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ECOLOGICAL RISK ASSESSMENT BASED ON   

LAND COVER CHANGE: 

A CASE OF ZANZIBAR-TANZANIA, 2003-2027 

 

 

ABSTRACT 
 

Land use under improper land management is a major challenge in sub-Saharan Africa, and this 

has drastically affected ecological security. Addressing environmental impacts related to this 

major challenge requires faster and more efficient planning strategies that are based on measured 

information on land-use patterns. This study was employed to access the ecological risk index of 

Zanzibar using land cover change. We first employed Random Forest classifier to classify three 

Landsat images of Zanzibar for the year 2003, 2009 and 2018. And then the land change modeler 

was employed to simulate the land cover for Zanzibar City up to 2027 from land-use maps of 

2009 and 2018 under business-as-usual and other two alternative scenarios (conservation and 

extreme scenario). Next, the ecological risk index of Zanzibar for each land cover was assessed 

based on the theories of landscape ecology and ecological risk model. The results show that the 

built-up areas and farmland of Zanzibar island have been increased constantly, while the natural 

grassland and forest cover were shrinking. The forest, agricultural and grassland have been highly 

fragmented into several small patches relative to the decrease in their patch areas. On the other 

hand, the ecological risk index of Zanzibar island has appeared to increase at a constant rate and 

if the current trend continues this index will increase by up to 8.9% in 2027. In comparing the 

three future scenarios the results show that the ERI for the conservation scenario will increase by 

only 4.6% which is at least 1.6% less compared to 6.2% of the business as usual, while the 

extreme scenario will provide a high increase of ERI of up to 8.9%. This study will help 

authorities to understand ecological processes and land use dynamics of various land cover 

classes, along with preventing unmanaged growth and haphazard development of informal 

housing and infrastructure. 
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1. INTRODUCTION 

In recent years, the ecological and environmental impacts caused by land transformation have 

been reported to grow at a very rapid rate and considered to be a major problem around the globe 

(Qiu, Pan, Zhu, Amable, & Xu, 2019; Shan et al., 2019). These ecological impacts caused by 

land transformation is connected with the exploitation of natural resources, destruction of 

biodiversity, as well as disturbing ecosystem structure that offer essential services to mankind 

including nutrient cycling, pollination, predator control, carbon sequestration and soil fertility 

(Benton, Solan, Travis, & Sait, 2007). 

According to  Belay & Mengistu (2019), Africa and Asia are the main areas with the high 

intensities and dramatic ecological problems caused by LU dynamics. The drivers like over 

populations, improper controlling of land resources, together with poor economic situations have 

made these regions be highly adopted with these ecological problems (Wangai, Burkhard, & 

Müller, 2016). For instance, the studies of Eva et al., (2006), show that between 1975 to 2000, 

more than 16% of forest cover and 5% of woodlands and grasslands have been destroyed in the 

African continent. In east Africa alone including Zanzibar, 48% of the tree cover was destroyed 

in the period of 29 years from 1986-2015 due to the rapid rate of deforestation and expansion of 

casual agricultural activities (Acheampong, Macgregor, Sloan, & Sayer, 2019). Most of these 

destructions were attributed to the threatening of an extremely limited number of natural 

resources, impairing agricultural lands, rising in irregular and unreliable urban areas, as well as 

increasing in landscape fragility and ecological shock (Winowiecki, Vågen, & Huising, 2014). 

In that sense, the appropriate majors in assessing both ecological health together with 

environmental quality are very essential in analyzing Land cover efficiency (Winowiecki, Vågen, 

& Huising, 2014). In addition to that, policies to prevent or mitigating ecological impacts of 

environmental changes are highly needed but however they require robust scientific evidence. 

This can not only provide significant suggestions for effective solutions to regional ecological 

problems, but also can promote the useful interaction of socio–economic–ecological development 

(J. Wang, He, & Lin, 2018). 

In dealing with such kind situation, assessing ecological risk conditions in the landscape using 

land change maps is an important aspect which can be used to quantify the environmental effects 

of immediate and long-term damage or harm of certain stressors to an ecosystem at a regional 

scale (X. Zhang, Shi, & Luo, 2013).  The concepts of ecological risk assessment (ERA) have 

begun back to the 1980s as an assessment tool to evaluate the likelihood of the potential adverse 
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effects of one or more stress factors on ecosystem (USEPA, 1992; Hakanson, 1980; Hunsaker et 

al., 1990). These techniques can aid an important role in formulating procedures that can help in 

reducing negative shock on ecosystem destruction as well as ensuring proper management and 

precise spatial allocation of the natural resources (De Araujo Barbosa, Atkinson, & Dearing, 

2015). They can be used in providing spatially explicitly assessment in several important areas 

include land cover, biodiversity, carbon sequestration, climatic regulation as well as water and 

soil-related ecosystems (Alizade Govarchin Ghale, Baykara, & Unal, 2019; Fernández-Guisuraga 

et al., 2019; Xiao et al., 2019). 

Ecosystem functioning indicators like landscape ecological risk indices which can be calculated 

from land cover maps can provide a better estimation on environmental effects as well as long-

term damage to ecosystems of a particular region (X. Zhang, Shi, & Luo, 2013). They can also 

facilitate in maintaining sustainable development in natural resources and ensure the preservation 

of integrity and stability of ecosystems, which is important for improving ecological security in 

fragile and intense ecosystems areas (Zang et al., 2017).    

Due to their high capability on providing the useful information in understanding ecosystem 

damage caused by all kinds of hazards, the studies of ecological risk assessment using land 

change maps have been widely increased in different area around the globe. They have been 

developed to analyze the temporal-spatial distribution of landscape ecological risk index in 

watershed area (Jin et al., 2019), identifies the landscape fragmentation level of green spaces as 

a results of built-up expansion (Tian, Jim, Tao, & Shi, 2011), identification of an ecological 

network and the most valued lands for protection (McNeeley, Even, Gioia, Knapp, & Beeton, 

2017), and among others. In all of these cases, remote sensing techniques in land use land cover 

changes have been used as a preliminary stage to acquire the land information first before 

performing further analysis on calculating ecological indices to assess the likelihood of ecosystem 

collapse of the given landscape.   

The ultimate goal in performing ecological risk assessment in any particular study is to generate 

the relevant planning information so that climatic and other ecological damages can be reduced 

to a minimum scale (Aurand, 1995). They seek to use historical land information with the 

influence of remote sensing to provide the scientific foundation for risk management in natural 

protection and biodiversity conservation, whose importance can serve in both current and future 

sustainability of natural resources (Xue et al., 2019). 
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Besides all of these ecological risk assessment benefits, and instead of enormous environmental 

and ecological problems caused by land-use changes, the studies of assessing ecological problems 

in African are still very narrow (Wangai et al., 2016).  According to a review conducted by 

Wangai et al., (2016) to assess ecosystem services publications in Africa, it was found that the 

gap related to ecosystem studies in Africa is still huge. This gap is highly influenced with 

insufficient data as well as heterogeneity of the influencing factors (Wangai et al., 2016). 

According to this review, Tanzania including Zanzibar are among those countries with few 

ecological assessment studies in Africa. The findings in this review have found that, after 

analyzing all articles accessible online via ISI Web of Science and open access journals, only 8 

ecological assessment articles were found to relate with Tanzania case studies for a period of 

twelve years (2004-2016). Moreover, in the recent assessment that we have done in online 

journals to review the studies which relate the land-use change and their implications on 

ecological problems in Zanzibar in the interval of 2000-2019, only 7 articles were found, none of 

them were employed to access the ecological risk conditions of Zanzibar landscape.  

 Ecological health condition around Zanzibar landscape is brutally affected by a combination of 

human and natural pressures (A Staehr, 2018). If not promptly checked, complete extinction of 

endemic animals or plants together with intense climatic conditions may occur in the near future 

(A Staehr, 2018). 

Therefore, the aim of this study is to assess the current trends and future projection of ecological 

risk of Zanzibar as consequences of land cover change. 

This aim can be achieved by performing the following specific objectives: 

 Producing land use land cover maps of Zanzibar island for the year 2003, 2009 and 2018; 

 Identify the dynamics of land-use changes in the study area within those selected times; 

 Projecting the land cover changes of Zanzibar island in the next 9 years; 

 Estimate the ecological risk indices in all cases. 

Thus, the outcome of this study may help in informing authorities to understand the ecological 

processes and land use dynamics of various land cover classes, along with preventing unmanaged 

growth and haphazard development of informal housing and infrastructure which may result in a 

gradual deterioration of the environment and a decline in the quality of life and ecosystem 

services now and for the future generations.   
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2. LITERATURE REVIEW 

2.1. Ecosystem services and their benefits  
 

Ecosystem services have been explained in a number of definitions and classifications 

(Sannigrahi et al., 2019). The most common definition of ecosystem services ‘are the benefits 

that people derive from nature’ (Egoh, 2009). According to the Millennium Ecosystem 

Assessment, ecosystem services are defined as the benefits that people obtain from the 

ecosystems, and these services can be classified into provisioning (e.g. fiber, fuelwood); 

supporting (e.g. nutrient cycling, soil retention); cultural (e.g. recreational and cultural benefits); 

and regulating (e.g. water and climate regulation) services (MA, 2005).  

These services play an important role in supporting life and human wellbeing in different aspects 

(Y. Wang, Li, Zhang, Li, & Zhou, 2018). The world bank report of 2006, estimated that 

ecosystem services provide support to more than one billion people who live in extreme poverty 

worldwide (World Bank, 2006). In Africa and most of other developing countries, ecosystem 

services consumptive output like crop and fish, contribute subsistence livelihoods and play an 

important role in providing household’s income, thus contributing in poverty reduction and 

minimizing vulnerability to the negative shock (Egoh, 2009; Langan, Farmer, Rivington, & 

Smith, 2018; L. Wang et al., 2019).  

On the other hand, the products derived from forests including construction timber, fuel-wood, 

fruits, medicine, and herbs are supporting a large group of communities in raising their national 

and individual income, thus provide an extensive benefit in the economic situation (Sannigrahi 

et al., 2019). In South Africa for example, more than 50 species that are derived from various 

plants have appeared to be used as herbal remedies during pregnancy and childbirth (Egoh, 2009). 

Similarly, around 40 plant species are used for veterinary purposes, and more than 400 medicinal 

plant species are considered as a commercialized trade product (Egoh, 2009).  

Apart from those economic benefits, ecosystem services provide a wider range of environmental 

contributions and stand as the main reasons for climatic regulations, water retention, nutrients, 

and soil cycling, as well as promoting human well-being (MA, 2005). Urban ecosystems 

including urban greenspace, for example, can significantly contribute to the wellbeing of city 

dwellers (McPhearson et al., 2016), and they particularly provide a beneficial for disadvantaged 

communities (Lakes & Kim, 2012). They can also provide a positive impact on climatic 

regulations by reducing heat islands effect and carbon sequestration as a result of contributing 

both physical and mental health of the urban population (John, 2015).  
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Alternatively, the coastal ecosystem like mangrove forest, seagrass beds, and coral reefs, provide 

strong support to hundreds of species of both hard and soft corals and fish as well as sea turtles, 

crustaceans, and marine mammals (A Staehr, 2018). 

 

2.2. The Current Status of Ecosystem Services 

As (MA, 2005) suggested, ecosystem service benefit “is the benefit that humans derive from 

ecosystems”. But in reverse, human activities have been coined as the main agent for a major 

loses or destruction of global natural ecosystems (Chi, Zhang, Xie, & Wang, 2019). They cause 

a major pressure in ecosystem species, by either improper use of natural resources, or due to 

increasing in demands of ecosystem services in a particular society. 

 In that sense, the phrase like “ecosystem service loss” is more connected with the costs that must 

be paid to relieve the impact of ecosystem destruction on human production and earnings (Haden 

et al., 2019). According to Millennium Ecosystem Assessment report of 2005, there is a massive 

decline and threatening of ecosystem health which are comprises with the provision of ecosystem 

services upon which individuals, communities and entire cultures depend (Overpeck et al., 2013; 

Rowland, 2019). This 2005 MA report had provided an estimation of more than 60% of the 

ecosystem services which have been assessed across the globe are already being degraded or are 

used unsustainably with the potential to become more degraded in the first half of this century. 

The drivers like the rapid increase in human population, mining activities, subsequent growth in 

urbanization and informal settlements, together with other threats, place enormous stress on the 

ecosystem heath and thus impacts their future sustainability (Engel, 2012). Zanzibar and Tanzania 

for example, have been reported to experience an extensive decline in the state of its environment 

through loss of natural habitats and biodiversity for more than three decades (A. I. Ali, 2016). 

Much of these changes are caused by the changes in LULC which are influenced by increase in 

human population, economic activities and poor management of urban developments (NEMC, 

2006).  

Alternatively, the 2018 WWF’s living Planet report, provide an estimation of up to 50% of the 

global freshwater and wetland habitats which have already been lost in the past 30 years since 

1970 due to various human activities and climatic variation (World Wide Fund For Nature 

(WWF), 2018). These freshwater and wetland habitats are more essential in maintaining 

ecological processes, as well as providing an appropriate water flows within an entire water 

catchment (Paul, 2013). Losing or destructing these habitats, would affect the environmental 

flows including reducing the volume, timing and even the quality of water flows which are very 
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essential for the survival of downstream habitats and species within those areas (Paul, 2013). 

 In case of forest ecosystems, which appear to be the most fundamental sources of services and 

global biodiversity, their ability to maintain their future sustainability is potentially threatened. 

The recent report   of Food and Agriculture Organization, provide an estimation of about five 

million hectare per year of global forest which have already been lost between 2005 and 2015 

(FAO, 2018). This estimation is very worse for the future development of biodiversity and 

ecosystem sustainability, as well as threat corresponding to the feedback on climatic system and 

food security (Garzuglia, 2018).  Without proper plan and management, the status of ecosystem 

services will continue to face unprecedented stress and pressure, that could result in their 

degradation and conversion, thereby affecting their sustainability in both current and future 

generations. 

2.3. The Role of Remote Sensing on Land use and Land Cover Change 

Remote sensing is the science and to some extent, the art of acquiring information about the 

Earth’s surface without actually being in contact with it (Paul, 2013). In combination with GIS, 

Remote Sensing (RS) provide a better opportunity in studying and analyzing the various form of 

the earth's information (Paul, 2013). It provides rooms to view the earth phenomenon from the 

space, which enables the comprehension of the cumulative influence of human activities on the 

earth's surface's natural state. 

One of the major applications of remote sensing techniques is the classification of remotely 

sensed data of multi-temporal images. These techniques have been considered as an ultimate root 

for various analysis and applications in the field of remote sensing (Müllerová, Pergl, & Pyšek, 

2013). The fundamental objective of remote sensing image classification is to divide the remotely 

sensed image into a number of classes (pixel group) in order to effectively examine and asses 

what changes have been occurred in each of those groups (J. Xu, Feng, Zhao, Sun, & Zhu, 2019).  

However, the classification process of remotely sensed images is sometime considered to be the 

most complex task influenced by various factors such as availability of high-quality images, 

ancillary data, proper classification procedure, and analytical ability of the researcher (Gao & Xu, 

2015) .  In most cases, it appears to be much harder to identify which is the best classifier to be 

used in a particular study due to either the lack of proper guidelines in selecting the algorithm or 

even the lack of availability of appropriate classification algorithms to a particular band (Gao & 

Xu, 2015). In that sense, many researchers have made a great effort in proposing the most 

effective classification methods to improve classification accuracy and as well as their results.  
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The most popular remote sensing classification methods proposed in different studies are 

supervised, and unsupervised classification. In supervised classification, the image pixels are 

classified by selecting representative samples for each land cover class (Training Sites or Areas) 

and then the classification algorithm applies these samples to the entire image (Bhattacharya, 

Carr, & Pal, 2016).  This process is done in three major steps including selecting training areas, 

generate the signature file and classify the image. In another case, in unsupervised classification 

the images are classified only by grouping the pixels into clusters based on their properties first, 

and then the classification of each cluster with land cover classes are done. In general, this 

classification method is considered as the most basic technique, since there is no need of training 

samples to classify the image. It is a simple way to classify the image with only two major steps 

including generating clusters and assigning classes (Bhattacharya et al., 2016). 

All of these classification methods can be further grouped in either statistical methods, decision 

trees, artificial neural networks, and other artificial intelligence algorithms (Xie, Li, Xiao, & 

Peng, 2016). Statistical methods such as maximum likelihood classifier and Bayesian classifier 

works in an assumption that the members of each class in each band follow a normal distribution 

in the feature space and calculates the probability that a given pixel belongs to a specific class. In 

this particular method, the classification accuracy decreases as the dimension of feature decreases 

(Xie et al., 2016).  

The decision tree methods like random forest classifier make no assumptions concerning the 

distribution of the input features and therefore they are robust and effective methods in managing 

nonlinear relationships among the class member (J. Xu et al., 2019). However, the effectiveness 

of the decision tree methods is highly influenced by the size of the feature space and thus are not 

appropriate methods for data with a high dimension of feature space (J. Xu et al., 2019). 

In the case of artificial neural networks (ANN) methods prove a powerful performance with a 

higher dimensional feature space compared to statistical classification methods because they are 

distribution-free (J. Xu et al., 2019). However, the most difficultness of using ANN models is its 

demands to requires a significant amount of training data and a considerable number of iterative 

training procedures to ensure that the models are trained successfully. Alternatively, the 

computation of ANN algorithms can be extraordinarily complex (J. Xu et al., 2019). 
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2.4. Future Provisions of Ecological Monitoring through Land Change Modeler  
 

Spatial and dynamic changes in LULC of the earth’s surface have a major influence on the 

destruction and future provision of ecosystem sustainability for both landscape structure and 

fragmentation of green space (Tian, Jim, Tao, & Shi, 2011). These dynamic changes in LULC 

can result in an increase in the level of land abandonment, starvation or even migration out of the 

affected region (Y. Wang et al., 2018). In that kind of situation, understanding the dynamics and 

future land cover trends has to be considered as a major component in approval strategies for both 

the planning and implementation of appropriate tools in conserving the degraded land.  

A number of computation algorithms for monitoring and predicting future land cover changes 

have been widely increased in recent years. The models like Markov chain (MC) (Al-sharif & 

Pradhan, 2014), artificial neural network (Pijanowski, Brown, Shellito, & Manik, 2001), cellular 

automata (Clarke & Gaydos, 1998), cellular Automata-Markov model (Arsanjani, Kainz, & 

Mousivand, 2011), binary logistic regression (Arsanjani, Helbich, Kainz, & Boloorani, 2012), 

and similarity weighted instance-based machine learning algorithm (Sangermano, Eastman, & 

Zhu, 2010) are among the common used models for the future prediction and simulation of 

changes in land cover. 

Land Change Modeler (LCM) for example, was found to be one among the effective modeling 

tool which incorporates CA-Markov chain based on a neural network to predict future land-use 

change (Eastman, 2006). This CA-Markov chain models incorporated in LCM are fairly simple 

and much powerful in modeling the complex process and changes in land use for planning 

purposes (Eastman, 2006). It models the future land cover changes by making an assumption that, 

the probability of system being in a certain time can only be determined if its previous state is 

known with the assumption that rates of change observed during the calibration period (T1 to 

T2), will remain the same during the simulation period (T2 to T3).  

LCM does also provides the tools that can simulate the future land-use changes and patterns and 

allowing testing of alternative planning scenarios. Simulating future land cover change under 

what called scenarios, can provide a better understanding of various planning alternatives, 

stimulating policy discussions between environmental and development goals, and therefore 

helping the responsible authorities in designing the new policies and procedures that create 

incentives for ecological conservation (McKenzie, E., Rosenthal, A., Bernhardt, J., Girvetz, E., 

Kovacs, K., Olwero, N. and Toft, 2012). 
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3.  STUDY AREA 

This study was conducted in Zanzibar (Figure 3.1), the small coastal island of about 2,461 km² 

in total, located at 39° 05’ E to 39° 55’ E and 4° 45’S to 6° 30’S Western Indian Ocean, in which 

tourism and agricultural activities are the major economic sectors contributing about 28% and 

40% of its GDP respectively (WB, 2019).  

Zanzibar is a part of the United Republic of Tanzania, and consists of two main islands which are 

Unguja and Pemba and with almost 50 other small islets (Myers, 2010; RGZ, 2008). These two 

islands are located 40 km off the mainland coast of East Africa in the Indian Ocean (Myers, 

2010). The two main islands are 50 km apart and are separated by the 700 meter deep Pemba 

channel. However, the current study uses the term Zanzibar referring to the island of Unguja as 

most of the people live in this island (Unguja), and because of Zanzibar city located in it (A 

Staehr, 2018). 

According to 2018 National Bureau of Statistics (NBS) census report, the overall population of 

Zanzibar island (include Pemba) is about 1,348,776 people and its annual growth increase in a 

very rapid rate. In the recent years, the population growth rate of Zanzibar has been reported to 

grow at a rate of 3.4 % annually (NBS, 2018). Natural population growth is considered as the 

main agent for this high rapid rate, but other factors including growing of tourism industry and 

economic influence has also attracted a significant number of migrants from Tanzania mainland 

and other parts of East Africa, making this island to be one among the highly populated islands 

in the world.   

Zanzibar has a tropical climate with four distinct seasons. “Kaskazi” (the hot season, which is 

between December and February and associated with either little or no rains), “Masika” which 

is the long rainy season from March – May, “Kipupwe” (the cold season, with strong winds 

between June and September), and “Vuli” which is very short rainy season from October – 

December. The annual rainfall of island is ranging from 1600 mm for Unguja and 1900 mm for 

Pemba respectively, and the air temperatures is ranging between 29 and 32ºC on average. 

Zanzibar island was originally forested, but pressures like population increase, human habitation 

and climate change and variability have resulted in widespread clearing of the forest and 

vegetation cover (M. Kukkonen & Käyhkö, 2014). 
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Figure 3. 1: Study Area-Zanzibar 

 

The land cover patterns around Zanzibar island are generally distributed under two different soil 

classes, namely the deep soil and the coral rag areas. The deep soil areas are mainly attributed by 

permanent cultivation and forest, while the later coral rag are characterized by cultivation and 

consequent scrublands (RGZ, 2008). However, all of these two soil classes are not stable in terms 

of its land cover and biotope characteristics. The hilly deep soil areas are reported to be more 

vulnerable to soil erosion, highly land use demands and simultaneously facing population 

pressure, which all of these influences the rapid and constant changes in land cover patterns and 

natural resource (M. Kukkonen & Käyhkö, 2014; Myers, 2010).  Alternatively, shifting 

cultivation characterized in coral rag areas create a constant element of changes, which under the 

pressure of diminishing area due to commercial and conservation land use may leads towards 

deterioration of ecosystems and valuable natural resources (Myers, 2010).   
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4. DATA AND METHODS 
 

4.1. Description of the data 

Data from different sources were used to achieve the objectives of this study. At very first stages, 

the remote sensed satellite images of Zanzibar island (Table 4. 1) at different time were obtained 

from USGS website (www.earthexplorer.usgs.gov/), and then compared based on their different 

temporal phenomenon. In that sense, three multispectral Landsat images of the year 2003, 2009 

and 2018 with spatial resolution of 30 m were downloaded from USGS website (Table 4.1).  

Ancillary data representing biophysical properties that were considered to influence land use 

changes were also applied in this analysis. These ancillary data were obtained by first 

downloading their original shape files including Zanzibar road, protected forest, buildings and 

villages as well as coastal region from (www.zansdi.environment.fi ). By means of digital 

elevation model (DEM) which was obtained from ( http://opendata.rcmrd.org ), we calculate the 

distance for each of these variables to create the biophysical properties of distance to the road, 

distance to the buildings, distance to the coast, distance to the forest and slope (Table 4.2). 

Protected areas including protected forest, governmental agricultural field, as well as open and 

restricted zones were also used to represent the constraints of land cover changes in the study 

region. These protected areas data were obtained by reclassifying the 2012 Zanzibar LULC map 

which was obtained from Zanzibar commission for land (COLA) to create a Boolean map of 0 

for protected areas and 1 for all other classes (Figure 4.3).  

  

http://www.earthexplorer.usgs.gov/
http://www.zansdi.environment.fi/
http://opendata.rcmrd.org/
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Dataset Description Projection Resolution Source 

Landsat 7, 

ETM+ 

Raw = 064, path = 

166, 

 Date: 14/01/2003  

 

WGS 1984, 

UTM Zone 

37N  

 

 

30 m 

 

www.earthexplorer.usgs.gov/ 

  

 

Landsat 5  

TM  

 

Raw = 064, path = 

166, Date: 

1/07/2009  

WGS 1984, 

UTM Zone 

37N  

 

30 m 

 

www.earthexplorer.usgs.gov/ 

 

Landsat 7, 

ETM+ 

Raw = 064, path = 

166, Date: 

18/07/2018  

 

WGS 1984, 

UTM Zone 

37N 

30 m www.earthexplorer.usgs.gov/ 

 

Digital 

Elevation Model 

(DEM)  

SRTM 

Clipped from 

Tanzania Dem  

 

WGS 1984, 

UTM Zone 

37N  

 

STRM 

30 m 

 

 

http://opendata.rcmrd.org   

Table 4.1: Satellite Data 

 

4.1.1. External variables  

In modeling LULC change for a specific area, the variables influencing or controlling the land 

cover change on that area should be properly used as independent variables, and the LU maps 

should be used as dependent variables. The inclusion of independent variables in land change 

modeling is very essential since these variables ensure the future land cover maps are always 

predicted with existing patterns and drivers of changes in that region (Bulley, & Fürst, 2017). 

In this study, the selection of independent variables was based on reviews related to similar 

models, researches conducted in other developing countries as well as the local circumstances of 

Zanzibar island.   In that sense, the variables slope, distance to the road, distance to the forest, 

distance to buildings, distance to the coast and protected areas were all selected as independent 

variables to simulate the future land cover change for Zanzibar city.  

The variable “slope “was chosen to represent the biophysical conditions of the study area. 

According to (Liu, 2009; Arsanjani et al., 2013), the flat topography has much influence on land 

cover changes than rugged topography, and this theory has already been used in many similar 

models with positive results (Zhao et al., 2014). 

“Distance to the roads” and “distance to the forest” were all connected to economic 

circumstances. The chosen of distance to the forest in economic factors is connected with the fact 

that in Zanzibar, the customs of converting forested land into either built-up areas or farmland is 

one of the major reason of land-use dynamics, and this is highly caused by the economic situation 

of Zanzibar population (M. Kukkonen & Käyhkö, 2014). This variable is also related to local 

http://www.earthexplorer.usgs.gov/
http://www.earthexplorer.usgs.gov/
http://www.earthexplorer.usgs.gov/
http://opendata.rcmrd.org/
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spatial policies forbidding any constructions or development activities in protected forest (M. 

Kukkonen & Käyhkö, 2014). 

We regard “distance to the coast” and “distance to buildings” to be connected in the social factors. 

In this case, the variable “distance to the coast” confirms the global trend towards higher 

quantities of land-use changes in coastal regions (Ebadati, 2018).  And for the second variable 

“distance to the buildings” express the local social and planning conditions of Zanzibar, in which 

the houses are built relatively close to each other due to subdivisions of small landholdings. In 

other case, this phenomenon is also related to spatial interactions, provided that the land-use 

changes are highly attracted by similar changes in their neighboring areas (M. O. Kukkonen et 

al., 2018; ToblersFirstLawofGeography, n.d.). 

And in the case of the remaining variable “protected areas”, it has been used to represent the local 

spatial policies that have either obstructed or indirectly stimulated land-use dynamics (M. O. 

Kukkonen et al., 2018). 

 

Dataset Description Projection Resolution Source 

Dist-t-

road  

 

Vector converted 

to raster; Euclidian 

distance to the road  

WGS 1984, 

UTM Zone 

37N  

Re-sampled 

to 30m 

www.zansdi.environment.fi   

(Commission for Land 

administration Zanzibar)  

Dist-t-

build  

 

Vector converted 

to raster; Euclidian  

distance to the 

building  

WGS 1984, 

UTM Zone 

37N  

 

Re-sampled 

to 30m 

www.zansdi.environment.fi 

Dist-t-

forest  

 

Vector converted 

to raster; Euclidian 

distance to the 

building  

WGS 1984, 

UTM Zone 

37N  

 

Re-sampled 

to 30m 

www.zansdi.environment.fi 

Dist-t-

coast  

 

Vector converted 

to raster; Euclidian 

distance to the 

beaches  

WGS 1984, 

UTM Zone 

37N  

 

Re-sampled 

to 30m 

www.zansdi.environment.fi 

slope  

 

Slope calculated 

from digital 

elevation model  

WGS 1984, 

UTM Zone 

37N  

Re-sampled 

to 30m 

http://opendata.rcmrd.org 

Protected 

areas/ 

Constraint 

Vector converted 

to raster;  

Reclassify to have 

0 for protected 

areas and 1 for all 

other classes  

WGS 1984, 

UTM Zone 

37N  

 

Re-sampled 

to 30m 

www.zansdi.environment.fi   

(Commission for Land 

administration Zanzibar  

Table 4. 2: External Variables 

  

http://www.zansdi.environment.fi/
http://www.zansdi.environment.fi/
http://www.zansdi.environment.fi/
http://www.zansdi.environment.fi/
http://opendata.rcmrd.org/
http://www.zansdi.environment.fi/
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4.2. Methods 

The overall methodology for this study was carried out into three major steps (Figure 4.1).  First, 

the land use land cover classification was performed using random forest classifier to generate 

three LULC maps of 2003, 2009 and 2018. Next the land cover maps for the future scenarios 

were modeled using land change modeler of the TerrSet 18.3 software. And finally, the ecological 

risk indices for each map and each district of Zanzibar were calculated by first computing the 

landscape metrics using LECOS plugin in QGIS 3.8, followed by applying the formulas from 

various literatures for ERI assessment (Xue et al., 2019; F. Zhang et al., 2018; X. Zhang et al., 

2013). 

 

 

4.2.1. Image classification 

Pre-processing of all three satellite images (2003, 2009 and 2018), Zanzibar administrative 

boundary, together with all ancillary data Shapefiles, was performed by using ArcGIS 10.6. All 

datasets were projected to WGS 1984, UTM Zone 37S coordinate system, followed by band 

combination, clipping of the study region, and resampling of each one of them to appear in the 

same spatial resolution of 30 m.  

Training Samples Shapefile of five classes including built-up, grassland, forest, wetland and 

farmland were generated by digitizing each of the satellite images. With these generated five land 

Figure 4. 1: Methodological framework 
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use classes training samples, the random forest classifier algorithm was employed in RStudio 

v3.5.3 (R Core Team, 2018) to produce land use maps for each study year. 

Random forest algorithm is a supervised machine learning algorithm that generates estimators 

which fits a number of decision trees on various subsets of the training data set. The algorithm 

creates decision trees on data samples and then gets the prediction from each of them and finally 

selects the best solution by means of voting (Gislason, Benediktsson, & Sveinsson, 2006). 

Random forest classifier is mainly used for classification problems, since it provides better results 

due to its capability of reduces over-fitting problem by averaging the result (Gislason et al., 2006). 

In this case, the composite image for each year and their corresponding training samples were 

separately imported in the model algorithm to produce LULC maps for each year.  

The produced LULC maps were then used to calculate the percentage changes for each LULC 

classes in the study region via a formula indicated below. 

 

𝐿𝐶𝐸 =
𝐿𝐶𝑓 − 𝐿𝐶𝑖

𝐿𝐶𝑓
 × 100% 

Where:  

LCE: Land cover change  

LCf: land cover area in final map  

LCi: Land cover area in initial map 

 

4.2.2. Accuracy assessment 

The classifications result for each of the classified image were validated through an accuracy 

assessment process using data points from classified satellite images, and then verified with the 

ground truth points collected from Google Earth. The ground truth process was undertaken to 

ensure that the observation appears in classified images refers to what is actually on the ground 

by correlating with the corresponding features on the image scene (Tilahun, 2015). About 200 

ground truth points were collected in Google Earth for each year of the classified images. These 

ground truth points were then compared with the pixels of the classified images using ArcGIS 

10.6. Finally, the confusion matrix for each of the classified image was generated and used to 

calculate the overall accuracy, producer’s accuracy, user’s accuracy, as well as the kappa 

coefficient.  
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4.3. Descriptions of the chosen scenarios 

4.3.1. Business as usual (2027BAU) 

In this scenario, the 2027 map was modelled based on the existing land use policies, plans and 

regulations in Zanzibar city. Therefore, the protected area constraint (Figure 4.3 left) that was 

designed to ensure that no land use change will happen in all of the existing protected and 

restricted zones were employed in this scenario. The focus here was to have a clear understanding 

of what would have to happen in the future land cover change if nothing regarding to the land use 

policies and restrictions would be changed in the study region. 

 

4.3.2. Conservation scenario (2027CONSV) 

In 2027 conservation scenario, the 2027 land use map was modelled by employing constraint that 

make restrictions of no land use change in all substantial agricultural areas, the high coral forest 

as well as in all restricted zones (Figure 4.3 right). The idea here was to conserve forest and 

substantial agricultural areas from being exploited by informal settlement and casual farming 

activities which are considered to be the main agents for unreliable land cover changes in 

Zanzibar (M. O. Kukkonen et al., 2018). This scenario is also related to local spatial policy of 

Zanzibar in forbidding construction of buildings in open agricultural areas and restricted forest 

(Kukkonen et al., 2018; RGZ, 2008). 

 

4.3.3. Extreme scenario (2027EXTM)  

In extreme scenario, we modelled 2027 land cover map without employing any constraint and 

restriction policy, such that the land use changes are allowed in any area within the study region. 

The reason behind, is to analyze what would happen in the future land cover changes if we ignore 

any protection majors and allow land use changes to occur anywhere in the study region.  

This is very important scenario in Zanzibar, even more than business as usual. It is because in 

Zanzibar the development and construction of the buildings in random way and without following 

restrictions is one among the major common problem facing the urban planning (M. H. Ali & 

Sulaiman, 2006). And therefore, it is really important to inform authorities on the future 

consequences of this defective habits such that the authority can take a quick response.   
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4.4.  Preparation of external (independent) variables  

Before applying land change modeler (LCM) to model the future scenarios of land cover change, 

the external variables (both constraints and factors) that was considered to influence or restrict 

the land cover changes in the study region were prepared.  

Constraints are variables that restrict or limit land-use changes in specific areas based on land-

use policies, rules, and regulations. These variables are expressed in form of a Boolean map such 

that those areas which are restricted from land-use changes are being assigned a value of 0 

(unsuitable), while those areas in which land-use changes are permitted, the value of 1are 

assigned (suitable) (Eastman, 2006). 

In another case, factors are the variables that influence the dynamic changes of the land cover 

depending on the appropriate activity under consideration. These variables are not reduced to 

simple Boolean constraints, and therefore, most commonly measured on a continuous scale 

(Eastman, 2006). 

 

4.4.1. Factors  Preparations 

As mentioned earlier, the variables distance to the road, distance to the forest, distance to the 

buildings, distance to the coastline as well as the slope were chosen as external factors influencing 

the land use change in this study.  

These variables were first prepared by calculating Euclidean distance for each one of them in 

Arc-GIS 10.6. Next, their resultant distance maps were imported to IDRISI Selva v17.02 and 

standardized them in a continuous scale of suitability (Figure 4.2).  

Rescaling and standardizes the factors in a continuous scale of suitability, help in enhancing the 

performance and speed of Multi Criteria Evaluation (MCE) (Hirscher, Schweizer, Weller, & 

Kronmüller, 1996). And because, the Multi Criteria Evaluation (MCE) module in IDRISI has 

been optimized for speed using a 0-255-byte level of standardization (Eastman, 2006), then the 

fuzzy standardization module in the scale of 0-255 with three different functions were used to 

rescale each of these variables. 

 Araya & Cabral (2010), have already described these three functions in designing the criteria’s 

for the factors to be used in decision rule. These functions include sigmoid, J-shaped and linear 

functions with some adjustable settings. And therefore, based on these three opinions, all factors 
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in this study were standardized and categorized. 

In case of the distance to the forest, distance to the buildings and distance to the coastline, linear 

monotonically decreasing function with control point a = 0, and d = 12241, 6467, 12802 

respectively were used, implying that suitability decreasing with distance. In this context, the 

parameter a implies the closer distance from variable, while b represent the highest distances of 

each variable obtained from the distance maps calculated in ArcGIS. 

Since in Zanzibar there is a policy which restricting any constructions or development activities 

within 20 m buffer from the road networks, a linear symmetric function with control point a = 0, 

b = 20, c = 20 and d = 10607 was applied for the distance to the road. This means that, the areas 

within 20 m are not suitable for LU changes. However, areas between 20 m and 10607 m the 

suitability is decreasing with the highest suitability being near to a 20 m.  

And finally in case of slope variable, the sigmoidal monotonically decreasing function with 

control point a = 0, and c = 17 were used. This is because, for the slope purposes in Zanzibar, all 

areas above 17% of slope, are considered to be less suitable or invulnerable for LU changes. 

 

 

Figure 4. 2: Standardized factors 



 

19  

4.4.2. Constraints 
 

Two constraint maps were created in this study, one for business as usual, and the rest for 

conservation scenario (Figure 4.3). The constraint for business as usual was created by 

reclassifying 2012 LULC map of Zanzibar island which was obtained from Zanzibar commission 

for land (COLA) and assign the value of 0 for those protected areas (to exclude them in LULC 

changes), and 1 for all other areas (suitable and more vulnerable for LULC changes). The 

constraint map for conservation scenario was created by assigning the value of 0 for those 

protected areas, high coral forest cover, as well as all subsidence agricultural sites. The focus was 

to exclude all of these areas in future land cover changes.  However, in all other areas, the value 

of 1 was assigned implying that they are allowed for future LULC changes. 

 

Figure 4. 3: Constraints Maps 
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4.5. Modelling Future Scenarios with LCM 

We model land cover for 2027 in three different scenarios based on constraint maps. With three 

selected factors and protected area constraints (Figure 4.3 right) the land cover for business as 

usual was simulated. The land cover for the conservation scenario was modeled by combining 

the three selected factors and the conservation constraint (Figure 4.3 left). And in case of extreme 

scenario, the 2027 land cover was modeled without employing any constraint, only the three 

selected external factors were used.  

In this stage of modelling the future scenarios, three steps of analysis including change analysis, 

transition potential, and change prediction were performed. 

4.5.1. Change Analysis 

The first step of modelling land cover maps with land change modeler is to perform change 

analysis stage in which the historical land cover maps should be used as input images to examine 

the amount of gain and losses, net change, and contributor to change from each category of land 

cover classes within the specified time period. 

In this study, the change analysis process was performed in two different steps. First, the maps 

of 2003 and 2009 were used as an input images to derive all historical information described 

above including the maps of gains and losses, contributions to net change and transitions of land 

cover classes, as well as the spatial trend of land-use classes. The focus in this first phase was to 

use these historical pieces of information to simulate the land cover map for the year 2018 so that 

it can be compared with the actual classified map of 2018 to estimate the predictive ability of the 

model (model validation).  

And in the second phase, the change analysis process was performed by employing the land use 

maps of 2009 and 2018 as input images. In this case, the idea was to acquire the same information 

described in step one above to predict the land use maps for the 2027 scenarios.   
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4.5.2. Transition potential 

After finishing the first step of change analysis, the next step was to test the explanatory power 

for each external variable, as well as selecting transition sub-models that are relevant in the 

prediction of the future scenarios.  

Therefore, in this stage, first, the Cramer’s power of all external variables were tested to identify 

all variables with a potential explanatory power. These Cramer’s power are ranging from 0 – 1, 

in which the variables with at least 0.15 Cramer’s value are considered to be potential in land use 

changes, whereas those having value from 0.4 onward are much potential (Eastman, 2006).       

The results of Cramer’s power for each tested variable are illustrated in (Table 4.1) below. 

 

Explanatory Variable Overall Cramer’s V value 

Distance to buildings 0.2852 

Distance to road 0.1836 

Distance to the coastal area 0.1653 

Distance to the forest 0.1354 

Slope 0.0725 

Restricted areas 0.1932 

Table 4. 3: Cramer's power for external variables 

Due to the lower Cramer’s value, negative influence on the modelling results, as well as less 

literatures information regarding to Slope issues in Zanzibar, this variable was excluded in 

analysis.               

In the same sense, the variable distance to the forest was also removed from the analysis due its 

lower Cramer’s power and its negative influence on the analysis accuracy. 

Therefore, only three external factors including distance to the building, distance to the road and 

distance to the coast, and one constraint map for each scenario (except for extreme scenario, 

where constraints were not employed) were used in this analysis. 

The next step was to combine all selected variables (factors and constraint) together with 

transitions sub-models between 2003 and 2009 and employ Multi-Layer Perceptron (MLP) to 

generate transition potential for 2018 land cover map prediction. 

Multi-Layer perceptron (MLP) is a feedforward artificial neural network (ANN) composed with 

one or multiple layers including input, output and hidden layers between input and output layer. 

The term feed-forward method implying that the data flows in one direction from input to output. 
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The main algorithm of this model is computing the linear output from nonlinear inputs according 

to the weights by using a nonlinear activation function (Gardner & Dorling, 1998). 

MLP employs a supervised learning technique called backpropagation for training. The back-

propagation algorithm composed of two steps which are forward pass and backward pass.  In the 

forward pass, activation transmits from input to output layer which means that the signal flow 

moves from the input layer through the hidden layers to the output layer. While in backward pass 

errors propagated from output to hidden layer (Gardner & Dorling, 1998).  

To model land-use transitions in LCM, either Logistic Regression, SimWeight or MLP neural 

network can be applied. However, in this study, the MLP neural network was applied because of 

its capability of running multiple transitions of up to 9 per sub-model as well as explanatory 

variables at once (Eastman, 2006).  

To achieve the better accuracy on the results of Multi-Layer Perceptron only major land cover 

transitions together with only the driver’s variables with higher Cramer’s power should be 

included in the transition sub-model (Eastman, 2006). 

Based on this principle, together with the information from literatures regarding on study region, 

only six major transitions including grassland to built-up, forest to built-up, grassland to farmland, 

forest to grassland, forest to farmland and farmland to grassland were selected in this study. 

Together with four selected variables, a Multi-layer perceptron was employed with an accuracy 

of 68.4% to generate the transition potentials (Figure 4.5) that were then used by Markov chain 

method to predict the Land use map for the year 2018.   

The same procedures were also applied to model the 2027 maps. 
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Figure 4. 4: Transition Potential 2003 - 2009 

 

4.5.3. Change prediction 

The third stage in modeling future scenarios was to perform change prediction to a future 

specified date for the allocation of land cover changes. In this stage, the default procedure in 

LCM (Markov Chain analysis) was applied to determine the amount of changes at a date of 2018 

based on historical land cover maps of 2003-2009. 

Here, the algorithm determines exactly how much land would be expected to transition from the 

later date (2009) to the prediction date (2018) based on a projection of the transition potentials 

maps that was generated and then creates a transition probabilities file (Eastman, 2006). 

With this transition probabilities file, two predictors maps which are soft prediction map and a 

hard prediction map were generated. While a soft prediction map is a continuous mapping of 

vulnerability to change which provides an indication of the degree to which the areas have the 

right conditions to precipitate change in 2018, a hard prediction map is an actual projected map 

of 2018, in which each pixel is assigned one land cover class; the class that it is most likely to 

become  (Eastman, 2006). 
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4.5.4. Model validation 

To ensure the predictive ability and performance of the model. Model validation and calibration 

must be performed before starting the prediction of LU changes for the specified date. Performing 

validation of the model is a very important step because the efficiency and usability of the model 

are always depending on the output of the validation (van Vliet et al., 2016).  

Since several studies have already proposed the usage of the confusion matrix  (Congalton, 2001) 

in assessing the accuracy and performance of the model, we also compute the confusion matrix 

by performing cross-tabulation to compare the actual and simulated maps of 2018. The confusion 

matrix which was generated after performing cross-tabulation was then used to calculate the 

overall accuracy, user accuracies, producer accuracies, and kappa coefficient.  

In addition to that, two other kappa coefficients were also computed to gain more information on 

the performance of the model. The other two kappa coefficients are Khisto and Klocation. 

According to Serna, (2011), Khisto is used to measure the similarities in the number of cells 

between simulated and reference maps. In other words, this kappa is responsible for measuring 

quantitative similarity between two compared maps. In another case, Klocation is used to measure 

the similarities in the spatial distribution of classes but does not differentiate between classes that 

are close or distant and it is independent of the total number of cells per class (Serna, 2011).   
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4.6. Calculation of Ecological risk indices 

The final step of our analysis was to compute ecological risk indices for each LULC map, as well 

as for each district of Zanzibar island and then comparing their results. This stage was done in 

two major steps. First the landscape metrics (patch number and patch area) for each LULC maps 

was calculated using LECOS plugin in QGIS 3.8, and then the formulas described in section 4.6.1 

below were used to calculate ecological risk indices for each map.  

 

Ecological Risk index (ERI)  

Provide an indicators of the negative environmental impacts that may occur or are occurring 

due to one or more external factors (USEPA, 1992; Hakanson, 1980; Hunsaker et al., 1990, X. 

Zhang et al., 2013) . 

Mathematically: 

𝐸𝑅𝐼 = ∑
𝐴𝑘𝑖

𝐴𝑘

𝑛

𝑖=1

𝑅𝑖 

Where: 

ERI: The ecological risk index of the risk area 

Ak: is the total area of kth region   

Aki = is the ith landscape area/class area 

Ri: is the ith landscape/class loss index which can be calculated through formula below. 

𝑅𝑖 = 𝐹𝑖 ∗ 𝑆𝑖 

Where: Fi, is the ecological fragility index which is referred as the ability of a landscape to 

resist the human disturbance. 

 According to Zhang et al (2013), and the knowledge of our study region, the Fi value of 5 for 

built up, 4 for water body, 3 for grass land, 2 for farm land and 1 for forest were used in this 

study. Additionally, for an effective result, these values were normalized before directly being 

used in calculations of ecological risk index.  

Si is the landscape disturbance degree index of ith landscape (Jin et al., 2019), which can also be 

calculated via a formula. 

 

𝑆𝑖 = 𝑎𝐶𝑖 + 𝑏𝑁𝑖 + 𝑐𝐷𝑖                                                                     
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Where: 

Ci: Land scape fragmentation, it reflects the changes in landscape structure and ecological 

process,  𝐶𝑖 =
𝑛𝑖

𝐴𝑘𝑖
 

Ni: Land scape isolation, refers to the degree of separation of  patches in a given landscape type, 

𝑁𝑖 =
𝐴𝑘

2𝐴𝑘𝑖
√

𝑛𝑖

𝐴𝑘
 

Di: Landscape dominance index, describe the dominance of patches in a given landscape,  

 

𝐷𝑖 =
𝑄𝑖 + 𝑀𝑖 + 𝐿𝑖

3
 

 

ni: Is patch number of ith land scape, Qi: Ratio of the cell with ith patch and total cell, Mi: 

Ratio of the number of ith patches to total patches and Li: Ratio of ith patch area to the total 

area. And a, b and c: represent the weight of Ci, Ni and Di respectively where a + b + c = 1 

(Zhang et al, 2013). 
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5. RESULTS 

5.1. LULC changes 2003 - 2018 

Figure 5.1 below illustrate the LULC classified maps for the year 2003-2009. As it can be seen, 

the visual interpretation of the classified images explores extensive changes in various land cover 

classes in the study region especially the rapid expansion of built up area as well as decrease in 

forest cover. The high increase in built-up area is highly exposed in eastern zone of the study 

region which are near to the urban center of Zanzibar island. 

 

Figure 5. 1: LULC classified maps for the year 2003-2018 
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5.2. Accuracy assessment 

Accuracy assessment for each land use map was performed in order to find classification errors 

and make the produced land cover maps become reliable and easily interpretable by users. Kappa 

coefficient, overall accuracy, user accuracy as well as producer accuracy were all calculated and 

the assessment results were summarized in (table 5.1, 5.2 and 5.3) below.  

The assessment results for each of the produced land cover maps provide an overall accuracy 

ranging from 74% - 78%, and overall kappa coefficient which is ranging from 0.68 – 0.71.  On 

the other hand, the users and producer’s accuracies computed for each of the classified maps were 

all above 65%. These results indicating that the classified images have met a good level of 

accuracy and thus they are satisfying for the study analysis.  

In all of the three classified images, the wetland has shown a high user’s accuracy (80% - 89%) 

compared with other land use classes. This implied that the majority of their pixels were correctly 

classified in their respective classes. However, in each classified image either farmland, grassland 

or forest cover provides a minimum users or producers accuracy (63%-80%).  

The maximum user’s accuracies provided by the wetland can be justified by their distinctive 

characteristics in comparisons with other LU classes. This characteristic makes them easily being 

discriminated by classification algorithms against other land use classes during the classification 

process. However, on another side, the lowest users and producer’s accuracies for farmland, 

grassland and forest cover can be explained by their spectral property similarities among them 

(Melville, Lucieer, & Aryal, 2018). 

overall accuracy 76% 
      

kappa 0.69 
              

LULC classes Built-up Forest grassland farmland Wetland Total User accuracy 

Buildup 32 0 5 3 2 42 76% 

Forest 2 37 6 0 1 46 80% 

Grassland 1 6 36 6 1 50 72% 

Farmland 5 5 3 31 0 44 70% 

Wetland 0 2 0 0 16 18 88% 

Total 40 50 50 40 20 200   

Producers accuracy 80% 74% 72% 77% 80%     

Table 5. 1: Confusion matrix for LULC map of the year 2003 
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Overall 

accuracy 78%       
kappa 0.71       

        
LULC classes Built-up Forest grassland farmland Wetland Total User accuracy 

Buildup 34 2 2 3 3 44 77% 

Forest 0 41 9 0 1 51 80% 

Grassland 1 3 35 8 0 47 74% 

farmland 5 3 3 29 0 40 73% 

Wetland 0 1 1 0 16 18 89% 

Total 40 50 50 40 20 200  
Producers 

accuracy 85% 82.00% 70% 72% 80%   

Table 5. 2: Confusion matrix for LULC map of the year 2009 

 

Overall accuracy 75%       

kappa 0.68       

        

LULC classes Built-up Forest grassland farmland Wetland Total User accuracy 

Buildup 33 1 1 4 2 41 80% 

Forest 1 39 6 3 0 49 79% 

Grassland 1 6 34 6 1 48 70% 

farmland 5 1 9 26 0 41 63% 

Wetland 0 3 0 1 17 21 80% 

Total 40 50 50 40 20 200  

Producers accuracy 82% 78.00% 68% 65% 85%   

Table 5. 3: Confusion matrix for LULC map of the year 2018 
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5.3. LULC changes 2003 - 2018 

The statistical results corresponding to LULC change in the study areas (Table 5.4) indicating 

that, there is an extensive increase in the built-up area as equivalent to the decrease in forest cover. 

The built-up area of Zanzibar island has been expanding from 4132.44 Hectare in the year 2003 

to 7201.35 Hectare in 2018. These areal changes in the built-up area make up of 42.6% increase 

in construction land for only 15 years’ (2003-2018) period (2.84% increase annually).  

The Farmland/agricultural land has also shown a progressive expansion within these 15 years of 

the study, in which 31.7% (2.1% annually) of agricultural land were increased.  

For the forest cover and wetland, the trends on their land cover changes have shown a 

continuously decreasing, in which 15.8% of forest cover (1.05% annually) and 24.6% of wetland 

(1.64% annually) were disappeared. 

However, in the case of grassland, the trend in its LULC changes does not show a smooth 

variation. This is because, in the first 6 years (2003-2009), the grass cover of the study area has 

been decreased by 4.5%, followed by increasing of 7.48% for the next 9 years (2009 – 2018).  

LULC 

classes 

Area (ha) 

(2003) 

Area (ha) 

(2009) Area ( (2018) 

% changes 

(2003-2009) 

% changes 

(2009-2018) 

% changes 

(2003-2018) 

Built-up 4132.44 5081.94 7201.35 18.68 29.43 42.62 

Forest 73329.39 69460.56 61692.03 -5.28 -11.18 -15.87 

Farmland 22171.77 27669.15 29206.17 24.79 5.26 31.73 

Grassland 56569.41 54107.73 58484.43 -4.55 7.48 3.27 

Wetland 1925.55 1809.18 1544.58 -6.43 -17.13 -24.66 

Table 5. 4: LULC areal statistics from 2003 -2018 

This rapid LULC changes of several land cover classes within the study region could be attributed 

by the improper way of managing the land including the high rate of informal settlement, casual 

farming methods as well as the higher level of deforestation activities in Zanzibar (M. O. 

Kukkonen et al., 2018). 
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5.4. Land Cover Change for future Scenarios 

5.4.1. Model validation results 

As explained in section 4.5.4 above, the model validation in this study was performed by 

comparing the simulated map and actual map of 2018 (Figure 5.4) by using cross tabulation and 

validation module to compute the overall accuracy, user accuracies, producer’s accuracies, kappa 

coefficient as well as two other kappa coefficients including Khisto and Klocation.  

 

Figure 5. 2: Land cover maps for 2018 actual (left) and simulated (right) 

 

The cross-tabulation results obtained after comparing the actual and simulated map of 2018 are 

shown in (Table 5.5) and as it can be seen, the overall accuracy of the model is 75% and with a 

kappa coefficient of 0.65. In almost all classes the user and producer’s accuracies were all above 

65% which indicate a good level of accuracy. However, the user and producer accuracies for 

grassland and farmland are seems to be a little bit lower (58% and 63% respectively). These lower 

producers and user’s accuracies for these two classes can be explained by their spectral property 

similarities among them (Melville, Lucieer, & Aryal, 2018). 
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Overall 

accuracy 75%       

Kappa  0.65       

        

 Built-up Forest Farmland Grassland Wetland Total 

User 

accuracy 

Built-up 80911 8244 2075 4044 82 95356 84% 

Forest 839 216510 13339 75508 96 306292 70% 

Farmland 5137 17318 115300 43183 3 180941 63% 

Grassland 3617 3256 19520 173609 4 200006 86% 

Wetland 18 36 57 91 2005 2207 90% 

Total 90522 245364 150291 296435 2190 784802  
Producers 

accuracy 89% 88% 76% 58% 91%   

Table 5. 5: Cross tabulation of actual (columns) against simulated (rows) LULC for 2018 

 

In addition to that, the validation results for the other two kappa coefficients can be observed in 

(Table 5.6), and the results for both Klocation and Khisto were also above 0.65 implying that the 

prediction in both quantities of the pixel and spatial distribution of the classes were all maintain 

a good level of accuracy. 

 

KIndicator Value 

Khisto 0.83 

Klocation 0.77 

Kappa = Khisto * Klocation 0.64 

Table 5. 6: Model validation (Kappa statistics) 

Kappa value of: 

< 0.00 = poor; 0.00-0.20 = slight; 0.21 – 0.40 = fair; 0.41 – 0.60 = moderate; 0.61 – 0.80 = 

substantial; 0.81 – 1.00 = almost perfect (Landis & Koch, 1977). 
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5.4.2. Simulated Maps for 2027 scenarios 

The LULC results for the three modeled scenarios (Figure 5.4) indicating that the landscape 

structure in Zanzibar island will continue to experience a rapid and extensive changes by 2027. 

The maps for both businesses as usual as well as the extreme scenario depict the massive and 

randomly increasing in built-up areas in the entire study region, especially near the coastal and 

touristic areas of Nungwi and Kiwengwa (Northern and Western part of Zanzibar). This random 

distribution of built-up area can be highly connected with the current trend of informal settlements 

in large part of Zanzibar island. 

 

 

Figure 5. 3: Simulated LULC maps for 2027 

 

The land cover change for the built-up area will increase in the range of 20 – 31% by 2027. In 

that case, the conservation scenario shows a fairly increases rate of only 20%, while the extreme 

scenario shows a high increasing of up to 31%.   

In comparison between business as usual and other alternative scenarios (Figure 5.6), the 

conservation scenario seems to provide fairly better results to each of its land cover classes in the 

study region. The forest cover will increase to 3.87% in conservation scenario while in all other 

two scenarios (“business as usual” and “extreme scenario”) the forest seems to be decreased.           
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In another case, the conservation scenario does not show a better result corresponding to wetland 

such that the results show the high decrease of wetland (-14%) in conservation scenarios 

compared with (“business as usual” and “extreme scenario”).  

 

  Area in hectors % Changes 2018 -2027 

LULC classes 2018 

2027    

BAU 

2027 

CONSV 

2027 

EXTRM BAU CONSV EXTRM 

Built-up 7201.35 9593.55 9060.03 10568.88 24.9 20.5 31.9 

Forest 61692 57556.53 68466.42 60250.59 -6.703 3.9 -2.3 

Farmland 29206.2 27389.25 36601.11 33765.84 -6.2 20.2 13.5 

Grassland 58484.4 62134.65 57933.81 57034.62 5.9 -0.9 -2.5 

Wetland 1544.58 1454.58 1354.86 1418.4 -5.8 -14.0 -8.2 

Table 5. 7: Areal changes from 2018-2027 under all three scenarios 

 

 

 

Figure 5. 4: Comparisons of  LULC changes from 2018- 2027 for all three scenarios 
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5.5. Ecological Risk Assessment  

5.5.1. Ecological Risk Indices for the year 2003-2018 

Table 5.8 below summarizes the ERI results for each LULC class in the year 2003 – 2018. As it 

can be seen in the results, the ecological risk index for some land use classes like that of a built-

up area and that of grassland have experienced a constantly increasing trend. However, the ERI 

for other land use classes like that of forest and farmland does not show a smooth trend. For 

example, the trend of ERI for the forest cover has been increased from 0.0078 in the year 2003 

to 0.0087 for the year 2009, and then it has dropped to 0.0071 in the year of 2018. The ERI for 

the farmland has been decreased from 0.0183 in the year 2003 to 0.0176 in the year 2009, and 

then increase again to 0.0196 in the year 2018. In addition to that, the built-up area and farmland 

have showed a high fragmentation and separation indices (Ci and Ni) implying that, there is a 

large part of the landscape that has been affected by scatted buildings and casual farming 

activities. The fragmentation and separation indices for the wetland, forest and grassland are seen 

to be lower compared to those of farmland and built-up area. But however, they show an 

increasing trend in each of the consecutive year implying that the landscape structure of Zanzibar 

city is in the progressive disturbances. 

 
LULC 

Classes Year 

Area in 

hectare  

No of 

Patches 

greatest 

patch(ha) Ci  Ni Di Si Fi Ri ERI 

Built-up 

2003 4132.4 4775 1988.28 1.16 3.32 0.03 1.69 0.333 0.564 0.015 

2009 5081.9 6115 3489.22 1.20 3.16 0.03 1.64 0.333 0.548 0.018 

2018 7201.4 7012 5269.32 0.97 3.31 0.04 1.28 0.333 0.427 0.020 

            

Forest 

2003 73329 14608 36821.16 0.20 0.33 0.34 0.25 0.067 0.017 0.008 

2009 69461 17472 32742.63 0.25 0.38 0.32 0.30 0.067 0.020 0.009 

2018 61692 13689 30967.18 0.22 0.38 0.29 0.27 0.067 0.018 0.007 

            

Farmland 

2003 22172 21180 2198.07 0.96 1.31 0.13 0.98 0.133 0.130 0.018 

2009 27669 20033 3858.71 0.72 1.02 0.15 0.75 0.133 0.101 0.018 

2018 29206 20841 6535.44 0.71 0.98 0.16 0.74 0.133 0.099 0.018 

            

grass 

2003 56569 14601 22190.31 0.26 0.42 0.27 0.31 0.267 0.082 0.029 

2009 54108 23568 20135.7 0.44 0.56 0.27 0.46 0.267 0.122 0.042 

 
2018 58484 29352 11209.79 0.50 0.58 0.30 0.51 0.267 0.135 0.050 

            
Wetland 2003 1925.6 171 176.86 0.09 1.35 0.008 0.46 0.2 0.092 0.001 

 
2009 1809.2 146 146.12 0.08 1.33 0.007 0.45 0.2 0.0895 0.001 

  2018 1544.6 127 157.86 0.08 1.45 0.006 0.49 0.2 0.097 0.001 

Table 5. 8: Ecological Risk Indices for land cover classes of 2003-2018 
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5.5.2. Ecological Risk Indices for 2027 scenarios 
 

The analysis results for all three scenarios indicating that the conservation scenario provides fairly 

better results in ERI trends for each land-use class as well as for the overall ERI of the landscape. 

If the conservation scenario will be implemented, the overall ecological risk index in the study 

region ensures to increase by only 4.6%, which is at least 1.6% less compared to 6.2% of the 

business as usual scenario. This is possible since the conservation scenario ensures the protection 

of agricultural and forest patches to be fragmented, as well as reducing the risk of having many 

small patches in the study region which are the main reason for the destruction of the landscape 

structure as well as rising the overall ERI in the landscape. The results in (Table 5.9) below, show 

that the fragmentation and separation indices related to conservation scenarios are a little bit lower 

compared to those of extreme and business as usual.  In another case, the conservation scenario 

indicates the high dominance index for the forest cover.  

In the case of business as usual and extreme scenario, the overall ERI continues to show an 

increasing trend, relative to the increase in fragmentation, separation and loose indices in almost 

all land use classes. 

LULC 

Classes Scenario 

Area in 

hectare 

No of 

Patches 

greatest 

patch(ha) Ci Ni Di Si Fi Ri ERI 

Built-up 

BAU 9593.55 6794 5603.04 0.71 1.71 0.050 0.94 0.333 0.314 0.0191 

Conservation 9060.03 6693 5391.09 0.72 1.79 0.048 0.99 0.333 0.329 0.0188 

Extreme 10568.9 7288 4338.81 0.73 1.82 0.055 0.90 0.333 0.300 0.0201 

            

Forest 

BAU 57556.5 14992 24601.05 0.26 0.42 0.265 0.31 0.067 0.021 0.0075 

Conservation 68466.4 13941 32808.24 0.20 0.34 0.309 0.26 0.067 0.017 0.0074 

Extreme 60250.6 21613 28998.9 0.36 0.49 0.286 0.39 0.067 0.026 0.0099 
            

Farmland 

BAU 27389.3 22205 1810.25 0.81 1.08 0.148 0.83 0.133 0.110 0.0191 

Conservation 36601.1 21960 2073.8 0.60 0.81 0.1869 0.62 0.133 0.083 0.0191 

Extreme 33765.8 25146 1928.93 0.74 0.93 0.179 0.74 0.133 0.099 0.0212 

            

Grassland 

BAU 62134.7 33375 30906.9 0.5371 0.58 0.311 0.53 0.267 0.141 0.0554 

Conservation 57933.8 32366 30845.88 0.5587 0.61 0.292 0.55 0.267 0.147 0.0537 

 Extreme 57034.6 31642 30017.61 0.5548 0.62 0.287 0.54 0.267 0.146 0.0527 

            

Wetland BAU 1454.58 125 249.84 0.0859 1.53 0.006 0.51 0.2 0.102 0.0009 

 Conservation 1354.86 185 249.84 0.1365 1.99 0.006 0.68 0.2 0.136 0.0012 

  Extreme 1418.4 185 249.84 0.1304 1.91 0.006 0.65 0.2 0.130 0.0012 

Table 5. 9: Ecological Risk Indices for 2027 scenarios  
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The extreme scenario shows a very high increase in ERI trend compared to those of business as 

usual and conservation scenario (Table 5.10).  However, it has to be noted here that, although in 

extreme scenarios there was no constraints that was employed, it’s ERI is more likely to be 

applicable in Zanzibar even more than that of business as usual. This is due to the fact that in 

Zanzibar the development and construction of buildings in a random way and without following 

restrictions and government regulations are one among the common and major problem facing 

urban planning and thus they make no much significance in the land change results obtained by 

employing constraint in every protected area.  

In summary, the overall ERI of the study area shows an increasing trend from 2003 to 2027. 

Whereas, there is also a significant change (mostly increasing) in the number of patches, 

fragmentation and separation indices as well as a continuous decrease in the greatest patch area 

for the forest, farmland, and grassland. 

  

Year/Scenario Overall ERI % Changes 

2003 0.0714 - 

2009 0.0867 17.7 

2018 0.0957 9.4 

BAU 0.1020 6.2 

EXTREME 0.1050 8.9 

CONSERVATION 0.1002 4.6 

Table 5. 10: Overall Ecological risk index changes 2003 – 2027 

 
 

 

Figure 5. 5: Trends of overall ERI from 2003 - 2027  
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5.5.3. Distribution of ERI per district  

While comparing the distributions of ERI at a district level (Figure 5.6 and Table 5.11), it appears 

that the districts Urban-west, North A and North B experiences the high and progressively 

increases in their ERI values, while the ERI for the Urban districts seems to be stable.  

The extensive increases in ERI for these three districts could be highly influenced by the high 

rate of casual agricultural activities, tourism activities as well as informal housing in these 

regions.  

In the case of the three future scenarios, the results show that the extreme scenario provides the 

higher ERI increases in almost all districts of Zanzibar especially in North A and North B where 

the increase in ERI values corresponding to the extreme scenario are 23.5% and 17.92 

respectively. The conservation scenario in other case shows the fair ERI results in almost five 

districts of Zanzibar except for the North A district which show the higher increases in ERI for 

all of the 2027 scenarios.   

  

District 

Trend of ERI  Change (%) 

2003-2009 2009-2018 

2018-2027 

BAU 

2018-2027 

EXTREM 

2018-2027 

CONSERVATION 

North A 16.63 8.95 18.51 23.45 17.13 

North B 9.89 14.78 13.51 17.92 2.79 

Central 10.37 4.39 10.82 8.64 1.82 

South 10.37 10.63 10.94 8.35 3.67 

West 14.57 23.41 5.39 11.61 6.93 

Urban -1.35 5.27 0.24 2.19 0.49 

Table 5. 11: ERI Changes by district 2003-2027 
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Figure 5. 6: Trend of ERI per district 2003 - 2027 
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6. DISCUSSION 
 

This study was employed to assess ecological risk conditions in Zanzibar based on land cover 

change, with the focus of providing a holistic understanding of land cover dynamics and their 

environmental impacts along with preventing unmanaged growth and random development of 

informal housing and infrastructure. Based on Random Forest Classifier, Multi-Layer Perceptron 

(ANN) and Markov Chain, we successfully assessed the trend of land-use dynamics from 2003-

2018 first and then the land use maps for 2027 was predicted. LECOS plugin in QGIS 3.8 was 

effectively applied to calculate landscape metrics in land use maps and then employed them to 

calculate ecological risk indices of the landscape. These indices including separation, fragility, 

dominance, loose as well as overall ecological risk index of the landscape.  

During the first stages of analyzing land-use dynamics, we have realized that Zanzibar City has 

experienced a trend of rapid land-use changes and extensive built-up expansion mostly in areas 

near existing buildings, and some of the coastal zones. The response distance to the buildings and 

distance to coast variable supports this observation as they provide the higher Crammer’s values 

ensuring that these variables have a great influence on land cover dynamics in Zanzibar.  

If the current trend continues, the built-up expansion of Zanzibar city will be expanded to more 

than 40% by 2027. The Larger part of agricultural and forested land has already been fragmented 

to housing parcels. And because of these, the negative environmental effects relevant to land 

resources, such as loss of natural forests, open cropland, and wetlands have been already being 

highly destroyed in Zanzibar (M. H. Ali & Sulaiman, 2006). This is somewhat alarming that the 

government should enforce restrictions and strong land policies leaving the remaining land cover 

classes to stop being further destroyed.  

The analysis results give no signs indicating that these land-use changes and extensive built-up 

expansion would at least decline in the future. And this is possibly caused by the poor quality of 

housing and minimum government efforts to enforce the optimal usage of land resources in 

Zanzibar island (Ameyibor et al., 2003).  

While analyzing the overall ecological risk indices of the landscape, the results screened that, the 

overall ERI of Zanzibar City has been constantly grown from 2003 onward.  This trend is parallel 

to the increase in the number of smaller patches of some land cover classes, relative to the 

decreasing in their largest patch areas.  
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The observation for the future scenarios provide the worst ecological risk indices for the extreme 

whereas conservation scenario provides a little fair results. The drastic ecological risk scores 

provided by extreme scenario, suggested that, the land use restrictions in Zanzibar should be 

properly respected, at least by properly utilizing the already existing land policies and restrictions.  

Finally, it would be very important to highlight that, in this study we have assessed ecological 

risk indices of Zanzibar island with land cover change using free satellite data. This process 

required a consistent and accurate land cover data for the purpose of providing reliable and 

accurate information. However, it was a bit challenge in acquiring free satellite images with 

desired standard and at desired time. This is due to the geographical region of Zanzibar island 

making most of their satellite images being covered with cloud. In that sense, it takes a much 

time to search and acquire the needed satellite data, and even though the image for 2018 that was 

obtained was not in very good quality and contain some scanned lined which somehow affected 

the analysis results. However, in future these results can be improved by using more accurate and 

update data, as well as incorporating extensive land cover change drivers. 
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7. CONCLUSIONS AND RECOMMENDATIONS 
 

The findings in this research support the evidence of the recent study which found that the rapid 

land-use changes in Zanzibar have imposed an intensive degradation in the ecosystem of Zanzibar  

(A Staehr, 2018). The main drivers behind this intensive degradation are increasing in 

uncontrolled and poorly managed informal housing, high rate of casual farming and improvised 

plan in the tourism sector (WB, 2019). Evidence has been clearly exposed by increasing the 

fragmentation index, separation index, loss index as well as overall ERI of the entire landscape.  

In order to reduce such kind of threats, more systematic approaches in the ecological assessment 

are required. Cooperative research among research groups, land planners, and all other 

stakeholders including tourism sectors should be highly enforced as a tool to monitor and 

recommend a long-term plan for sustainable ecosystems in Zanzibar. 

In future scenarios, the findings have proven that disobeying land policies and regulations can 

influence a drastic shock to the ecological conditions of Zanzibar in the future. This has been 

proven by the results of an extreme scenario which was very worst. Conservation scenario for 

somehow had shown little influence on directing future land cover changes and ecological risk 

control, but however, the results were only moderate and therefore it is really important for the 

government to take a special effort on setting up new land-use approaches such as promoting the 

densification of vertical buildings rather than relying in one-floor horizontal buildings.  

In general, all of the findings in this study can provide useful insights to land-use planners and 

policymakers regarding the current trends and future projection of land cover changes in 

Zanzibar, the factors driving these changes as well as the effect that they have imposed in their 

ecological health. This can help the responsible authorities on setting up the proper rules and 

regulations on land use control. 

The study also assessed the ecological health conditions of the Zanzibar islands in three different 

scenarios. In this case, the results can serve as the basic notion in exploring the sustainability of 

the landscape structure of the Zanzibar island as well as its ecological health security under 

various land-use practices. This can contribute to the designation of the appropriate strategies 

toward the land use management so that a systematic balance between economic and sustainable 

ecosystems can be maintained. 
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Annexes 

Change analysis  

Figure A.1 shows all changes which have been generated after performing change analysis steps 

in LCM. From these results all changes that occurred in less than 2000 Hectare were ignored, and 

thus only six major changes including grass to built-up, forest to built-up, grass to farmland, forest 

to grass, farmland to grass and grass to forest were selected.  

 
Figure A. 1: All Changes from 2003 to 2009 (left) and 2009 – 2018 (right) 

 

 

Probability Matrix 

 

 Built-up Forest Grassland Farmland Wetland 

      

Built-up 0.7498 0.0387 0.0146 0.1769 0.0199 

Forest 0.0056 0.6573 0.2491 0.0857 0.0024 

Grassland 0.0136 0.2168 0.6275 0.1404 0.0014 

Farmland 0.0757 0.1320 0.3162 0.4718 0.0042 

Wetland 0.0285 0.4144 0.0008 0.1219 0.4344 

Table A. 1: Markov transition probability matrix from 2003-2009 
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 Built-up Forest Grassland Farmland Wetland 

Built-up 0.5017 0.0744 0.0931 0.2784 0.0524 

Forest 0.0178 0.5481 0.2657 0.1452 0.0232 

Grassland 0.0129 0.3173 0.4587 0.2081 0.0030 

Farmland 0.0795 0.1747 0.3412 0.3988 0.0058 

Wetland 0.0214 0.4691 0.1700 0.1098 0.2297 

Table A. 2: Markov transition probability matrix from 2009-2018 
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