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ABSTRACT 

Accurate vegetation mapping is essential for a number of reasons, one of which is for 

conservation purposes. The main objective of this research was to map different grass 

communities in the game reserve using RapidEye and Sentinel-2 MSI images and machine 

learning classifiers [support vector machine (SVM) and Random forest (RF)] to test the impacts 

of balanced and imbalance training data on the performance and the accuracy of Support Vector 

Machine and Random forest in mapping the grass communities and test the sensitivities of pixel 

resolution to balanced and imbalance training data in image classification. The imbalanced and 

balanced data sets were obtained through field data collection.  

The results show RF and SVM are producing a high overall accuracy for Sentinel-2 imagery for 

both the balanced and imbalanced data set. The RF classifier has yielded an overall accuracy of 

79.45% and kappa of 74.38% and an overall accuracy of 76.19% and kappa of 73.21% using 

imbalanced and balanced training data respectively. The SVM classifier yielded an overall 

accuracy of 82.54% and kappa of 80.36% and an overall accuracy of 82.21% and a kappa of 

78.33% using imbalanced and balanced training data respectively. 

For the RapidEye imagery, RF and SVM algorithm produced overall accuracy affected by a 

balanced data set leading to reduced accuracy. The RF algorithm had an overall accuracy that 

dropped by 6% (from 63.24% to 57.94%) while the SVM dropped by 7% (from 57.31% to 

50.79%). The results thereby show that the imbalanced data set is a better option when looking at 

the image classification of vegetation species than the balanced data set.  

The study recommends the implementation of ways of handling misclassification among the 

different grass species to improve classification for future research. Further research can be 

carried out on other types of high resolution multispectral imagery using different advanced 

algorithms on different training size samples. 
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1.1. General Introduction  

 

There has been a tremendous need for land cover maps for the observation and sustenance of the 

earth's natural resources (Foley et al. 2005; Verburg et al. 2011; Hansen 2012).  These maps are 

used in urban planning, land cover assessment and conservation (Wessels et al. 2003; Gebhardt 

et al. 2014; Fry et al. 2011). Grasslands are one of the world's most famous types of land cover 

vegetation (Latham et al. 2014).  They play an essential role in plant biodiversity (Bergman et al. 

2008; van Swaay, 2002) and spatial heterogeneity (MacFayden et al. 2016).  

 

When mapping grass species, field-based methods have been used in the past at a local scale 

(Ramoelo et al. 2015). The main advantage of using field based methods is that they are useful 

when mapping vegetation species of a small area. However, studies have shown the field-based 

method for grass communities mapping is time-consuming, expensive and sometimes some areas 

were inaccessible leading to insufficient data (Ling et al. 2014; Kavzoglu and Colkesen, 2009a; 

Ramoelo et al. 2013). Remote sensing has proven to be a preferred and useful method in 

mapping vegetation because of its ability in discerning and observing the physical features of an 

area by assessing its reflected and emitted radiation at an extent from the targeted area (Mutanga, 

Adam and Cho, 2012). Satellite images help scientists and researchers to understand the earth 

better as these images allow them to see much more than they would if they were observing the 

surface from the ground. Remote sensing data offers a more precise alternative to field survey 

data, especially when dealing with cost and effectiveness. Remote sensing has shown to be very 

helpful in land cover mapping (Tucker et al. 1985), crop monitoring (Wu et al. 2015) and climate 

studies (Yang et al. 2013). This rise in interest is predominantly due to the current revolution in 

data, technologies and conjecture in urban remote sensing (Weng and Quattrochi, 2007; Yang et 

al. 2013; Salehi et al. 2012).  

 

Multispectral remote sensing (Akasheh et al. 2008; Saatchi et al. 2007) and hyperspectral data 

(Lawrence et al. 2006; Peerbhay et al. 2013) have both been used in vegetation mapping. 

Multispectral data, such as SPOT and Landsat TM imagery are limited by their spatial and 

spectral resolution, which is ineffective in proper vegetation mapping because of its broad bands 

(Govender et al. 2008). Hyperspectral imagery, on the other hand, has narrow spectral bands 
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which makes it a more efficient method in mapping vegetation and in land cover use (Koch et al. 

2005) as it can identify surface features at a higher spectral resolution. Hyperspectral data come 

with the challenge of data processing and analysis due to high dimensionality which can lead to 

inadequate classification and performance of the classification algorithm (Tsai et al. 2007; 

Kavzoglu and Mather, 2002). The arrival of some new generation sensors such as the Worldview 

2 and 3, Sentinel 2 MSI as well as RapidEye have been used more recently for mapping grass 

communities and vegetation species in a more extensive area (Huang et al. 2017; Sibanda et al. 

2017; Drusch et al. 2012).  

  

Classification of remotely sensed images continues to be a difficult task. The set size of the 

training sample, the spatial resolution of the image, the diversity of vegetation class, attribute of 

the classification algorithm are some of the factors that have a considerable effect on the 

classification accuracy (Lu and Weng, 2007; Kavzoglu, 2009). Image classification has proven 

to be quite essential in remote sensing application. Hence, the importance of using advanced 

algorithm classifiers. A wrongly classified image can lead to information that is worthless and 

inadequate. It could also have an unfavourable effect if decisions are based on incorrect 

classification. Let us say, for example, that image classification was carried out on a satellite 

image where the grass was incorrectly classified as water. Such a mistake would prove 

detrimental in urban development or water management. Therefore, image classification plays a 

vital role in mapping and image interpretation (Li et al. 2014; Ma et al. 2017). Machine learning 

algorithms are productive and effective because they are not dependent on data scattering 

assumptions (e.g., Normality) and have positive accuracy (Foody, 1995a; Friedl and Brodley, 

1997).  

 

The design of the training samples is of importance. The training sets in many instances 

determine the quality of supervised classification (Smola and Scholkopf, 2003). In reality, 

though, classifiers are highly imbalanced or occur in unknown proportions. The spectral 

characteristics of remote sensing data provide a lot of distinguishing and decisive factors such as 

near-infrared band or vegetation indices for the plants, forestry and agricultural utilization (Kim 

and Yeom, 2015). Traditional learning methods are intended principally for balanced samples. A 

balanced sample has uniformity of classes across the class distribution. When algorithms are 



4 
 

used for imbalanced samples, there tends to be over predicting the appearance of the majority 

class (Wei and Dunbrack, 2013). A balanced sample is believed to boost overall classification in 

contrast to an imbalanced sample (He, 2011; Laurikkala, 2001). The characteristics and quality 

of the training samples are essential in classification which directly impacts classification 

accuracy (Foody, 1999; Ustuner et al. 2016). Errors, such as interpretation problems and poor 

quality of training data sets can affect accuracy. The set size of a training sample is essential 

when classifying minor classes of interest (Ustuner et al. 2016). In some cases, the training 

sample of one class could differ from another class. This is known as imbalanced training 

samples. This imbalance leads to low accuracy for minor classes (Foody et al. 2006).  

 

Image classification methods, using remotely sensed data is generally used when mapping grass 

species. The option of the suitable remotely sensed data in terms of the price and the resolutions 

and the choice of suitable classification process are critical for valid, accurate vegetation 

mapping (Adam et al. 2014). There are various types of machine learning algorithm, and the 

model used is dependent on the user's familiarity with the algorithm and what the user wants to 

achieve. When it comes to vegetation mapping and remote sensing in general, the two most 

commonly used are the support vector machine (SVM) and random forest (RF) (Clark et al. 

2016; Mountrakis et al. 2011). SVM is a simplified algorithm used when dealing with 

imbalanced dataset because it handles high dimensionality which is a problem when processing 

small training samples and the need to achieve high accuracy (Melgani and Bruzzone, 2004; 

Foody et al. 2006). SVM is greatly reliant on the training sample size (Schohn and Cohn, 2000). 

Random forest (RF) involves re-sampling the original training samples to increase accuracy and 

stability. Rodriguez-Galiano et al. (2012), and Pal (2005) is of the opinion that random forest is 

more robust when it comes to variation in data.  Studies have shown that a balanced sample 

improves overall classification in cases like SVM and RF in comparison to the imbalanced 

sample (Estabrooks et al. 2004; Weiss and Provost, 2003). 

 

This study looks at the effects, if any, of a balanced and imbalanced dataset on high-resolution 

images, RapidEye and Sentinel 2, using SVM and RF classifier.   
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1.2. Problem Statement 

 

Field-based methods are commonly being used to collect data on varying grass species in the 

Telperion Game Reserve. This is a tedious and time-consuming method that can lead to 

inaccuracy in classifying the various grass communities, as access to some areas might be a 

problem. For proper management of the reserve, reliable, current and comprehensive spatial 

information on the biodiversity of the area is essential (Adam et al. 2010). Remote sensing 

provides vital information on grass community and its distribution (Darvishzadeh et al. 2008). 

High-resolution imagery like Sentinel 2 and RapidEye are preferred in research in land cover and 

vegetation mapping due to global coverage and free access. It is not just the image selected that 

is important, but also the classification method used as this affects the results of the land cover 

maps (Lu and Weng, 2007). Of the machine learning-based algorithms, RF and SVM are 

becoming popular in image classification research (Adam et al. 2014) primarily due to their 

insensitivity to overtraining and noise, making them better suited to deal with imbalanced data 

(Breiman, 2001). The design and selection of training samples are significant in the learning 

stage of a classifier (Ustuner et al. 2016). It is always best to use a balanced sample when dealing 

with machine learning algorithms (Weiss and Provost, 2003; Japkowicz and Stephen, 2002). 

Most times the method used to balance the samples depends on the researcher and what they are 

trying to achieve (Chawla et al. 2002; Chen et al. 2004; Trebar and Steele, 2008). It is believed 

that a substantial quantity of training samples is vital for image classification and is collected as 

ground truth data from the field (Hubert-Moy et al. 2002; Mather, 2004). When dealing with high 

resolution images, a good number of samples are needed because of high sample variation (Tsai 

et al. 2007; Borges et al. 2007). There is the need to find the optimum number of samples needed 

for higher spatial resolutions regarding the number of samples and balanced and imbalanced 

samples across different satellite images and classification algorithm. In the past, studies have 

tested imbalanced and balanced training sample in individual machine learning classifiers such 

as RF and SVM (Mellor et al. 2014; Ustuner et al. 2016). Only a finite amount of research has 

been carried out to compare different classifiers in different high-resolution images using both 

balanced and imbalanced datasets and its effect if any on the overall accuracy.  
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1.3. Aims and objectives 

 

This research aims to investigate the impacts of balanced and imbalanced samples on the 

accuracy of grass community mapping using different machine learning classifiers, and high 

resolution multispectral remotely sensed data. 

 

The specific objectives are to, 

● Map different grass communities in the Telperion Game Reserve using RapidEye and 

Sentinel 2 images and machine learning classifiers (Support vector machine and Random 

forest). 

 

● To quantify and analyse the impacts of balanced and imbalanced training data on the 

performance and the accuracy of Support Vector Machine and Random forest in mapping 

the grass communities. 

 

● To test the sensitivities of pixel resolution to balanced and imbalance training data in 

image classification. 
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2.1. Mapping grass communities using remote sensing 

 

Vegetation mapping analysis has become predominant in recent years (Cingolani et al. 2004) 

because they help in differentiating grass species and ecology in an area which leads to valuable 

information in conservation management (Zhang et al. 2016) and management practices. The 

traditional field method technique of mapping vegetation is a tedious task used in gaining 

knowledge about species type and their makeup (Terri and Stowe 1976). This method needs 

intensive fieldwork and laboratory analysis to measure the biochemical and biophysical 

properties of the grass species (Mutanga et al. 2003). The intense nature of fieldwork leads to 

results that are not fully representative of plant population and its distribution, especially in areas 

of varied diversity (Mutanga et al. 2003). The use of field data alone is insufficient as current and 

accurate information is required in a proper land cover and vegetation mapping, especially for 

areas of diverse landscapes (Odindi et al. 2016).  

Remote sensing provides an alternative and economical way of analysing grass species as it 

reduces the field work and the laboratory analysis required by the traditional method. The use of 

remote sensing has helped in providing information of even the most inaccessible areas at a cost-

effective rate (Running et al. 1993; Darvishzadeh et al. 2008). Remotely sensed data has been 

used in discriminating grassland species (Baldi et al. 2006; Toivonen and Luoto, 2003; Wang et 

al. 2010). Recent studies in mapping and monitoring vegetation species have incorporated the 

use of low and medium resolution imagery such as Landsat (Wulder et al. 2008; Vogelman et al. 

1998; Giri et al. 2003), SPOT (Kanellopoulos et al. 1992; Chen, Franklin and Spies, 1992) and 

MODIS (Stefanov and Netzband 2005). The accuracy of using these types of imagery is 

compromised by their spectral and spatial resolution (Foody 2002). The introduction of 

multispectral and hyperspectral imaging has dramatically improved the accuracy of vegetation 

mapping worldwide as they have high spectral and spatial resolution (Mutanga, Adam and Cho, 

2012; Akasheh et al. 2008; Harvey and Hill, 2001; Lawrence et al. 2006). New generation 

imagery such as Worldview 2&3, Sentinel 2 MSI, and RapidEye has emerged recently. Their 

spectral bands which fall in the electromagnetic spectrum, such as red edge provides a more 

detailed classification of landscapes (Schuster et al. 2012; Cho et al. 2012; Mutanga, Adam and 

Cho, 2012). While these new multispectral sensors advantageously provide significant details in 
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mapping vegetation (Baumstark et al. 2016; Odindi et al. 2014; Omer et al. 2015), acquiring the 

data is expensive. Image analysis, through the use of vegetation indices, is a standard way in 

remote sensing for discerning spatial patterns of the distribution of vegetation (Adjorlolo et al. 

2012). Remote sensing can also be used to distinguish between local grassland communities, 

grasslands and frequently co-occurring vegetation species. This is done by comparing 

classification results from different imagery dataset (Melville et al. 2018). The selection of the 

appropriate sensor is vital for vegetation mapping and land cover. Low-resolution images are 

commonly used in the large scale mapping of the identification of a substantial number of 

vegetation classes while a higher resolution image is used for superior classification of 

vegetation at a smaller scale. High-quality ground truth data is needed in remote sensing for 

cross-validation and training algorithm. To this effect, remote sensing is a potent tool when used 

concurrently with ground truth data (Bredenkamp et al. 1998).  

2.1.1. Importance and principle of mapping grass communities 

Monitoring land cover is essential for global change investigation (Jung et al. 2006; Lambin et 

al. 2001). Proper mapping of grass and vegetation species is crucial in managing the earth's 

natural resources as vegetation supplies a foundation for all living beings (Xiao et al. 2004). 

Vegetation mapping also includes details about natural and human-made habitat by quantifying 

vegetation cover at a small or large scale either presently or over an extended period of time (Xie 

et al. 2008). For proper conservation, it is crucial to obtain new generation cover (Egbert et al. 

2002; He et al. 2005). The principle of vegetation mapping using remote sensing, relies on the 

spectral attribute of the vegetation species and their spectral reflectance and radiance.  

2.2. Mapping grass communities using multispectral remote sensing  

 

Multispectral data have been used in vegetation mapping on many occasions (Rignot et al. 1997; 

Harvey and Hill 2001; Chastain, et al. 2008; Martinez-Lopez et al. 2014). In multispectral 

imagery, the pixels lead to a mix of vegetation species in varying proportion (Zomer et al. 2009). 

This mixing is primarily because multispectral sensors give rise to three to six spectral bands 

spanning from visible to near-infrared of the electromagnetic spectrum (Jensen, 2007). This 

mixing effect is a significant disadvantage in mapping vegetation. Mansour et al. (2016) used 
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multispectral remote sensing for mapping grassland degradation. Huang and Siegert (2006) 

found that SPOT VGT imagery was useful in detecting environmental changes on a larger scale 

and SPOT images were used to produce vegetation maps in Eastern New Zealand (Mathieu et al. 

2006). Zheng et al. (2006) used Landsat TM images to analyse wetland landscape patterns on the 

Minjiang River. Landsat images are one of the more common types of low to medium resolution 

images used. Wang et al. (2007) used Quickbird-2 to map aquatic and terrestrial vegetation. 

Multispectral data were also used for global mapping at a continental scale to map land cover in 

Central Africa using AVHRR (Mayaux et al. 1998). 

Although mapping vegetation using multispectral remote sensing has been promising, there are 

limitations due to its lower spatial and spectral resolutions, especially when dealing with 

complex and diverse vegetation types (Adam et al. 2012; Feng et al. 2015). 

2.3. Mapping grass community using hyperspectral remote sensing 

 

Hyperspectral remotely sensed data records a large quantity of narrow wavelength bands (over 

200) from the visible, near infrared, mid-infrared to the shortwave infrared bands of the 

electromagnetic spectrum. These bands offer new vegetation index for specific species (Clevers 

et al. 2007) making it more efficient in vegetation mapping. An advantage of this type of 

imagery is that the mixed pixel problem seen in multispectral imaging is significantly reduced, 

providing more information on land cover (Lu and Weng, 2009). Mutanga and Skidmore (2004) 

using hyperspectral data deduced that the narrowband indices provided better information on 

grassland biomass. Some researchers have focused on vegetation density (Nichol and Lee, 2005; 

Small, 2003) while others focused on the creation of land use/land cover maps (Carleer and 

Wolff 2006; Herold et al. 2003). Vegetation species classified as Invasive species have been 

successfully mapped using hyperspectral imagery because of its ability in determining the 

percentage coverage of vegetation species (Mundt al. 2005; Williams and Hunt, 2004; Glenn et 

al. 2005; Lawrence et al. 2006) 

A disadvantage of this though is the problem caused by shadows (Asner and Warner, 2003; Zhou 

et al. 2008; Lu and Weng, 2009). These shadows can lead to lower accuracy if a suitable 
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classification algorithm and image processing method is not used (Irons et al. 1985; Cushnie, 

1987). This problem was examined recently (Zhou et al. 2008; Mathieu et al. 2007; Walter, 

2004; Zhang et al. 2003). High spectral variation is also a problem when dealing with similar 

land cover types. Object-oriented classification methods have reduced this problem significantly 

(Mathieu et al. 20007; Zhou et al. 2008; Stow et al. 2007; Jacquin et al. 2008; Laliberte et al. 

2004). Another setback of hyperspectral data is that they are expensive (Sibanda et al. 2017).  

2.4. Mapping grass communities using new advanced multispectral data 

 

The arrival of new multispectral sensors has been recognized as an improvement from the 

shortfalls of hyperspectral and multispectral imagery (Mutanga et al. 2012). The higher spatial 

resolution and extended amount of bands such as the red edge, are preferred for vegetation 

mapping at higher accuracies (Mansour and Mutanga, 2012; Adelabu, Mutanga and Adam, 

2015). RapidEye and WorldView-2&3 imagery is used in various vegetation mapping research 

(Ustuner et al. 2016; Adam et al. 2014; Luck-Vogel et al. 2016; Adam et al. 2017). Mansour and 

Mutanga (2012) used WorldView-2 data to map grassland degradation of grass species in South 

Africa with an overall accuracy of 90%. The addition of a red-edge band helps in discerning 

variations in vegetation which makes for improved vegetation mapping. Despite these many 

advantages, these images are expensive. The availability of Sentinel-2 MSI, which also has high 

spatial and spectral properties, has helped in this aspect as it can be acquired free of charge.  

High spectral resolution does not often translate to improved accuracy; thus more advanced and 

robust classifiers are required (Sesnie et al. 2010; Adelabu et al. 2015; Lawrence et al. 2006). 

These include classifiers such as SVM and RF. 

2.5. Ground and training sampling for mapping grass communities 

 

While remotely sensed data is vital for proper vegetation mapping, ground truth data are equally 

essential for cross-validation when dealing with remote sensing data (Odindi et al. 2016; 

Bredenkamp et al. 1998). If the number of samples from the field is not enough, sometimes 

points are digitized based on proper georeferencing. Sometimes, vectors are manually digitized 
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(Evans et al. 2012; Al-Mashreki et al. 2010). Millard and Richardson (2015) suggested that the 

training and testing data should be as numerous as possible.  

Hubert-Moy et al. (2001) and Mather, (2004) believed that an adequate amount of training 

samples is vital for the classification of images and are collected as ground truth data from the 

field. The training data size is thought to affect the accuracy of classification performance 

(Mellor et al. 2015; Millard and Richardson, 2015). A substantial amount of training and testing 

data is believed to be needed to assess the classification accuracy entirely (Jin et al. 2014). 

Sometimes, the distribution of test sample may be different from that of the training sample, and 

the actual effects of this miscalculation might not be realized at the learning stage. In recent 

years, studies have shown the importance of a balanced sample over an imbalanced sample 

(Japkowicz and Stephen, 2002; Wei and Dunbrack, 2003; Estabrooks et al., 2004; Weiss and 

Provost, 2003). In a real-world scenario, imbalanced training samples occur due to difficulty 

obtaining the ground sample for some areas. Mellor (2017) showed that deliberately imbalancing 

a dataset can improve classification and performance of some classes without undermining 

overall classification outcome. 

Some studies have shown that using an imbalanced sample can lead to low classification 

accuracy (Kubat and Matwin, 1997; Japkowicz, 2000). Huang et al., (2002) believed that the 

training data used, affects the classification accuracy more than the classification algorithm used 

and suggested an increase in the training sample size to improve classification accuracy. 

2.6. Machine learning classifiers for mapping grass communities 

 

Machine learning algorithms are a more accurate type of classification algorithm when dealing 

with extensive data (Muchoney and Williamson, 2001; Kasischke et al. 2004). They can deal 

with noisy and missing data, especially classification trees (Simand et al. 2000; Hastie et al. 

2001). Different researchers in the past few years have compared various classification 

algorithms in vegetation mapping. These include maximum likelihood (Stuart et al. 2006) 

decision trees (Wang et al. 2016), random forest (Vanselow and Samimi, 2014), support vector 

machines (Schwieder et al. 2016) to neural networks (Zhang and Xie, 2012). Most recently 
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support vector machines and the random forest has been the most commonly used of the 

classifiers.  

Adam et al. (2016) and Pal, (2015) agreed that SVM and RF performed equally well based on 

high overall accuracy while others showed SVM performed well with a balanced and imbalanced 

dataset. Ustuner, Sanli and Abdikan (2016) looked at the mapping of diverse vegetation in 

Aydin, Turkey by classifying a RapidEye imagery using balanced and imbalanced training 

sample. They used SVM, Maximum Likelihood (ML) and Artificial Neural Network (ANN) 

classifications for mapping the crop pattern in the area and concluded that SVM was unaffected, 

showing SVM is an efficient and consistent classifier irrespective of whether it is a balanced or 

imbalanced training sample. In this case, it is proven that Support vector machine will be a 

capable and useful classifier. The result further highlighted why the design and choice of training 

sample into the learning stage of supervised classifiers is so important which is an integral part of 

this research. 

While different algorithms have been used to solve the problem of an imbalanced data sample, 

random forest and support vector machine have been the most effective. Other methods like 

weighting and undersampling have been used in the classification of an imbalanced data sample. 

One such study was that of Anand et al. (2010), who looked at the classification of an 

imbalanced sample using weighting and undersampling. 

There have been a few studies that have been carried out on balanced and imbalanced data 

samples and the effects of this imbalanced sample set on the overall accuracy and result, but not 

many have compared this with different high-resolution imagery, hence the focus of this study. 

The study will look at balanced and imbalanced samples from Sentinel-2 and RapidEye imagery 

using different algorithms, SVM and RF to determine the factors that affect these sample and if 

the imaging affects the accuracy of the samples.  
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2.7. Conclusion 

 

Vegetation mapping of diverse grass community class has been done successfully in prior years 

using different remote sensing imagery both on a local and global scale. A variety of low-

medium-high resolution imagery has been used in the past (Mutanga et al. 2016). The new 

generation multispectral imagery with higher spectral and spatial resolution are being preferred 

when it comes to mapping vegetation because they possess the red edge band which best 

classifies these different species. Classification algorithms such as maximum likelihood, k-

means, and minimum distance have been used in the past for classification, but the introduction 

of newer algorithms such as ANN, SVM, and RF is being used more frequently in the present. 

Only a few researchers have used these advanced classification algorithms on the new generation 

multispectral imagery using different (balanced and imbalanced) data set.  
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3.1. Study area 

 

The study area is Telperion Nature Reserve (25° 41′ S, 28° 56′ E) depicted in Figure 1 below. 

The area is approximately 11 000 hectares. Telperion is a section of the more magnificent 

eZemvelo Nature Reserve, located in Mpumalanga Province of South Africa. The reserve is 

situated at the border between Gauteng and Mpumalanga Provinces. The Wilge River, which is a 

tributary of the Oliphant’s River, flows northwards through the reserve. The reserve was 

established in 2008 and is surrounded by farmlands with people practicing agriculture, 

specifically maize and sunflower, and cattle rearing. Temperatures range from 140C and 260C 

during summer and 40C and 170C during winter. Dry winters are experienced here, which makes 

it difficult for tree growth and ultimately to the death of grassland. There is a high diversity of 

flowering plants and grass species. Telperion reserve is characterized by highlands and 

undulating terrain of ridges and valleys. Only 2% of Telperion are officially under conservation. 

There is a high diversity of animal and birdlife. The Oppenheimer family has owned Telperion 

for over 40 years. 

Mucina and Rutherford (2006) classified the vegetation type as the Bankenveld and Mixed 

Bushveld. The dominant grass species identified in the sampled plot are Eragrostis gummiflua, 

Hyparrhenia hirta, Cynodon dactylon, mixed grassland, Eragrostis chloromelas, woody 

vegetation, wetland grass, Aristida congesta and the Alien Invasive Species. 
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Fig 1: The location of Telperion Nature Reserve  

 

 

 

 

 



18 
 

3.2. Remote sensing data acquisition and pre-processing 

3.2.1.     Sentinel-2 Multispectral Instrument (MSI) image acquisition 

  

The Sentinel-2 MSI of the study area was downloaded from the European Space Agency’s 

website (earthexplorer.usgs.gov) on the 20th of May 2016. Sentinel-2 is a high-resolution 

multispectral image that was first launched on 23 June 2015. It consists of two similar satellites, 

Sentinel 2A and Sentinel 2B which helps in frequent revisit every five days under the same 

viewing angle. Although there can be overlap and some regions will be observed more than once 

every five days with differing views. It has a spatial resolution of 60m, 20m, and 10m. It consists 

of thirteen spectral bands with four bands of 10m, six bands of 20m and three bands of 60m 

(Table 1).  It has a 290 kilometre (km) field of view. It was launched to observe natural disaster 

management, land cover change detection and for other monitoring on the earth’s surface.  

Table 1. Spectral bands of Sentinel 2A satellite imagery 

Sentinel 2 bands Centre 

wavelength(nm) 

Bandwidth(nm) Spatial 

resolution(m) 

Band 1 443.9 27 60 

Band 2 496.6 98 10 

Band 3 560.0 45 10 

Band 4 664.5 38 10 

Band 5 703.9 19 20 

Band 6 740.2 18 20 

Band 7 782.5 28 20 

Band 8 835.1 145 10 

Band 8a 864.8 33 20 

Band 9 945.0 26 60 
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Band 10 1373.5 75 60 

Band 11 1613.7 143 20 

Band 12 2202.4 242 20 

 

3.2.2.     RapidEye image acquisition 

 

A RapidEye imagery map was downloaded from the RapidEye satellite constellation website 

(rapideye.net/upload) on 21st of May 2016. RapidEye is a high-resolution imagery with 

multispectral capabilities. It was launched on 29 August 2008 and provides broad area coverage 

and frequent revisit intervals. RapidEye collects 4 million square kilometres of data per day at 

6.5 m ground resolution that can be re-sampled to 5m pixel size. It consists of five satellites 

equipped with identical sensors located in the same orbital plane. It is capable of daily revisits 

when off-nadir and revisiting every 5.5days at nadir with a swath width of 77 kilometres (km). It 

can be used in various fields, including mining, oil and gas exploration, security and emergency, 

mapping and agriculture. RapidEye imagery is in high demand for land use/land cover maps and 

mapping vegetation due to its red edge and NIR bands which are sensitive to the chlorophyll 

content in vegetation. The RapidEye sensors produce imagery in five spectral bands that can be 

seen in table 2.    

Table 2: Spectral bands of RapidEye imagery 

Spectral bands Wavelength(nm) 

 

Blue 

440-510 

Green 520-590 

Red 630-685 

Red edge 690-730 

NIR 760-850 
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 3.3. Remote sensing data pre-processing 

 

Georeferencing is extremely important because of the use of different images with different 

types of the classification algorithm. For the Sentinel-2 MSI image, this was done by selecting 

the UTM zone 35S with the 10m spatial resolution used. Atmospheric correction was done on 

both images using the Sen2cor tool which is available in the Sentinel Application Platform 

(SNAP) toolbox and performed using a python script. The corrected image was then converted to 

ENVI format, resulting in 10 bands (2-8, 8a, 11 and 12). The converted bands were displayed on 

ENVI 5.3. Thereafter, the spectral reflectance from the Sentinel 2 MSI image that corresponds to 

each GPS sampled point was derived. 

For the RapidEye imagery, georeferencing was done by selecting UTM zone 35S with a spatial 

resolution of 5m. The digitized image was in level 3A (orthoproduct) in which radiometric, 

sensor and geometric corrections have been implemented for the data. The corrected image was 

displayed on ENVI 5.3. After this was done, the spectral reflectance from the RapidEye image 

that corresponds to each GPS sampled point was extracted for further analysis. The image was 

also used in R studio. 

3.4. Field data collection 

 

Field data collection was done to locate the different vegetation species in the game reserve. The 

field sampling was carried out between the 22nd -24th of May 2016, which was consistent with 

the window period the images were acquired. The sample plots were randomly fixed and spread 

evenly across the study area (Ramoelo et al., 2012) with the plots being 10 metres x 10 metres in 

size to account for the pixel size of the sentinel image (10m). It was the dry season at the time 

the sample was collected. Global Positioning System (GPS) was used to record the coordinates 

where each of the samples was obtained and also the coordinate of each sample plot with a total 

of 80 GPS points recorded. The sample collected from each imagery was split into training and 

testing data using the typical 70:30 split in R studio and ENVI 5.3 respectively for classification. 

A look at the samples collected shows that they are imbalanced. 
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Table 3: Training and test data for the grass species (imbalanced). 

Species  Training samples 

(70%) 

Test samples  

(30%) 

Total samples  

Alien Invasive 

Species 

48 20 68 

Hyparrhenia hirta 41 17 58 

Mixed grassland 201 87 288 

Cynodon dactylon  35 14 49 

Eragrostis 

chloromelas 

52 22 74 

Woody vegetation  95 40 135 

Wetland grass 42 18 60 

Aristida congesta  42 17 59 

Eragrostis 

gummiflua 

45 19 64 

 

To balance out the imbalanced dataset, a random undersampling method was carried out to even 

the distribution by randomly reducing the quantity of majority samples while keeping the total of 

the lowest minority sample in mind and building a more balanced number of samples from that. 

The balanced data can be seen in table 4 below.  
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Table 4: Training and test data for the grass species (balanced). 

Species Training samples 

(70%) 

Test samples 

(30%) 

Total samples 

Alien Invasive 

Species 

35 14 49 

Hyparrhenia hirta 35 14 49 

Mixed grassland 35 14 49 

Cynodon dactylon  35 14 49 

Eragrostis 

chloromelas 

35 14 49 

Woody vegetation  35 14 49 

Wetland grass 35 14 49 

Aristida congesta  35 14 49 

Eragrostis gummiflua 35 14 49 

 

3.5. Image classification 

 

When it comes to remote sensing, the production of land use and land cover maps is an essential 

function carried out through image classification (Al-doski et al., 2013). Machine learning 

algorithms such as SVM and ANN has been tested and examined numerous times in remote 

sensing, from optical to radar data, for image classification in the current years (Pal et al., 2013). 

Several studies have shown the superiority of SVM and RF in comparison to other types of 

classification when dealing with remote sensing images and land cover analysis (Adam et al., 

2014; Khatami et al., 2016; Qian et al., 2015; Shao and Lunette, 2012).  The frequent use of 
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these two algorithms is why this research focuses on support vector machine and random forest 

classification algorithms.  

3.5.1. Support Vector Machines 

 

Support vector machine is a type of supervised machine learning algorithm that is used for both 

classification and regression analysis. The concept of SVM is that it creates differing 

hyperplanes that separate the dataset into a predefined number of classes. The separation is done 

by using a training sample which is a subset of the dataset. Support vector machines are a 

powerful kernel-based classification algorithm. Kernel function needs user-defined parameters. 

Vladimir N. Vapnik invented the original SVM algorithm in 1963.  It has since become very 

popular and has been successful in remote sensing classification. The main reason for SVM's 

popularity is its high classification accuracy with a small quantity of training data and 

outperforms other conventional methods like maximum likelihood (Huang et al., 2002). 

Mountrakis et al. (2011) analysed articles from over a hundred sources and did an overview of 

the results using SVM as the selected choice of classification and concluded of its high accuracy 

when dealing with a small training sample and its superiority compared to the other types of 

classification but its limitations in parameter selection. Camps-Valls et al. (2004) reported 

SVM's advantage when dealing with hyperspectral remotely sensed data. Although in theory 

SVM is known for high classification accuracy, it is not as effective when using a significant 

data because its training difficulty relies heavily on the size of the dataset.  

SVM can perform linear classification as well as nonlinear classification, also known as the 

kernel function. The kernel function transforms the data and then finds the optimal boundary for 

the outputs. A linear classifier separates points into one of two classes by a straight line, the goal 

of which is to see a line that passes as far as possible from all aspects to avoid noise (figure 2). 
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Figure 2: linear classifier (source: Vapnik, 1999 Springer; Scholkopf et al., 2002) 

Although in real life, most classification tasks are never really this simple as optimal separation 

would require a more complex structure than that of a straight line as can be seen in the image 

below. This type of classifier is known as the nonlinear classifier. Hyperplane classifiers are lines 

drawn to distinguish and separate objects of a different class. This separation is where SVM 

thrives. SVM is represented by the formula below:  

wTx + b = 0 

Where w is a weight vector 

x is input vector 

b is bias 

The formula also allows us to write the parallel hyperplane (Burgess, 1998) 

wTx + b ≥ 0 for di = +1 (plus plane) 
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wTx + b < 0 for di = -1 (minus plane)                

Where d is the margin of separation (separation between hyperplane and the closest data point 

for a given w, weight vector and b, bias parameter.  

In the figure 3 below, a curve like a backward c, would have to be created to separate the two 

classes properly. 

      

 Figure 3: Nonlinear classifier (source: Vapnik, 1999 Springer; Scholkopf et al., 2002)  

         

Figure 4 represents a nonlinear surface where the data would have to be mapped in a higher 

dimensional feature space through the kernel function, making them linearly separable in this 

space since there is no possibility to do so in the original area. When it comes to SVM, the most 

common kernels are linear, Gaussian radial basis function (RBF), polynomial, and sigmoid 

kennels which were presented by Fletcher (2009) and Haykin (1999). In remote sensing data 

analysis, the RBF kernel is the most widely used kernel functions due to its high performance 

(Gomez-Chova et al., 2011).                                                   
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Where χ is a sample in the data space 

 χί is a corresponding sample in the feature space  

 γ is the kernel parameter  

       

         Figure 4: The Main idea of SVM (source: Statnikov et al., 2011)  

A disadvantage of SVM is that it will classify all examples as the majority class, a tactic that if 

the imbalance is severe, can provide the minimal error rate across the data space (Batuwita, R. 

and Palade, V., 2012). There have been many works of literature that apply different techniques 

to the SVM framework to overcome problems due to imbalance (Wu and Chang, 2003). There 

are various ways of mapping non-linear boundary with kernel functions in SVM which includes 

linear, polynomial, radial basis function and sigmoid kernels. SVM was run using the support 
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vector classification tool in ENVI 5.3 applying radial basis function (RBF) kernel which is the 

most commonly used kernel function when dealing with SVM (Pal, Mather 2005; Melgani, 

Bruzzone 2004; Hermes et al. 1999). The RBF has two tuning parameters- cost (C) and gamma 

(γ), which can affect overall accuracy (Burges, 1998). The ENVI 5.3 software uses the pairwise 

classification strategy for multiclass classification. The software carries out classification by 

selecting the highest probability and a threshold is set, with pixels below this threshold deemed 

unclassified. Support vector is the interval measured between the nearest points of the two 

classes (Pal and Mather, 2005). The regions of interest (ROIs) were created by overlaying the 

dataset on the Sentinel 2 and RapidEye images in ENVI. Once the ROIs were generated, the 

SVM classification began, after which the training dataset (70%) was used for accuracy 

assessment. SVM was run for both balanced and imbalanced datasets of RapidEye and Sentinel 2 

images. SVM was also run on R using a python script to get the parameter tuning and check the 

results.   
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3.5.2. Random forest classifiers 

 

Random Forest, developed by Breiman (2001), is a type of supervised classification algorithm. 

Random forest is based on tree classifiers. In this classifier, the number of decision trees makes 

the forest. Figure 5 below shows the main idea behind random forest classifiers. 

 

 

Figure 5: Workflow and main idea of RF (source: Guo et al., 2011) 

 

The random forest classifier uses a set of classification and regression tree, CARTs, to make a 

prediction (Breiman, 2001). The trees are created through a process known as bagging. Bagging 

is a method whereby trees are formed by drawing a subset of training samples through 

replacement. Two-thirds of the samples (referred to as in-bag samples) are used to train the trees 

while the one third that is left over (referred to as out-of-the-bag samples, OOB) is used for 

internal cross-validation which helps us estimate how well the RF model performs (Breiman, 

2001). There is no pruning when decision trees are produced. The final classification output is 

created based on a majority vote of the predictions from all individually trained trees (Jin, 2012). 

The more the trees in the forest, the better the random forest classifier will be. The higher the 

number of decision trees, the higher the accuracy of the classifier. The decision tree algorithm 

comes up with a set of rules based on the training data sets. This set of rules is also used on the 
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testing datasets. Random Forest can be used when handling classification and regression issues. 

It operates by constructing a high number of decision trees at the time of training and producing 

the class that is the mode of the classes (classification) or average prediction (regression) of the 

individual trees. For RF to be implemented, the user-defined number of trees (ntree) and the 

user-defined number of features (mtry) must first be set up. The algorithm then creates trees that 

have a high variance of low bias (Breiman, 2001). The mean average from the trees gives us the 

predictions of the random forest classification.  The RF prediction is described by the formula 

below 

  

 Random forest prediction s = 
1

𝑘
∑ kk
k−1

th 

         

Where the index k runs over the individual trees in the forest 

 

Random decision forests correct for the decision trees' habit of overfitting to their training set. It 

is known for being efficient in its implementation on large datasets and its accuracy among 

current algorithms. It works well with missing data by replacing missing values. This is done by 

computing the median of all values in the class. It then uses these average values to substitute all 

the missing values with rough estimates or by doing a raw filling of the missing values by 

computing proximity. Its accuracy is not affected by this. This approach provides a way of 

estimating the importance of the individual variables in classification.   

 

One thing about the RF algorithm is that there are a few assumptions involved which lead to 

faster results and outputs. These assumptions are based on RF creating many decision trees 

which help in improving the accuracy. RF can rank variables based on the importance of running 

the mean decrease accuracy table if the user needs further analysis. As earlier stated, the number 

of trees (ntree) and the number of features in each split (mtry) first have to be set up before RF 

can be carried out. This optimization was carried out four times- one for each imbalanced 

RapidEye and Sentinel 2 images and one for each balanced RapidEye and Sentinel 2 images. RF 

was done in RStudio using a python script. RStudio is an open source tool that supports different 

geospatial analysis of remotely sensed data. Each run produced different mtry and ntree values. 
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3.6. Accuracy assessment 

 

When it comes to accuracy of classification performance, overall accuracy and kappa coefficient 

are the most common. Overall accuracy (OA) is the ratio of the number of correctly classified 

samples (sum of principal diagonal) and the total number of sample units (Congalton and Green, 

2009).  Accuracy assessment which is an integral part of any classification will be carried out 

using 30% of the subset of the referenced data. The assessment was done for both images and the 

balanced and imbalanced dataset. A confusion matrix was also generated which shows predicted 

class versus actual class. In other words, it shines a light on the errors made by the classifier. 

Since the research is not based on looking individually at each grass community species, the OA 

will be used for comparison.   
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4.1. Optimization of RF parameters 

 

4.1.1. Sentinel-2 MSI imagery 

 

As previously stated, the ntree and mtry can affect the performance of a RF classifier. The ntree 

and mtry values are represented in grids. For the imbalanced dataset, the mtry value of 4 and 

ntree value of 2000 created the least OBB error rate of 0.1528962. The highest OBB error rate of 

0.177707 was produced by the mtry value of 7 and ntree value of 3000 (Figure 6a). 

Subsequently, the mtry value of 4 and ntree of 2000 was chosen as the input parameters which 

will be used to train the RF algorithm for the classification of the grass community. For the 

balanced dataset, an mtry of 4 and ntree value of 1000 produced the least OBB error rate of 

0.171839. The highest OBB error rate of 0.202414 was created with an mtry value of 9 and ntree 

value of 500 (Figure 6b). Therefore, the mtry of 4 and ntree of 1000 was chosen as the input 

parameters required to train the RF algorithm in order for a classification of the grass community 

for the balanced dataset.    

                                    

                                                                  (a) 
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                                                              (b) 

Figure 6: RF parameter optimization (mtry and ntree) for the imbalanced (a) and balanced (b) 

data using the grid search procedure. 

4.1.2. RapidEye imagery 

 

For the imbalanced RapidEye imagery, the mtry value of 2 and ntree of 1000 marked the least 

OBB error rate of 0.3689071. The highest OBB error rate of 0.38724 was presented with mtry of 

6 in combination with ntree of 2500 (Figure 7a). The mtry of 2 and ntree of 1000 was used as the 

input parameter to train the Random Forest algorithm.  When the dataset was balanced, mtry 

value of 3 and ntree of 5500 gave the least OBB error rate of 0.368246. An mtry of 4 and ntree 

of 2000 created the highest OBB error rate of 0.390524 (Figure 7b). A mix of mtry value of 3 

and ntree of 5500 was used as the input parameter to train the Random Forest algorithm. 
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                                                             (a) 

                                 

                                                                (b) 

Figure 7: RF parameter optimization (mtry and ntree) for the imbalanced (a) and balanced (b) 

data using the grid search procedure. 
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4.2. Parameter tuning of SVM 

 

4.2.1. Sentinel-2 MSI 

 

For the imbalanced data, the cost C value of 100 with a gamma γ value of 1 was the best 

parameters producing the best performance at 0.1495082. These parameters were the input 

parameters to train the SVM algorithm. For the balanced data, the cost C value of 10 with a 

gamma γ value of 1 was the best parameters producing the best performance at 0.1412644. These 

values are the input parameters used to train the SVM algorithm. 

4.2.2. RapidEye imagery 

 

For the imbalanced data, the cost C value of 100 with a gamma γ value of 0.1 was the best 

parameters producing optimal performance at 0.4119672. These parameters were the input 

parameters to train the SVM algorithm. For the balanced data, the cost C value of 100 with a 

gamma γ value of 0.1 was the best parameters resulting in the best performance at 0.4033266. 

These values are the input parameters used to train the SVM algorithm. 

4.3. RF and SVM performance in mapping grass community 

 

4.3.1. Sentinel-2 MSI imagery (imbalanced training data) 

 

Nine classes were produced using the random forest and a support vector algorithm (Figure 8) on 

the imbalanced training data. The overall accuracy results show a slight distinction between the 

vegetation maps produced by the algorithms. As can be seen in the central and southwestern part 

of the two maps, there is a slight difference in the pixels of alien invasive species (Figure 8). 

There is also a difference in the northwestern part of the map where there is a significant amount 

of pixels of Eragrostis gummiflua in the SVM map, unlike the RF map. The dominant species on 

both maps is the Mixed grasslands. 
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(a)                                                             (b) 

Figure 8: Vegetation mapping classification using RF (a) and SVM (b) classification algorithm 

for imbalanced training data. 

4.3.2. Sentinel-2 MSI imagery (balanced training data) 

 

A total of nine classes was also obtained using the RF and SVM algorithm on the balanced 

training data (Figure 9). The overall accuracy results show significant differences between the 

vegetation maps generated by the two algorithms. The entirety of the two maps is different with 

the dominant species on the SVM map being Mixed grasslands while that of the RF maps is the 

Cynodon Dactylon. As can be seen in the central and southwestern part of the two maps, the 

pixel of alien invasive species remains relatively the same (Figure 9).  
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(a)                                                              (b) 

Figure 9: Vegetation mapping classification using RF (a) and SVM (b) classification algorithm 

for balanced training data. 

4.3.3. RapidEye imagery (imbalanced training data) 

 

Nine classes was also obtained using the RF algorithm and a total of seven for the SVM 

algorithm on the balanced training data (Figure 10). Aristida congesta and Hyparrhenia hirta 

were missing on the SVM classification map. This absence is most likely due to the two classes 

being misclassified with others. The overall accuracy results show significant differences 

between the vegetation maps generated by the two algorithms. The entirety of the two maps is 

different, with the dominant species on the SVM map being Mixed grasslands followed by 

Woody vegetation. The RF map shows the dominant species as Mixed grasslands, Eragrostis 

gummiflua and Alien Invasive species in the extent of the map.  As can be seen in the central and 

southwestern part of the two maps, the pixel of alien invasive species remains relatively the same 

(Figure 10). 
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(a)                                                                (b) 

Figure 10: Vegetation mapping classification using RF (b) and SVM (a) classification algorithm 

for imbalanced training data. 

4.3.4. RapidEye imagery (balanced training data) 

 

A total of nine classes was also obtained using the RF and SVM algorithm on the balanced 

training data (Figure 11). The overall accuracy results show slight differences between the 

vegetation maps generated by the two algorithms. In the northeastern and southeastern part of the 

map differences in the pixel can be seen where Aristida congesta is prominent in the RF map and 

Eragrostis gummiflua in the SVM map (Figure 11). It is hard to conclude on which species the 

most dominant in both maps is. 
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(a)                                                                (b) 

Figure 11: Vegetation mapping classification using RF (a) and SVM (b) classification algorithm 

for balanced training data. 

4.4. RapidEye and Sentinel-2 bands significance 

 

4.4.1. Sentinel-2 MSI imagery (balanced training data) 

 

During the classification process of the RF classification algorithm, we are provided with a 

measure of variable importance. The variable importance provided allowed us to identify the 

significance of each Sentinel-2 bands in mapping the vegetation (Figure 12). An assessment of 

the bands shows the Red-edge 3 band as the more dominant in the classification and modelling 

accuracy. The overall accuracy of the vegetation classification reduces by 70% when the Red-

edge 3 band is omitted from the model (Figure 12a). The Red-edge 3 band is shown to be the 

best for depicting Eragrostis gummiflua while the Red-edge bands 1, 2 and 3 is the least 

important for describing Woody vegetation (Figure 12b). 
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                                                                  (a) 

                        

                                                                    (b) 

Figure 12: Sentinel band significance in vegetation classification for all the vegetation species (a) 

and each vegetation species (b). The most important band is the one with the highest mean 

decrease in accuracy. 

4.4.2. Sentinel-2 MSI imagery (imbalanced training data) 

 

We are provided with a measure of variable importance during the RF classification process 

which allowed us to identify the significance of each Sentinel-2 band in mapping vegetation 
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(Figure 13). An assessment of the bands shows the Red-edge 3 band is the dominant band during 

classification and modelling accuracy (Figure 13a). The Red-edge 3 band is the most significant 

band for depicting Eragrostis gummiflua and the Red-edge is the least for describing Woody 

vegetation (Figure 13b). 

                           

                                                                  (a) 

                     

                                                                     (b) 

Figure 13: Sentinel band significance in vegetation classification for all the vegetation species (a) 

and each vegetation species (b). The highest mean decrease in accuracy specifies the most 

important band. 
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4.4.3. RapidEye Imagery (balanced training data) 

 

The variable importance provided allowed us to identify the significance of each RapidEye 

bands in mapping the vegetation (Figure 14). In the classification and modelling accuracy, an 

assessment of the bands shows the NIR band to be the dominant band (Figure 14a). The Red 

band is the most valuable for depicting Woody vegetation and the blue band is the least relevant 

for describing Alien invasive species (Figure 14b). 

                              

(a) 
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(b) 

Figure 14: RapidEye band significance in vegetation classification for all the vegetation species 

(a) and each vegetation species (b). The highest mean decrease in accuracy specifies the most 

important band.  

4.4.4. RapidEye imagery (imbalanced training data) 

 

The variable importance provided allowed us to identify the significance of each RapidEye 

bands in mapping the vegetation (Figure 15). An assessment of the bands shows the NIR band is 

the effective band in classification and modelling accuracy (Figure 15a). Meanwhile the NIR 

band proves the most valuable for depicting Eragrostis gummiflua while the green band is least 

effective for describing Hyparrhenia hirta invasive species (Figure 15b). 
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(a) 

       

(b) 

Figure 15: RapidEye band significance in vegetation classification for all the vegetation species 

(a) and each vegetation species (b). The highest mean decrease in accuracy specifies the most 

important band.  
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4.5. Accuracy assessment 

 

4.5.1. Sentinel-2 MSI (balanced dataset)  

 

Accuracy assessment was carried out using the test data of the balanced training data set to 

enable the performance estimate of the trained models for both random forest and support vector 

classification algorithms. The overall accuracy of 76.19% and a kappa coefficient of 73.21% 

were achieved for RF classifier. In general, all vegetation species produced above 60% user's 

accuracy except for Mixed grasslands with an accuracy of 42.86%. RF achieved above 60% 

producer's accuracy for most vegetation species (Table 5). SVM produced higher accuracy 

compared to the RF classifier with an overall accuracy of 82.54% and a kappa coefficient of 

80.36%. The SVM classifier achieved over 65% of the user's accuracy and over 60% of the 

producer's accuracy except for Mixed grassland with an accuracy of 50% (Table 6). Using this 

classifier can create some confusion between Mixed grassland, Aristida congesta and Alien 

invasive species, indicating that some spectral similarities exist between these grass species. 

4.5.2. Sentinel-2 MSI (imbalanced dataset)  

 

Accuracy assessment was carried out using the test data set of the imbalanced data set to enable 

the performance estimate of the trained models for both random forest and support vector 

classifiers. The overall accuracy of 79.45% and a kappa coefficient of 74.38% were achieved for 

RF (Table 7). The user's accuracy was above 65% with possible misclassification between Alien 

invasive species, Aristida congesta, and Mixed grasslands. The producer's accuracy was above 

70% for the grass species. The overall accuracy of 82.21% and a kappa coefficient of 78.33% for 

the SVM classifier was produced (Table 8). 
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Table 5: Confusion matrix using random forest (RF) for vegetation species and the associated 

accuracies including kappa statistic (KC), overall accuracy (OA), producer’s accuracy (PA) and 

user’s accuracy (UA) of the Sentinel-2 image using the test data of the balanced dataset. 

Class AIS AC CD EC EG HH MG WG WV TOTAL UA PA 

AIS 9 1 0 0 1 0 3 0 1 15 60.00% 64.29% 

AC 1 10 0 0 1 0 1 0 0 13 76.92% 71.43% 

CD 0 0 9 0 1 0 2 0 0 12 75.00% 64.29% 

EC 2 1 0 12 0 0 0 0 0 15 80.00% 85.71% 

EG 0 2 0 0 11 0 0 0 0 13 84.62% 78.57% 

HH 1 0 0 0 0 13 1 0 0 15 86.67% 92.86% 

MG 1 0 5 2 0 0 6 0 0 14 42.86% 54.54% 

WG 0 0 0 0 0 1 1 14 1 17 82.35% 100.00% 

WV 0 0 0 0 0 0 0 0 12 12 100% 85.71% 

TOTAL 14 14 14 14 14 14 11 14 14 96  

Overall accuracy: 76.19% 

Kappa coefficient:  73.21%                                                                                             
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Table 6: Confusion matrix using support vector machine (SVM) for vegetation species and the 

associated accuracies including KC, OA, PA and UA of the Sentinel-2 image using the test data 

of the balanced dataset. 

Class AIS AC CD EC EG HH MG WG WV TOTAL UA PA 

AIS 10 1 0 0 1 0 3 0 0 15 66.67% 71.43% 

AC 3 12 0 0 1 0 1 0 0 17 70.59% 92.31% 

CD 0 0 13 0 0 0 0 0 0 13 100.00% 92.86% 

EC 1 1 0 12 0 0 0 0 0 14 85.71% 85.71% 

EG 0 0 0 0 11 0 2 0 0 13 84.62% 78.57% 

HH 0 0 0 0 1 11 0 0 0 12 91.67% 78.57% 

MG 0 0 0 2 0 2 7 0 0 11 63.64% 50.00% 

WG 0 0 0 0 0 0 1 14 0 15 93.33% 100.0% 

WV 0 0 1 0 0 1 0 0 14 16 87.50% 100.0% 

TOTAL 14 13 14 14 14 14 14 14 14 104  

Overall accuracy: 82.54% 

Kappa coefficient: 80.36% 
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Table 7: Confusion matrix using random forest (RF) for vegetation species and the associated 

accuracies including OA, UA, PA and KC of the Sentinel-2 image using the test data of the 

imbalanced dataset. 

Class AIS AC CD EC EG HH MG WG WV TOTAL UA PA 

AIS 8 0 0 1 0 0 3 0 0 12 66.67% 40.00% 

AC 0 9 0 0 0 0 2 0 0 11 81.81% 52.94% 

CD 0 0 13 0 0 0 1 0 0 14 92.86% 92.86% 

EC 1 0 0 16 0 0 1 0 0 18 88.89% 72.73% 

EG 0 2 0 0 16 0 1 0 0 19 84.21% 84.21% 

HH 0 0 0 0 0 12 1 0 0 13 92.31% 70.59% 

MG 11 5 1 5 2 3 74 1 3 105 70.48% 86.05% 

WG 0 0 0 0 0 1 0 17 1 19 89.47% 94.44% 

WV 0 1 0 0 1 1 3 0 36 42 85.71% 90.00% 

TOTAL 20 17 14 22 19 17 86 18 40 201  

Overall accuracy: 79.45% 

Kappa coefficient: 74.38%  
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Table 8: Confusion matrix using support vector machine (SVM) for vegetation species and the 

associated accuracies including the UA, OA, KC and PA of the Sentinel 2 image using the test 

data of the imbalanced dataset. 

Class AIS AC CD EC EG HH MG WG WV TOTAL UA PA 

AIS 14 1 0 2 1 0 2 0 0 20 70.00% 70.00% 

AC 0 11 0 0 0 0 2 0 0 13 84.62% 64.71% 

CD 0 0 13 0 0 1 0 0 0 14 92.86% 92.86% 

EC 0 0 0 17 1 0 1 0 1 22 77.27% 77.27% 

EG 0 2 0 0 16 0 2 0 1 21 76.19% 84.21% 

HH 0 0 0 0 0 13 2 0 0 15 86.67% 76.47% 

MG 6 3 1 3 0 1 71 1 1 87 81.61 82.56% 

WG 0 0 0 0 0 0 0 17 1 18 94.44% 94.44% 

WV 0 0 0 0 1 2 4 0 36 43 83.72 90.00% 

TOTAL 20 17 14 22 19 17 86 18 40 208  

Overall accuracy: 82.21% 

Kappa coefficient: 78.33%  
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4.5.3 RapidEye imagery (balanced dataset) 

  

Accuracy assessment was carried out using the test data of the balanced training data set to 

enable the trained models prediction performance for both random forest and support vector 

classifiers. The overall accuracy of 57.94% and a kappa coefficient of 52.68% were achieved for 

RF classifier. In general, all vegetation species produced a low user's accuracy except for Woody 

vegetation, Wetland grass and Cynodon dactylon with accuracies of over 90%. The random 

forest classifier achieved low producer’s accuracy for a good number of the vegetation species 

except for Woody vegetation, Eragrostis chloromelas, Wetland grass and Cynodon dactylon 

(Table 9). These low values mean that there could be misclassification amongst the other 

vegetation species. SVM classifier produced a lower accuracy when compared to RF classifier 

with an overall accuracy of 50.79% and a kappa coefficient of 44.64%. The SVM classifier 

achieved low accuracy for the user's and producer's accuracy except for Woody vegetation and 

Wetland grass (Table 10). Using this classifier can create some confusion among the other grass 

species. 

4.5.4. RapidEye imagery (imbalanced dataset)  

 

Accuracy assessment was carried out using the test data of the balanced training data set to 

enable the trained models performance prediction for both random forest and support vector to 

be carried out. The overall accuracy of 63.24% and a kappa coefficient of 53.58% were achieved 

for RF classifier. In general, all vegetation species achieved a low user's accuracy except for 

Woody vegetation, Wetland grass, Aristida congesta and Cynodon dactylon with accuracies of 

over 90%. The RF classifier also achieved low producer’s accuracy for a good number of the 

vegetation species except for Woody vegetation, Wetland grass and Mixed grassland (Table 11). 

These low values mean that there could be misclassification amongst the other vegetation 

species. SVM classifier produced a lower accuracy in comparison to the RF classifier with an 

overall accuracy of 57.31% and a kappa coefficient of 46.11%. The SVM classifier achieved low 

accuracy for the user's accuracy except for Woody vegetation and Wetland grass and a low 

producer’s accuracy except for Eragrostis gummiflua, Mixed grasslands, Woody vegetation and 
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Wetland grass (Table 12). Using this classifier can create some confusion among the other grass 

species.  
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Table 9: Confusion matrix using random forest for vegetation species and the associated 

accuracies for RapidEye image using the test data of the balanced train data. 

Class AIS AC CD EC EG HH MG WG WV TOTAL UA PA 

AIS 6 3 0 0 1 0 3 0 0 13 46.15% 42.86% 

AC 1 3 0 0 4 2 0 0 0 10 30.00% 20.00% 

CD 2 0 10 1 0 0 0 0 0 13 76.92% 92.86% 

EC 5 3 2 11 0 0 1 0 0 22 50.00% 71.43% 

EG 0 0 1 0 9 1 3 0 0 14 64.29% 64.29% 

HH 0 3 0 1 0 7 4 1 1 17 41.18% 50.00% 

MG 0 2 1 1 0 2 2 0 0 8 25.00% 15.38% 

WG 0 0 0 0 0 2 0 13 0 15 86.67% 92.86% 

WV 0 0 0 0 0 0 0 0 12 12 100.0% 92.31% 

TOTAL 14 15 14 14 14 14 13 14 13 73  

Overall accuracy: 57.94% 

Kappa coefficient: 52.68% 
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Table 10: Confusion matrix using support vector machines for vegetation species and the 

associated accuracies for RapidEye imagery using the test data of the balanced train data. 

Class AIS AC CD EC EG HH MG WG WV TOTAL UA PA 

AIS 5 2 0 2 1 0 4 0 1 15 33.33% 35.71% 

AC 1 2 1 1 5 4 0 0 0 14 14.29% 14.29% 

CD 1 2 8 0 0 1 2 0 1 14 57.14% 57.14% 

EC 7 5 3 10 0 1 1 0 0 27 37.04% 71.43% 

EG 0 0 0 1 8 2 3 0 0 14 57.14% 57.14% 

HH 0 2 0 0 0 3 0 1 0 6 50.00% 21.43% 

MG 0 1 2 0 0 1 3 0 0 7 42.86% 21.43% 

WG 0 0 0 0 0 1 1 13 0 15 86.67% 92.86% 

WV 0 0 0 0 0 1 0 0 12 13 92.31% 85.71% 

TOTAL 14 14 14 14 14 14 14 14 14 64  

Overall accuracy: 50.79% 

Kappa coefficient: 44.64% 
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Table 11: Confusion matrix using random forest for vegetation species and the associated 

accuracies of the RapidEye image using the test data of the imbalanced train data. 

Class AIS AC CD EC EG HH MG WG WV TOTAL UA PA 

AIS 3 3 0 0 0 0 2 0 2 10 30.00% 15.00% 

AC 1 6 0 0 0 0 1 0 0 8 75.00% 35.29% 

CD 1 0 7 0 0 0 0 0 1 9 77.78% 50.00% 

EC 4 2 3 11 1 0 5 0 1 27 40.74% 52.38% 

EG 0 0 0 1 13 1 3 0 1 19 68.42% 68.42% 

HH 1 0 0 0 0 2 3 0 0 6 33.33% 11.76% 

MG 10 6 4 10 4 11 68 1 0 122 55.74% 79.07% 

WG 0 0 0 0 0 1 0 16 1 18 88.89% 88.89% 

WV 0 0 0 0 1 2 4 1 34 42 80.95% 85.00% 

TOTAL 20 17 14 21 19 17 86 18 40 160  

Overall accuracy: 63.24% 

Kappa coefficient: 53.58% 
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Table 12: Confusion matrix using support vector machines for vegetation species and the various 

accuracies of the RapidEye image using the test data of the imbalanced train data. 

Class AIS AC CD EC EG HH MG WG WV TOTAL UA PA 

AIS 4 2 0 0 0 0 1 0 2 9 44.44% 20.00% 

AC 0 2 0 0 1 0 0 0 0 3 66.67% 11.76% 

CD 0 1 3 1 0 0 1 0 1 7 42.86% 21.43% 

EC 4 1 5 7 1 2 4 0 0 24 29.17% 31.81% 

EG 0 2 0 2 14 2 7 0 1 28 50.00% 73.68% 

HH 0 1 0 0 0 4 8 0 0 13 30.77% 23.53% 

MG 12 8 6 12 1 7 64 1 4 115 55.65% 74.42% 

WG 0 0 0 0 1 0 0 15 0 16 93.75% 83.33% 

WV 0 0 0 0 1 2 1 2 32 38 84.21% 80.00% 

TOTAL 20 17 14 22 19 17 86 18 40 145  

Overall accuracy: 57.31% 

Kappa coefficient: 46.11% 
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Table 13: Overall accuracy of random forest and support vector machines for RapidEye 

and Sentinel 2 MSI images of both balanced and imbalanced data set. 

 Random Forest Support Vector Machine 

RapidEye (balanced data)            57.94%           50.79% 

RapidEye (imbalanced data)           63.24%           57.31% 

Sentinel 2 (balanced data)           76.19%           82.54% 

Sentinel 2 (imbalanced data)           79.45%           82.21% 
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5.1. Discussion 

 

The mapping of vegetation plays a significant role in conservation and biodiversity. For proper 

conservation, up to date information about the spatial distribution of grass community is 

essential. Over the past few years, the use of various spatial and spectral resolutions of optical 

sensors has been used in vegetation mapping with varying success. The availability of these 

remotely sensed data, their different costs, and concerns over their accuracy is still an issue (Lu 

and Weng, 2007). While the high-resolution imagery is preferred for mapping vegetation, their 

limited availability due to cost and high dimensionality still pose a problem (Mutanga, Adam and 

Cho, 2012). 

The classification results of this study show the ability of Sentinel-2 in discerning the spectral 

attributes of different grass species. The red edge bands improved the accuracy of the 

classification algorithm as has been believed in mapping grass species (Ramoelo et al. 2012; 

Clevers et al. 2001).  The SVM algorithm produced high classification accuracy for the Sentinel-

2 image. It is also seen that SVM works well with either a balanced or imbalanced dataset with 

consistent accuracy (Table 6 and Table 8) with the Sentinel-2 image which is consistent with the 

study by Shao and Lunetta, 2012.  RF classification algorithm produced a drop in accuracy by 

3% when using a balanced dataset (Table 5) compared to the imbalanced dataset (Table 7). This 

drop in accuracy is consistent with Noi and Kappas (2017). The two algorithms performed well 

using the Sentinel-2 imagery. 

The classification results on the RapidEye imagery show a decrease in the overall accuracy of 

both algorithms when the data set was balanced. RF classification accuracy dropped by 6% 

(Table 9 and Table 11) while SVM decreased by 7% (Table 10 and Table 12). RF classifier 

produced higher accuracy than SVM classifier. According to this research, the algorithms 

worked better on the Sentinel-2 MSI imagery than the RapidEye imagery, although both 

algorithms for each image, produced accuracies in close range. It is suggested that RF classifier 

on different satellite imagery with different training sample size generates different accuracy 

(Noi and Kappas, 2017). Some researchers show that RF accuracy is higher for an imbalanced 

dataset which is consistent with this study (Mellor et al., 2015; Colditz 2015). This study showed 
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the difference in performance of SVM and RF which is consistent with Nitze et al. (2012) and 

Pouteau et al. (2012). However, other studies have shown similarities in the performances of 

SVM and RF (Pal 2005; Waske et al. 2009). 

SVM and RF were unable to deal with the spatial variation problems common in vegetation 

mapping as some misclassifications were present. Misclassification is a common problem when 

dealing with high-resolution imagery (Lu and Weng, 2007). The overall classification accuracies 

might have improved if post classification was done (Duro et al. 2012). This study highlighted 

the importance of each sentinel-2 (Figure 14 and Figure 15) and RapidEye band (Figure 16 and 

Figure 17). It showed the improved ability of the new generation multispectral imagery in 

distinguishing different vegetation species (Cho et al. 2012; Mutanga, Adam and Cho, 2012). 

The results and interpretation are however only a prelude to further research into vegetation 

mapping using high-resolution imagery and the effects of different sizes of training data for 

different classification algorithm. New analysis can be carried out in this research in a way to 

deal with the misclassification issues. 

5.2. Conclusion 

 

This research assessed and contrasted the classification of RapidEye (five bands) and Sentinel 2 

(ten bands) imagery using advanced SVM and RF on balanced and imbalanced training data set. 

The results provided information about the performances of these two new generation 

multispectral images using SVM and RF of balanced and imbalanced training dataset in mapping 

grass communities in the Telperion Nature Game Reserve. This study showed that the 

performances of RF and SVM classifier is dependent on the type of satellite images used and its 

accuracy is affected when dealing with a balanced and imbalanced dataset which is in agreement 

with Noi and Kappa (2017). This claim is in contradiction to other studies that SVM is 

unaffected when dealing with both balanced and imbalanced datasets (Ustuner et al., 2016; Noi 

and Kappas, 2017). The importance of each band of both imageries was shown to affect overall 

accuracy. Misclassification, which was also a problem in other related studies, was attributed to 
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high spatial variation within an associated vegetation class. Therefore, moving forward, different 

approaches to solving this problem should be addressed. 
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