129 research outputs found

    Urban expansion occurred at the expense of agricultural lands in the Tarai region of Nepal from 1989 to 2016

    Get PDF
    Recent rapid urbanization in developing countries presents challenges for sustainable environmental planning and peri-urban cropland management. An improved understanding of the timing and pattern of urbanization is needed to determine how to better plan urbanization for the near future. Here, we describe the spatio-temporal patterns of urbanization and related land-use/land-cover (LULC) changes in the Tarai region of Nepal, as well as discuss the factors underlying its rapid urban expansion. Analyses are based on regional time-series Landsat 5, 7 and 8 image classifications for six years between 1989 and 2016, representing the first long-term observations of their kind for Nepal. During this 27-year period, gains in urban cover and losses of cultivated lands occurred widely. Urban cover occupied 221.1 km2 in 1989 and increased 320% by 2016 to a total 930.22 km2. Cultivated land was the primary source of new urban cover. Of the new urban cover added since 1989, 93% was formerly cultivated. Urban expansion occurred at moderately exponential rates over consecutive observation periods, with nearly half of all urban expansion occurring during 2006–2011 (305 km2). The annual rate of urban growth during 1989–1996 averaged 3.3% but reached as high as 8.09% and 12.61% during 1996–2001 and 2011–2016, respectively. At the district level, the rate of urban growth and, by extension, agricultural loss, were weakly related to total population growth. Variability in this relationship suggests that concerted urban-growth management may reduce losses of agricultural lands relative to historic trends despite further population growth and urbanization. Urbanization and LULC change in the Tarai region are attributable to significant inter-regional migration in a context of poor urban planning and lax policies controlling the conversion and fragmentation of peri-urban cultivated lands. Urban expansion and farmland loss are expected to continue in the future

    Evaluating the impact of highway construction projects on landscape ecological risks in high altitude plateaus

    Get PDF
    In China and other countries, many highway projects are built in extensive and high-altitude flat areas called plateaus. However, research on how the materialisation of these projects produce a series of ecological risks in the landscape is very limited. In this research, a landscape ecological risk analysis model for high-altitude plateaus is proposed. This model is based on the pattern of land uses of the surrounding area. Our study includes buffer analysis, spatial analysis, and geostatistical analysis. We apply the model to the Qumei to Gangba highway, a highway section located in the southeast city of Shigatse at the Chinese Tibet autonomous region. Through global and local spatial autocorrelation analysis, the spatial clustering distribution of ecological risks is also explored. Overall, our study reveals the spatial heterogeneity of ecological risks and how to better mitigate them. According to a comparison of the risk changes in two stages (before and after the highway construction), the impact of highway construction on the ecological environment can be comprehensively quantified. This research will be of interest to construction practitioners seeking to minimize the impact of highway construction projects on the ecological environment. It will also inform future empirical studies in the area of environmental engineering with potential affection to the landscape in high-altitude plateaus

    Evaluating the impact of highway construction projects on landscape ecological risks in high altitude plateaus

    Full text link
    [EN] In China and other countries, many highway projects are built in extensive and high-altitude flat areas called plateaus. However, research on how the materialisation of these projects produce a series of ecological risks in the landscape is very limited. In this research, a landscape ecological risk analysis model for high-altitude plateaus is proposed. This model is based on the pattern of land uses of the surrounding area. Our study includes buffer analysis, spatial analysis, and geostatistical analysis. We apply the model to the Qumei to Gangba highway, a highway section located in the southeast city of Shigatse at the Chinese Tibet autonomous region. Through global and local spatial autocorrelation analysis, the spatial clustering distribution of ecological risks is also explored. Overall, our study reveals the spatial heterogeneity of ecological risks and how to better mitigate them. According to a comparison of the risk changes in two stages (before and after the highway construction), the impact of highway construction on the ecological environment can be comprehensively quantified. This research will be of interest to construction practitioners seeking to minimize the impact of highway construction projects on the ecological environment. It will also inform future empirical studies in the area of environmental engineering with potential affection to the landscape in high-altitude plateaus.This research is supported by the Branch of China Road and Bridge Corporation (Cambodia) Technology Development Project (No.2020-zlkj-04); National Social Science Fund Projects (No.20BJY010); National Social Science Fund Post-financing Projects (No.19FJYB017); Sichuan-Tibet Railway Major Fundamental Science Problems Special Fund (No.71942006); Qinghai Natural Science Foundation (No. 2020-JY-736); List of Key Science and Technology Projects in China's Transportation Industry in 2018-International Science and Technology Cooperation Project (Nos. 2018-GH-006 and 2019-MS5-100); Emerging Engineering Education Research and Practice Project of Ministry of Education of China (No. E-GKRWJC20202914); Shaanxi Social Science Fund (No. 2017S004); Xi'an Construction Science and Technology Planning Project (Nos. SZJJ201915 and SZJJ201916); Shaanxi Province Higher Education Teaching Reform Project (No. 19BZ016); Fundamental Research for Funds for the Central Universities (Humanities and Social Sciences), Chang'an University (Nos. 300102239616, 300102281669 and 300102231641).Li, C.; Zhang, J.; Philbin, SP.; Yang, X.; Dong, Z.; Hong, J.; Ballesteros-PĂ©rez, P. (2022). Evaluating the impact of highway construction projects on landscape ecological risks in high altitude plateaus. Scientific Reports. 12(1):1-16. https://doi.org/10.1038/s41598-022-08788-811612

    Monitoring the spatial-temporal dynamics of urban green space in Shanghai from 2000 to 2020 with remote sensing data

    Get PDF
    MBArch - Màster Universitari en Estudis Avançats en Arquitectura-Barcelona: Gestió i Valoració Urbana i ArquitectònicaUrbanization is an important process of human development and change, and is the result of economic, cultural and social development. Along with the rapid development of the global economy there has been a rapid deterioration of the ecological environment. The harmonious and sustainable development of population, resources and the environment is an important research topic in the world today, and the creation of eco-cities with resource conservation, green space and good environment is the main trend and the main goal of urban development in various countries at present. Since the introduction of the policy of reform and opening up, Shanghai has entered a period of rapid urbanization, which has only slowed down in recent years. However, the building of an international metropolis in Shanghai has given rise to "urban diseases" such as high population density, limited land resources, deteriorating air quality, heat island effect. At the same time, the Shanghai government has adopted many policies and measures to improve environmental quality and build an eco-city. Based on this background, the aim of the article is to analyzing the temporal and spatial changes in Shanghai's urban green spaces and the differences between current situations and planning which can help to better build an ecological city. The data for this study were obtained from major satellite data and open platforms for land cover data. An NDVI analysis was carried out based on the data obtained and compared with the official land cover data. Fragstats has also been used to analyze an overall landscape pattern index for Shanghai. The results from the analysis show that: 1. The area of green space in Shanghai continued to decrease from 2000 to 2015 and increased from 2015 to 2020. The artificial surface area increased continuously from 2000 to 2010, especially between 2005 and 2010 when the city grew rapidly, and decreased from 2010 to 2020 when the urban growth rate tended to level off. Green space in the city centre decreases rapidly between 2000 and 2005, improves a little between 2005 and 2010, deteriorates again between 2010 and 2015, and improves considerably until 2020. 2. The comparison between the 2020 green space area calculated by GIS and the 2020 Shanghai land cover type map obtained by Copernicus Data Open Center shows that the overlap degree is 89.44%, which indicates that the protection and development of urban green space in Shanghai in the recent five years is good, and basically conforms to the planning goal. 5 3. Analysis of the landscape type transfer matrix reveals that a disproportionate amount of agricultural land has been transferred to built-up land, and the second largest area of water bodies transferred to built-up areas. 4. it is worth noting that the area of agricultural land, grassland and woodland used for construction has increased in recent years. 5. The analysis of the landscape pattern index reveals that there are many minor problems in Shanghai's urban development, with excessive density of urban buildings, excessive fragmentation of farmland and grassland, low landscape connectivity and irregular trends in patch shapes

    Construction and Analysis of Ecological Security Patterns in the Southern Anhui Region of China from a Circuit Theory Perspective

    Get PDF
    Located in an important biodiversity conservation area in the Yangtze River Delta, the habitats of many species have been severely eroded because of human activities such as tourism development. There is no relevant species conservation plan in place in the region, and scientific guidance on ecosystem change and corridor construction is urgently needed. In this study, we first assess ecosystem service functions based on the InVEST model; then, we assess ecological sensitivity and identify landscape resistance surfaces by constructing ecosystem sensitivity indicators; finally, we construct ecological security patterns by combining landscape resistance surfaces and circuit theory identification. The main results are as follows: (1) The high value area of ecosystem services is located in the southwest, while the northeast part of the study area has lower ecosystem services, and there is a trade-off between the ecosystem services in the study area. (2) There are 38 ecological sources in southern Anhui, with a total area of more than 5742.79 km2, that are the basic guarantees of ecological security, mainly located in the northeast of the study area, and woodland and grassland are the most important components, accounting for 18.4% of the total study area. (3) The ecological security pattern in the study area consists of 63 ecological sources, 37 important corridors, and 26 potential corridors, of which there are 28 pinch point areas and 6 barrier point patches in the study area, mainly located within Huangshan City and Xuancheng City. We recommend that when implementing restoration and rehabilitation measures in the future, policy makers should give priority to pinch points and barrier areas.</p

    Ecological risk assessment based on land cover change: A case of Zanzibar-Tanzania, 2003-2027

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesLand use under improper land management is a major challenge in sub-Saharan Africa, and this has drastically affected ecological security. Addressing environmental impacts related to this major challenge requires faster and more efficient planning strategies that are based on measured information on land-use patterns. This study was employed to access the ecological risk index of Zanzibar using land cover change. We first employed Random Forest classifier to classify three Landsat images of Zanzibar for the year 2003, 2009 and 2018. And then the land change modeler was employed to simulate the land cover for Zanzibar City up to 2027 from land-use maps of 2009 and 2018 under business-as-usual and other two alternative scenarios (conservation and extreme scenario). Next, the ecological risk index of Zanzibar for each land cover was assessed based on the theories of landscape ecology and ecological risk model. The results show that the built-up areas and farmland of Zanzibar island have been increased constantly, while the natural grassland and forest cover were shrinking. The forest, agricultural and grassland have been highly fragmented into several small patches relative to the decrease in their patch areas. On the other hand, the ecological risk index of Zanzibar island has appeared to increase at a constant rate and if the current trend continues this index will increase by up to 8.9% in 2027. In comparing the three future scenarios the results show that the ERI for the conservation scenario will increase by only 4.6% which is at least 1.6% less compared to 6.2% of the business as usual, while the extreme scenario will provide a high increase of ERI of up to 8.9%. This study will help authorities to understand ecological processes and land use dynamics of various land cover classes, along with preventing unmanaged growth and haphazard development of informal housing and infrastructure

    Big Cities. Big Water. Big Challenges: Water in an Urbanizing World.

    Get PDF
    This paper applies the water footprint methodology to six megacities across Africa, Asia, and Latin America to explore the effect of urbanization on water use and demand and determine what measures need to be taken to meet this demand. Key threats to water resources in many or all of the cities studied include: water stress or scarcity, pollution and decreasing water quality, and vulnerability to extreme weather caused by climate change

    The urbanization impact in China: A prospective model (1992-2025)

    Get PDF
    The gradual spread of urbanization, the phenomenon known under the term urban sprawl, has become one of the paradigms that have characterized the urban development since the second half of the twentieth century and early twenty-first century. The arrival of electrification to nearly every corner of the planet is certainly the first and more meaningful indicator of artificialization of land. In this sense, the paper proposes a new methodology designed to identify the highly impacted landscapes in China based on the analysis of the satellite image of nighttime lights. The night-lights have been used widespread in scientific contributions, from building human development indices, identifying megalopolis or analyzing the phenomenon of urbanization and sprawl, but generally they have not been used to forecast the urbanization in the near future. This paper proposes to study the urbanization impact in China between 1992 and 2013, and models a hypothesis of future scenarios of urbanization (2013-2025). For this purpose, the paper uses DMSP-OLS Nighttime Lights (1992 – 2013). After obtaining a homogeneous series for the whole period 1992- 2013, we proceed to model the spatial dynamics of past urbanization process using thePeer ReviewedPostprint (published version

    Land Change Science and the STEPLand Framework : An Assessment of Its Progress

    Get PDF
    This contribution assesses a new term that is proposed to be established within Land Change Science: Spatio-TEmporal Patterns of Land ('STEPLand'). It refers to a specific workflow for analyzing land-use/land cover (LUC) patterns, identifying and modeling driving forces of LUC changes, assessing socio-environmental consequences, and contributing to defining future scenarios of land transformations. In this article, we define this framework based on a comprehensive meta-analysis of 250 selected articles published in international scientific journals from 2000 to 2019. The empirical results demonstrate that STEPLand is a consolidated protocol applied globally, and the large diversity of journals, disciplines, and countries involved shows that it is becoming ubiquitous. In this paper, the main characteristics of STEPLand are provided and discussed, demonstrating that the operational procedure can facilitate the interaction among researchers from different fields, and communication between researchers and policy makers

    A Novel Technique for Modeling Ecosystem Health Condition: A Case Study in Saudi Arabia

    Full text link
    The present paper proposes a novel fuzzy-VORS (vigor, organization, resilience, ecosystem services) model by integrating fuzzy logic and a VORS model to predict ecosystem health conditions in Abha city of Saudi Arabia from the past to the future. In this study, a support vector machine (SVM) classifier was utilized to classify the land use land cover (LULC) maps for 1990, 2000, and 2018. The LULCs dynamics in 1990–2000, 2000–2018, and 1990–2018 were computed using delta (Δ) change and Markovian transitional probability matrix. The future LULC map for 2028 was predicted using the artificial neural network-cellular automata model (ANN-CA). The machine learning algorithms, such as random forest (RF), classification and regression tree (CART), and probability distribution function (PDF) were utilized to perform sensitivity analysis. Pearson’s correlation technique was used to explore the correlation between the predicted models and their driving variables. The ecosystem health conditions for 1990–2028 were predicted by integrating the fuzzy inference system with the VORS model. The results of LULC maps showed that urban areas increased by 334.4% between 1990 and 2018. Except for dense vegetation, all the natural resources and generated ecosystem services have been decreased significantly due to the rapid and continuous urbanization process. A future LULC map (2028) showed that the built-up area would be 343.72 km2. The new urban area in 2028 would be 169 km2. All techniques for sensitivity analysis showed that proximity to urban areas, vegetation, and scrubland are highly sensitive to land suitability models to simulate and predict LULC maps of 2018 and 2028. Global sensitivity analysis showed that fragmentation or organization was the most sensitive parameter for ecosystem health conditions. View Full-Tex
    • …
    corecore