9 research outputs found

    Training neural networks to encode symbols enables combinatorial generalization

    Get PDF
    Combinatorial generalization - the ability to understand and produce novel combinations of already familiar elements - is considered to be a core capacity of the human mind and a major challenge to neural network models. A significant body of research suggests that conventional neural networks can't solve this problem unless they are endowed with mechanisms specifically engineered for the purpose of representing symbols. In this paper we introduce a novel way of representing symbolic structures in connectionist terms - the vectors approach to representing symbols (VARS), which allows training standard neural architectures to encode symbolic knowledge explicitly at their output layers. In two simulations, we show that neural networks not only can learn to produce VARS representations, but in doing so they achieve combinatorial generalization in their symbolic and non-symbolic output. This adds to other recent work that has shown improved combinatorial generalization under specific training conditions, and raises the question of whether specific mechanisms or training routines are needed to support symbolic processing

    The role of recurrent networks in neural architectures of grounded cognition: learning of control

    Get PDF
    Recurrent networks have been used as neural models of language processing, with mixed results. Here, we discuss the role of recurrent networks in a neural architecture of grounded cognition. In particular, we discuss how the control of binding in this architecture can be learned. We trained a simple recurrent network (SRN) and a feedforward network (FFN) for this task. The results show that information from the architecture is needed as input for these networks to learn control of binding. Thus, both control systems are recurrent. We found that the recurrent system consisting of the architecture and an SRN or an FFN as a "core" can learn basic (but recursive) sentence structures. Problems with control of binding arise when the system with the SRN is tested on number of new sentence structures. In contrast, control of binding for these structures succeeds with the FFN. Yet, for some structures with (unlimited) embeddings, difficulties arise due to dynamical binding conflicts in the architecture itself. In closing, we discuss potential future developments of the architecture presented here

    A neural blackboard architecture of sentence structure

    Get PDF
    We present a neural architecture for sentence representation. Sentences are represented in terms of word representations as constituents. A word representation consists of a neural assembly distributed over the brain. Sentence representation does not result from associations between neural word assemblies. Instead, word assemblies are embedded in a neural architecture, in which the structural (thematic) relations between words can be represented. Arbitrary thematic relations between arguments and verbs can be represented. Arguments can consist of nouns and phrases, as in sentences with relative clauses. A number of sentences can be stored simultaneously in this architecture. We simulate how probe questions about thematic relations can be answered. We discuss how differences in sentence complexity, such as the difference between subject-extracted versus object-extracted relative clauses and the difference between right-branching versus center-embedded structures, can be related to the underlying neural dynamics of the model. Finally, we illustrate how memory capacity for sentence representation can be related to the nature of reverberating neural activity, which is used to store information temporarily in this architecture

    Linguistic Productivity and Recurrent Neural Networks

    Get PDF

    The Unification Space implemented as a localist neural net: predictions and error-tolerance in a constraint-based parser

    Get PDF
    We introduce a novel computer implementation of the Unification-Space parser (Vosse and Kempen in Cognition 75:105–143, 2000) in the form of a localist neural network whose dynamics is based on interactive activation and inhibition. The wiring of the network is determined by Performance Grammar (Kempen and Harbusch in Verb constructions in German and Dutch. Benjamins, Amsterdam, 2003), a lexicalist formalism with feature unification as binding operation. While the network is processing input word strings incrementally, the evolving shape of parse trees is represented in the form of changing patterns of activation in nodes that code for syntactic properties of words and phrases, and for the grammatical functions they fulfill. The system is capable, at least qualitatively and rudimentarily, of simulating several important dynamic aspects of human syntactic parsing, including garden-path phenomena and reanalysis, effects of complexity (various types of clause embeddings), fault-tolerance in case of unification failures and unknown words, and predictive parsing (expectation-based analysis, surprisal effects). English is the target language of the parser described

    Cognitive Learning for Sentence Understanding

    Get PDF

    Neural blackboard architectures of combinatorial structures in cognition

    Get PDF
    Human cognition is unique in the way in which it relies on combinatorial (or compositional) structures. Language provides ample evidence for the existence of combinatorial structures, but they can also be found in visual cognition. To understand the neural basis of human cognition, it is therefore essential to understand how combinatorial structures can be instantiated in neural terms. In his recent book on the foundations of language, Jackendoff described four fundamental problems for a neural instantiation of combinatorial structures: the massiveness of the binding problem, the problem of 2, the problem of variables and the transformation of combinatorial structures from working memory to long-term memory. This paper aims to show that these problems can be solved by means of neural ‘blackboard’ architectures. For this purpose, a neural blackboard architecture for sentence structure is presented. In this architecture, neural structures that encode for words are temporarily bound in a manner that preserves the structure of the sentence. It is shown that the architecture solves the four problems presented by Jackendoff. The ability of the architecture to instantiate sentence structures is illustrated with examples of sentence complexity observed in human language performance. Similarities exist between the architecture for sentence structure and blackboard architectures for combinatorial structures in visual cognition, derived from the structure of the visual cortex. These architectures are briefly discussed, together with an example of a combinatorial structure in which the blackboard architectures for language and vision are combined. In this way, the architecture for language is grounded in perception
    corecore