611 research outputs found

    Oscillation-based DFT for Second-order Bandpass OTA-C Filters

    Get PDF
    This document is the Accepted Manuscript version. Under embargo until 6 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s00034-017-0648-9.This paper describes a design for testability technique for second-order bandpass operational transconductance amplifier and capacitor filters using an oscillation-based test topology. The oscillation-based test structure is a vectorless output test strategy easily extendable to built-in self-test. The proposed methodology converts filter under test into a quadrature oscillator using very simple techniques and measures the output frequency. Using feedback loops with nonlinear block, the filter-to-oscillator conversion techniques easily convert the bandpass OTA-C filter into an oscillator. With a minimum number of extra components, the proposed scheme requires a negligible area overhead. The validity of the proposed method has been verified using comparison between faulty and fault-free simulation results of Tow-Thomas and KHN OTA-C filters. Simulation results in 0.25μm CMOS technology show that the proposed oscillation-based test strategy for OTA-C filters is suitable for catastrophic and parametric faults testing and also effective in detecting single and multiple faults with high fault coverage.Peer reviewedFinal Accepted Versio

    High linearity analog and mixed-signal integrated circuit design

    Get PDF
    Linearity is one of the most important specifications in electrical circuits.;In Chapter 1, a ladder-based transconductance networks has been adopted first time to build a low distortion analog filters for low frequency applications. This new technique eliminated the limitation of the application with the traditional passive resistors for low frequency applications. Based on the understanding of this relationship, a strategy for designing high linear analog continuous-time filters has been developed. According to our strategy, a prototype analog integrated filter has been designed and fabricated with AMI05 0.5 um standard CMOS process. Experimental results proved this technique has the ability to provide excellent linearity with very limited active area.;In Chapter 2, the relationships between the transconductance networks and major circuit specifications have been explored. The analysis reveals the trade off between the silicon area saved by the transconductance networks and the some other important specifications such as linearity, noise level and the process variations of the overall circuit. Experimental results of discrete component circuit matched very well with our analytical outcomes to predict the change of linearity and noise performance associated with different transconductance networks.;The Chapter 3 contains the analysis and mathematical proves of the optimum passive area allocations for several most popular analog active filters. Because the total area is now manageable by the technique introduced in the Chapter 1, the further reduce of the total area will be very important and useful for efficient utilizing the silicon area, especially with the today\u27s fast growing area efficiency of the highly density digital circuits. This study presents the mathematical conclusion that the minimum passive area will be achieved with the equalized resistor and capacitor.;In the Chapter 4, a well recognized and highly honored current division circuit has been studied. Although it was claimed to be inherently linear and there are over 60 published works reported with high linearity based on this technique, our study discovered that this current division circuit can achieve, if proper circuit condition being managed, very limited linearity and all the experimental verified performance actually based on more general circuit principle. Besides its limitation, however, we invented a novel current division digital to analog converter (DAC) based on this technique. Benefiting from the simple circuit structure and moderate good linearity, a prototype 8-bit DAC was designed in TSMC018 0.2 um CMOS process and the post layout simulations exhibited the good linearity with very low power consumption and extreme small active area.;As the part of study of the output stage for the current division DAC discussed in the Chapter 4, a current mirror is expected to amplify the output current to drive the low resistive load. The strategy of achieving the optimum bandwidth of the cascode current mirror with fixed total current gain is discussed in the Chapter 5.;Improving the linearity of pipeline ADC has been the hottest and hardest topic in solid-state circuit community for decade. In the Chapter 6, a comprehensive study focus on the existing calibration algorithms for pipeline ADCs is presented. The benefits and limitations of different calibration algorithms have been discussed. Based on the understanding of those reported works, a new model-based calibration is delivered. The simulation results demonstrate that the model-based algorithms are vulnerable to the model accuracy and this weakness is very hard to be removed. From there, we predict the future developments of calibration algorithms that can break the linearity limitations for pipelined ADC. (Abstract shortened by UMI.

    A digital tuning scheme for digitally programmable integrated continuous-time filters and techniques for high-precision monolithic linear circuit design and implementation

    Get PDF
    Multiple topics which all focus on precision monolithic circuit design but beyond this are not directly related to each other are presented. The first topic is a digital tuning scheme for digitally programmable integrated continuous-time filters (4), (8) - (10). Emphasis of this research is on development of a more general tuning scheme which can be applicable to various filter functions as well as high-frequency applications. The tuning scheme consists of two phases: system identification and adjustment. Various continuous-time filter identification methods including time-domain and frequency-domain approaches are investigated, and a filter adjustment algorithm is presented. Potential of high accuracy of the proposed tuning scheme and successful applicability to high-frequency filters with versatile functions have been demonstrated through simulations and experiments;Four other topics are separately presented. First, nonidealities associated with high-precision amplifiers (5), (7) are discussed. Special emphasis is given on analysis of statistical characteristics of random CMRR and offset of CMOS op-amps which can help estimating yield of high-volume production and help engineers design for a given yield. Next, an automatic offset compensation scheme for CMOS op-amps with ping-pong control (2), (6) is presented. A very low-voltage circuit design technique using floating gate MOSFETs (3) is introduced. Finally, an accurate and matching-free threshold voltage extraction scheme using a ratio-independent SC amplifier and a dynamic current mirror (1) is discussed

    Transceiver architectures and sub-mW fast frequency-hopping synthesizers for ultra-low power WSNs

    Get PDF
    Wireless sensor networks (WSN) have the potential to become the third wireless revolution after wireless voice networks in the 80s and wireless data networks in the late 90s. This revolution will finally connect together the physical world of the human and the virtual world of the electronic devices. Though in the recent years large progress in power consumption reduction has been made in the wireless arena in order to increase the battery life, this is still not enough to achieve a wide adoption of this technology. Indeed, while nowadays consumers are used to charge batteries in laptops, mobile phones and other high-tech products, this operation becomes infeasible when scaled up to large industrial, enterprise or home networks composed of thousands of wireless nodes. Wireless sensor networks come as a new way to connect electronic equipments reducing, in this way, the costs associated with the installation and maintenance of large wired networks. To accomplish this task, it is necessary to reduce the energy consumption of the wireless node to a point where energy harvesting becomes feasible and the node energy autonomy exceeds the life time of the wireless node itself. This thesis focuses on the radio design, which is the backbone of any wireless node. A common approach to radio design for WSNs is to start from a very simple radio (like an RFID) adding more functionalities up to the point in which the power budget is reached. In this way, the robustness of the wireless link is traded off for power reducing the range of applications that can draw benefit form a WSN. In this thesis, we propose a novel approach to the radio design for WSNs. We started from a proven architecture like Bluetooth, and progressively we removed all the functionalities that are not required for WSNs. The robustness of the wireless link is guaranteed by using a fast frequency hopping spread spectrum technique while the power budget is achieved by optimizing the radio architecture and the frequency hopping synthesizer Two different radio architectures and a novel fast frequency hopping synthesizer are proposed that cover the large space of applications for WSNs. The two architectures make use of the peculiarities of each scenario and, together with a novel fast frequency hopping synthesizer, proved that spread spectrum techniques can be used also in severely power constrained scenarios like WSNs. This solution opens a new window toward a radio design, which ultimately trades off flexibility, rather than robustness, for power consumption. In this way, we broadened the range of applications for WSNs to areas in which security and reliability of the communication link are mandatory

    Low-voltage, low-power circuits for data communication systems

    Get PDF
    There are growing industrial demands for low-voltage supply and low-power consumption circuits and systems. This is especially true for very high integration level and very large scale integrated (VLSI) mixed-signal chips and system-on-a-chip. It is mainly due to the limited power dissipation within a small area and the costs related to the packaging and thermal management. In this research work, two low-voltage, low-power integrated circuits used for data communication systems are introduced. The first one is a high performance continuous-time linear phase filter with automatic frequency tuning. The filter can be used in hard disk driver systems and wired communication systems such as 1000Base-T transceivers. A pseudo-differential operational transconductance amplifier (OTA) based on transistors operating in triode region is used to achieve a large linear signal swing with low-voltage supplies. A common-mode (CM) control circuit that combines common-mode feedback (CMFB), common-mode feedforward (CMFF), and adaptive-bias has been proposed. With a 2.3V single supply, the filters total harmonic distortion is less than 44dB for a 2VPP differential input, which is due to the well controlled CM behavior. The ratio of the root mean square value of the ac signal to the power supply voltage is around 31%, which is much better than previous realizations. The second integrated circuit includes two LVDS drivers used for high-speed point-to-point links. By removing the stacked switches used in the conventional structures, both LVDS drivers can operate with ultra low-voltage supplies. Although the Double Current Sources (DCS) LVDS driver draws twice minimum static current as required by the signal swing, it is quite simple and achieves very high speed operation. The Switchable Current Sources (SCS) LVDS driver, by dynamically switching the current sources, draws minimum static current and reduces the power consumption by 60% compared to the previously reported LVDS drivers. Both LVDS drivers are compliant to the standards and operate at data rates up to gigabits-per-second

    Biomimetic cochlea filters : from modelling, design to analogue VLSI implementation

    Get PDF
    This thesis presents a novel biomimetic cochlea filter which closely resembles the biological cochlea behaviour. The filter is highly feasible for analogue very-large-scale integration (VLSI) circuits, which leads to a micro-watt-power and millimetre-sized hardware implementation. By virtue of such features, the presented filter contributes to a solid foundation for future biologically-inspired audio signal processors. Unlike existing works, the presented filter is developed by taking direct inspirations from the physiologically measured results of the biological cochlea. Since the biological cochlea has prominently different characteristics of frequency response from low to high frequencies, the biomimetic cochlea filter is built by cascading three sub-filters accordingly: a 2nd-order bandpass filter for the constant gentle low-frequency response, a 2nd-order tunable low-pass filter for the variable and selective centre frequency response and a 5th-order elliptic filter for the ultra-steep roll-off at stop-band. As a proof of concept, a biomimetic cochlea filter bank is built to process audio signals, which demonstrates the highly discriminative spectral decomposition and high-resolution time-frequency analysis capabilities similar to the biological cochlea. The filter has simple representation in the Laplace domain which leads to a convenient analogue circuit realisation. A floating-active-inductor circuit cell is developed to build the corresponding RLC ladder for each of the three sub-filters. The circuits are designed based on complementary metal-oxide-semiconductor (CMOS) transistors for VLSI implementation. Non-ideal factors of CMOS transistors including parasitics, noise and mismatches are extensively analysed and consciously considered in the circuit design. An analogue VLSI chip is successfully fabricated using 0.35μ m CMOS process. The chip measurements demonstrate that the centre frequency response of the filter has about 20 dB wide gain tuning range and a high quality factor reaching maximally over 19. The filter has a 20 dB/decade constant gentle low-frequency tail and an over 300 dB/decade sharp stop-band roll-off slope. The measured results agree with the filter model expectations and are comparable with the biological cochlea characteristics. Each filter channel consumes as low as 59.5 ~90μ Wpower and occupies only 0.9 mm2 area. Besides, the biomimetic cochlea filter chip is characterised from a wide range of angles and the experimental results cover not only the auditory filter specifications but also the integrated circuit design considerations. Furthermore, following the progressive development of the acoustic resonator based on microelectro- mechanical systems (MEMS) technology, a MEMS-CMOS implementation of the proposed filter becomes possible in the future. A key challenge for such implementation is the low sensing capacitance of the MEMS resonator which suffers significantly from sensitivity degradation due to the parasitic capacitance. A novel MEMS capacitive interface circuit chip is additionally developed to solve this issue. As shown in the chip results, the interface circuit is able to cancel the parasitic capacitance and increase the sensitivity of capacitive sensors by 35 dB without consuming any extra power. Besides, the chopper-stabilisation technique is employed which effectively reduces the circuit flicker noise and offsets. Due to these features, the interface circuit chip is capable of converting a 7.5 fF capacitance change of a 1-Volt-biased 0.5 pF capacitive sensor pair into a 0.745 V signal-conditioned output while consuming only 165.2μ W power

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Multi-GPU support on the marrow algorithmic skeleton framework

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaWith the proliferation of general purpose GPUs, workload parallelization and datatransfer optimization became an increasing concern. The natural evolution from using a single GPU, is multiplying the amount of available processors, presenting new challenges, as tuning the workload decompositions and load balancing, when dealing with heterogeneous systems. Higher-level programming is a very important asset in a multi-GPU environment, due to the complexity inherent to the currently used GPGPU APIs (OpenCL and CUDA), because of their low-level and code overhead. This can be obtained by introducing an abstraction layer, which has the advantage of enabling implicit optimizations and orchestrations such as transparent load balancing mechanism and reduced explicit code overhead. Algorithmic Skeletons, previously used in cluster environments, have recently been adapted to the GPGPU context. Skeletons abstract most sources of code overhead, by defining computation patterns of commonly used algorithms. The Marrow algorithmic skeleton library is one of these, taking advantage of the abstractions to automate the orchestration needed for an efficient GPU execution. This thesis proposes the extension of Marrow to leverage the use of algorithmic skeletons in the modular and efficient programming of multiple heterogeneous GPUs, within a single machine. We were able to achieve a good balance between simplicity of the programming model and performance, obtaining good scalability when using multiple GPUs, with an efficient load distribution, although at the price of some overhead when using a single-GPU.projects PTDC/EIA-EIA/102579/2008 and PTDC/EIA-EIA/111518/200
    corecore