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ABSTRACT

Combinatorial generalization - the ability to understand and produce novel combinations of already
familiar elements - is considered to be a core capacity of the human mind and a major challenge to
neural network models. A significant body of research suggests that conventional neural networks
can’t solve this problem unless they are endowed with mechanisms specifically engineered for the
purpose of representing symbols. In this paper we introduce a novel way of representing symbolic
structures in connectionist terms - the vectors approach to representing symbols (VARS), which allows
training standard neural architectures to encode symbolic knowledge explicitly at their output layers.
In two simulations , we show that neural networks not only can learn to produce VARS representations,
but in doing so they achieve combinatorial generalization in their symbolic and non-symbolic output.
This adds to other recent work that has shown improved combinatorial generalization under specific
training conditions, and raises the question of whether specific mechanisms or training routines are
needed to support symbolic processing.

Keywords combinatorial generalization, symbolic processing, neural networks

1 Introduction

Recent advances in neural network modeling have led to impressive results in fields as diverse as object, face and scene
recognition (LeCun, Bengio & Hinton, 2015), reasoning (Silver et al, 2016), speech perception (Graves, Mohamed &
Hinton. 2013), machine translation (Wu et al), playing computer games (Antonoglou et al, 2015) and producing art
(Gatys, Ecker & Bethge. 2015). These successes have relied on a restricted set of tools (e.g., the back propagation
learning algorithm or the convolutional network architecture), and principles (all learning and computations take
place in links between units), and are consistent with the claim that all forms of cognition rely on a small set of
general mechanisms in which minimal innate structure needs to be included. We will call this class of connectionist
models currently popular in computer science the “conventional connectionist framework”. 1. However there are still
fundamental disagreements concerning the limitations of this framework, with some researchers claiming that it cannot
account for a range of core cognitive capacities (e.g., Bowers, 2017; Marcus, 2018).

One of the main criticisms of the conventional connectionist approach is that it lacks the ability to represent symbolic
structures and is thus unsuitable for modeling tasks requiring symbolic operations (e.g., Fodor & Pylyshyn, 1988). It is
important to emphasize that the critics of this approach are not claiming that connectionist systems are in principle
unable to account for symbolic processing, but rather, that models need to be augmented in order to explicitly implement
symbolic computation (Holyoak & Hummel, 2000). This can involve introducing new computational mechanisms
above and beyond the modification of weights between units, such the synchrony of units firing (Hummel & Biederman,
1992; Hummel, & Holyoak, 1997; Holyoak & Hummel, 2003; Doumas, Hummel, & Sandhofer, 2008) or the reliance

1An earlier generation of models that adopted this approach has been characterized as “eliminative connectionism” (Pinker &
Prince, 1988) or “non-symbolic connectionism” (Holyoak & Hummel, 2000).
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of delay lines (Davis, 2010), introducing new inductive biases specifically designed to support symbolic computation,
such as graph based structures (Battaglia et al., 2018), hybrid symbolic-connectionist units (Petrov & Kokinov, 2001) or
introducing new dedicated circuits for the sake of symbolic computation (Kriete, Noelle, Cohen, & O’Reilly, 2013;
van der Velde, & de Kamps, 2006). We will refer to models that adopt some or all of these solutions as the “symbolic
connectionist approach” (Holyoak, 1991). Central to the symbolic approach is the claim that conventional connectionist
models will fail on symbolic reasoning tasks that humans can perform.

Here we show that conventional connectionist systems can support at least some forms of symbolic processing when
trained to output symbolic structures. We achieve this by introducing the vector approach to representing symbols
(VARS) that encodes complex symbolic structures of varying complexity as a static numeric vector at the output layer.
We show that VARS representations can be learned and that this enables conventional neural networks to achieve
combinatorial generalization, a core capacity of symbolic processing. It is important to emphasize that we do not take
our findings to rule out symbolic connectionist architectures – there may well be functional and biological pressures
that lead the brain to adopt special mechanisms devoted to symbolic computation. But our findings do undermine one of
the motivations for this approach - that dedicated mechanisms are necessary to support tasks that require combinatorial
generalization.

The structure of the paper is as follows. We start by briefly reviewing the limited successes of conventional networks
in modeling tasks that require combinatorial generalization. We then describe VARS and demonstrate how it can be
used to represent symbolic structures in connectionist terms and report two simulation studies showing that neural
network models trained to output VARS alongside conventional output representations are able to support an impressive
degree of combinatorial generalization in short term memory and visual reasoning tasks. Importantly, not only do the
VARs output representations themselves support combinatorial generalization, but so do the conventional output codes
when trained in parallel with the VARS representations. By contrast, the same conventional output codes fail to support
combinatorial generalization when the task to output VARS representations is omitted. We argue that our approach
does a better job than others existing symbolic and non-symbolic models, and highlights the importance of training
conventional neural networks on tasks requiring the explicit representation of symbols.

2 Review of previous studies assessing combinatorial generalization in conventional
connectionist architectures.

Fodor and Pylyshyn (1988) provided an early seminal criticism of the conventional connectionist framework. They
argued that a wide range of cognitive capacities rest on the fact that the mind is compositional, with a small set of context-
independent elements (e.g., words, units of meaning) used to productively compose more complex representations in
limitless ways. On their view, conventional connectionist models that fail to build in mechanisms to explicitly code for
the compositional structure of cognition are doomed to fail in combinatorial generalization tasks in which networks
are required to produce novel outputs based on novel combinations of familiar symbols. For example, after training a
network on the symbols John’, ‘Mary’, ‘loves’, and the relation ‘loves (John, Mary)’ a conventional network would not
be able to output the relation ‘loves (Mary, John)’ in response to any query. Combinatorial generalization is at the heart
of what Fodor and Pylyshyn call the systematicity and productivity of thought.

In subsequent debates surrounding this issue, a number of authors highlighted the generalization capacities of conven-
tional connectionist models (e.g., McClelland et al., 2010) and others have highlighted their limitations (Marcus, 1998).
But the conclusions one should draw with regards to Fodor and Pylyshyn’s critique are far from obvious for a number
of reasons. In some cases the apparent success of a model is not relevant because the model was not actually tested in a
condition that required combinatorial generalization (Botvinick & Plaut, 2006; O’Reilly, 2001; see below for more
details). In other cases, the failure of a model is taken as a virtue as it is thought to mirror limited human performance
(e.g., Thomas & McClelland, 2008). But the more basic problem in reaching any strong conclusion is that the failure
of a given conventional connectionist model does not provide a demonstration that all such models will fail. Indeed,
many of the early failures of conventional connectionist models that have been used to motivate symbolic models were
carried out prior to the development of the more versatile modeling tools and much larger data sets used today. It is
therefore important to assess whether current conventional networks can support combinatorial generalization in tasks
that humans can straightforwardly perform. If these models succeed, then symbolic models cannot be motivated on the
basis of computational necessity.

As we summarize next, both earlier and current conventional networks show limited capacity to support combinatorial
generalization. We briefly review these limitations in the domain of short-term memory and visual reasoning tasks, the
two domains that we test our VARS model.

2
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2.1 Combinatorial generalization in sequence learning tasks

An example of a failure to support combinatorial generalization in an earlier generation of connectionist models was
reported by Bowers et al. (2009ab) in the context of modeling short-term memory. Botvinick and Plaut (2006a)
had developed simple recurrent model of immediate serial recall that could correctly repeated a sequence of 6 letters
approximately 50% of the time (a level of performance that matches human performance). In addition to accounting for
a range of empirical phenomena, the authors had emphasized is that their model could support widespread generalization
in that it could recall sequences of letters it had never been trained on. However, the model was only tested on a limited
form of generalization in which each letter was trained in each position within a list. When Bowers et al. (2009a,b)
excluded specific letters in specific positions during training (e.g., the letter A was trained in all positions apart from
position 1) and then included them in that position at test, the model did poorly, highlighting the model’s failure in
combinatorial generalization. Similar limitations in related networks were observed by other authors (van der Velde,
van der Voort van der Kleij, & de Kamps, 2004; Kriete et al. , 2013).

Do these findings pose a challenge to the conventional connectionist approach to explaining human cognition? Botvinick
and Plaut (2009b) defended this approach by arguing that the restricted generalization was a strength based on their
claim that humans would also fail under similar training conditions. Alternatively, the conventional approach might be
supported by noting that Bowers et al. (2009ab) only observed limited performance with a simple recurrent network.
More recent and powerful recurrent networks that include long short term memory (LSTM) circuits (Hochreiter &
Schmidhuber, 1997) might well overcome these. However, both of these lines of defence are difficult to maintain
given similar findings have been reported by Lake & Baroni (2018) using state-of-the-art recurrent networks trained on
tasks that humans can transparently perform. They trained LSTM models to translate a series of commands to a series
of actions when the commands were composed of actions (e.g., RUN, WALK) and modifiers of the actions (LEFT,
TWICE). The model was unable to perform the correct series of actions if the model had not been trained an all the
relevant combinations of actions and modifiers. For instance, if the model had never been trained on LEFT-RUN it could
not perform the appropriate action despite being trained on LEFT and RUN in other combinations (e.g., LEFT-WALK,
TWICE-RUN).

Still, there are some successes of generalization in sequence learning tasks that appear to require some degree of
combinatorial generalization. For example, Gulordava et al. (2018) trained conventional RNNs on to predict long-
distance number agreement in various constructions in four different languages (e.g., predict the verb in: “The girl
the boys like: IS or ARE?). The model was trained on a corpera of text in each language, and critically, succeeded at
near human levels not only when tested on sentences composed of meaningful sentences (where predictions might be
based on learned semantic or distributional/frequency-based information rather than abstract syntactic knowledge), but
also on nonsense sentences that are grammatical but completely meaningless (motivated by the classic sentence by
Chomsky: “Colorless green ideas sleep furiously”). The authors took these findings provide tentative support for the
claim that RNNs can construct some abstract grammatical representations. Nevertheless, when more challenging forms
of combinatorial generalization are required, current state-of-the art conventional connectionist systems continue to
struggle, as detailed next.

2.2 Recent explorations of generalization using conventional neural networks in the domain of visual
relational reasoning

Barrett et al. (2018) assessed the capacity of various networks to perform abstract reasoning problems analogous
to the Raven-style Progressive Matrices, a well-known human IQ test. In this task a panel of images are presented
that vary according to a rule such as “progression” (e.g., in a panel of 3 x 3 images in which there is an increasing
number of items per image along the first two columns), and the model is trained to select the image that satisfies
this rule in order to complete the third column of images (select the target image that has more items). The authors
assessed various forms of generalization, including combinatorial generalization (e.g., puzzles in which the progression
relation was only encountered when applied to the color of lines and then tested when the progression was applied to
the size of shapes). Several state-of-the-art neural network models were tested and they all performed poorly in the
generalization conditions. The authors were able to improve performance somewhat by adding a “Relation Network”
module specifically designed to improve relational reasoning, and more relevant to the current paper, further still by
augmenting the training procedure so that the model outputted “meta-targets” that specified the relevant dimensions for
correctly responding. That is, the model was trained not only to select the correct image but also the reason why the
image was the correct answer. Nevertheless, the modified model with the augmented training still performed “strikingly
poorly” in the conditions that most relied on combinatorial generalization.

In a closely related paper, Hill et al. (2019) tested the ability of conventional neural networks to perform analogical
reasoning on a set of visual problems. In this case, the model was presented with a “source” set of three images that
shared a given relation (e.g., the number of items in each image increased by one) and a “target” set of two images
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along with a set of images, only one of which shared the same underlying relation (e.g., progression). The task of
the model was to select the correct image. Again, the models were tested across a range of conditions, including
conditions that required combinatorial generalization, such as (again) applying a familiar relation to new domains.
The authors used a conventional convolutional neural network that provided input to a recurrent layer without any
special mechanisms for relational reasoning and found that the type of training had a significant impact on the model’s
performance. When trained in a standard manner in which the model was trained to discriminate the target from foil
images that different from one another in various ways the model performed poorly in the combinatorial generalization
condition. The important finding, however, was that the model did better in some (but not all) conditions that required
combinatorial generation when the training foils were carefully selected so that the model was forced to learn to encode
the relevant relations. The fact that performance continued to be poor in conditions requiring extrapolation highlights
how difficult generalization outside the training space can be, but at the same time, the improved performance with
carefully crafted training foils suggests that conventional connectionist models can be more successful in such tasks than
critics often assume. The benefits of manipulating the pressure to learn to encode relations for the sake of combinatorial
generalization (e.g., Barrett et al., 2018; Hill et al., 2019) provides the motivation of our approach which we now
introduce.

3 The vector approach to representing symbols

The goal of the current paper is to further explore whether neural network architectures without dedicated mechanisms
for symbolic processing can solve the combinatorial generalization problem if they are pushed to learn to explicitly
represent symbols. To this end, we train neural network models on two separate tasks - a main task that answers a query
in a standard format (a ‘one hot’ encoding of of the answer) and a secondary task that outputs a symbolic encoding of
the problem at hand. We consider not only whether the model is successful in outputting symbolic representations, but
also, whether training on this secondary task leads to success on the main task (the standard one-hot encoding output
that typically does not support combinatorial generalisation).

In order to train on the secondary task we needed a way to represent symbolic structures as numeric vectors that can
be used at the output of standard connectionist models. There have already been several proposals for constructing
such representations, including tensor products (Smolensky, 1990) and holographically reduced representations (Plate,
1995) that are discussed (and criticized) by Hummel (2011). However, there have been no demonstrations so far that
conventional neural networks can learn such representations in order to achieve combinatorial generation (but see Schlag
& Schmidhuber, 2018, for a trainable recurrent neural network architecture specifically designed for processing tensor
products and Eliasmith, 2013, for a spiking neural network capable of learning holographically reduced representations).
We propose a novel way of representing symbolic structures of varying complexity using numeric vectors, which
we believe is more suitable for training conventional neural networks on symbolic tasks - the vector approach to
representing symbols or VARS (Figure 1). Our choice to use VARS doesn’t rule out other approaches - a systematic
evaluation of the alternative ways to represent symbols in connectionist terms is outside the scope of the current paper.

The main assumptions of VARS are twofold. First, we assume that the meaning of symbols (i.e. the representation of
an item independent of its relation to other items) can be encoded at multiple spatial locations within a VARS vector (in
either localist or distributed manner). We will refer to these locations as representational slots. The allocation of symbols
per slots is arbitrary which means that a symbol can be represented at any slot without affecting its interpretation
(Figure 1, example A and C). The arbitrary allocation of symbols to slots does not imply that neural representations of
symbols can move freely around as the contents of memory cells can move in a computer system. Instead, we assume
that there exist redundant representations of symbols which are functionally equivalent, i.e. activating any of them
encodes the same knowledge (there are multiple ways to represent the same thing). In order to achieve such functional
equivalence, a system has to be able to represent each symbol at each representational slot and keep the contents of the
slot independent of the slot identity (i.e. the representation of “John” should not depend on whether it is activated in slot
1 or slot 2). For models trained to output VARS representations, this can be achieved by learning to encode the symbols
at different slots across trials, while making sure that the allocation of symbols to slots is independent of the information
which has to be represented. In this way it is assured that the system will treat the knowledge represented by a symbol
independently of the slot which the symbol is allocated to in a given trial. We show how this can be implemented in
neural network models in the subsequent simulations.

Being able to encode a symbol at several representational slots allows to represent multiple instances of the same type
(see example D in Figure 1). Moreover, the address of a representational slot, which we will refer to as a “token”, can
be used to bind the argument of a predicate to its corresponding filler. The second main principle of VARS is that
binding information is represented explicitly and separately from the representation of the meaning of symbols which
allows to bind the arguments of predicate symbol to any other symbol, thus ensuring role-filler independence. For each
argument position a, there is a separate nslots x nslots binding matrix Aa, where nslots is the number of representational
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Figure 1: The vector approach to representing symbols (VARS). Top: the structure of VARS representations. The
number of symbols that can be represented at the same time is limited by the number of representational slots (nslots).
The maximum arity of the symbols which can be represented is also limited. The symbols are represented by vectors
with fixed dimension d, which can be either localist or distributed. For each argument position, there is a separate nslots
x nslots binding matrix (A1, A2, . . . Amax_arity). Five examples of VARS representations are given. Examples A and B
demonstrate how the roles of the “loves” relation are bound to the corresponding fillers. In example A the first argument
of “loves” is bound to “John” and the second one is bound to “Mary”. In Example B, the first argument of “loves” is
bound to “Mary” by activating the second unit in the fourth row of A1 (“Mary” is represented at the second slot) and
the second argument is bound to “John”. Examples A and C represent the same information, although symbols have
been located in different slots. Example D demonstrates how two instances of the same type (“‘loves”) are represented.
Example E shows the representation of a second order relation (the second argument of “knows” is bound to another
relation - “loves”). More examples are available at https://vankov.github.io/combgenvars
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slots (Figure 1, top). Binding the n-th argument of the predicate represented at slot i to the symbol at slot j is encoded
by activating the unit at the i-th row and the j-th column of An. For example, to represent the binary relation “John
loves Mary” (example A in Figure 1), one would need at least three representational slots and two binding matrixes -
A1 and A2, one for each argument position. If “John” is represented at slot 3, “Mary” at slot 2 and “loves” at slot 4,
then binding the first argument of “loves” to “John” is implemented by activating the third unit (because “John” is at
slot 3) of the fourth row (“loves” is at slot 4) of A1 (because it represents the binding of the first argument position).
Accordingly, activating the second unit of the fourth row of A2 binds the second argument of “loves” to “Mary”.

The complexity of symbolic structures that can be encoded using VARS is constrained by two parameters: the number
of addressable representational slots and the maximum arity of the predicate symbols. The ability of VARS to support
role-filler independence and its inherent capacity limits make it a plausible account of how symbolic knowledge is
represented in the human mind. However, in this work we use VARS only as a computational pressure to train artificial
neural networks to encode knowledge symbolically and we therefore refrain from discussing its cognitive plausibility.

Using VARS to represent symbolic knowledge bears resemblance to other approaches which use space in order to
enable encoding of multiple instances of the same type and role-filler bindings (Marcus, 2001; Kriete et al, 2013;
Bowman & Wyble, 2007; Swan & Wyble, 2014; van der Velde, & de Kamps, 2006). However none of these methods
result in fixed size vector representations which can be used to train a conventional neural network architecture. The
idea of VARS is also similar to the semantic pointers approach (Eliasmith, 2010).

4 Simulations

4.1 Simulation 1

In this simulation we replicate a combinatorial generalization task in the context of short-term memory as developed
by Kriete et al. (2013). The model was given a sequence of role-fillers pairs and then cued to recall the filler that
was associated with a given role (e.g., after encoding e sequence DOG-SUBJECT, EAT-VERB, STEAK-PATIENT
the model was cued to recall the filler EAT when probed with the role VERB). In the combinatorial generalization
condition, one of the fillers was never paired with a specific role during training (for example, the filler DOG was never
presented in the role of SUBJECT, in any sentence). The authors reported that a simple recurrent network failed on this
task whereas a network with an architecture specifically designed to support symbolic processing was successful.

In order to test whether a recurrent neural network with a conventional architecture can also achieve combinatorial
generalization in this task we contrasted the performance of two models (Figure 2). Both of them included the same
conventional long short term memory architecture and were trained to solve the same task, but only one was also trained
to output a VARS representation of the structural information provided during the encoding phase (Figure 3). In this
way, the model had to solve two tasks in parallel - the main task which required to output the filler corresponding to
the requested role and the VARS representation of the three encoded symbols and their relationship. Performance in
combinatorial generalization was measured in both tasks: in the main task this was simply checking whether the correct
filler was at the output and in the VARS task we checked whether the slots have been filled and bound correctly. In
order to train the model on two tasks, we defined the loss function as a sum of the error on the main task and the VARS
task. More details about the simulation are provided in appendix A.

The results of the simulation clearly show that a neural network model without dedicated mechanisms for symbolic
processing is much better at combinatorial generalization when pressure to represent knowledge symbolically is
enforced (Table 1). Importantly, the model trained with VARS outputs not only managed to output correct VARS
representations of untrained role-filler binding over 90% of the time, but performed over twice as well on the main
task (74%) compared to the network without VARS (30%). Performance of the model on the main task in the VARS
condition was comparable to the Kriete et al. (2013) model that included specialized mechanisms to support symbolic
computations. This finding suggests that training a neural network model to explicitly output symbols qualitatively
changes the nature of its internal representations, allowing it to solve problems it otherwise fails on.

The results of the simulation clearly show that a neural network model without dedicated mechanisms for symbolic
processing is much better at combinatorial generalization when pressure to represent knowledge symbolically is
enforced (Table 1). Importantly, the model trained with VARS outputs not only managed to output correct VARS
representations of untrained role-filler binding over 90% of the time, but performed over twice as well on the main
task (74%) compared to the network without VARS (30%). Performance of the model model on the main task was
comparable to the Kriete et al. (2013) model that included special circuit to support symbolic computations. This
finding suggests that training a neural network model to explicitly output symbols qualitatively changes the nature of its
internal representations, allowing it to solve problems it otherwise fails on.
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Role
3 units

Filler
10 units

Token
3 units

Recurrent hidden layer
100 LSTM units

VARS output
48 units

Task output
10 units

Hidden layer
50 tanh units

Figure 2: Model architecture in Simulation 1. Two grey components were used only when the model was trained to
output VARS representations. The randomly generated token was used to assign the current symbol to the corresponding
slot in the VARS output.

Filler Role Token

dog subject 3

Time step Task output

ate verb 12

steak patient 23

subject4 dog

VARS output

ate
steak
dog

0 0 1
0 0 0
0 0 0

0 1 0
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Output

dog

ate

steak

encoding

test

test role

Input

1

symbols A1 A2

not trained

Figure 3: Description of a sample trial in Simulation 1. During encoding, the model was presented with a series of three
role-filler pairs (subject - dog, verb - ate, patient - steak). At the last (fourth) time step, the model was only presented
with a test role (in the example above: subject) and it had to output the corresponding filler which was associated to
it (dog). When the model was trained to produce VARS representations, the role-filler pairs were accompanied by a
random permutation of tokens during encoding which determined the allocation of symbols to representational slots
(for example, the fact that dog was paired to token 3 meant that dog has to be represented in the third representational
slot). In this way, the random token input ensured that each filler has been allocated to each slot during training. The
verb was treated as a binary relation and its arguments (i.e. the relational roles subject and patient) were bound to the
corresponding fillers (in this example, subject to dog and patient to steak). Note, the VARS output was only trained in
time step 4, which means that no error was computed during the encoding stage (the ‘not trained’ area).
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Table 1: Combinatorial generalization mean accuracy rates in Simulations 1 and 2. In both simulations, the models
achieved combinatorial generalization only when trained to explicitly represent symbolic structures. The standard
deviation is shown in parentheses.

Combinatorial generalization accuracy (SD)

Model Main Task VARS task

Simulation 1 LSTM 0.30 (0.15) n/a
LSTM + VARS 0.74 (0.18) 0.93 (0.10)

Simulation 2 CNN 0.29 (0.05) n/a
Pre-trained VGG 16 0.24 (0.05) n/a
CNN + VARS, no binding 0.34 (0.11) 1.00 (0.00)
CNN + VARS 0.99 (0.01) 0.99 (0.01)

4.2 Simulation 2

The goal of our second simulation is to confirm and further extend our finding that conventional neural architectures
can achieve combinatorial generalization when pressed to encode knowledge symbolically. Here we assessed whether
training a feed-forward convolutional neural network on VARS representations improves combinatorial generalization
in a visual reasoning task.

In each trial, the model was presented with three objects and had to choose which one of them was “the odd man out”.
Each object had three features: position (top, middle or bottom), shape (one out of six) and color (one out of six). In
each triplet of objects, exactly two of the objects had either the same color or the same shape, but not both (Figure 4).
The task of the model was to output the position of the “odd” object, i.e. the one which shared neither shape nor color
with the other two. In order to test combinatorial generalization in this task, we excluded all examples in which the
“odd” object was green from the training set and tested the model on these examples. In other words, during training the
model never had to report the position of a green object. Green objects did appeared in the training set, but never in the
“odd” role. The arbitrary allocation of symbols to representational slots, needed in order to make sure that each symbol
can be represented at each slot, was implemented by feeding a random sequence of tokens to the fully connected layers
of the network (Figure 5 and Figure 6).

In order to assess the ability of neural networks to solve the ‘odd man out’ problem with or without the pressure to
represent knowledge symbolically we constructed a convolution neural network model displayed in Figure 5. To make
sure that a failure in this task can not be attributed to the details of our custom CNN architecture, we also tested VGG 16
(Simonyan, & Zisserman, 2015) - a state-of-the-art model of visual object recognition, which has been pre-trained on the
ImageNet dataset. The pressure to encode knowledge symbolically was implemented by making our CNN model output
VARS parallel to the main task (Figure 6). Just as in Simulation 1, the loss function the of model trained on VARS was
a sum of the error on the main task and the VARS task (more details about the training procedure are available in the
supplementary materials) The VARS representation contained the following symbols: X, Y, Z, different-from(X, (Y,
Z)), where X, Y, Z belonged to the set (‘top’, ‘middle’ and ‘bottom’). In other words, the VARS output represented
information such as “the middle object is different from the top and from the bottom one”. We also trained the CNN
model on VARS representations without binding information (i.e. without the ‘different-from’ symbol) in order to make
sure that binding is essential for combinatorial generalization.

The results of the simulation clearly show that the pressure to encode knowledge symbolically enables it to solve the
combinatorial generalization problem (Table 1). The inability of the model using VARS targets with no binding to
account for combinatorial generalization suggests that encoding symbolic structure is indeed what drives the model
improvement in generalization and not some idiosyncratic effect of forcing the network to represent the objects at
different slots in the VARS output. On the other hand, the failure of the pre-trained VGG 16 model suggests that the
difficulty of combinatorial generalization in this task can’t be attributed to the relatively limited visual experience our
CNN model was exposed to.

5 Discussion

The two simulations above show that combinatorial generalization can be greatly improved in conventional neural
networks trained on simple short-term memory and visual reasoning tasks. In order to achieve this we introduced the
vector approach to representing symbols (VARS) that encodes symbolic structures of varying complexity as a static
numeric vector in the output layer. The output VARS representations led the models to learn internal representations
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Training set

Same shape

Type

Test set

Target

1 0 0

0 1 0

0 0 1

0 1 0

Same shape

Same color

Same color

Example Type TargetExample

Same shape 0 0 1

0 1 0Same shape

Same color 0 0 1

1 0 0Same color

Figure 4: Images used in Simulation 2. The six object shapes are presented on the left. The training set consisted of
triplet of objects, arranged in vertical order, such that exactly two of the objects shared a single feature (either same
color or same shape). The task of the model was to output the position of the ‘odd’ object by turning the corresponding
bit in the target on. For example, in the first example from the training set presented above, the red and the cyan objects
have the same shape, so the model has to output the position of the white object (1 0 0). In all of the test examples,
the model had to report the position of the green object, which never happened during training position. Note that
green object did appear during training, but they were never in the ‘odd’ role (see the second and the fourth training
examples).

that better supported combinatorial generalization, not only in the VARS output codes, but also in the main task that
used standard ‘one hot’ encoding output units. This suggests that one of the hallmarks of symbolic computation can be
performed without adding new special purpose mechanisms or processes that are often claimed to be necessary.

The current findings are consistent with some recent work that also observed improved combinatorial generalization in
conventional connectionist models trained in specific ways designed to improve symbolic computations. This includes
training on carefully tailored training sets that force networks to induce relational representations in order to succeed
(Hill et al., 2019), or including output codes that explicitly code for the relevant dimensions of the input patterns,
so-called ‘meta-targets’ (Barrett et al., 2018). The latter finding is similar to our own, although we believe using VARS
is more promising as it allows to train the network on a broader variety of tasks requiring combinatorial generalization,
as well as other forms of symbolic processing.

It is important to be clear what we take our contribution to be. We are not claiming that VARS are necessarily the best
way to make conventional networks learn internal representations capable of supporting combinatorial generalization.
There may be other approaches that are as good or better in achieving this goal. But we are claiming that our findings
provide the best evidence to date that conventional neural networks can learn to support combinatorial generalization,
and this challenges one of the main motivations for introducing special mechanisms and processes in symbolic networks.

We are also not claiming that our findings rule out symbolic theories of the mind. Despite our findings and other recent
research (Barrett et al., 2018; Gulordava et al., 2018; Hill et al., 2019), it is still far from clear whether mainstream
connectionism can address all the concerns that Fodor and Pylyshyn (1988) raised so long ago. There could be
other cases of combinatorial generalizations which can’t be accounted for by purely connectionist models, even
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Image
48 x 48 x 3

Convolution 3x3, 8 filters

Max pooling 2x2

Fully connected, 256 units

VARS output
48 units

Convolution 3x3, 16 filters

Max pooling 2x2

Convolution 3x3, 32 filters

Max pooling 2x2

Fully connected, 256 units

Task output
3 units

Token sequence
4 units Fully connected, 256 units

Fully connected, 256 units

Task output
3 units

Image
48 x 48 x 3

pre-trained
VGG 16

not trained

Figure 5: Model architectures in Simulation 2. Left: CNN model with three convolutional layers. The components in
the grey boxes were only used in the conditions with VARS pressure. Right: pre-trained VGG 16 model with two fully
connected layers added at the top. The convolutional layers of VGG 16 were not trained in this simulation. More details
about the model are available in appendix B.
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middle

2

image input token sequence

4 31 top
different-from

bottom

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

0 0 0 0
0 0 0 0
1 1 0 0
0 0 0 0

VARS output

top

1 2 43
bottom
middle

different-from

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

0 0 0 0
0 0 0 0
0 0 0 0
1 0 1 0

top

1 2 43 bottom
middle

different-from

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 1 1 0

top

2 4 31

middle bottom different-from

A1 A2symbols

A1 A2symbols

A1 A2symbols

Figure 6: Encoding VARS representations in Simulation 2. Top - the random sequence of tokens fed to the fully
connected layers of the CNN model determined the allocation of symbols to representational slots. In this example,
“top” should go to the second slot, “middle” to the first one, “bottom” to the fourth and “different-from” to the third.
The first two examples in the bottom pane show how the same image can be encoded in different ways, depending
on the order of tokens. The difference between the second and the third examples is only in the binding information,
although the odd objects are at different positions, which demonstrate the importance of binding information in order to
solve the problem.
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when pressures to encode knowledge symbolically are applied. Moreover, there are other and more sophisticated
manifestations of symbolic thought, such as language and analogy-making, which still constitute a serious challenge to
sub-symbolic approaches. We look forward to more research pushing the boundaries of what neural networks can do
without implementing dedicated mechanisms for symbolic processing. And even if such models are shown to support
human-level generalization, this alone does not rule out symbolic models. But then, the debate will not be about whether
conventional neural networks are capable of symbolic computation, but about what kind of models provide the best
account of human learning and performance.
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Appendix A Simulation 1

Data sets

The training set was constructed by using a vocabulary of 3 role and 10 filler items (Table A1). Roles and fillers were
one-hot encoded and the input the model at each time step was a concatenation of the representation of a filler and its
corresponding role (Table A1, right). All three roles were used within each trial. The order of roles was also varied.
Thus, the total number of possible role-filler bindings to encode was 6000. In order to test combinatorial generalization,
we excluded all examples in which a particular filler was assigned to a particular role (e. g. filler #1 to role #1) from
training set, resulting in a 5400 training examples. The set consisted of the remaining 600 trials which contained the
untrained role-filler binding.

Table A1: List of filler and roles used in Simulation 1. Note that the labeling of the fillers is arbitrary - each filler could
be paired to each role.

fillers roles example input patterns

dog 0 0 0 0 0 0 0 0 0 1 SUBJECT 0 0 1 dog - SUBJECT 0 0 0 0 0 0 0 0 0 1 1 0 0
cat 0 0 0 0 0 0 0 0 1 0 VERB 0 1 0 dog - VERB 0 0 0 0 0 0 0 0 0 1 0 1 0
eat 0 0 0 0 0 0 0 1 0 0 PATIENT 1 0 0 dog - PATIENT 0 0 0 0 0 0 0 0 0 1 0 0 1

steak 0 0 0 0 0 0 1 0 0 0 cat - SUBJECT 0 0 0 0 0 0 0 0 1 0 1 0 0
fish 0 0 0 0 0 1 0 0 0 0 fish -VERB 0 0 0 0 0 1 0 0 0 0 0 1 0
take 0 0 0 0 1 0 0 0 0 0 eat - PATIENT 0 0 0 0 0 0 0 1 0 0 0 0 1
get 0 0 0 1 0 0 0 0 0 0

man 0 0 1 0 0 0 0 0 0 0
apple 0 1 0 0 0 0 0 0 0 0
chase 1 0 0 0 0 0 0 0 0 0

Models

The model architecture is shown in Figure 2 of the main paper. The input unit had 14 units when trained without VARS
(10 fillers + 3 roles + 1 unit encoding the test phase) and 17 units when trained on VARS (3 additional additional units
indicating the representational slot the current symbol has to be assigned to, see Figure 3. The recurrent layer contained
standard LSTM units (Hochreiter & Schmidhuber, 1997), implemented using the Keras deep learning library (Chollet,
2015). No bias was used for the recurrent layer and the activation function was hyperbolic tangent. A fully connected
layer with a bias connected the recurrent layer to the output of the model. The activation function of this layer was also
hyperbolic tangent. The output of the model was split in two parts - 10 softmax units representing the response to the
main task and 48 (3 * 10 for representing the symbols and two binding 3x3 matrices) sigmoid units for the VARS task.

Training

The model without VARS was trained to minimize the cross entropy of the difference between the output and the target
of the main task. When VARS was used, the overall error was the sum of the cross entropy of the main task and the
cross entropy of the VARS task. The training proceeded in batches of 50 examples and was organized in epochs of
5000 batches. The optimization algorithm was Adam (Kingma & Ba, 2015) with a learning rate of 0.001. Both models
managed to perfectly fit the examples from the training set.

One of the main assumptions of vector approach to representing symbols is that the representational slots are functionally
equivalent, i.e. a DOG activated in slot 1 bears the same interpretation as DOG in slot 3, etc. In order to implement this
functional equivalence when training the model to output VARS, we added an additional token input which determined
the allocation of symbols to slots. In training each trial, the series of input tokens was randomly permuted which
guaranteed that each symbol is trained to be represented at each slot. For example, in Figure 3 the input to the model
consists of the following series of role-filler bindings: (DOG-SUBJECT, ATE-VERB, STEAK-PATIENT) and the token
input is (3, 1, 2). Given this input, the model is trained to represent DOG at slot 3, ATE at slot 1 and STEAK at slot 2.
A different token input would result in a different allocation of slots. For example, the same series of role-filler bindings
(DOG-SUBJECT, ATE-VERB, STEAK-PATIENT) but coupled with another permutation of tokens (1, 3, 2) would
result in DOG at slot 1, ATE at slot 3 and STEAK at slot 1. The binding information will also change accordingly.

The performance of the model was assessed in two ways. For the main task, we checked whether the most active unit of
the output was the correct one (i.e. the active unit in the target pattern). For the VARS task, we calculated whether the
positions of the n most active units in the output match the positions of the active units of the targets, where n is the
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number of active target units (in this simulation n was always equal to 5 - three target units encoding the symbols in the
representational slots and 2 units used for binding).

The model without VARS was trained until the accuracy of the main task in the test set stopped improving for 10 epochs
or until the model was trained for 50 epochs, whichever came first. The stopping criterion for the model with VARS
was similar, but we used performance on the VARS task in the test set to track training progress. Each simulation was
repeated 100 times. The average number of training epochs was 17 (sd = 7.1) and 31 (sd = 12.70)in the conditions
without and with VARS, respectively. We also replicated 100 times the simulation with the model without VARS
allowing it to run for the maximum of 50 epochs. The results were worse than the ones reported in the main paper,
indicating that the amount of training is not responsible for the effect of VARS on combinatorial generalization (mean
accuracy 0.27, standard deviation 0.12)

Source code

https://github.com/vankov/combgenvars/tree/master/simulations/1

Appendix B Simulation 2

Data sets

The training set was constructed by generating triplets of objects of varying shape and color, such that exactly two
of the objects had the same shape or the same color (but not both). Three distinct shapes and colors were used. The
dimensions of the objects were 12x12 pixels and they were arranged one under the other in the centre of the image (see
Figure 4 in the main text). The size of the images containing the objects was 48x48 pixels. The training set excluded all
examples, in which the odd object (the one which was shared neither the same color or the same shape with another
one) was green, which resulted in 18000 training examples and 3600 test examples.

Models

The model architecture is shown in Figure 5 of the main paper. The dimension of the image input was 48x48x3. The
CNN model had three convolutional layers, each having a kernel of size 3x3, rectified linear activation function and a
stride of 1. The convolutional layers were followed by 2x2 max pooling transformations. At the end of the hiercharchy,
there were two fully connected hidden layers with rectified linear activation functions. The output of the model consisted
of three softmax units used to represent the response of the model to the main task (i.e. determining the position of the
odd object) and additional 48 sigmoid units when the model was trained to output a VARS representation parallel to
the main task. When trained on VARS there an additional input vector of 4 units used to represent the allocation of
symbols to slot (Figure 6). In each trial, the additional input vector was a random permutation of the numbers from
1 to 4. We also trained a second model without VARS, which was based on the VGG 16 architecture (Simonyan &
Zisserman, 2015). That model was already pre-trained on an object recognition task using the ImageNet dataset. We
used the convolutional layers of the existing model and added two more fully connected layers on top of them. Training
this model affected only the fully connected layers, assuming that the network had already extracted relevant visual
features from the much larger training ImageNet dataset.

Training

The model without VARS was trained to minimize the cross entropy of the difference between the output and the target
of the main task. When VARS was used, the overall error was the sum of the cross entropy of the main task and the
cross entropy of the VARS task. The training proceeded in batches of 100 examples and was organized in epochs of
500 batches. The optimization algorithm was RMSprop (Tieleman & Hinton, 2012) with a learning rate of 0.0001. All
models were trained to perfection on the training set.

The performance measures were the same as in Simulation 1. For the main task, we checked whether the most active unit
of the output was the correct one (i.e. the active unit in the target pattern). All models were trained for 50 epochs and we
reported accuracy at the end of training. The simulation was repeated 100 times for each condition (no VARS, VARS
with binding, VARS without binding, VGG). We also recorded the maximal performance on the main combinatorial
generalization task during training (i.e. at any epoch of training, rather than only at the last one) - the pattern of results
was similar no different from the one reported in the main paper (mean accuracy of CNN model: 0.37, VGG 16: 0.34,
CNN + VARS without binding: 0.42, CNN + VARS: 0.99).
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Source code

https://github.com/vankov/combgenvars/tree/master/simulations/2

References

Chollet François. (2015). Keras: The Python Deep Learning library. Keras.Io. https://doi.org/10.1086/316861

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735

Kingma, D., P. & Ba. J. (2015). Adam: a Method for Stochastic Optimization. In Proceedings of 3rd International
Conference on Learning Representations (ICLR 2015).

Simonyan, K. & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. In
Proceedings of 3rd International Conference on Learning Representations (ICLR 2015).

Tieleman, T. & Hinton, G. (2012) RmsProp: Divide the Gradient by a Running Average of its Recent Magnitude.
COURSERA: Neural Networks for Machine Learning.

16

https://github.com/vankov/combgenvars/tree/master/simulations/2

	Introduction
	Review of previous studies assessing combinatorial generalization in conventional connectionist architectures.
	Combinatorial generalization in sequence learning tasks
	Recent explorations of generalization using conventional neural networks in the domain of visual relational reasoning

	The vector approach to representing symbols
	Simulations
	Simulation 1
	Simulation 2

	Discussion
	Simulation 1
	Simulation 2

