and cameras.

And as it is noted in [9], the instruction set is tailored to the specific robot

controller and thus only offers a fixed set of instructions, causing even the robot

manufacturers difficulties adapting the controller to modern requirements.

Furthermore, if one of the products used in the solution reaches its end of

life, the entire code base might need to be re-written as joint space commands

or sensor parameters can hinder portability. Finally, it also requires a good

knowledge and understanding of the individual manufacturers’ interfaces for

optimal performance.

To remedy the issue with vendor lock-in, more and more solutions are

based around a middleware. This can be thought of as a layer that exist
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between a computer’s operating system and the programs that are executed

on the computer. The main purpose of the middleware is to allow easy

communication between processes running on a computer or even processes

distributed on many computers. This makes it possible to have one program

that interfaces to the robot, another program that interfaces to the sensor, and

a third program that reads the output from the sensor program and calculates

an appropriate trajectory, which is then written to the robot control program.

Obviously, this can be further modularized, like having separate programs for

calculating grip poses and trajectories.

The advantage of this approach is that it is possible to change only one part

of the system, like the robot, and its associated driver and kinematics solver,

without modifying anything else. The disadvantage is that now the developers

also have to develop and maintain a middleware, while still having to be

experts on the interfaces of all the supported products. This problem can be

solved by distributed development, where each robot and sensor manufacturer

supply the program required to use their own problem. However, as the

manufacturers have a large interest in vendor lock-in, especially in the robotics

area where a few big companies dominates the marked, such an agreement

has not been reached. Moreover, if it was possible to agree amongst the

manufacturers on such a middleware, it would be more natural to define a

common interface and thus the need for middlewares would not be present in

the first place.

Seeing that there is a need, there have been several attempts in the

robotics research community at creating a good robotic middleware. In a

2012 study[10] the authors analyze 20 different robotics middlewares and

goes to list further 13. Three years later, at the time of writing this thesis,

only 12 of those have been updated within the last 2 years though. Another 9

seems to have vanished and are only referenced in research articles, while the

last 12 still maintain a homepage, but no changes to code nor any updated

has been posted for more than two years.
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Of those that have made it, one of the most popular choices of robotic

middleware seems to be the middleware called Robot Operating System

(ROS)[11]. It has users and active contributors from all over the world and

has interfaces for several of the other middlewares from [10] that are still

active like Stage[12], Webots[13] and Orocos[14]. It seems to have reached a

critical mass of maintainers which can prevent it from disappearing into the

unknown like many others before it, which were often developed, maintained,

and in some cases only used, by a single company or university group.

ROS is spreading quickly in the research community and at the time of

writing, where ROS just turned 8 years, the introducing paper from IEEE

ICRA 2009[11] has more than 2.000 citations according to Google Scholar.

Moreover, for the last four years running, it has even had its own conference

ROSCon back to back with either ICRA or IROS, with attendance of both

researchers, users, and large established companies like NVIDIA, Qualcomm,

BMW, Intel and more. In addition, in 2015 alone, more than $150 million in

venture capital was invested in business utilizing ROS.

ROS has even reached a size where robot manufactures like Motoman,

Rethink Robotics, Intel, and Clearpath Robotics are actively participating

in developing ROS interfaces for their products, while the ROS-Industrial

initiative are developing and maintaining interfaces for many other industrial

robots.

When chaining different pieces of hardware together, and the controlling

software is executed on stand-alone computers rather than on the robot

controller, performance is likely to suffer due to communication delays. Delays

that are inherently unavoidable in distributed systems like those utilizing a

middleware. A simple example of this is sketched in Figure 2.4 and explained

in the following section.
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Figure 2.4: Chart of the different delays in a distributed robotic system

2.4 Delays in distributed robotics systems

Knowing the delays is important in optimizing the performance, and in

some cases even to determine if a certain setup is physically feasible.

Imagine a setup where a robot needs to pick up something fragile where

the size and position is unknown. In the approach phase the robot moves

towards the product, and as it touches the object and thus transits to the

contact phase, the robot should stop within 0.1 mm to avoid risk overturning,

rolling or damaging the product. This could be picking up an egg or a live

chicken, but this sort of feedback-based accuracy is also necessary for cutting

with a knife along a bone.

While eye-in-hand visual servoing is used for most of the approach phase, it



18 Chapter 2. Sensor based real-time control of robots

is not possible to use in the final moments before contact due to self-occlusion

and an eye-to-hand vision solution is unable to give the required sub-millimeter

accuracy. As visual servoing is not a viable solution for the final approach a F/T

sensor is used to detect when the robot touches the product. The F/T sensor is

sampled every 0.5 ms, while the robot’s control cycle is executed every 8 ms.
These numbers are usually easy to get from the performance sheets of most

robot and sensor hardware.

If this is all done as part of a manufacturer’s closed system, it is fair to

expect that the controller reads the robot state, then the F/T sensor, and based

on this calculates whether the robot is in contact with the object or not. The

worst-case scenario would be if the robot comes in contact with the product

just after the reading used for the next control cycle. In that case it will take

up to 8.5 ms until the robot reacts to the contact and stops. Furthermore I

assume 1.5 ms to handle transferring data from the sensor and calculating the

desired control signal, in total 10 ms. Thus the robot will be able to move at

up to 10 mm/s at the final approach towards the product and still react to the

contact within the defined 0.1 mm. Note that the robot is only specified to be

signaled to stop within that boundary and thus I do not consider the actual

deceleration in these calculations.

When a robot middleware is used, the same degree of synchronization

cannot be expected. Any distributed architecture also needs to be considered.

It is thus valuable to have a map of the individual delays and how they can

affect the worst-case performance of a system.

When something is in the range of a sensor to be sensed, the corresponding

signal is not transmitted from the sensor instantaneous due to the need for

digitizing the signal in A/D converters so a computer can process it. This

delay can be as big as the inverse of the sensors sampling period, i.e. up to

0.5 ms for a F/T sensor with a 2 kHz sampling period. The values from the

A/D converters is then gathered and packed in a specified communication
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protocol for other units, like a computer, to read the data from the sensor. This

causes a processing delay in the sensor. Actually transmitting the data from

the sensor to the central computer running the middleware further introduces

a transmission delay. This is the lower part of Figure 2.4.

Once the sensor data is at the central computer it needs to be processed to

determine an appropriate instruction to the robot manipulator, which should

then be transmitted to the robot’s controller. This causes yet another processing

delay followed by a transmission delay.

When the instruction is at the controller, it has so wait for the controller to

actually read the instruction. This is usually done as part of the control cycle

running at a certain frequency, i.e. 125 Hz for a Universal Robot (UR), which

means the synchronization delay can be up to 8 ms.
Once the robot controller has read the instruction from the input, it needs to

parse it and convert it into commands for the individual joint motor controllers.

These in turn needs to energize coils, overcome gear backlash, release breaks

and build up torque to overcome the dynamics of the system, before the robot

physically reacts to the instruction. This is denoted as the reaction delay on

Figure 2.4.

As part of the control cycle, data about the robot state like joint position

and -velocity is also transmitted back to the control computer. Just like with

the external sensor it takes some time to measure and convert this. The robot

state data is transmitted at a given frequency. The time from when data is

measured until it is actually transmitted introduces another synchronization

delay. Packing the data according to the communication protocol takes some

time and should be completed before the real-time scheduler signals that it is

the right time to publish the data. This is the source of this synchronization

delay. The total measurement and synchronization delay is named response

delay on Figure 2.4 as there is no way to distinguish the two from each other.

Transmitting the data from the robot controller back to the central computer

introduces yet another transmission delay.

The size of each delay will often vary depending on the hardware as
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well as the physical setup. In [4] I found that with the Kuka Robot Sensor

Interface(RSI)[15] the actuation delay averaged around 88 ms, while in [7] I

found that using ROS with the python based driver, that has been the standard

in ROS for several years for the UR, the actuation delay is around 170 ms.

Using the UR in the example I started this section with, the performance

of such a system would drop significantly. An assumed 2 ms combined delay

from sampling the F/T sensor, transmitting the reading, processing it and then

transmit it to the controller would, together with the worst case synchroniza-

tion delay of 8 ms and the actuation delay of 170 ms, result in a total delay

of 180 ms. This drops the maximum velocity of the robot to just 0.56 mm/s,
equivalent of a performance drop of almost a factor 18.

If the self-occlusion occurs when the robot is 2 cm away from the object,

the robot would take 1.7 s to get to the product in the first example. When

using ROS together with the current python based driver, it would instead

take the robot 36 s to get to the product. The business case for a robot solution

where the robot uses more than half a minute to pick up a single product is

significantly worse than spending only a few seconds. Thus, this example goes

to show that knowing the delays in a system beforehand could save quite a lot

of money in developing a solution that in the end is not feasible.

2.4.1 Developing a more efficient driver

As explained above, the python ROS driver for the UR is not very suitable

for sensor based real-time control. However, based on the work we did in [6]

I believed a better driver could be developed for the URs.

Further tests with the proprietary instruction set for the UR showed that

with joint positional instructions, the controller buffered some commands to

better predict and plan the trajectory. The downside of this is an increased

reaction delay, up to 124 ms. With the newest firmware it is possible to reduce
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the lookahead and thus the reaction delay to around 40 ms at the expense of a

less smooth joint velocity profile.

The joint velocity instructions showed better performance, as the controller

executed these commands in the first command cycle after the command was

received by the controller, making the response delay merely a single control

cycle of 8 ms.

Furthermore, a multithreading strategy was used on the controller with

two threads. One thread was synchronized with the robot controller running

at 125 Hz and in each control cycle, the joint velocity command is called with

velocities set by global variables.

The other thread continuously read data from a socket input. This data

is used to update the values of the global velocity variables. This makes it

possible to do a sort of inverse oversampling, where the controlling variables

can be updated several times before they are actually used. It is thus possible

to use sensors with a sample frequency higher than that of the robot and

use every sample to compute an updated control signal for the robot while

ensuring that the most recent sensor reading is always used to control the

robot.

The entire process of designing the driver as well as performance testing

different control strategies are thoroughly described in [7]. The presented

method makes it possible to get the actuation delay of the UR down to just

8 ms and the synchronization delay down to at most 1 ms. The synchronization

delay could probably be lowered further, but this is mostly limited by network

performance.

A plot comparing the performance of the two different drivers can be seen

in Figure 2.5. The trajectory was executed 10 times with each driver, and the

resulting 20 position graphs are shown in the figure. As it can be seen, the

line for the old driver is slightly wider than that of the new driver, which goes

to show that the new driver also performs more uniformly, as well as reacts

much faster.
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Figure 2.5: Comparison of the performance of the two different drivers. Note that

there is 10 lines for both drivers, which explains why the line for the old driver looks

slightly wider.

The old driver also has a small steady state error, causing it to not quite

arrive at the target position. This can also be seen in the plot where the old

driver at first moves a bit in the wrong direction, as the initial position from

the previous trajectory was not perfect, and by the fact that the two lines does

not end in the same position. They were both supposed to end in the position

where the blue line is.

The total worst case delay from my previous example with the F/T sensor

would, with the method presented in [7], drop to 11 ms and the maximum

velocity would be 9.1 mm/s, only a 9% decrease compared to the assumed

optimal manufacturer method. Thus, neither ROS nor UR can be said to be

the cause of the found infeasibility in the previous example.

The infeasibility is rather caused by a suboptimal driver. The facts that

such drivers exist, and the measured delay of a Kuka robot in [4] which does

not use a middleware, only goes to support the argument that it is important

to determine the delays in robotics systems.
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Based on this, it would also be worth to consider if other drivers could be

improved with the multithreading strategy presented in [7].

2.5 Measuring the delay

To see if there is actually anything to gain from optimizing a driver, it is

necessary to know the delay. To that end I presented a method for measuring

the delay in robot actuators in [4]. By mounting an accelerometer or a

gyroscope on the robot it is possible to measure exactly when the robot

physically moves, where the accelerometer is used for prismatic joints and the

gyroscope is used for revolute joints. A computer is connected to both the

sensor and the robot and a program on the computer then starts streaming

speed commands to the robot and notes the time when the stream was started.

State data from the robot and measurements from the sensor along with

timestamps for when the data is received are then logged until the robot

finishes executing the command. Based on the logged data it is then possible

to find both the actuation and the response delay. A plot of such a measurement

is shown in Figure 2.6.

It is important to remember the other delays in the system and attempt

to either compensate for those or at least account for them in the data. The

sensor used for the measurement trial shown above measured at 8 kHz which

is also the explanation to why the blue line in Figure 2.6 has many more data

points than the other two lines. Thus measurement could depict the situation

up to 0.125 ms late. The magnitude of that delay is negligible compared to the

actuation delay of almost 100 ms and the response delay of roughly 20 ms.

Techniques like using sensor interrupts for timing, precomputed trajec-

tories, logging to memory instead of disk and direct network connection

between computer and robot controller was used to minimize the inherent

measurement system delay.
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Figure 2.6: Plot of logged data from a delay measurement. Reprint of Figure D.5.

Based on the logged data, three timestamps can be compared: When was

a command for a given velocity issued (green graph on Figure 2.6), when was

the robot actually moving at that velocity based on physical measurements

(blue graph on Figure 2.6), and when did the robot state data reflect that

the robot was moving at the speed (red graph on Figure 2.6). The difference

between the first two gives the actuation delay, while the difference between

the latter two gives the response delay. As the received robot state is used to

trigger when to send the next command in the stream, the sum of the two

delays will always equal an integer multiple of the robot’s control period time.

Based on the experiments done as part of [4], it was found that both the

Kuka KR 5 Sixx and the UR10 have a constant delay throughout the trajectory,

but the delays are varying relative to the robot’s joint configuration when

starting the trajectory. It is thus necessary to measure the delay with the robot

starting in all the different joint combinations possible. Due to the power of

exponentials, the number of different joint combinations and thus the time

it would take to complete such a complete mapping makes it infeasible to do

for a robot with more than 1 or 2 joints. Instead in [4] we presented how a

model could be made based on sampling a subspace of the joint configuration
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combinations and use that to train a machine learning algorithm.

Based on that model, it is possible to define a function d(j,n,s) which

returns the actuation delay of a robot’s joint n, when the robot is in joint

configuration j and moving in direction s. j is a vector with as many elements

as the robot has joints. Likewise another function r(j,n,s) can be defined

which returns the response delay.

2.6 Using the delay models

Determining whether the performance of a driver can be increased is

only a part of what a delay model can be used for, and certainly a complete

model is seldom necessary for that as the actuation delay usually doesn’t

vary more than a single control cycle. In the previous example with the F/T

sensor, the limiting factor was the reaction speed of the robot in the transition

between the approach and contact phase. Therefore, while knowledge about

the magnitude and nature of every delay in a system can be used to predict

whether something is possible with the given system, it might not be possible

to do anything about it, as a physical system will always exhibit some delay.

However, knowledge of the delay is also useful when temporal accuracy, or

the timing of the reaction, is important.

Temporal accuracy is thus required whenever the robot needs to interact

with something that is moving relative to the robot.

Measuring and modelling the delays are covered in [4], but not how to

actually use the model. This is covered in the following text.

2.6.1 Forward temporal prediction

With forward kinematics, it is possible to determine where a robot’s joints

will be in Cartesian space, given some coordinates in joint space. Likewise, it

is possible to use forward temporal prediction to estimate when a robot’s joint

will actually be at a given position based on a fully defined trajectory. A fully



26 Chapter 2. Sensor based real-time control of robots

0 0.3 0.6 0.9

-0.5

0

0.5

D
es

ire
d 

tr
aj

ec
to

ry
 (

ra
d)

0 0.3 0.6 0.9

-0.5

0

0.5 Joint 1
Joint 2

0 0.3 0.6 0.9

-0.5

0

0.5

A
ct

ua
l (

pr
ed

ic
te

d)
 tr

aj
ec

to
ry

 (
ra

d)

0 0.3 0.6 0.9

-0.5

0

0.5

0 0.3 0.6 0.9

Time (sec)

-0.5

0

0.5

O
pt

im
al

 tr
aj

ec
to

ry
 (

ra
d)

0 0.3 0.6 0.9

Time (sec)

-0.5

0

0.5

Figure 2.7: Two (left and right) example trajectories. Top row: Desired positional

trajectory. Middle row: Actual predicted positional trajectory based on forward tempo-

ral prediction. Bottom row: Optimal positional trajectory based on inverse temporal

prediction. The dotted lines are the predicted resulting positions.
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defined trajectory has a starting position for every joint, one or more target

positions for each joint, and on or more durations specifying how long after

the trajectory is started that each joint should be at their target positions.

Two example trajectories of a two joint robot can be seen in Figure 2.7 top.

At the robot’s current configuration, joint 1 has a delay of 125 ms when moving

in the positive direction and 200 ms when moving in the negative direction.

For joint 2, the delays are 175 ms and 75 ms, respectively. These values are

purposely chosen relatively high to exaggerate the effect of the delay on the

plot.

As the delay is constant throughout the trajectory, it is possible to do

forward temporal prediction by first determining the starting direction of each

joint s and then use the function d(j,n,s) to get the delay of each individual

joint. This delay is then added to the durations in the trajectory.

The resulting trajectory with a temporally accurate estimate of the joints

positions can be seen in Figure 2.7 middle. As it can be seen, the trajectory

is in practice translated along the time axis corresponding to the delay of the

joints.

Forward temporal prediction is thus used after the trajectory is planned

and calculated to comply with all constraints, to accurately predict when

the joints will be at what position once the trajectory is transmitted to the

controller. Forward temporal prediction is therefore useful when an external

process needs to be synchronized with the robot’s motion.

2.6.2 Inverse temporal prediction

Just as inverse kinematics is used to determine the joint positions that

leads to a desired Cartesian position, inverse temporal prediction is used to

determine the exact duration of a trajectory if the robot must be at a certain

position at a specific time. Again, a fully defined trajectory is needed.
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Reusing the trajectories from Figure 2.7 top, it is thus possible to use

inverse temporal prediction to make sure that the robot actually arrives at the

target positions after the desired duration.

The call to d(j,n,s) is used again with the same parameters, but for inverse

temporal prediction the delay is subtracted from the duration the robot should

take to get to each target position. Note that the duration is defined as the

time from the start of the trajectory, not the time from the previous point in

the trajectory. The resulting optimal trajectory is shown on Figure 2.7 bottom.

The dotted lines show the planned optimal trajectory, taking the actuation

delay into account. As it can be seen, the robot actually arriving at the desired

moment. This is done by compressing the first part of the trajectory, resulting

in higher velocity of the joints.

Inverse temporal prediction is therefore used before the final trajectory

is planned to ensure that the joints will be at the target positions after the

specified time has passed since the trajectory was transmitted to the controller.

Inverse temporal prediction is thus useful when the robot needs to synchronize

its motions with an external process.

2.6.3 Current state correction

The current robot state that the robot controller transmit back to the central

computer also has a small delay as previously explained. Thus, the state data

actually describes a state in the past rather than the present. How old the state

data is can be determined with the r(j,n,s) function.

Once the magnitude of the delay is determined, the current state can be

corrected by extrapolating based on the state data and previous commands to

the robot. When using the previous commands to extrapolate, it is important

to take both delays into account.

While the two prediction methods is used in the planning and timing phase,

the current state correction can be used to find the true current position,
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velocity, and acceleration of the robot when used as input to a control loop

and thus improve the performance of the robot by limiting overshoot.

2.6.4 Improving performance with a delay model

As it was not the reaction timing that limited the previous example with

the F/T sensor, I will instead consider an example where the robot has to pick

something up from a conveyor belt moving at 0.5 m/s. This could be a cut off

piece of meat placed by the butcher semi randomly on a conveyor. Using its

sensors, the system know where the object is on the conveyor belt and with

the knowledge of the conveyor velocity it determines that the object will be at

an ideal position for grasping in 5 s. To minimize the stress of the robot’s joints,

the naive planner thus calculates a 5 s trajectory to move from the robot’s

current position to the ideal grasping position.

The Kuka robot from [4] is used, with its average actuation delay of 88 ms
as it can be seen on the rightmost box on Figure 2.8. If the system is unaware

of this delay and uses the 5 s trajectory to get to the product, the robot will

then on average arrive 88 ms, or 44 mm, behind where it was supposed to grasp

the object.

Knowledge of the delay could help to reduce this error significantly. As the

robot needs to synchronize to an external object and be at a certain position at

a specified time, the inverse temporal prediction method is used. The average

error when using the learnt model based on Gaussian Processes is 3.06 ms [4],

which would decrease the average positional error to only 1.5 mm. This is an

improvement of more than a factor 28.

Mapping and modelling this delay takes quite some time. The 33,500 trials

on the Kuka in [4] each took roughly 3 seconds, and two of the six joints was

not mapped. Furthermore, the training of the machine learning algorithms

also takes quite some time. It is thus worthwhile to consider only to perform a

single trial and use that delay as a basis for the prediction.
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Figure 2.8: Boxplot of individual joints’ actuation delay and a combined for of all

joints of the Kuka 5 Sixx. Reprint of Figure D.8 left.

As it can be seen on Figure 2.8, 99.3% of the actuation delays, indicated

by the whiskers on the boxplot, varies between 76 ms and 103 ms, depending

on which joint is moved and where the joint start position is. Statistically

a single measurement would be on the median, represented by the red line.

Thus using the median actuation delay of 88 ms could result in an error in the

range of 12 ms too early to 15 ms too late, or between 6 mm before and 7.5 mm
after the object, moving at 0.5 m/s.

The average error of the median is only 3.35 ms though[4], resulting in an

average positional error of 1.7 mm. This is still an improvement of more than

a factor 26, but 9.4% worse than using the full model.

Thus, it is not possible to say anything conclusive as to whether it is

necessary to do a full mapping, or a single measurement per joint will suffice.

The single measurement could be used to determine if there is a significant

delay though, and thus aid in the decision as to whether there is anything to

gain by compensating for the delay. However, with only a few measurements,

it is not possible to say anything about the spread of the delays. In the end,

the decision depends on the use case and the sensitivity of the application to
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delays.

As I have shown in this chapter, delays have a big impact on sensor based

real-time control of robots though. This was demonstrated through two

different examples using data from two real world robots.

In the first example I showed how a suboptimal driver for the UR made

real-time control with a F/T sensor infeasible due to low reaction speed. With

the knowledge of the high actuation delay and a method for measuring how

different control strategies affected the delay, I could make a driver[7] with

an actuation delay of only 8 ms which improved the performance significantly.

Furthermore, it is possible to send commands to the controller almost arbi-

trarily fast, making the limiting factor of the synchronization delay how fast

commands can be calculated and transmitted from the central computer to

the robot controller.

In the second example, I showed how knowledge of the delay in a system

could be used to synchronize the motion of an externally controlled robot with

its surroundings. Using a Kuka 5 Sixx robot controlled with RSI introduced an

average delay of 88 ms which uncompensated could lead to an error of 4.3 cm
when trying to grip something moving at 0.5 m/s.

By measuring and modelling the delay, it was possible to use inverse

temporal prediction to lower the average error to only 0.15 cm.





Chapter 3

Published research

In this chapter I will present my published findings and explain how they

each contribute towards more reliable sensor based real-time control of robots.

3.1 Real-time task monitoring

When decisions have to be made and plans calculated in real-time based on

noisy sensory input, several potential things could go wrong with every object

that is handled. Machinery could stop responding, external disturbances could

affect sensor readings, computer programs could crash, sensors could break or

saturate, foreign object could make it into the robot’s working area and so on.

The presence of potential failure modes makes it necessary to do real-time

monitoring of the task execution.

In [1] I presented a method for detecting exceptions and failures of tasks

as well as how to handle these issues as part of mission control. In order to

have a real-time system with access to all system parameters I used DTU’s

Small Mobile Robot (SMR) in the research, but the work is equally applicable

to other kinds of robots.

This was accomplished using an expert system called Jess which I con-

nected to the MobotWare framework[16], so that all the robot’s sensory input
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was available to the expert system as facts. Likewise, all the results of process-

ing input data was also available as facts. A system overview can be seen in

Figure 3.1.

Figure 3.1: System overview of MobotWare and Jess. Reprint from [1]

Using the expert system, I showed how rules could be defined that considers

the entire system state by asynchronously evaluating all facts. The rules was

used to both do sanity checks on input and results as well as to plan how to

successfully accomplish a mission by solving a set of tasks.

For each task potential exceptions was identified and strategies to identify

and handle these was defined and formulated as rules.

It was shown that the rule-based system could successfully solve a complete

mission this very very robustly. When the robot ended up in erroneous states,

it was able to handle these situations on its own and ensure that the mission

was successful.

As an example, the robot autonomously handled being stuck at one point.

The robot’s navigation system planned a path for the robot and wanted it to

drive forward. Suddenly an opening door blocks the path and the low-level

protection system stops the robot. Although the robot is unable to see behind

itself, the expert system knew where the robot came from and thus that the

path behind it was clear, so it made the robot reverse. From here, it could ask

the navigation system for a new plan towards the mission goal.
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In another situation, the laser based localization system lost its orientation

and thus the robot started heading in the wrong direction. The expert system

noticed that the camera detected landmarks that it did not expect and could

conclude that the localization system was failing. The expert system then

informs the navigation system of the correct pose of the robot, which makes it

possible to safely navigate to the target position even though some subsystems

fail.

These examples shows how task monitoring can aid robustness in sensor-

based robot solutions. Even in situations where it is not possible for the robot

to solve its task, i.e. if the robot is stuck or an actuator stops working, the

expert system can alert a human operator with a meaningful description of

the problem to ensure that the problem is eliminated as fast as possible.

The exception detection and handling can easily be used in other fields

within robotics like industrial robots. Besides doing sanity check on sensory

input and processing results, the expert system can also continuously monitor

the execution of the robot’s mission. If the robot for instance needs to pick

up an object from a conveyor belt and place it at another station, the expert

system could easily detect if something went wrong.

From the gripper’s opening distance it might deduce that the grip quality if

insufficient and determine that there is time enough to try another grip pose

or let the object continue down the conveyor to another robot, also monitored

by the same expert system.

The system would also be able to use force sensors in the robot, or maybe

even motor current readings, to detect if the robot accidentally drop the object.

It can then stop the robot and make it return to the conveyor to pick up the

next object instead of wasting time on completing the motion to place an

object, which is no longer grasped by the robot. The expert system could

also call a human worker, or another robot, to come and pick up the dropped

object. Furthermore, the system could detect if a robot is starting to drop a

lot of objects which could signal that the gripper surfaces are worn and need



36 Chapter 3. Published research

replacement.
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3.2 Robot to laser calibration

Whenever food is handled, high attention to hygiene is required. For the

production of meat products, this translates in to daily thorough cleaning of

the entire production facility. A part of this cleaning is washing all surfaces

using high-pressured water cleaners.

For one of the collaborating partners in the "Real-time controlled robots

for the meat industry" project, this cleaning process sometimes shifted the

orientation of their sensors, which in turn led to a suboptimal yield of the

handled product. As the recalibration was a manual process requiring high

knowledge of the system, the implementer’s engineers were often required to

travel across the country to perform the recalibration.

In [2] I presented a method for autonomous translational and rotational

calibration and recalibration between a laser scanner and a robot manipulator

to help alleviate this problem in general. Unlike previously published meth-

ods, the presented method does not require other pre-calibrated sensors nor

intensity measurement from the laser range scanner.

I show how a calibration target can be optimally designed taking into

account the often confined space in a production environment. The design

analysis results in a flat two-finger calibration target with a varying distance

between the two fingers. Unlike the target in other published methods, the flat

target used in this paper can easily fit between the sensor and a conveyor belt.

Once the initial calibration is done and the method is used for re-calibration

where the system has a good guess of the transformation between the robot

and sensor, the size of the target can be further reduced.

Using this target, I show how the transformation between an industrial

robot manipulator and a laser range scanner can be found using only a single

scan in each of two different positions. In each scan, the pose of the target

can be determined, and with the knowledge of the robot’s motion between
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Figure 3.2: Test setup with up-scaled calibration target. Reprint from [2]

the two positions, the transformation between the robot and the sensor can be

calculated using simple trigonometric.

Unlike previously published methods, I furthermore showed how the worst-

case calibration accuracy could be determined based on calibration target size

and the laser scanner characteristics. Besides for comparing performance of

different methods, this information can also be used to document production

consistency, i.e. for an ISO9000 certification.

In the paper we find that the translational calibration accuracy can be

optimized by averaging over several measurements from the scanner, giving a

worst-case error of 1 mm along all axes. The rotational calibration accuracy

depends heavily on the angular resolution of the scanner and could thus

quickly degrade the quality of the calibration. With an angular resolution on

the laser scanner of 0.35◦, the angular error in the calibration could be larger

than 7◦ around one of the axis.

Thus in [3] I presented an optimization of the previous method. By using

only one or two laser rays from the laser range scanner and exploiting the

accurate nature of most industrial robot manipulators to move the target’s

edges into these rays, it is shown that the negative effect of the laser scanner’s

angular quantization can be annulled.
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Table 3.1: Comparison of performance between the two scan method from [2] and

the single beam method from [3]. K is number of scans when measuring the distance

from the scanner to the target. Reprint from [3]

Two scan Single beam

XL (mm) ±1 0 for K→ ∞

YL (mm) ±1 ±0.006

ZL (mm) ±1 ±0.006

RotXL (◦) ±7.07 ±0.0097

RotYL (◦)

+2.64

−0.53
±0.0164

RotZL (◦) ±6.8 0.00172

The target from [2] is reused, just as a method for determining the worst-

case calibration accuracy is also presented in this paper.

By moving the target around so that the individual laser ray hit the edge

of the target, it is possible to determine the pose of the target much more

accurately. As I showed in the paper, it is possible to find the edge of the

target with an error of less than 6 µm, using a cheap Hokuyo URG-04LX laser

range scanner and a Motoman MH5L which is a standard 6R industrial robot

manipulator. A plot of measurements done while moving the target at 1 µm
increments can be seen in Figure 3.3.

With the improved method, it is shown that the worst-case accuracy is

greatly improved. A comparison between the two methods performance can

be seen in Table 3.1. It should be noted that these results are theoretical and is

only verified with respect to the characteristics of the laser scanner. The robot

arms ability for micrometer movements as well as the production accuracy

and measurement of the calibration target will also influence the worst-case

accuracy. This is true for all kinds of calibration, though.
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Figure 3.3: Distance measured by laser scanner while moving target underneath in

1 µm steps. The red lines denotes a 12 µm interval. Reprint from [3]

Both methods is also applicable with both 2D and 3D laser range scanners

and all robots with 6 degrees of freedom.



3.3. Modelling robot delay 41

3.3 Modelling robot delay

In the previous chapter, I described how useful knowledge of the delay of

a robot manipulator is for doing sensor based real-time control of robots. I

also described how a gyroscope or accelerometer can be used to measure this

delay to map the delay profile of a robot.

Measuring and mapping the entire delay profile of a robot is very time

consuming though. The delay has to be measured for one joint at a time, and

as the delay depends on the actual joint configuration and the direction of

which the joint is moved, the number of combinations of joint configurations

quickly makes it infeasible to measure the full delay profile.

Along with publishing the method for measuring the delay in [4], I there-

fore also showed that it was possible to model the delay based on a incomplete

mapping of the delay at only a few selected joint configurations.

The modelling was done with machine learning algorithms, so the same

method can be used on different robot platforms, instead of having to develop

models for each kind of robot platform.

To further try and see which machine learning algorithm works best at

predicting the delay, three popular machine learning algorithms was tested;

Neural Networks, Regression Trees and Gaussian Processes.

As learning parameters for the models, the position of the robot’s joints,

which joint to move and which direction the joint move are used. As it can

be seen in Figure 3.4 the joint configuration of the robot influences the delay

of the robot. This influence is assumed to be caused by the external forces of

gravity that the robot has to overcome.

A subset of all the delay measurement was randomly chosen and distributed

into 10 bins. These bins were used for k-fold cross validation, where nine of

the bins where used to train the model and the last bin used to test the model’s

performance. The mean square error from each fold was then averaged and

used as a measure of how well the models could predict the delay. This was
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Figure 3.4: Delays of the Motoman 5-sixx robot’s joint 1 moving in positive direction

at two different positions, as a function of the positions of joint 2 and joint 3

then compared to the average error of just using the median delay of the robot

and assuming the delay constant at that value. The resulting comparison of

the actuation and response delay can be seen in Table 3.2 and 3.3, respectively.

As it can be seen, all the models generally does a good job of predicting the

actuation delay. Especially the GPR, which outperforms the median’s accuracy

in all cases except for joint 2 on the UR. All the machine learning algorithms

have problems with that joint, though. The boxplots in Figures D.8 and D.10

in the paper also shows that joint 2 performs somewhat different from the

other joints. Except for joint 2, the machine learning algorithms shows the

best improvement on the UR, compared to the median.

For the response delay there is also something to gain from using the

learned models. No method seems better than other though.

GPR furthermore has the advantage of giving a measure of uncertainty
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Table 3.2: Mean error in milliseconds of model fit for actuation delay. Results from [4]

Kuka Joint 1 Joint 2 Joint 3 Joint 5 Combined Average

Median 2.27 2.68 4.61 3.51 3.67 3.35

NN 1.79 2.55 4.74 3.37 3.21 3.13

RT 1.99 2.48 3.74 3.76 3.33 3.06

GPR 1.85 2.27 4.30 3.39 3.48 3.06

UR Joint 1 Joint 2 Joint 3 Joint 5 Combined Average

Median 6.18 4.64 6.08 2.59 5.33 4.96

NN 4.08 5.32 3.86 2.49 3.12 3.77

RT 4.63 5.41 4.28 2.72 3.42 4.09

GPR 5.01 4.89 3.68 2.47 3.36 3.88

Table 3.3: Mean Error in milliseconds of model fit for reaction delay. Results from [4]

Kuka Joint 1 Joint 2 Joint 3 Joint 5 Combined Average

Median 2.13 2.37 4.30 3.09 3.33 3.05

NN 1.70 2.32 4.68 2.22 2.36 2.65

RT 1.86 2.21 3.62 2.31 2.37 2.47

GPR 1.63 2.17 4.23 3.11 2.63 2.75

UR Joint 1 Joint 2 Joint 3 Joint 4 Combined Average

Median 4.82 2.00 4.08 4.90 5.09 4.18

NN 4.11 2.48 4.24 5.22 4.84 4.01

RT 4.66 2.44 4.47 5.84 5.33 4.35

GPR 3.88 2.44 3.75 5.20 5.05 3.82

along with the prediction of the delay. As it is known that the sum of the

response delay and actuation delay is result of the sample time times an integer

value, this knowledge can be used to get even better performance from the

GPR than the other methods, as this knowledge is not used in training the

data.
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More specifically this knowledge can be used by predicting both the actua-

tion and response delay at a given position, and then use the prediction with

the lowest uncertainty to calculate the resulting delays. So if I want to find the

response delay of joint 3 on the UR, the uncertainty will probably be lower on

the actuation delay and thus it can be found by taking the actuation delay and

subtract that from the nearest multiple of the UR’s 8 ms sample time.

For both actuation and response delay, the mean error is smaller for the

Kuka robot. This suggests that the delay is more consistent on the Kuka and

thus that most is to gain from using machine learning with the UR.
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Conclusions

In this thesis, I have presented several different methods for doing better

sensor based real-time control of robots, with an emphasis on solving the

challenges identified as part of the "Real-time controlled robots for the meat

industry"-project. The published methods can be used to improve both reliabil-

ity and automation, which is key factors in a production environment where

tens of thousands of individually shaped and sized products are being handled

every day.

In paper A I have shown how an expert system can be used to increase the

robustness of a robotic solution by monitoring task execution for errors and

exceptions. I furthermore show that it is possible to make the robot reach to

such events in a way that minimizes the error’s impact on the robot’s mission.

In the paper I showed how the expert system can handle several different

exceptions related to mission execution on a mobile robot, and in section 3.1

I discussed how the results could be elaborated and used in other areas of

robotics like industrial robots.

I have described methods for autonomous calibration and recalibration

between a laser range scanner and an industrial robot in papers B and C. It

is important to have such autonomous methods for sensor based robots in



46 Chapter 4. Conclusions

the food processing industry, where daily cleaning risk changing the pose of

sensors.

In paper B I present a calibration target that can easily be used between

a sensor and a conveyor due to its flat design. Furthermore, a method for

doing a calibration using the target is presented along with showing how

the worst-case accuracy of the calibration can be calculated based on the

sensor and calibration target characteristics. While the accuracy is sufficient

for planning in the cruise phase, it will probably not suffice for planning an

actual grasp.

Thus, in paper C I show how the previous method can be improved by

using individual laser rays and exploit their ability to detect the target’s edges

much more accurately.

In chapter 2 I have described why it is important to know the timing

characteristics of a robot when doing sensor based real-time control of robots.

With a general knowledge about the actuation delay, it is possible to predict

whether a given robot is feasible for solving a specific task.

In a concrete example, I showed how careful design of a driver could make

an otherwise infeasible UR robot feasible by evaluating the different commands

for the robot and employing a threaded design for network instructions on the

robot controller.

The process of doing a full measuring and modelling of the delay has been

described in paper D. Here it was shown that it was possible to do a good

approximation of the delay using machine learning and thus save time in an

otherwise time consuming full mapping of the delay.

With a more detailed mapping of the delay from either a fully measured

delay mapping or a learnt mapping, I described how this could be used to do

Forward and Inverse temporal prediction as well as Current state correction in

section 2.6. Such predictions can make sensor based real-time planning and

control much more accurate and less time consuming to develop, as the robot



4.1. Perspectives 47

does not need to be temporally calibrated to the robot cell setup each time the

robot needs to perform a new task.

With these contributions, it is possible to do more robust, reliable, and

autonomous sensor based real-time control of robots.

4.1 Perspectives

Ongoing research within the area of sensor based real-time control of

robots is still needed as the topic is so broad and spans from topics in computer

science like machine learning and network delays over electrical engineering

with sensors and control theory to mechanical engineering with more optimal

robots and end effectors. As the application areas of sensor based robots

continuously grows, it is unlikely that there will ever be a point where there

are no more interesting topics to be researched and areas where performance

cannot be improved.

Further perspectives for the work described in this thesis, involves more

work within the area of dynamically handling delays in robotics, as this is an

area relatively untouched in research. Despite the fact that most people who

has practical experience with robots know to compensate for delay in some

degree, a thorough literature study has not shown any work related to the

actual physical delays in robots, named actuation and response delay in this

thesis.

Along the same lines is the threaded robot controller, which makes it

possible to both send instructions at a rate equal to that of the sensor rather

than being limited by the controller, as well as decrease the actuation delay.

According to the fs100_motoman ROS package, the current Motoman driver

exhibit an actuation delay of approximately 200 ms. It could thus be interesting

to see if that driver, as well as drivers for other robots, could be improved by

employing the same threaded control approach and wisely choosing the used

instructions.



48 Chapter 4. Conclusions

It could also be interesting to look more into sensor - robot calibration.

Especially the case where the sensor is not within the reach of the robot, which

is not an uncommon sight in industry.

The idea of establishing a worst-case error of a calibration could also be

applied to other already existing calibration methods including those using

other types of sensors. This would make it easier to compare the performance

of the many different calibration methods.

Finally the idea of using an expert system for monitoring and exception

handling could be further elaborated and is an ideal candidate for combining

with the intense research effort being put into more user friendly ways of

describing tasks for instructing robots and computers.
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A.1 Introduction

For decades, autonomous mobile robots have been expected to have a

major impact on tomorrow’s society, with journalist often proclaiming that the

robots are coming to take over the world. Yet, the robots that have actually

left the labs are neither of a number nor with a functionality anyway near of

what could have been expected, let alone taking over anything.

One of the major showstoppers in preventing autonomous mobile robots from

making it out of the lab is the robustness of one of the most elemental skills

needed; mission control. This is particularly apparent in navigation - when the

robot loses its heading, gets lost, or stuck, it is impossible for the robot to solve

a mission that is related to moving to a specific position. While research in

different approaches to navigation are progressing fast, the algorithms usually

falls short when applied to a real robot in the chaotic human world outside of

a lab’s static or controlled environment.

In general, modern sensor technology have aided researches in coming up

with some impressive methods, but it will never be possible to guarantee no

missed detections nor any false positives detections. Other problems can also

disrupt mission solving, from obstructed wheels to crashed software.

A.1.1 Previous work

A recent survey of fault diagnosis and fault tolerant control for wheeled

mobile robots is given in [17]. Several methods are analysed to conclude on

the most common problems, and some future trends within fault diagnostics

and handling, including integrating models, control, and knowledge in a uni-

form framework, is presented.

[18] provides an experimental implementation of a hybrid (mixed discrete

state/continuous state) controller for autonomous underwater vehicles, using

rules for strategic mission control and hard real time for motion control at an
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executive level. Others, like [19] have also shown that using an expert system

for mission control can be advantageous.

The Mobotware framework introduced at IAV2010 [16] presents a modu-

lar, socket-based framework, where plugins can be used to extend the robots

capabilities, both in real-time and non real-time control.

The knowledge gained from these contributions have been used to develop

a solution based on a rule-based expert system, that are able to handle all parts

of mission control for a mobile robot, and does so in a modular framework.

When analysing the sensor input and the perceived output of the individual

modules, the situations where a navigation algorithm falls short can be de-

tected and thus gives the opportunity to degrade to another method gracefully

by handling the exception and thus saving the mission. When the system can

detect exceptions and handle them, algorithms that are known to be effective,

but error-prone in some situations, can be used with great benefits, as long as

an opposing behaviour to the error-related situation can be defined.

The logic behind this is that while it is very difficult in an algorithm to

detect if something is logically wrong with the input or result, usually even

an untrained human can easily see if the robot is behaving less than optimal.

By formulating the reasoning that humans do to detect this into some rules

and using it in an expert system to do sanity checks on input, planned output,

and the current state of the modules, all together at once, a much more robust

behaviour can be obtained.

What exceptions to look out for, and appropriate handling of these, is highly

application specific. This paper will therefore, after introducing the framework

for using expert systems in mission control and sketching an example scenario,

give some thoughts for considerations that should be applied when designing
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robust mission control. The paper will focus on navigation related problems,

but the method and considerations described are applicable to all problems

related to autonomous mobile robots.

A.2 System architecture

The Mobotware framework is used for simulation and controlling of robots,

while Jess [20] is used as the expert system doing the exception detection

and handling. As argued in [21], the use of a hierarchical control method like

Mobotware and a reactive control method like Jess can yield robust, flexible,

and generalizable navigation. The two is tied together using a Jess package

named JessMW, which is introduced.

A.2.1 Mobotware

The Mobotware framework has three core modules:

• Robot Hardware Daemon (RHD) Flexible hardware abstraction layer for

real-time critical sensors.

• Mobile Robot Controller (MRC) Real-time closed-loop control of robot

motion and mission execution.

• Automation Robot Servers (AURS) Advanced framework for processing

complex sensors and non real-time mission planning.

These modules allows for a two-dimensional decomposition: temporal and

functional.

The temporal dimension divides Mobotware into a hard and a soft real-

time constrained section, where RHD can handle the sensors and actuators

requiring strict timing like wheel encoders and motors, making MRC able to

run the robot at a desired speed for a given distance, while AURS handles the

non timing-critical sensors like cameras and processes the data from these
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sensors to extract information about the surrounding environment.

The functional decomposision divides the framework in levels of increasing

abstraction from the hardware abstraction layer in RHD, to reactive execution

in MRC up to perception and planning with AURS.

The modular architecture is further strengthened by the use of plugins to

implement both sensor interfaces and data processing algorithms, thus mak-

ing it possible to use i.e. different methods for navigation, without altering

anything else in the system.

All the core modules in Mobotware are connected through low latency

TCP/IP connections, making it possible to easily exchange information both

between the modules as well as with external processes, and distribute the

computations across several computer platforms.

A.2.2 Jess

The Java expert system shell is an expert system implemented in Java

that processes a CLIPS-like rule-based language. It can do both forward and

backward chaining of rules, and using its RETE network it can handle several

100.000s of rules per second on a modern computer, while maintaining a huge

fact base[20].

As Jess is implemented in Java, it has many object-oriented features in-

cluding a direct interface to Java components. This makes it possible, via Java

libraries, to connect to other processes on the computer and create shadow

facts that represent the knowledge obtained from the other processes. This

ability has made Jess widely popular in as diverse fields as mobile robotics[22],

web services[23], fuzzy logic[24], and diagnostics and learning[25].
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A.2.3 JessMW

In order to bridge the gap between Jess and Mobotware, the Jess package

JessMW is made available. Using Java, the functionality of Jess is expanded

by making it possible to communicate with MRC and AURS using the TCP/IP

connections. Using these connections, the data concerning the surrounding

environment perceived by AURS can be pushed to Jess and turned into shadow

facts. Using rules, Jess can then compare the perceived information with any

prior or learnt knowledge of the environment and thus do a sanity check on

the information before the robot tries to act on it. Not only can this be used to

prevent actions on detections known not to be possible, but it can also be used

both for making the robot branch into a searching behaviour, if something that

according to the internal state should be found but is not, and for challenging

the robots beliefs about its current status, which might require the robot to go

back in order to reassess the current situation of itself and the environment.

Likewise, information regarding the robot’s status, like current motion

instruction and odometry information, is fetched from MRC and turned into

shadow facts by JessMW. It is also possible to get information from the time-

critical sensors using this connection, and as Jess fetches this information

via MRC and updates its own local knowledge base, it does not need to lock

sensor values during search operations. This ensures that there are no risk of

violating any real-time constrains. This is an issue sometimes observed when

combining expert systems and real-time critical systems, and is part of the

motivation for using a modular approach.

Via the connection to MRC, Jess can also send, stop and flush current motion

instructions which make it possible not only to detect exceptions in mission

execution, but also to handle them by imposing another solution to the current

mission [26]. It can also monitor the execution of said motion instructions

and detect i.e. if the low level security function in MRC has suspended motion

due to a blocking obstacle in front of the robot.
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Finally, JessMW can communicate with several Mobotware-enabled robots

simultaneously, making it seamless to exchange information about the en-

vironment between robots and help each other to detect any exceptions or

abnormalities.

An overview of the framework can be seen in Figure A.1.

Figure A.1: Overview of the Jess-Mobotware framework

A.3 Implementation

To verify the proposed solution and the system architecture, extensive

testing have been carried out, both in the methodological demonstration

example described below as well as by several student at Automation and

Control, DTU Electrical Engineering, who without prior exposure to robotics

successfully used the principles to solve missions where cooperation between

robots in accessing the state of the environment was a key element.

A.3.1 Demonstration scenario

The proposed solution was tested on a small mobile robot (SMR) running

Mobotware. The SMR is a differential driven robot with wheel encoders for
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odometry, 1D IR distance sensor for low level collision prevention, laser scan-

ner, and camera.

The robot was tasked to navigate through an office environment, which is

controlled enough to ensure repeatability, but chaotic enough, due to human

presence, to ensure problems for most navigation algorithms. Moving furni-

ture in front of the robot or additional traffic can also easily be introduced to

challenge the robot further. A partial map of the office space can be seen in

Figure A.2

Figure A.2: Approximate map of office space

Even the optimal solution should require a travelled distance and enough

turns to ensure the mission can’t be solved robustly with odometry alone.
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Also, two different goals was defined and specified at runtime, with multiple

successive runs to each goal.

A.3.2 Algorithms for navigation

For global path planning, a graph node planner is used to calculate the

most feasible path towards the goal. The expert system controls the path plan-

ner’s nodes, making sure the knowledge of all landmarks’ position is known

by the path planner.

For global localization, landmark-based navigation is used. This approach

has the advantage of only requiring a minimum of prior knowledge about

the surrounding environment, namely locations of landmarks and traversable

routes between then, compared to other global map-based methods.

It is implemented using 2D barcodes, easily detectable by the on-board cam-

era. With proper calibration and optimal detection positioning, position and

heading estimation relative to the barcode can be obtained to within ±2 cm

and ±1◦. As the barcode is printed on paper it is only detectable from one side.

For local path planning and obstacle detection, a method based on jumps

and openings in a laser range scanner image is used[27]. It evaluates the

environment in front of the robot and tries to move towards a given goal

position. It is very opportunistic in that it plans a path and then executes it,

without evaluating if something suddenly blocks the path. This is left to the

low level collision avoidance to detect.

For local localization, odometry is used. To prevent the position error from

growing unbounded, the odometry information is zeroed at each barcode

detection and thus relating the local and global position.
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A.4 Behaviours

To control the mission progression, at set of goal-seeking rules, or be-

haviours, are defined in the expert system. These can be divided into three

groups: Input sanity validation, mission execution and exception handling. As

stated earlier, the appropriate action for all the behaviours is a design choice,

based on the specific application as well as the dependability of each sensor

and algorithm.

A.4.1 Input sanity validation

This group of rules verifies all input related to mission progression. In the

test example described in this paper, this is primarily related to the detection

of landmarks.

If a landmark is reported spotted by the robot, the system should verify

that the landmark is logically observable from the robots current position, i.e.

that the robot is not currently behind the barcode, the relative orientation if

off or the distance is further than what is known to be reliable for the detection

algorithm. If the input is validated, the robot’s position is updated based on

this. But if the input is invalidated, the design choice of what action to take

is based on what sensor output (odometry vs. landmark detection) is most

reliable for the current robotic system.

One approach, and the one implemented in the demonstration, is to reject

such detections, assuming they are reflections or simply false positives from

the sensor.

Another issue is what to do if the system detects a landmark that it has

no prior knowledge about. For a system operating in an assumed known

environment, it might be most reasonable to ignore the detection, while a

system designed for exploration probably would add the landmarks position,

maybe flagging it unreliable until it is independently validated several times.
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A.4.2 Mission execution

These rules govern mission execution in general, including planning, moni-

toring of progression, and issuing of motion instructions.

Using the path planner, the robot moves towards the goal position using

the known landmarks en-route. Using odometry, the robot tries to position

itself optimally accordingly to the barcode, so as to get the best estimate of

position and heading. This is found to be at a small angle (∼ 10◦) relative to

the barcode.

The locations visited, the current target location as well as planned loca-

tions to visit is all kept in the expert system’s working memory.

A.4.3 Exception handling

These are the rules that have the ability to add real robustness to mission

solving. The behaviours described above assumes some flow of events in a

predictable order and that actions will lead to reactions, i.e. a motion instruc-

tion will lead to a corresponding movement or a landmark is visible and thus

detected at a certain position.

But if this is not the case, behaviours should be defined that can detect the

abnormalities, and then handle them in order to save the mission. This is also

the major difference compared to input sanity validation, as an invalidated

input reading should not jeopardise the mission, as long as a valid reading can

be obtained afterwards without any active handling.

Obviously it is difficult for an algorithm, trying to detect something, to

figure out whether it failed because nothing is there, or because something

else is wrong.
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This is where an expert system is critical, as it has the opportunity to

diagnose or try redundant systems to detect what is wrong. But for the expert

system to have any chance at this, it is necessary to have a broad understand-

ing of what can lead to the used algorithms failing.

In the end, the appropriate action is highly dependent on the system’s

properties and the nature of the mission. If the detection algorithm is weak

but localization is strong, it might be best to drive on, hoping to see the next

landmark on the route. If both equally weak (or strong), it would probably

be better to try and search for the landmark before giving up, and if it is the

localization that is the weak part, maybe it would be better to go back the

same route to a previous landmark and get a new position estimate to zero

the local localization error. Or maybe a human operator should be notified,

if the mission depends on the robot finding the landmark or it has been un-

detectable several times. In the test example, a searching behaviour is initiated.

The same goes for motion instructions; if something blocks the robot and

thus prevents motion, a mission execution scheme that waits for the robot to

finish its movement will stall if no thoughts are given to exception handling.

In the test example, an evasive behaviour is triggered if the low-level

collision avoidance halts the robot, making it reverse and try to find another

local path around the object. If that does not work, it will head back to the

previous landmark to get a new orientation fix.

In general, when drawing a flow chart or state diagram of the expected

mission progression, each transition should be analysed to map what part

that might fail and thus prevent the transition. Likewise, each state should be

analysed to consider what will happened if none of the expected transitions

occur. Will the robot stall, will it keep moving in a possible wrong direction or

could it might somehow end up in an undesirable state.
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It is also worth to consider that the exception handling might also fail,

and thus further degrading might be necessary. How redundant a system

should be in the end is a design question that usually depends on a trade-off

between desired robustness and resources, both time-wise, money-wise and

computational power.

A.5 Results

In the presented test case, the robot successfully completed its mission in

all 10 trials.

To show the robustness of the solution, different things were done to try

and disrupt the mission control.

Figure A.3 is shown a map of a test run where the robot was placed at

another orientation than what the internal state of the robot represented.

The red line represents the robot’s own internal belief of where in the

world it thinks it is, whereas the blue shows where the expert system’s thinks

the robot is, based on the sensed information regarding the environment.

Thus the sudden jerks that only occur on the worldpose line happen when a

landmark is detected.

This ability is similar to what other global localization methods can achieve,

but goes to show that localization can be done in expert systems, and famil-

iarizes the reader with the map structure used in the following. It should be

noted that the overlaid map does not necessarily shows the true position of

the robot, but is only added to give the reader a sense of where the robot is in

the environment.
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Figure A.3: Map plot of a demonstration test run

In Figure A.4 the robots path is suddenly blocked by an opening door. To

avoid collision, the robot stops due to the low level collision avoidance. It then

reverses and find a new path to the target.

The ability to detect and handle a security-related suspension of the execu-

tion was tested in several of the trials to prove that the robot could cope with

a changing environment where humans move about and might unintentional

place objects in front of the robot.
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Figure A.4: Path suddenly blocked by an opening door

Figure A.5 shows the robot trying to find a landmark at an expected posi-

tion. When this is unsuccessful, the robot starts searching for the landmark

in a predefined pattern. This show an example of handling a sensor or detec-

tion algorithm that fails to deliver an expected result. This is a surprisingly

common problem when moving a robot system from a simulated world to a

real world implementation. The causes and consequences of such an event,

or the opposite with a false positive detection, should be analysed with both
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great care and conservatism to increase the robustness of a mission controller,

along with workarounds to the problem that works independent of the sensor

or algorithm that is failing.
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Figure A.5: The robot has to search for the landmarks

A.6 Conclusions

In this paper design for robust mission control using an expert system has

been discussed. The field is highly application specific, so defining generic rules
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or a standard for designing robust mission control is not possible. Nevertheless,

if the reliability of autonomous mobile robots is to gain enough trust to one

day move out of the laboratories, this is a field where much improvement is

needed.

It is shown that with appropriate care, a robust system can be designed and

robustly solve navigational-dependant mission, regardless of what is literally

thrown at it. The principle of using an expert system for robust mission

control has also been proved by several inexperienced students in classes at

Automation and Control, DTU Electrical Engineering.





Paper B

Calibration between a laser
range scanner and an
industrial robot manipulator 1

Thomas Timm Andersen1, Nils Axel Andersen1 and Ole Ravn1

1Department of Electrical Engineering, Automation and Control Group,

Technical University of Denmark, Richard Petersens Plads 326, 2800, Kgs.

Lyngby, Denmark

Abstract:

In this paper we present a method for finding the transformation between

a laser scanner and a robot manipulator. We present the design of a flat

calibration target that can easily fit between a laser scanner and a conveyor

belt, making the method easily implementable in a manufacturing line.

We prove that the method works by simulating a range of different ori-

entations of the target, and performs an extensive numerical evaluation of

the targets design parameters to establish the optimal values as well as the

worst-case accuracy of the method.
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B.1 Introduction

Sensors have been used for adding perception to robotic manipulators in

academia for years, and recently have also become more common in industry.

To use the sensors, a proper transformation between the sensor and the

manipulator is often necessary, so the position of the perceived object can

be related to the position of the manipulator. For simple binary sensors like

switches, the transformation, obtained through a calibration, will often only

require information in one or two dimensions. This can usually be obtained

with good measurements, timing or rigid construction. More complex sensors,

like cameras, range measuring sensors, and moving sensors require both

translational and rotational transformation for proper control. Especially for

these complex sensors, this extrinsic calibration can be non-trivial and often

requires data processing.

Robots working in food processing have an added need for quick and au-

tonomous calibration, as daily cleaning of the entire production environment,

using high-pressure hot water for cleaning and disinfection for example, can

easily result in unintentional movement of a sensor. A small movement or

rotation of a sensor will result in imprecise operation of the robot, which

can result in outcomes from sub-optimal yields to destroyed products and

equipment. It is therefore necessary to have a simple (re)calibration method

that can easily be employed, even by non-technical staff.

B.1.1 Previous work

Much work has been done in the area of calibration for many types of

sensors, including laser range scanners, which are the focus of this article. In

[28], Antone and Friedman present a class of three-dimensional calibration

targets that makes it possible to calculate the scanner’s position relative to the

calibration target using only a single scan. This leaves the task of determining

the transformation from the target to the manipulator, which could be solved
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by attaching the target to the manipulator in a known configuration. The

calibration targets are of a polypod type and should have a minimum of 4 legs,

spanning a minimum area of about 1 m2 for reliable calibration. Targets of this

size can be difficult to fit between a laser scanner and an assembly line like a

conveyor belt.

Adding space to move the calibration target around machinery and safe

moving by the robot also wastes valuable manufacturing space, so this solution

is not feasible in most industrial settings.

Hvilshøj et al. [29] use both a laser scanner and a camera for doing either

high-speed or high-precision calibration of a mobile manipulator in different

workspaces. The strategy of using a rigidly attached camera to determine the

transformation between camera and laser scanner is generally well explored

[30] [31] [32], but requires additional sensors, which in turn need additional

calibration.

Pradeep et al. [33] use the intensity data from a tilting 3D laser scanner

to obtain the transformation between the scanner and an end effector. This

requires both a sensor that can detect intensity as well as either a 3D scanner

or an actuated mount.

B.1.2 Contributions

In this paper, we present a robust method for obtaining homogeneous

transformation between a laser range scanner and a robot manipulator by

using a two-dimensional calibration target that can easily fit between a sensor

and a conveyor belt. The initial calibration requires some human interaction

to move the calibration target into the field of view of the sensor, while the

method can be used for fully autonomous re-calibration.

The method is tested in simulation and the expected accuracy evaluated

based on sensor resolution. This evaluation of worst-case precision is another

significant contribution of this paper, as this is the first calibration method

between laser scanners and robotic manipulators that includes a way for

determining the worst-case accuracy.
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Any type of 2D distance measuring sensor can be used, as there is no

requirement to sample speed or meta-data such as intensity. It is assumed,

though, that measuring noise is Gaussian and thus can be ignored by averaging

over a sufficient number of samples, once static noise have been eliminated by

calibration. This is a common assumption and is part of many sensor models

like that of Thrun et al. [34]. The method can be used on any kind of robot, as

long as it is possible to attach the calibration target to the robot, for example

by using a gripper, and move the calibration target a known distance along a

straight line.

By attaching the calibration target to the end effector, a transformation

between the laser scanner and the end effector is found, which makes it

possible to move the end effector precisely into the scanner frame without any

inherent errors from imprecise forward kinematics.

B.1.3 Organization of the paper

In this paper we firstly present the fundamental mathematics used, and in

section B.2 name and describe the relevant coordinate frames. In section B.3,

we describe the process of finding the transformation, and how to design a

proper calibration target. We describe our simulation and real world accuracy

in section B.4 before detailing our conclusions in section B.5.

B.2 Fundamentals

In this section the fundamental mathematics used in this paper will be

described. We will cover what is meant with a homogeneous transformation

and how the frames are aligned.

B.2.1 Homogeneous transformation

According to Spong et al. [35], a homogeneous transformation is "a matrix

representation of a rigid motion" (p. 61). It is used to describe the relative
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position and orientation of two coordinate frames. In this paper, we will only

deal with frames in a 3 dimensional space.

The most general homogeneous transformation, [35] says, may be written

as

H0
1 =


nx sx ax dx

ny sy ay dy

nz sz az dz

0 0 0 1

=

[
n s a d

0 0 0 1

]
(B.1)

In (B.1), n = [nx,ny,nz]
T is a vector representing the direction of the x-axis of

frame 1 in frame 0’s coordinates, s = [sx,sy,sz]
T represents the direction of the

y1-axis in frame 0, and a = [ax,ay,az]
T represents the direction of the z1-axis in

frame 0. The vector d = [dx,dy,dz]
T represents the vector from the origin o0 to

the origin o1 expressed in frame 0’s coordinates. Describing only the rotations

can be done with the expression in (B.2)

R0
1 =

nx sx ax

ny sy ay

nz sz az

 (B.2)

B.2.2 Coordinate frames

In this paper we will use two frames; the robot’s tool frame T and the

laser scanner’s frame L. In robot control, the robot’s base frame B is often

used as the ground truth or base reference frame and set to [0,0,0]T . Using

forward kinematics, the tool frame T can be determined based on the robot’s

Denavit-Hartenberg parameters and the joint values. Finding the homoge-

neous transformation between the laser scanner’s frame and the robot’s tool

frame HL
T is the purpose of this paper.

For robots having a gripper as the end effector, the origin of the tool frame

oT is commonly placed symmetrically between the fingers of the gripper, see

Figure B.1. The zT axis is pointing outwards from the gripper between the

fingers in what is usually referred to as the approach direction. This is also the
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reason why column three in (B.1) is named a. Likewise, the sliding direction

of the fingers is called s and is defined to be along the yT -axis. The xT is then

normal to the plane formed by aT and sT , and is thus called nT .

Figure B.1: Tool frame orientation

The laser scanner makes 2D range data in a plane, based on laser rays

emitted in discrete angles, denoted by θi. For each ray, a distance ri is mea-

sured along that ray. Following convention, and without loss of generality, we

place the origin of frame L at the origin of all laser rays emitted from the laser

scanner, with the zL-axis normal to all laser rays emitted by the scanner, the

xL-axis coincident with the ray at θi = 0, and the yL-axis coincident with the

ray at θi = π/2, forming a right-handed frame. This is shown in Figure B.2.
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Figure B.2: Laser frame orientation



74
Paper B. Calibration between a laser range scanner and an industrial robot

manipulator

B.3 Methodology

In this section we describe the method for finding the four vectors given in

(B.1).

In designing a simple calibration target, it is relevant to see what can be

learned from a simple geometric shape like a square with a known width of w.

Without loss of generality, it is assumed that the calibration target is rigidly

attached to the end effector and placed with the surface towards the laser

scanner. The surface of the target should be in the plane spanned by zT and

xT , and the end effector should be moved so zL and zT are as near to parallel

as possible. This is shown in Figure B.3.

Figure B.3: Laser frame orientation

It is assumed that the laser measurements are filtered (i.e. by using a

distance threshold) and added to the set Mk, so only the laser ray measure-

ments hitting the calibration target is added, and sub-sequentially converted
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to points in Cartesian space in the laser scanner frame L. The subscript k in Mk

indicates the scan number. Two scans are required, with the calibration target

moved a known distance d in the yT direction between the two scans.

B.3.1 Finding the rotations

To find the rotation of the calibration target relative to the xL-axis, we

exploit our knowledge of the width of the calibration target w relative to the

width measured. Using the two most distant points in either M1 or M2, we find

the distance between those point.

wMeas =
√
(p1.x− p2.x)2 +(p1.y− p2.y)2 (B.3)

Using the Law of sines, we can then determine the rotation angle

RotxL =
π

2
− arcsin(

w
wMeas

) (B.4)

It is not possible to know whether it is a positive or negative rotation. Placing

the target at a slight angle that we approximately know, we can define the

sign of the rotation.

Using the same two points, the rotation around the zL-axis can be found as

the slope of a line given by those two points. The rotation angle is

RotzL = arctan(
p2.y− p1.y
p2.x− p1.x

)+
π

2
(B.5)

To find the last rotation around yL, we need to know the distance the

calibration target has moved between scan M1 and M2 in the zL and yL direction

as a result of the motion along the yT axis. We could use the same approach

as above with measuring the change in the yL direction and relate it to the

expected change if the rotation is 0. This method relies on the equation in

(B.6).

RotyL =
π

2
− arcsin(

d
dmeas

) (B.6)
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In a space constrained production environment, horizontal movement of more

than 15 cm might be difficult to do, and a worker should be able to position

the calibration target closer to horizontal than 10◦. This would result in a

measured maximum displacement of 15.23 cm, or a difference of 2.3 mm. This

is less than the statistical error of many laser scanners. So while it would work

in theory, it will not yield a good result in practice.

To get a better result in practice, we need to be able to measure the length

of the last side of the triangle, we call it a. This is, however, not possible to

measure from the scans using the simple square calibration target. Below we

will present a calibration target from which this distance can also be measured

with a laser scanner.

B.3.2 Designing a calibration target

Based on our analysis so far, we have three design criteria for our calibra-

tion target

• Known width: An easily distinguishable section of the calibration target

must have a known width to find the xL and yL rotations.

• Varying feature: To measure the translation or the target, a part of the

calibration target must have a varying feature that makes it possible to

determine either where on the target the scans were made, or how far

the target has moved.

• Small footprint: For ease of use in an industrial setting, the target should

be as small and flat as possible.

To satisfy the first requirement, the main part of the target should still be a

square or rectangle.

For the varying part, this could either be a varying height of some of the

target, or a varying width parallel to the known rectangle. To support the last

requirement in terms of keeping the target flat, some of the target width is
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Figure B.4: Calibration target. Two laser scans are shown in red, and the three

triangles of interest are drawn in blue, green and yellow

made varying.

A sketch of a calibration target that support this can be seen on Figure

B.4. The grayed-out "shoe" on the left is for the gripper’s finger; this ensures

that the gripper holds the target in a known pose, thus ensuring that the

transformation from gripper to target is known. It is assumed that the shoe

is designed so that geometrical errors in the grasp in negligible. This could

also be ensured by casting the target with a mechanical coupling that attaches

firmly to the manipulator. The only requirement is that the transformation

from the manipulator’s base link to the target’s frame is known.

A setup showing the calibration target held underneath a laser scanner by a

robot can be seen in Figure B.5.

A part of the figure is parallel to the shoe and has one edge aligned with

the center-line of the shoe. This part of the figure has a known width of w as
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shown on Figure B.4 and is part of the blue triangle T1. Knowing the two sides

w and T1wMeas of the right-angled triangle makes it possible to determine

all the angles of the triangle and thus the rotation around RotxL as shown in

(B.4).

The distance between the two "legs" are varying, and by measuring that

distance (annotated as legMeas on Figure B.4), the distance to the top of the

green triangle T2 and the yellow triangle T3 can be found based on the Law

of sines and the knowledge of the angles A and RotxL . For the green triangle

T2, this distance can be found using (B.7) and (B.8), while the topDist for the

yellow triangle T3 can be found using points p5 and p6 in (B.7).

legMeas =
√

(p2.x− p3.x)2 +(p2.y− p3.y)2 (B.7)

topDist =
sin(π

2 −RotxL −a) · legMeas

sin(A)
(B.8)

The difference between the two topDist equals the unknown side length a of the

triangle needed to find RotyL . Knowing this, along with the distance traveled

in the yT direction, the last angle RotyL can be found as shown in (B.10). In

(B.9) we denote the calculated length dmeas to show that this is the same value

we measured and used in (B.6) earlier, although it is now calculated.

dmeas =
√
(T3topDist −T2topDist)2 +d2 (B.9)

RotyL = arcsin(
T3topDist −T2topDist

dmeas
) (B.10)

B.3.3 Finding the transformation

Having found the rotations of the calibration target relative to the laser

scanner, writing the transformation is now trivial. Using the shorthand nota-

tion cx = cos(RotxL), sy = sin(RotyL), sxy = sx · sy etc., the rotation between the
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Figure B.5: Concept photo showing a robot holding a calibration target underneath a

laser scanner

laser and tool frame is given in (B.11)

RL
T =

 cyz −cysz sy

cz · sxy + cx · sz −sxyz + cxz −sx · cy

−cxz · sy + sxz cx · syz + cz · sx cxy

 (B.11)

The translational part when the gripper is at the position of the M2 scan is

given by the expression in (B.12), where ADist = T3topDist + the distance from

the calibration targets coordinate frame center to the top angle point A of the

target.

dL
T = RL

T

 p5.x

p5.y

ADist

 (B.12)

The transformation matrix between the laser and the gripper will change

whenever the gripper is moved, as reflected in (B.12). Multiplying the trans-

formation with the transformation between the gripper and the robot base

HT
B would give the constant transformation between the laser scanner and the
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robot’s base HL
B .

Instead of moving the target in the yT direction, one might intuitively

consider moving the target in the zT direction to get a 3D point cloud of the

target, and then employ techniques such as plane detection, edge detection,

or model fitting to find the orientation of the target. But by examining Figure

B.3, it is clear that motion in the plane spanned by zT and xT won’t affect the

measured distance in the xL direction, no matter how the target is rotated with

respect to yL. This rotation would thus be lost, and therefor motion in the yt

direction is a necessity. Thus two complete surface scans would be needed.

As the error in the scanner is assumed Gaussian, taking many measurements

at one pose, average and then use the method above would yield the same, or

better, results as creating a point cloud and then use detection techniques, as

the target unavoidably will vibrate a little while being moved, and matching

a measurement to a specific pose could also introduce errors. These models

won’t add anything to the accuracy of the position of the edges that averaging

over a stationary target won’t give. Such a process will also add additional

time consumption where the robot won’t be producing anything.

B.4 Evaluation

For evaluating the proposed method, we will first do a simulation of the

method to show that it outputs correct transformations. Next we will do a

numerical evaluation of the calibration target’s design parameters, to see what

accuracy can be expected with the proposed method and a laser range scanner.

B.4.1 Simulation

To verify the method, we have made a script that draws the calibration

target, rotates it around its axes and calculates the position of p1 to p6. Using

this, we can verify that the method works for all combinations of rotations.
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Looping over a range of combinations of rotations, from +25◦ to −25◦, we

verified that the method worked within that range. That range was selected

as we expect a human operator easily can place the target within that range.

A small random value was added to each angle at each iteration to catch any

systematic errors. The method was shown to work with all combinations of

angles within that range. Output from different simulations can be seen on

Figure B.6 and B.7.

On the first three figures, the rotations are only around one axis, while

the target is rotated around all three axes on the last plot. For rotations not

including a rotation around the yL axis, the calibration target can only be seen

in one position, as the targets are overlaid. It can be difficult to see a rotation

on the plot showing rotation around the zL axis, but the fixed width part only

looks 18.3 cm wide, where it is actually 20 cm wide, revealing a slight rotation.

Figure B.6: Simulated rotations as seen from the laser scanner. Left: Rotation around

xL. Right: Rotation around yL
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Figure B.7: Simulated rotations as seen from the laser scanner. Left: Rotation around

zL. Right: Rotation around xL, yL and zL

B.4.2 Numerical design evaluation

In this section we will evaluate the design parameters of the calibration

target to see how they affect the accuracy of the proposed method. The pa-

rameters in play are the width of the rectangular part of the target w and the

angle of the triangle top point A. Also the distance from the sensor to the

calibration target distTarget influences the accuracy.

Most laser scanners, like the Hokuyo URG-04LX[36], have a length mea-

surements resolution of 1 mm with an accuracy of ±1 cm. The angular res-

olution varies from product to product; most of Hokuyo’s scanners have a

resolution of 0.35◦, while Sick offers resolution from 0.5◦ to 0.125◦. No varia-

tion is given for the angular reading, so this is assumed to be negligible. As this

resolution is given in degrees, and for ease of reading, the rest of the section

will use degrees for measuring angles. Results of trigonometric functions are

converted to degrees as well.
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The largest source of measurement errors is quantization errors due to

the angular resolution, and noise of the length measurement. Hokuyo does

not state how much of the ±1 cm variation originates from systematic error

and how much from statistical, but our measurement shows that 50 % of the

measurements have an error of ∼±0.3 cm or less. This is similar to other

research like the study of the same sensor made by Kneip et al.[37]. By cali-

brating the sensor to the material of the calibration target, better performance

is attainable. As the error is Gaussian, we can average over multiple samples

and/or fit a line to the data points and further minimize the error of the length

measurements. The statistical error of Sick’s scanners are in the range of ±1.2
to ±0.3 cm, and is expected to be minimizeable using the same techniques as

with the Hokuyo.

The main error source is thus the angular quantization, which shows as a

fixed angle between each laser beam. Thus the further away from the scanner

the target gets, the wider the space between the laser beams is. This suggest

that the target should be as close to the scanner as possible. It would there-

for make sense to use the scan closest to the scanner (points p4 and p5) for

finding the rotations around xL and zL. The target should also be as narrow as

possible, since a wide target will have its edges further away from the scanner.

A 3 cm wide target held 5 cm from the Hokuyo scanner will be measured to be

2.998 cm wide (an error of 0.05 %), whereas a 30 cm wide target at the same

distance will be measured to be 29.901 cm wide (an error of 0.33 %).

We cannot make the target too small, as we also need some points for the

line fitting. For our analysis we will use the values w= 0.05,A= 40◦,T2topDist =

0.02,d = 0.1,distTarget = 0.05, where distTarget is the smallest distance from the

laser scanner to the calibration target during the second scan M2. All the dis-

tances are in meters. This ensures that roughly 50 rays will hit the fixed-width

part of the target even at scan M1, although the exact number depends on the

rotation around xT .
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If the target is structural strong enough, the leg with the varying width can be

made arbitrary wide to give more points for the line fitting.

With the center-line of the calibration target directly below the laser scan-

ner (p5.y = 0), we can determine how many laser rays that will hit the calibra-

tion target and thus the accuracy of the measured width. For the Hokuyo the

measurement will be

dist2p4 =
√

w2 +dist2
Target =

√
0.052 +0.052 = 0.07

angSpan = arcsin(
w

dist2p4
) = arcsin(

0.05
0.16

) = 45◦

nrRay = f loor(
angSpan
angResul

) = f loor(
45

0.35
) = 129

wmeas =
sin(nrRay ·angResul) ·distTarget

sin(90−nrRay ·angResul)

=
sin(129 ·0.35) ·0.05
sin(90−129 ·0.35)

= 0.04996m (B.13)

Variations of the target’s width between 4.996 cm and 5.058 cm cannot be

measured, meaning rotations around xL of up to

errrotxmax = 90− arcsin(
w

w+wmeasmax −wmeasmin

)

= 90− arcsin(
0.05

0.0506
) =±8.95◦ (B.14)

will go unnoticed. Placing the target more underneath the scanner, ideally so

p4.y =−p5.y, will decrease the worst-case error to ±7.07◦. It is not possible to

predict the effect of varying w or distTarget , as the error will be zero whenever a

laser beam exactly hits both edges of the target. It is not possible either to pre-

dict the effect of rotation, as this has the same effect as changing w. It should

be noted that these are worst-case errors, and that using another scanner with

better angular resolution would also help significantly. Using SICK’s LMS400

scanner with an angular resolution of 0.125◦ will yield a maximum error of
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±4.23◦.

Due to noise, both the p4.x and p5.x length measurement can be up to

±1 cm off, resulting in an error of up to

errrotzmax =90− arctan(
w

2 · errmeas
)

=90− arctan(
0.05
0.02

) =±21.8◦ (B.15)

This error is solely due to noise in the length measurements, and as stated

above, these can be minimized significantly with calibration, averaging and

line fitting. With our measured error of ∼±0.3 cm or less, the maximum error

will be decreased to ±6.8◦. Rotation around zL will decrease the error relative

to the actual difference, effectively increasing the accuracy marginally. By

fitting a line to the nrRay = 129 data points across the calibration target, the

error is likely to be decreased substantially. Increasing w would give more data

points for this line fitting and thus increase the accuracy, but as stated above

could negatively affect the width measurement and thus errxmax .

The distance between p5 and p6 will according to (B.8) be legMeas = 1.68 cm.

If the center-line of the calibration target is once again placed directly under

the laser scanner (so p5.y = 0), variations in this width between 1.65 cm and

1.68 cm will go unnoticed with the Hokuyo. At the other placement suggested

above (p4.y =−p5.y), the variations would be between 1.67 cm and 1.70 cm.

Inserting the variations in (B.9) yields a variation on TopDist of less than

±0.1 cm and using (B.10), the maximum unnoticed angle will be

errrotymax ]
= arcsin(

T3TopDist −T2TopDist

dmeas
) =

+2.64◦

−0.53◦
(B.16)

Increasing d will increase the accuracy, just as placing the hole underneath

the laser scanner will (so p2.y =−p3.y). These changes could have a negative

effect on the other readings though.
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The translational part of the transformation matrix is affected by how

accurate we can find p5.

Based on the above analysis, we should be able to get a result with a

linear error of ±0.1 cm at most and no angular errors of more than 4.22◦ with

the best available scanner - and this error could be made smaller by proper

placement of the target under the laser scanner. The error is smallest closest

to the plane spanned by xL and zL, suggesting that the optimal position is

when p1.y =−p3.y. Placing the target in just the right place, so a laser beam

hits exactly all 6 points will result in no error on rotx or roty. By carefully

moving the robot in tiny increments, it should be possible to get the target into

the correct position. Once a human operator have done an initial calibration

within ±5◦, the robot can do this autonomously.

B.5 Conclusions

In this paper we have presented a method for finding the transformation

between a laser scanner and an industrial robot manipulator. Unlike previous

work in the field, like that of Antone and Friedman [28], Hvilshøj et al [29]

and Pradeep et al.[33], our method does not rely on other sensors, intensity

readings or large calibration targets. By careful design, we have created a

method that only uses a flat target, making it possible to fit in most production

environment between a conveyor belt and the laser scanner.

We have argued why this method yields the same or better results than those

based on building an entire 3D point cloud of the target and then employing

plane detection, edge detection, or model fitting, both with respect to accuracy

and especially time.

We have shown in simulation that the method can accurately detect rota-

tions and translations around any and all axes, only limited by the measuring
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accuracy of the laser scanner.

To evaluate the obtainable accuracy with different laser scanners, and show

how the design parameters of the calibration target affects this accuracy, we

have done a numerical design evaluation. It shows that even with a cheap

laser scanner like the Hokuyo URG-04LX, the obtainable accuracy is below

±10◦ on all axes. While this accuracy is certainly to low for some applica-

tions, it is more than adequate in others, i.e. where the purpose of the cheap

laser scanner only is to find the approximate pose of an object, before using

other techniques like eye-in-hand, tactile, or force sensors to do the actual

manipulation of the object.
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Abstract:

Robust and accurate calibration and re-calibration between sensors and robots

are essential for flexible handling and manufacturing of products with natural

variance. For documenting consistency of the end product, it is furthermore

important to be able to determine the accuracy of the calibration.

In this paper, we take a previously published method for calibration be-

tween a laser range scanner and a robot arm and show how this method can

be substantially improved by relying on the precise nature of an industrial

manipulator to annul the limiting effects of the laser scanner’s angular quanti-

zation. Furthermore, we show how the worst case accuracy can be calculated,

and show how the method presented in this paper improves the worst case

accuracy with a factor 166 for the translational calibration and between a

factor 32 and almost 4.000 for the rotational calibration.

1Reproduced from T. T. Andersen, N. A. Andersen, and O. Ravn. “Optimizing the autonomous
self-calibration between a robot and a distance sensor”. In: Robotics and Computer-Integrated
Manufacturing (2016)
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C.1 Introduction

For robots to engage in dynamic and changing environments, they need

sensors to reason about their surroundings. These sensors, in turn, needs to

be properly calibrated relative to the robot in order for the robot to relate to

the perceived information. To this end, several methods exist to approximate

the transformation between a robot and one or more sensors.

The complexity and required accuracy of these methods depends among

other things on the sensor and its usage. For simple binary sensors like optical

switches, a single offset measurement might suffice, whereas more complex

sensors with multidimensional measuring capabilities might require extrinsic

calibration of translational, rotational and temporal nature.

As the trend in modern manufacturing is moving towards flexible and

sensory-assisted automation, the need for calibration and recalibration is

even more distinct, as small misalignment can result in suboptimal or even

destroyed products and damaged machinery. Having these procedures auto-

mated can further help to optimize the plant’s uptime.

C.1.1 Previous Work

As a result of this, a lot of research have been done regarding calibration

between robot arms and different sensors, including 2D laser range scanners

which is the focus of this paper. Hvilshøj et al. [29] uses both a camera and

a laser scanner for doing either high-speed or high-precision calibration of

a mobile manipulator moving between different workspaces. The strategy

of using a rigidly attached camera to determine the transformation between

camera and laser scanner is generally well explored [31] [32] [30], but

requires additional sensors, which in turn need additional calibration.

Pradeep et al. [33] use the intensity data from a tilting 3D laser scanner

to obtain the transformation between the scanner and an end effector. This

requires both a sensor that can detect both distance and intensity as well as

either a 3D scanner or an actuated mount.



C.1. Introduction 91

Antone and Friedman[28] suggests using a class of three-dimensional

calibration targets that makes it possible to calculate the scanner’s position

relative to the calibration target using only a single scan. This leaves the task

of determining the transformation from the target to the manipulator. The

calibration targets are of a polypod type and should have a minimum of 4

legs, spanning a minimum area of about 1 m2 for reliable calibration. Targets

of this size can be difficult to fit in a confined production space between a

laser scanner, a robot manipulator, and an assembly line like a conveyor belt.

Adding floor space to move the calibration target to and from the robot and

between machinery also wastes valuable manufacturing space, so this solution

is not feasible in most industrial settings.

Another drawback of these and other existing methods is that they provide

no metric for the accuracy of the method. To that end, we have previously

published a method[2], which is both able to perform the calibration as well

as provide a worst case accuracy of the calibration.

As the method we present in this paper builds on our previous work, as

well as for completeness, the principal idea from [2] is described below. It

relies on the geometrical relationship between the measured edges of a two

fingered calibration target and a laser range scanner, which is used to find

these edges. The calibration target, with overlaid geometric features, can be

seen on Figure C.1. The grayed out shoe on the left is for rigid alignment of

the gripper to the robot to ensure a known transformation between the robot

and the calibration target. The coordinate system is thus shared between the

gripper and the target and this coordinate frame is termed T . The distance w

and the angle a are known design perimeters.

The method works by first taking a distance measurement and then moving

the target in the YT axis direction, before doing another measurement. On

Figure C.1 the two scans are shown as M1 and M2, with the range measure-

ment series along the red lines. Using these measurements the points p1 to p6

can be located, which in turn can be used to determine the target’s rotation
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Figure C.1: Calibration target with overlaid geometric features. Reprint from [2]

relative to the scanner together with the law of sines and law of cosines.

If the target is rotated around the XT axis relative to the scanner, the two

scan lines won’t be coincident. Based on the difference between the green

triangle T2 and the yellow triangle T3 and the knowledge of how far in the YT

direction the target was moved, the rotation can be found. Similarly the blue

triangle T1 can be used to find the rotation around the YT axis. The distance

between p1 and p2 is the hypotenuse T1wmeas and the adjacent is the known

length w. The angle between these two lines are equal to the rotation around

YT . Finally, the rotation around ZT can be found from the distance between

the scanner and the points p1 and p2.

The transformation from robot base to the target, and thus every point on

the target is known a priori. As the position of the points p1 to p6 is also known

in the laser scanner frame L, the translational transformation can routinely be

found as well.
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We also showed that the main source of the calibration error comes from

determining the position of the calibration target’s edges. This is due to the

quantization of the laser scanner angles and can lead to errors as big as ±10◦

on all the rotations.

C.1.2 Contribution

This paper presents an optimal method for autonomous translational and

rotational calibration between a robot and a distance sensor. The optimality is

achieved by annulling the quantization error, using only one or two laser rays

and motion of the calibration target to align the edges of the target with the

laser rays, thus greatly improving the performance of the previous method.

In our research we have focused on calibration between an industrial

manipulator and a 2D laser range scanner and that is also the focus of this

paper, but the method is applicable to all robots with 6 degrees of freedom

and both 2D and 3D distance sensors. As it will become apparent later though,

the achievable accuracy of the calibration depends on the robot’s ability to

move straight in Cartesian space.

C.2 Methodology

The purpose of calibrating a sensor to a manipulator is determining the

homogeneous transformation between the coordinate frames of the sensor

and the manipulator. The coordinate frames between which we will determine

the homogeneous transformation in this paper is the laser scanner’s frame L

and the robot’s tool frame T. This can be seen on Figure C.2.

C.2.1 Design of calibration target

The two finger calibration target we use in this paper is identical to that of

[2] as the analysis that lead to the design still holds true. The target is drawn

on Figure C.1 with black lines.
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Figure C.2: Frame notation and ideal location. Reprint from [2]

As mentioned previously the calibration target is rigidly attached to the

robot tool and the target’s frame and the tool’s frame is coincident. Finding

the orientation and position of the calibration target in the laser scanner’s

coordinate frame thus gives us the transformation between the sensor and the

manipulator.

The surface plane of the target is flat and coincident with the plane spanned

by the XT and ZT axis. The angle a between the straight and the skewed finger

is a design parameter and thus known a priori, as is the distance from the

target’s frame’s origo to the top of the triangle between the two fingers, point

A. This distance is arbitrarily named e. The width of the straight finger is also

a known design parameter and named w.
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C.2.2 Finding the transform

In calculating the pose of the target relative to the scanner, we exploit the

fact that the target’s surface is parallel to the plane spanned by the XT and

ZT axis, and movement in these axial directions thus won’t affect the distance

measured by each of the scanner’s laser rays as long as the ray hit the target.

Without loss of generality, we assume using the center laser ray for finding the

edge.

We can thus easily determine the dimensions of the green triangle on figure

C.3 by first positioning the target via the robot, so the center laser line goes

between the two fingers of the target. For initial calibration the robot is moved

into position by a human operator, while the robot can do this autonomously

when re-calibrating. The plane spanned by the target should be placed as

close to perpendicular to the laser ray as possible.

zT
xT

p2

p1
dist1,2

A

distA,2

Figure C.3: Finding p1 and p2

The target is then moved in the positive XT axis direction, until the laser

detect the inner edge of the target’s skew finger. The point in the robot’s

coordinate frame in which the target intersects with the laser line is denoted
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p1. The target is then moved in the negative XT axis direction until the inner

edge of the target’s straight finger is detected by the same laser ray. This point

is denoted p2. We call the distance moved dist1,2.

The angle A of the green triangle on Figure C.3 is chosen when designing

the target, and the length of the opposite side of the right-angled is the

distance between the points p1 and p2, which is equal to the distance dist1,2.

The distance between the triangle’s top point A and p2 is then

distA,2 =
sin(π

2 −A)∗dist1,2
sin(A)

(C.1)

12

3
edge

T
T

T

T
T

T

Figure C.4: Pod rotated around YT and moved distance d along the YT axis
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Next the robot moves the target a known distance d in the YT axis direction

as shown on Figure C.4. If the target is rotated around the ZT axis, relative to

the scanner, the center laser beam will no longer be on the edge of the target

after the translation. By moving the target distedge along the XT axis until the

beam hits the edge once again, the rotation of the target around the ZT axis in

the laser frame RotZL can be found. This point is named p3 as shown on figure

C.4.

RotZL = arcsin(
distedge√

d2 +distedge
2
) (C.2)

The robot then once again moves in the positive XT axis direction until the

laser scanner detect the edge of the target’s skew finger, that point is named

p4. The moved distance is named dist3,4. As before we can determine the

distance from the top point A to p3

distA,3 =
sin(π

2 −A)∗dist3,4
sin(A)

(C.3)

and from the difference between distA,3 and distA,2 determine the rotation of

the target around the XT axis in the laser frame RotYL

RotYL = arcsin(
distA,3−distA,2√

d2 +(distA,3−distA,2)
2
) (C.4)

The robot can now correct for the angular differences around the XT and ZT

axis, so the center laser beam is perpendicular to the plane spanned by the

target and thus YT and XL is parallel.

The inner edge of the straight finger is again aligned with the laser beam,

and then the target is moved along the YT axis until another laser beam hit the

outside edge of the target. As the angular distance distang between each beam

of the scanner and thus also the two beams is known, the measured width

wmeas of the target can easily be calculated based on the measured distance to

the target. Now the rotation of the target around YT in the laser frame RotXL

can be found by comparing the measured width to the known w.

RotXL =
π

2
− arcsin(

w
wmeas

) (C.5)
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With all the relative rotations known, it is trivial to align all the axes of the

target with the axes of the laser scanner and then move the target to a known

place in the scanner’s field of view, i.e. with the center laser beam intersecting

a corner of the target. This directly gives the translational transformation

between the scanner and the target, and with the known transformation

between both the robot and the target as well as between the target and

the laser scanner, it is a simple matter of multiplying the two transformation

matrices to get the transformation matrix between robot and laser scanner.

C.3 Result

To verify that the proposed method works, we have tested it with a Mo-

toman MH5L and a Hokuyo URG-04LX laser range scanner, which showed

that the method works reliably for determining the transformation between

the robot and the laser scanner. The setup can be seen in the left picture on

Figure C.5. The calibration target size has been scaled to make it easier to see

in the picture.

C.3.1 Accuracy

As part of the reason for developing the method is the missing method for

finding the ground truth, it is impossible to determine the actual achieved ac-

curacy. Instead, which is also much more relevant, we evaluate the worst-case

accuracy that can be achieved with this setup.

By proper calibration and modeling of the laser scanner, studies like [37]

suggest distance measurement errors of ±3mm or less. But except for finding

the distance from the target to the scanner, all other measurements depends

on how accurate an edge can be detected.

To evaluate this, we have moved the target underneath the scanner in

1 µm steps and logged 500 measurements at each position, from which we

calculated the mean. A plot of this data can be seen on Figure C.5. Here it can
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be seen that the falloff of the laser, from when all of the ray is on the target to

none is on the target, is 12 µm. If we position the edge in the middle of this

falloff, i.e. using a threshold of 90 cm on Figure C.5r, the maximum error is

6 µm.
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Figure C.5: Left: Test setup with up-scaled calibration target. Right: Distance mea-

sured by laser scanner while moving target underneath in 1 µm steps. The red lines

denotes a 12 µm interval

As we look for two opposing edges when finding the width of the straight

finger wmeas for calculating RotXL and the distance between the two fingers

dist1,2 and dist3,4 used for calculating RotYL , the error might be up to 12 µm.

This interval is marked with red lines on Figure C.5r. On the other hand, it is

the same edge we use for determining the last rotation RotZL , thus the error

here will theoretically be zero as we just need to find the same point. But

as the graph on Figure C.5r is not completely linear, we assume the error of

determining distedge to be ±3 µm.

For comparison we use the same size calibration target as in [2] with

w = 0.05m and A = 40◦. Note that these values was chosen to give the best

possible results in [2]. The maximum error of the rotation RotXL is

errRotX = 90◦− arcsin(
w

wmeas +wmeasmaxerr

)

= 90◦− arcsin(
0.05

0.05±0.000012
) =±1.26◦ (C.6)
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If the target is rotated around the XL axis, the measured width will be higher,

meaning the error’s ratio will be lower which leads to an even lower error.

Increasing the width of the target will also lower the error. Below the effects

of these is shown both separately and combined, as wmeas = 0.070711 for

RotXL =±45◦ and w = 0.05m

errRotX45◦
= 45◦− arcsin(

0.05
0.07071±0.000012

) =±0.0097◦

errRotXw=0.1
= 90◦− arcsin(

0.1
0.1±0.000012

) =±0.89◦ (C.7)

errRotX45◦,w=0.1
= 45◦− arcsin(

0.1
0.141421±0.000012

) =±0.0049◦

We therefore argue that the errRotXmax
can easily be lowered to 0.0097◦ by

rotating the target 45◦ before determining RotXL . By changing the size of the

target, it can even be lowered to 0.0049◦ or better.

In calculating the worst case error around RotYL , distances of dist3,4 =

16.8mm and d = 0.1m are used in [2]. If RotYL = 10◦, which it is argued

in [2] is the margin of error a human operator can expect to stay within

using eyesight, then dist1,2 = 2.02mm. Based on equations C.1, C.3, and C.4,

the error of the calculated rotation, if using dist3,4 = 16.8± 0.012mm and

dist1,2 = 2.02±0.012mm is

errRotYL
= 10◦− arcsin(

distA,3−distA,2√
d2 +(distA,3−distA,2)

2
) =±0.0159◦ (C.8)

In the interval [−10◦;10◦] with steps of 0.0001◦ the error is found to be be-

tween errRotYmax
=±0.0164◦.

Similar, we can use equation C.2 and the ±3 µm error of distedge to calculate

the worst case error if the true angle RotZL = 10◦

errRotZL
= 10◦− arcsin(

distedge√
d2 +distedge

2
) =±−0.00167◦ (C.9)
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and going through the same interval shows that all errors are within errRotZmax
=

±0.00172◦.

With regards to determine the translational error, the worst case error in

the YL and ZL is already determined to be ±6µm. According to [37] and most

published LIDAR models like that in [34], the error of the laser scanner can

be assumed to be Gaussian. Thus, if we sample over K samples, the measured

distance error in the XL direction goes towards 0 as K→ ∞ if we beforehand

calibrate the scanner to the target to compensate for any offset.

C.4 Discussion

In this paper, we have taken the two scan method from [2] and showed

how it can be improved by using more scans, but only utilizing a single or two

laser beams from the laser scanner. No other paper have attempted to give

a metric for the performance of the presented method. In the comparison in

Table C.1 it can be seen that while the method from [2] have worst case errors

of several degrees, the method presented in this paper have almost no error

in the rotations. The translational error is also improved by a factor 166 or

better by relying on detecting edges of the calibration target.

Finally it should be noted that these results are dependent on how accurate

the calibration target can be manufactured, or rather measured after manufac-

turing. Especially the mounting on the robot and the transformation between

robot and the point A are crucial, but also the angle A, as deviations in this

can lead to higher errors in rotation around YL and the translational distance

ZL. A robot with purely rotational joints can also introduce small errors when

trying to perform straight motion in Cartesian space, especially when the robot

operates close to singular positions. The robot used in this paper only has

rotational joints though, so the error is marginal. So a robot would obviously

be able to perform this calibration better.

It should be noted that all the above observations also holds true for the
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Table C.1: Comparison of performance between the two scan method from [2] and

the single beam method from this paper

Two scan Single beam

XL (mm) ±1 0 for K→ ∞

YL (mm) ±1 ±0.006

ZL (mm) ±1 ±0.006

RotXL (◦) ±7.07 ±0.0097

RotYL (◦)

+2.64

−0.53
±0.0164

RotZL (◦) ±6.8 0.00172

method in [2].

C.5 Conclusion

In this paper we present an effective calibration method that can be utilized

directly in the industry. Having an accurate calibration method that can be used

autonomously makes it a lot easier to include re-calibration and verification

in a daily routine, which can help ensure product quality of manufacturers.

This is especially valuable in the food processing industry, where high pressure

water is often used for cleaning and can thus easily change the orientation of

sensors slightly.

We use a previously presented method for calibration between a laser

scanner and a robot manipulator and demonstrates how it can be improved

by using only one or two laser beams to handle errors related to quantization

of the angles of the laser scanner’s beams. It is shown that a LIDAR can

detect edges significantly more accurately with much less noise than measure

distances, and this is exploited to significantly increase the accuracy of the

method with a factor 166 for the translational part and between a factor 32

and almost 4.000 for the rotational calibration.
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In determining the accuracy we also show how the worst case error can be

determined. This can be useful for quality assurance as it makes it possible

to document the repeatability and margin of error of a product produced by

sensor controlled robots.
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Abstract:

Latencies and delays play an important role in temporally precise robot control.

During dynamic tasks in particular, a robot has to account for inherent delays

to reach manipulated objects in time. The different types of occurring delays

are typically convoluted and thereby hard to measure and separate.

In this paper, we present a data-driven methodology for separating and

modelling inherent delays during robot control. We show how both actuation

1Reproduced from T. T. Andersen, H. B. Amor, N. A. Andersen, and O. Ravn. “Measuring and
Modelling Delays in Robot Manipulators for Temporally Precise Control using Machine Learning”.
In: 14th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE. 2015



106
Paper D. Measuring and Modelling Delays in Robot Manipulators for

Temporally Precise Control using Machine Learning

and response delays can be modelled using modern machine learning meth-

ods. The resulting models can be used to predict the delays as well as the

uncertainty of the prediction.

Experiments on two widely used robot platforms show significant actua-

tion and response delays in standard control loops. Predictive models can,

therefore, be used to reason about expected delays and improve temporal

accuracy during control. The approach can easily be used on different robot

platforms.

Keywords: Robot control, Automation, Machine learning algorithms
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D.1 Introduction

For robots to engage in complex physical interactions with their envi-

ronment, efficient and precise action generation and execution methods are

needed. Manipulation of small objects such as screws and bolts, for example,

requires spatially precise movements. However, in dynamically changing envi-

ronments, spatial precision alone is often insufficient to achieve the goals of

the task. In order to intercept a rolling ball on the table, for instance, a robot

has to perform temporally precise control—the right action command has to be

executed at the right time. Yet, by their very nature, actuation commands are

never instantaneously executed.

Delays and latencies, therefore, play an important role in temporally precise

control and can occur at different locations in the robot control loop. Actuation
delay is the delay type that most roboticists are aware of. When an action

command is sent to the robot’s controller, it takes a short while to process the

command and calculate the required joint motor input. Imagine a welding

robot with an uncompensated actuation delay of 50 ms, working an object on

a fairly slow-moving conveyor belt with a speed of 0.5 m/s. The incurred delay

would result in a tracking error of 2.5 cm, which could easily destroy a product,

or at the very least result in a suboptimal result.

A different type of delay is the response delay which measures the amount

of time until a real-world event is sensed, processed and updated in memory.

Response delay is usually assumed zero, as one would naturally assume that

this is sampled and transmitted instantaneously whenever a motion occurs.

However, since there is a sampling clock and since the controller also needs

some time to pack the data for transmission, the response delay can be a

non-negligible amount of time. An important implication of the response delay

is the discrepancy between the robot’s belief of its own state and the true

value of that state. When data is received from the robot, indicating that the

robot is at a certain position moving with some velocity, the data is in reality

describing a state in the past.

In order to effectively act in dynamic environments and reason about
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Figure D.1: Temporally precise control of an industrial robot is realized by modelling

the inherent delay in the system. The picture depicts a fast robot movement during

data acquisition. Recorded data is processed using machine learning algorithms to

generate predictive models for system and response delay.

timing, a robot has to be aware of both the actuation delay as well as the

response delay. Sadly, such information is not readily accessible form the

robotics company, and no method is currently available for identifying it. This

has lead many researches to develop their own controllers, but this is rarely

an opportunity for industrial users.

Safety during operation is the most crucial issue for robot controllers, but

each robotic company may has different strategies which affect the architecture

of the robot controller. It is therefore necessary to consider the controller

as a black box from which we must learn the controller-dependent delay

characteristics. Direct measurement of these delays is typically difficult, since

the different delay types are convoluted and hard to separate. An important

challenge is therefore the question of how to separate these two delays as,

depending on the executed task, a robot has to compensate for a different type

of delay.
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In this paper, we present a methodology for measuring and modelling the

inherent delays during robot control. We introduce an experimental setup

which allows us to collect evidence for both the actuation delay, as well as the

response delay. The collected data is then used to learn controller-dependent

predictive models of each type of delay. The learned predictive models can

be used by a robot to reason about timing and perform temporally precise

control.

Computer Control Box Robot Gyro/IMU

Transmission
Delay

Transmission
Delay

Actuation
Delay

Response
Delay

Processing Delay

Figure D.2: Left: Delays during the control of a robot manipulator. Transmission delay

affects information flow between main control computer and the robot control box.

Actuation delay and response delay are introduced in the communication between the

control box and the physical robot. Right: For delay modelling an external sensor is

mounted, e.g. a gyroscope, to measure discrepancies between command times and

execution times.

The contributions of this publication are three-fold. First, we provide a

generic method for measuring the actuation and response delay of a robot

manipulator. Due to its data-driven nature, the method can be used on a variety

of actuators. Second, we show how existing machine learning methods can

be used to model and predict the inherent delay. Finally, we show modelling

results for two widely used robot platforms, namely the Kuka KR 5 Sixx and

the Universal Robots’ UR10 robot. The acquired data is made publicly available

to the robotics community[38].
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D.2 Related work

Modelling time delays is a vital research topic in computer network engi-

neering. In order to ensure fast communication over large computer networks,

various models have been put forward to model the mean delay experienced

by a message while it is moving through a network [39]. These analytic

models typically require the introduction of assumptions, e.g. Kleinrock’s inde-

pendence assumption [40], to make them tractable. Yet, since the network

communication is based on a limited number of communication protocols,

it is reasonable to use and constantly refine such analytic approaches. An-

other domain in which latencies and delays play a vital role is Virtual reality

(VR). As noted in [41], latencies lead to a sensory mismatch between ocular

and vestibular information, can reduce the subjective sense of presence, and

most importantly, can change the pattern of behavior such that users make

more errors during speeded reaching, grasping, or object tracking. In VR

applications, measuring and modelling delays can be very challenging, since

the delay can heavily vary based on the involved software components, e.g.,

rendering engine, as well as highly heterogeneous hardware components, e.g.,

data gloves, wands, tracking devices etc. In [41] a methodology for estimating

delays is presented, which focuses on VR application domains.

In robotics, the delay inherent to control loops can have a detrimental

impact on system performance. This is particularly true for sensor-based

control used in autonomous robots. Visual servoing of a robot, for example, can

be sensitive to the delays introduced through image acquisition and processing

[42]. Similarly, delays in proprioception can produce instabilities during

dynamic motion generation. In [43], a dynamically smooth controller has

been proposed that can deal with delay in proprioceptive readings. However,

the approach assumes constant and known time-delay. A major milestone in

robot control with time-delay was the ROTEX experiment [44]. Here, extended

Kalman filters and graphical representation were used to estimate the state

of objects in space, thereby enabling sensor-based long-range teleoperation.

How to effectively deal with such communication delays has been a central
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research question in robotic tele-operation. Delays in robot control loops

are not limited to sensor measurements only. A prominent approach for

dealing with actuation delays is the Smith Predictor [45]. The Smith Predictor

assumes a model of the plant, e.g. robot system, and can become unstable in

the presence of model inaccuracies. A different approach has been proposed in

[46]. A neural network was first trained to predict the state of mobile robots

based on positions, orientations, and the previously issued action commands.

The decision making process was, then, based on predicted states instead of

perceived states, e.g. sensor readings. The approach presented in our paper

follows a similar line of thought. However, instead of predicting specific states

of the robot, we are interested in predicting the delay occurring at different

parts of the control loop.

D.3 Methodology

In this section, we describe a data-driven methodology for modelling delays

in robotic manipulators. We show how to acquire evidence for different types

of delays and how this information can be used in conjunction with machine

learning methods to produce predictive models for control.

D.3.1 Measuring the delay

The purpose of the presented method is to establish the actuation and

response delay that a high-level control program can expect when issuing

commands to a robotic controller. To measure these delays, we need to

synchronize the issuing of commands with the control loop of the robot

controller. To this end, we use the published current state of the robot, which

most controllers send out in each control cycle.

The overall system setup which will be used in the remainder of the paper

is depicted in Figure D.2 (left). A high-level control program is running on a

computer, which sends the commands to the robot control box. The control

box, in turn, calculates and issues the low-level commands that drive the
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robot. The delay between the high-level controller and the control box will be

referred to as the transmission delay. The transmission delay has already been

extensively studied in computer networking [39] and will thus not be treated

in this paper. It is particularly crucial in tele-operation scenarios, in which the

high-level controller and the robot control box may be separated by thousands

of kilometres.

In this paper, however, we focus on the delays incurred between the control

box and the robot manipulator. A command that is received by the control

box from the high-level program at time t = 0 is typically only executed after a

delay of ε1. This is the actuation delay. Similarly, once a command is executed

by the robot at time t = ε1, it takes another delay of ε2 until the motion is

reflected in the controllers memory and transmitted to the high-level program

running on the central computer. This is the response delay.

The fundamental idea of our approach is to compare time stamps at the

moment a command is issued, the moment the command is executed, and

the moment the command gets reflected in the published state of a robot. To

this end, it is important to know the ground truth about the true timing of the

robot movement. This is realized using an external apparatus in our setup,

e.g., a gyroscope or accelerometer, see Figure D.2 (right).

D.3.1.1 Determining ground truth

Since we want to measure the delay of the robot, we need a reliable and

accurate method of measuring robot motion. The method needs to measure

the current motion without adding a significant delay of its own. This can

be achieved by imposing a significantly higher sampling rate than the robot

controller.

We use microelectromechanical (MEMS) gyroscopes, or angular rate sen-

sors, for the revolving joints, and MEMS accelerometers for prismatic joints.

They offer very high sampling rates of several orders of magnitude higher

than many robot controllers publish (e.g. several kHz for affordable sensors),

and practically no delay from motion to available measurement. Such sensors
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cannot readily be used to infer where in the kinematic chain a motion has

occurred, hence measurements have to be performed a single joint at a time.

Gyroscope measurements often come with significant noise, while accelerom-

eter measurements suffer from drift. However, both of these issues can be

compensated for using simple offline filtering in-between measurement and

training the model.

D.3.1.2 Acquiring measurements

As mentioned before, our approach is based on comparing time stamps

throughout the robot control loop. To this end, we use the published state

from the robot as the main sample clock and reference. An experimental trial

starts at t = 0 upon reception of a first package from the controller. The system

time stamp is recorded as soon as data is read, and the byte-encoded package

is stored for later parsing to extract the current joint state. Upon reception, a

command is sent instructing the robot to start moving a single joint, which

we monitor with our angular rate sensor or accelerometer. The commanded

movement consists of a rapid acceleration in one direction, followed by a fast

deceleration before returning to return to the starting pose. The entire motion

trial takes about a second, and all packages received until the robot stands still

are stored. Sensor readings from the external sensor are stored by the central

computer in order to identify the ground truth time stamp of the moment in

which the robot moved.

There are several perturbations that can lead to variations in the incurred

delays, in particular physical perturbations. For instance, the force resulting

from the gravitational pull on the robot varies with the joint configuration of

the robot, just as the direction of motion effects whether the motor needs to

work against or along gravity. The different size of motors and gearing in the

robot also yields varying results. These perturbations lead to varying static

and kinetic friction in the moving parts of a robot. This variation in turn leads

to a varying actuation delay.

As the magnitude of the static friction is usually larger than that of the
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kinetic friction, we assume that the delay is mostly affected by the robot’s

joint configuration when the motion starts. We assume that the effect by the

other joints during a motion after the static friction has been overcome can be

neglected. A similar assumption of joint independence if often employed on

the joint position controller when using Independent joint control[35].

To acquire a representative data set for modelling delays, we therefore

need to map out the delay of each joint for all the different joint combinations,

moving in both positive and negative direction. To capture variance in the de-

lay, each combination of joint configuration and direction should be measured

several times.

D.3.1.3 Filtering data and computing delays

When extracting the delays, we evaluate the difference between the

recorded data. Before doing that, thought, we use a high order low-pass

FIR filter (Figure D.3) on the data from the angular rate sensor and correct

for any drifting of the accelerometer, based on data recorded while the sensor

was held stationary on the robot.

To calculate the delay, we evaluate our two data series generated in each

trial; the speed output from the robot controller and the filtered sensor data.

The actuation delay is the difference between the moment a command is sent

to the robot and the moment a sensor registers the motion, while the response

delay is the difference between the moment a sensor registers motion and the

moment it is reflected in the robot’s current speed data. Both are calculated

while taking into account the transmission delay from Figure D.2 (left). Even

when filtering out the noise, it can be challenging to establish the exact

moment in time when the sensor determines that a motion has started as

the measured speed is hardly ever zero. Instead we identify extrema of our

recorded data to detect the time difference between the set target speed, the

measured speed, and the reported current speed.
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Figure D.3: Gyroscope readings are filtered using a FIR filter. A 60 second datastream

(green), recorded without moving the robot, is passed through the filter to remove

noise (blue). The frequency component of the data before and after filtering is shown

in red and black, calculated using Welch’s power spectrum density estimate[47]

D.3.2 Learning Predictive Models of Delay

Next, we want to use the recorded data in order to learn predictive models

of robot latencies. Once a predictive model is learned, it can be used by a

robot to infer the most likely delay in a given situation. A common approach

in robot control is to use a path planner running on the central computer to

generate a starting joint configuration and an execution time of the trajectory.

To find the actual real time that the robot will use to get to the goal state, we

can query the learned predictive models for each moving joint. The individual

delay is then added to the execution time of each joint to identify the real

execution time.

As input features for the model we use the starting joint configuration of

the robot. As mentioned before, forces acting on the robot vary depending

on the joint configuration and impact in particular the actuation delay. The
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output of the model is the expected delay. We learn individual models for the

actuation delay and the response delay, since these two delays are unrelated.

In line with the assumption of independence between the joints, a separate

model is learned for each joint. Introducing the above structured approach,

allows for accurate predictions of the delay. To evaluate how a unified model,

predicting the delay of all joints, performs, such a model is also trained.

The goal of learning is to generate predictive models that can generalize

to new situations and lead to accurate predictions of the expected latencies.

To this end, we use three different machine learning methods, namely neural

networks (NN) [48], regression trees (RT) [49], and Gaussian processes (GPR)

[50]. We use these methods as they can all effectively recover nonlinear

relationships between input and output data.

In our specific implementation, we used a feed-forward neural network

with 30 neurons in a single hidden layer. Learning was performed using the

Levenberg-Marquardt [51] algorithm. In contrast, the regression tree method

hierarchically partitions the training data into a set of partitions each of which

is modelled through a simple linear model. Both NNs and the RTs produce

a single result and do not provide information about the uncertainty in the

predicted value. In contrast to that, GPR can learn probabilistic, non-linear

mappings between two data sets. Due to the inherent noise and related

phenomena, uncertainty handling is a crucial issue when dealing with delays.

By providing the mean and the variance of any prediction, the GPR ap-

proach allows us to reason about uncertainty of our prediction. Together, mean

and variance form Gaussian probability distribution indicating the expected

range of predictions. This information can potentially be exploited to generate

upper- and lower-bounds for the expected delays, which is in contrast to both

NN and RT.

As both NN, RT, and GPR are well known machine learning methods and

we do not add anything to these methods, the theory behind them will not be

covered further in this paper.
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Figure D.4: The Universal Robot UR10 with mounted measuring equipment. The

enclosure keeps the sensor at a stable temperature thus avoiding temperature-related

drift in measurements.

D.4 Results

D.4.1 Experimental setup

In our experiments, we model the performance of both a Kuka KR 5 sixx

(Figure D.1) and a Universal Robot UR10 (Figure D.4). To generate the

training data, we mounted a MPU6000 combined angular rate sensor and

accelerometer to the end-effector. To avoid temperature-related drifts, we

mount the sensor on the robot in an enclosure with low heat conductivity and

then let the sensor warm up before measurements. Since these robots only

have revolute joints, only the angular rate sensor is used, which outputs data

at a rate of 8 kHz.

To collect the data used for training the model, we perform a series of

short trials, wherein the robot is commanded to perform a fast acceleration

and deceleration motion. For controlling the Kuka robot, the Kuka RSI[15]
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Figure D.5: Typical plot of logged data from a single trial. 33,500 trials were completed

on each robot.

protocol is used. It operates with a sample rate of 83.3 Hz (12 ms). As argued

in [6], the UR10 is controlled using URScript SpeedJ commands. It operates

with a sample rate of 125 Hz (8 ms).
An example trajectory, along with typical outcome of a trial, can be seen

on Figure D.5. The plots clearly show a significant time difference in the

commanded speed, the reported speed and the measured speed. To capture

the variations of the delays, we performed trials on 4 different joints, moving

10 times in both positive and negative direction in 1,920 different joint con-

figurations. A total of 33,500 trials were performed on each robot in order

to generate a comprehensive dataset, to be released to the public[38]. For

purposes of machine learning, only a subset of the data was later used.

To be able to compare the performance of the two robots, we used the

same 1,920 physical joint configuration (i.e. all links vertical) for both robots

rather than using the same joint values. This is a necessity since the Denavit-

Hartenberg parameters of the robots are not identical and the home position

varies, thus positive joint rotation on one robot might lead to negative joint

rotation on the other. Sampling only a subspace of the robots’ total workspace
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Figure D.6: Actuation and response delay for joint 3 moving in positive direction as a

function of varying joint 2 and 3. The red graph is the mean and the gray area is ±2

standard deviations, corresponding to a 95% confidence interval. Note the different y

axis interval. Left: Kuka. Right: Universal Robot.

does not introduce bias in the data, but rather limits the model to predict

delays within that subspace. By sampling more poses, the model can routinely

be extended to cover the entire workspace if needed.
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Figure D.7: Combined distribution of the actuation delay of all joints. Note the

different x axis interval. Left: Kuka. Right: Universal Robot.

D.4.2 Delay output

As explained in Section D.3.1.3, delays are determined by evaluation of the

extrema of the recorded motions. An example of how the delays vary for the

two robots can be seen on Figure D.6. The distribution of the actuation delays

can be seen on Figure D.7, while a boxplot showing the individual delays per
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joint is shown on Figure D.8. The same plots for the reaction delays can be

seen on Figure D.9 and Figure D.10, respectively.
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Figure D.8: Boxplot of individual joint’s actuation delay. Note the different y axis

interval. Left: Kuka. Right: Universal Robot.
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Figure D.9: Combined distribution of the response delay of all joints. Left: Kuka.

Right: Universal Robot.
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D.4.3 Model comparison

The extracted delays were used to train and validate models based on

different machine learning algorithms, namely NN, RT, and GPR. For the NN

and RT algorithms, we used the standard MatLab implementation, while we

used GPstuff[52] for the GPR implementation. The starting joint configuration,

the actuated joint, and the rotational direction were used as input. The delays

that were measured at each input combination were used for training and

testing, using k-fold cross validation with 10 folds to limit overfitting the data

and to give an insight on how the model will generalize to an independent

dataset. The mean squared error (MSE) from each fold were averaged together

and used as a measure of how well the model predicts delays. Models for

predicting both the delay of individual joints, as well as a combined model

that can predict the delay of all joints were trained. The mean error of each

model is derived by taking the square root of the MSE and is shown in Table

D.1 and D.2. The tables also shows the resulting mean error if the delay was

assumed that of the median of the corresponding boxplots. This gives an

indication of the performance of the trained models. Lower values indicate

better generalization capabilities, while larger mean error values indicate poor

prediction performance.

D.5 Discussion

D.5.1 Evaluating the two robots’ delays

As it can be seen on Figure D.7, the actuation delay of the Kuka is sig-

nificantly higher than on the Universal Robot, even factoring in the higher

sample period; the average delay for the Kuka is 7.5 sample periods vs. 2.5

sample periods for the UR. If we relate the figure to the example from the

introduction, where a welding robot need to weld an object on a conveyor

belt moving at 0.5 m/s, our claim that it is important to compensate for the

delay is clearly justified. The Kuka robot would, without compensation, make
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Table D.1: Mean error in milliseconds of model fit for actuation delay.

Kuka Joint 1 Joint 2 Joint 3 Joint 5 Combined Average

Median 2.27 2.68 4.61 3.51 3.67 3.35

NN 1.79 2.55 4.74 3.37 3.21 3.13

RT 1.99 2.48 3.74 3.76 3.33 3.06

GPR 1.85 2.27 4.30 3.39 3.48 3.06

UR Joint 1 Joint 2 Joint 3 Joint 5 Combined Average

Median 6.18 4.64 6.08 2.59 5.33 4.96

NN 4.08 5.32 3.86 2.49 3.12 3.77

RT 4.63 5.41 4.28 2.72 3.42 4.09

GPR 5.01 4.89 3.68 2.47 3.36 3.88

Table D.2: Mean Error in milliseconds of model fit for reaction delay.

Kuka Joint 1 Joint 2 Joint 3 Joint 5 Combined Average

Median 2.13 2.37 4.30 3.09 3.33 3.05

NN 1.70 2.32 4.68 2.22 2.36 2.65

RT 1.86 2.21 3.62 2.31 2.37 2.47

GPR 1.63 2.17 4.23 3.11 2.63 2.75

UR Joint 1 Joint 2 Joint 3 Joint 4 Combined Average

Median 4.82 2.00 4.08 4.90 5.09 4.18

NN 4.11 2.48 4.24 5.22 4.84 4.01

RT 4.66 2.44 4.47 5.84 5.33 4.35

GPR 3.88 2.44 3.75 5.20 5.05 3.82

a welding seam displaced 4.5 cm ±0.5 cm from the target, while the Universal

Robot would miss with 0.75 cm to 1.25 cm.

A deeper look into the actuation delays, which is on Figure D.8, shows that

the delays in general only vary with a few ms for each joint. Using our method

for measuring the delay and assuming the delay constant at the median of
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each boxplot would thus decrease the error to within 0.3 cm for a delay within

±6 ms. If we include the whiskers of the boxplot, corresponding to ∼±2.7σ

or 99.3% of the data, the worst case error would within 0.85 cm for a delay

within ±17 ms.

Figure D.8 also shows that on both robots, it is joint 2 that has the highest

delay. This is the shoulder joint, and the one that lifts the most. This supports

our theory that gravity influences the actuation delay. Figure D.10 suggests

that the response delay on the other hand is not varying between the joints.

This is not surprising, as the response delay, as mentioned previously, is largely

incurred by the sampling clock, packing of data and transmission. This most

likely happens simultaneously for each joint.

The seemingly correlation between actuation and response delay on Figure

D.6 is a consequence of the relatively low temporal resolution of the robot

controller data. This is also why it is more dominant on the Kuka robot. As

the sum of the actuation and response delay will always be a multiple of the

sample period, an actuation delay a few ms below the mean at a specific pose

will result in a response delay a few ms above the mean at that pose.

A surprising finding on Figure D.9 is that the response delay for the Kuka

robot is more than one sample period, which suggests that sampling and

transmission of data takes place in separate sample clock cycles.

D.5.2 Evaluating the models’ performance

All of the models are able to predict the delays very accurately to within

a mean error of 5 ms and it is thus difficult to say anything conclusive about

which model is best. Though all of the models would have a mean error less

than 0.35 cm if used for a typical task like welding, which is an improvement

of more than a factor 12 for the Kuka robot and almost a factor 3 for the

Universal Robot, compared to using the controllers and not assuming any

delay. Comparing the learned models with measuring the delay and assuming
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it to be static shows an improvement between 6 % to 24 %.

The response delay for the Universal Robot shows the least benefit from

modelling. This is most likely due to the fact that the spread of the delays are

so small. The missing improvement with machine learning is thus a result of

the median delay yield a very good guess, and not a result of the models being

poor at learning those delays.

It is worth noticing that the mean error in some cases are significantly

higher for the Universal Robot models than those of the Kuka robot. This

correspond with Figure D.6, where the confidence interval is much broader

for the Universal Robot than for the Kuka.

It should also be noted that GPR does not only supply a prediction of the

delay, but also outputs a measure of uncertainty, which is not reflected in the

tables. For the Universal Robot’s large variance, this is certainly an added

bonus.

D.6 Conclusion

In this paper we presented a methodology for measuring and separating

actuation and response delays in robot control loops. In addition, we intro-

duced a data-driven approach for modelling inherent delays using machine

learning algorithms. We showed that the introduced models can be efficiently

used to predict occurring delays during temporally precise control.

Real world experiments were used to identify latencies in two widely used

robot platforms. The measured delay showed a large potential for improving

temporal precision, with more than a factor 12 improvement for one of the

robots.

All the employed machine learning algorithms showed similar abilities to

further improve the accuracy, with no algorithm showing significantly better

accuracy than the others. Still, Gaussian processes seem to be better suited
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for this task, since they provide a probability distribution over the expected

delay. In turn, such a distribution can be used to reason about upper- and

lower-bounds in temporal precision.

In our future work we will investigate how inverse models of time delay

can be learned. Given a specific time constraint during a control task, an

inverse model can be queried for the most appropriate action which will meet

the goals of the task while ensuring time constraints.
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