8,254 research outputs found

    Forest cover estimation in Ireland using radar remote sensing: a comparative analysis of forest cover assessment methodologies

    Get PDF
    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting

    Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches

    Get PDF
    Accurate inventories of grasslands are important for studies of carbon dynamics, biodiversity conservation and agricultural management. For regions with persistent cloud cover the use of multi-temporal synthetic aperture radar (SAR) data provides an attractive solution for generating up-to-date inventories of grasslands. This is even more appealing considering the data that will be available from upcoming missions such as Sentinel-1 and ALOS-2. In this study, the performance of three machine learning algorithms; Random Forests (RF), Support Vector Machines (SVM) and the relatively underused Extremely Randomised Trees (ERT) is evaluated for discriminating between grassland types over two large heterogeneous areas of Ireland using multi-temporal, multi-sensor radar and ancillary spatial datasets. A detailed accuracy assessment shows the efficacy of the three algorithms to classify different types of grasslands. Overall accuracies ≄ 88.7% (with kappa coefficient of 0.87) were achieved for the single frequency classifications and maximum accuracies of 97.9% (kappa coefficient of 0.98) for the combined frequency classifications. For most datasets, the ERT classifier outperforms SVM and RF

    Comparison of Supervised Image Classification Algorithms: Classifying Diverse Land Cover in California

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business AnalyticsThe research field of machine learning and supervised image classification is quickly developing. There are many studies regarding the different use cases of image classification. However, a comprehensive study on the primary algorithms in ArcGIS Pro has not been assessed for numerous classes. This study attempts to bridge that gap by evaluating the effectiveness of the three primary classification algorithms available in ArcGIS Pro, and to determine an optimal algorithm for the given study area. This scope covers 12 classes of land cover in San Joaquin County, California. Maximum Likelihood, Random Forest, and Support Vector Machine were tested based on their general usability in image classification as well as their proven characteristics through research. The training and ground truth validation data were provided by USGS, in the form of a Landsat 8 image, and crop planning map. The accuracy assessment was performed with a stratified random sampling strategy. Based on the Kappa statistic, this study determines Random Forest (Kappa = 0.68, Accuracy = 0.76) to be the most suitable algorithm for detecting a series of crop types, bodies of water, and urban spaces apart from the rest of the land cover in San Joaquin County, California, USA. In addition to determining a preferred algorithm, it is also apparent that certain parameters when tweaked, produce the optimal classifier for this dataset. In this case, this means most parameters set to default, with an increased spectral detail and a decreased spatial detail. What this indicates for crop planning is that the current algorithms used in California are already quite effective at accurately identifying unique types of land cover. This builds confidence in the field, however parameters could be similarly tweaked to produce an even better classification. This study can be useful for improving crop and water planning

    Testing the use of the new generation multispectral data in mapping vegetation communities of Ezemvelo Game Reserve

    Get PDF
    A research report submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science (Geographical Information Systems and Remote Sensing) at the School of Geography, Archaeology & Environmental Studies) Johannesburg. 2017Vegetation mapping using remote sensing is a key concern in environmental application using remote sensing. The new high resolution generation has made possible, the mapping of spatial distribution of vegetation communities. The aim of this research is to test the use of new generation multispectral data for vegetation classification in Ezemvelo Game Reserve, Bronkhorspruit. Sentinel-2 and RapidEye images were used covering the study area with nine vegetation classes: eight from grassland (Mixed grassland, Wetland grass, Aristida congesta, Cynadon dactylon, Eragrostis gummiflua, Eragrostis Chloromelas, Hyparrhenia hirta, Serephium plumosum) and one from woodland (Woody vegetation). The images were pre-processed, geo-referenced and classified in order to map detailed vegetation classes of the study area. Random Forest and Support Vector Machines supervised classification methods were applied to both images to identify nine vegetation classes. The softwares used for this study were ENVI, EnMAP, ArcGIS and R statistical packages (R Development Core, 2012) .These were used for Support Vector Machines and Random Forest parameters optimization. Error matrix was created using the same reference points for Sentinel-2 and RapidEye classification. After classification, results were compared to find the best approach to create a current map for vegetation communities. Sentinel-2 achieved higher accuracies using RF with overall accuracy of 86% and Kappa value of 0.84. Sentinel-2 also achieved overall accuracy of 85% with a Kappa value of 0.83 using SVM. RapidEye achieved lower accuracies using RF with an overall accuracy of 82% and Kappa value of 0.79. RapidEye using SVM produced overall accuracy of 81% and a Kappa value of 0.79. The study concludes that Sentinel-2 multispectral data and RF have the potential to map vegetation communities. The higher accuracies achieved in the study can assist management and decision makers on assessing the current vegetation status and for future references on Ezemvelo Game Reserve. Keywords Random forest, Support Vector Machines, Sentinel-2, RapidEye, remote sensing, multispectral, hyperspectral and vegetation communitiesLG201

    High-Resolution Satellite Imagery Classification for Urban Form Detection

    Get PDF
    Mapping urban form at regional and local scales is a crucial task for discerning the influence of urban expansion upon the ecosystem and the surrounding environment. Remotely sensed imagery is ideally used to monitor and detect urban areas that occur frequently as a consequence of incessant urbanization. It is a lengthy process to convert satellite imagery into urban form map using the existing methods of manual interpretation and parametric image classification digitally. In this work, classification techniques of high-resolution satellite imagery were used to map 50 selected cities of study of the National Urban System in Mexico, during 2015–2016. In order to process the information, 140 RapidEye Ortho Tile multispectral satellite imageries with a pixel size of 5 m were downloaded, divided into 5 × 5 km tiles and then 639 tiles were generated. In each (imagery or tile), classification methods were tested, such as: artificial neural networks (RNA), support vector machines (MSV), decision trees (AD), and maximum likelihood (MV); after tests, urban and nonurban categories were obtained. The result is validated with an accuracy method that follows a stratified random sampling of 16 points for each tile. It is expected that these results can be used in the construction of spatial metrics that explain the differences in the Mexican urban areas

    Exploring issues of balanced versus imbalanced samples in mapping grass community in the telperion reserve using high resolution images and selected machine learning algorithms

    Get PDF
    ABSTRACT Accurate vegetation mapping is essential for a number of reasons, one of which is for conservation purposes. The main objective of this research was to map different grass communities in the game reserve using RapidEye and Sentinel-2 MSI images and machine learning classifiers [support vector machine (SVM) and Random forest (RF)] to test the impacts of balanced and imbalance training data on the performance and the accuracy of Support Vector Machine and Random forest in mapping the grass communities and test the sensitivities of pixel resolution to balanced and imbalance training data in image classification. The imbalanced and balanced data sets were obtained through field data collection. The results show RF and SVM are producing a high overall accuracy for Sentinel-2 imagery for both the balanced and imbalanced data set. The RF classifier has yielded an overall accuracy of 79.45% and kappa of 74.38% and an overall accuracy of 76.19% and kappa of 73.21% using imbalanced and balanced training data respectively. The SVM classifier yielded an overall accuracy of 82.54% and kappa of 80.36% and an overall accuracy of 82.21% and a kappa of 78.33% using imbalanced and balanced training data respectively. For the RapidEye imagery, RF and SVM algorithm produced overall accuracy affected by a balanced data set leading to reduced accuracy. The RF algorithm had an overall accuracy that dropped by 6% (from 63.24% to 57.94%) while the SVM dropped by 7% (from 57.31% to 50.79%). The results thereby show that the imbalanced data set is a better option when looking at the image classification of vegetation species than the balanced data set. The study recommends the implementation of ways of handling misclassification among the different grass species to improve classification for future research. Further research can be carried out on other types of high resolution multispectral imagery using different advanced algorithms on different training size samples.EM201
    • 

    corecore