3,849 research outputs found

    Lake area changes and their influence on factors in arid and semi-arid regions along the Silk Road

    Get PDF
    In the context of global warming, the changes in major lakes and their responses to the influence factors in arid and semi-arid regions along the Silk Road are especially important for the sustainable development of local water resources. In this study, the areas of 24 lakes were extracted using MODIS NDVI data, and their spatial-temporal characteristics were analyzed. In addition, the relationship between lake areas and the influence factors, including air temperature, precipitation, evapotranspiration, land use and land cover change (LULCC) and population density in the watersheds, were investigated. The results indicated that the areas of most lakes shrank, and the total area decreased by 22,189.7 km2 from 2001 to 2016, except for those of the lakes located on the Qinghai-Tibetan Plateau. The air temperature was the most important factor for all the lakes and increased at a rate of 0.113 °C/a during the past 16 years. LULCC and the increasing population density markedly influenced the lakes located in the middle to western parts of this study area. Therefore, our results connecting lake area changes in the study region highlight the great challenge of water resources and the urgency of implementation of the green policy in the One Belt and One Road Initiative through international collaboration

    Water loss due to increasing planted vegetation over the Badain Jaran Desert, China

    Full text link
    © 2018 by the authors. Water resources play a vital role in ecosystem stability, human survival, and social development in drylands. Human activities, such as afforestation and irrigation, have had a large impact on the water cycle and vegetation in drylands over recent years. The Badain Jaran Desert (BJD) is one of the driest regions in China with increasing human activities, yet the connection between human management and the ecohydrology of this area remains largely unclear. In this study, we firstly investigated the ecohydrological dynamics and their relationship across different spatial scales over the BJD, using multi-source observational data from 2001 to 2014, including: total water storage anomaly (TWSA) from Gravity Recovery and Climate Experiment (GRACE), normalized difference vegetation index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS), lake extent from Landsat, and precipitation from in situ meteorological stations. We further studied the response of the local hydrological conditions to large scale vegetation and climatic dynamics, also conducting a change analysis of water levels over four selected lakes within the BJD region from 2011. To normalize the effect of inter-annual variations of precipitation on vegetation, we also employed a relationship between annual average NDVI and annual precipitation, or modified rain-use efficiency, termed the RUEmo. A focus of this study is to understand the impact of the increasing planted vegetation on local ecohydrological systems over the BJD region. Results showed that vegetation increases were largely found to be confined to the areas intensely influenced by human activities, such as croplands and urban areas. With precipitation patterns remaining stable during the study period, there was a significant increasing trend in vegetation greenness per unit of rainfall, or RUEmo over the BJD, while at the same time, total water storage as measured by satellites has been continually decreasing since 2003. This suggested that the increased trend in vegetation and apparent increase in RUEmo can be attributed to the extraction of ground water for human-planted irrigated vegetation. In the hinterland of the BJD, we identified human-planted vegetation around the lakes using MODIS observations and field investigations. Four lake basins were chosen to validate the relationship between lake levels and planted vegetation. Our results indicated that increasing human-planted vegetation significantly increased the water loss over the BJD region. This study highlights the value of combining observational data from space-borne sensors and ground instruments to monitor the ecohydrological dynamics and the impact of human activities on water resources and ecosystems over the drylands

    Responses of seasonal indicators to extreme droughts in southwest China

    Get PDF
    Significant impact of extreme droughts on human society and ecosystem has occurred in many places of the world, for example, Southwest China (SWC). Considerable research concentrated on analyzing causes and effects of droughts in SWC, but few studies have examined seasonal indicators, such as variations of surface water and vegetation phenology. With the ongoing satellite missions, more and more earth observation data become available to environmental studies. Exploring the responses of seasonal indicators from satellite data to drought is helpful for the future drought forecast and management. This study analyzed the seasonal responses of surface water and vegetation phenology to drought in SWC using the multi-source data including Seasonal Water Area (SWA), Permanent Water Area (PWA), Start of Season (SOS), End of Season (EOS), Length of Season (LOS), precipitation, temperature, solar radiation, evapotranspiration, the Palmer Drought Severity Index (PDSI), the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), Gross Primary Productivity (GPP) and data from water conservancy construction. The results showed that SWA and LOS effectively revealed the development and recovery of droughts. There were two obvious drought periods from 2000 to 2017. In the first period (from August 2003 to June 2007), SWA decreased by 11.81% and LOS shortened by 5 days. They reduced by 21.04% and 9 days respectively in the second period (from September 2009 to June 2014), which indicated that there are more severe droughts in the second period. The SOS during two drought periods delayed by 3~6 days in spring, while the EOS advanced 1~3 days in autumn. All of PDSI, SWA and LOS could reflect the period of droughts in SWC, but the LOS and PDSI were very sensitive to the meteorological events, such as precipitation and temperature, while the SWA performed a more stable reaction to drought and could be a good indicator for the drought periodicity. This made it possible for using SWA in drought forecast because of the strong correlation between SWA and drought. Our results improved the understanding of seasonal responses to extreme droughts in SWC, which will be helpful to the drought monitoring and mitigation for different seasons in this ecologically fragile region

    Urban Development with the Constraint of Water Resources: A Case Study of Gansu Section of Western Longhai-Lanxin Economic Zone

    Get PDF
    Water is the essential resource for urban development of Gansu section of West Longhai-Lanxin economic zone, which is not only the “Golden Development Line” of Gansu province but also the significant component of the new Silk Road within China. Based on more than 2000 data points reflecting various meaningful aspects of urban systems and water resource systems, and using a quantitative measurement model and ArcGIS, this study aimed at discussing the temporal-spatial variations of water resources constraint on urbanization in the Gansu section. From 1989 to 2007, the water resources constraint intensities (WRCIs) of Gansu section and its nine cities have been generally decreasing, albeit with much fluctuation, and the decrease has been more rapid since 2000, with Lanzhou and Jinchang as the most representative cities. From the perspective of water resource constraint on urbanization, the research on urbanization process of Gansu section is not only necessary for the shaping of an independent theoretical system on relationship between water resource and urbanization, but also has very crucial practical significance for promoting construction of resource-saving and environment-friendly cities in Gansu section, arid and semi-arid areas as well as for promoting harmonious regional development

    Biomarkers in paleoenvironmental reconstructions: novel applications and data-driven evaluation

    Get PDF
    Die kumulative Dissertation "Biomarkers in paleoenvironmental reconstructions: novel applications and data-driven evaluation" zeigt neuartige Anwendungen von Lipid-Biomarkern und deren moderne, datengestützte Auswertung, um Kenntnisse über vergangene Klima- und Umweltveränderungen zu gewinnen. Diese Dissertation legt grundlegende Kriterien dar, die es ermöglichen aus paläoökologischen Rekonstruktionen nützliche Analoga für zukünftige Umweltszenarien zu entwickeln. Dabei sollten die den Studien zugrunde liegenden Biomarker-Daten auf mehreren Proxies basieren, die einzelnen Proxies gemeinsam in objektiven statistischen Analysen ausgewertet werden (Manuskript 1) und für ihre Datierung biomarker-spezifische Chronologien verwendet werden (Manuskript 2). Darüber hinaus zeigt sie, dass interdisziplinäre Forschung, die archäologische und biomolekulare Untersuchungen kombiniert, das Potenzial hat, die detaillierte Beziehung zwischen Umweltveränderungen, menschlicher Migration und Anpassungsstrategien offenzulegen (Manuskript 3)

    The Silk Road agenda of the Pan-Eurasian Experiment (PEEX) program

    Get PDF
    The Silk Road Economic Belt and the 21st-Century Maritime Silk Road (B&R) aims at facilitating the twenty-first Century economic development of China. However, climate change, air quality and related feedbacks are affecting the successful development of the environment and societies in the B&R geographical domain. The most urgent risks related to the atmospheric system, to the land system and to hydrospheric and cryospheric processes are changing climate - air quality interactions, air pollution, changing monsoon dynamics, land degradation, and the melting of Tibetan Plateau glaciers. A framework is needed in which a science and technology-based approach has the critical mass and expertise to identify the main steps toward solutions and is capable to implement this roadmap. The Pan-Eurasian Experiment (PEEX) program, initiated in 2012, aims to resolve science, technology and sustainability questions in the Northern Eurasian region. PEEX is now identifying its science agenda for the B&R region. One fundamental element of the PEEX research agenda is the availability of comprehensive ground-based observations together with Earth observation data. PEEX complements the recently launched international scientific program called Digital Belt and Road (DBAR). PEEX has expertise to coordinate the ground-based observations and initiate new flagship stations, while DBAR provides a big data platform on Earth observation from China and countries along the Belt and Road region. The DBAR and PEEX have joint interests and synergy expertise on monitoring on ecological environment, urbanization, cultural heritages, coastal zones, and arctic cold regions supporting the sustainable development of the Belt and Road region. In this paper we identify the research themes of the PEEX related Silk Road agenda relevant to China and give an overview of the methodological requirements and present the infrastructure requirements needed to carry out large scale research program.Peer reviewe

    An 8500-year palynological record of vegetation, climate change and human activity in the Bosten Lake region of Northwest China

    Get PDF
    Palynological dataset for the XBWu-46 sediment core extracted from Bosten Lake at the south-eastern end of the Tian Shan, Northwest China, contains a climate record divided into three major intervals: a period of increasing aridity (ca. 8540–4000 cal. yr BP), a peak arid phase (ca. 4000 to 2000/1500 cal. yr BP), and an interval of increasing humidity towards the core top (ca. 60 cal. yr BP). Correlation with other climate proxies from different regions implies that hydrological conditions in Northwest China were governed by Asian summer monsoon precipitation during the early and middle Holocene and that the increase in humidity over the last two millennia was controlled by westerly-derived precipitation. Regional evidence for early human activities in the lake sediments starts to accumulate from the onset of the driest interval comprising records of enhanced charred grass fragment concentrations (since ca. 4350 cal. yr BP), and pollen of Cerealia type (since ca. 4000 cal. yr BP), Xanthium (since ca. 3700 cal. yr BP), and Cannabis type (since ca. 2500 cal. yr BP). These signals are likely related to early agro-pastoral populations of regional Andronovo Culture that, according to archaeological data, appeared in the south-eastern Tian Shan around 4000 cal. yr BP. In addition, increased Xanthium pollen and charred grass fragment abundances point to enhanced human impact linked to intensified Silk Road activities during the Han dynasty (206 BCE–220 CE)

    Climate and environment reconstruction during the Medieval Warm Period in Lop Nur of Xinjiang, China

    Get PDF
    We made multi-proxy analysis of C-14, grain size, microfossils, plant seeds, and geochemical elements on samples from a profile in the central West Lake of Lop Nur. The grain size suggests relatively stable sedimentary environment around the Medieval Warm Period (MWP) with weak storm effect, which is followed by frequent strong storm events. Abundant microfossils and plant seeds in this stage indicate a warm and humid fresh to brackish lake environment. C, N, and stable elements are high in content in the sediments while Rb/Sr, Ba/Sr, and Ti/Sr are in a steady low level. In addition, plenty of red willows lived here prior to about 700 a B.P., indicating a favorable environmental condition. The results indicate that the environment in Lop Nur and its west bank turned to be favorable at about 2200 a B.P., where the Loulan Culture began to thrive. Then the climate and environment came to be in the good condition in the Tang and Song Dynasties, when the storm effect became weaker, rainfall increased and the salty lake water turned to be brackish to fresh lake water. Hence, limnic biomass increased with higher species diversity
    corecore