24 research outputs found

    Application of color-coding in airborne tactical displays

    Get PDF
    This thesis analyzes the operational environmental and task variables of the Tactical Coordinator in the S-3A for possible application of color coding in the display symbology in the multi-purpose display. Beginning with the ASW threat to the carrier force under the CV concept, the missions of the S-3A are presented. The roles, tasks and functions of the Tactical Coordinator are identified and form the basis for an analysis of the need for color in airborne displays. Current display design requirements and discrepancies in the S-3A are discussed as a basis for areas of color application. Color research recently conducted is reviewed with the results directed toward the symbology currently used in airborne displays.http://archive.org/details/applicationofcol00connLieutenant, United States NavyApproved for public release; distribution is unlimited

    BLUE WHALE VISUAL AND ACOUSTIC ENCOUNTER RATES IN THE SOUTHERN CALIFORNIA BIGHT

    Get PDF
    The relationship between blue whale (Balaenoptera musculus) visual and acoustic encounter rates was quantitatively evaluated using hourly counts of detected whales during shipboard surveys off southern California. Encounter rates were estimated using temporal, geographic, and weather variables within a generalized additive model framework. Visual encounters (2.06 animals/h, CV = 0.10) varied with subregion, Julian day, time of day, and year. Acoustic encounters of whales producing pulsed A and tonal B call sequences (song; 0.65 animals/h, CV = 0.06) varied by Julian day, survey mode (transit or stationary), and subregion, and encounters of whales producing downswept (D) calls (0.41 animals/h, CV=0.09) varied by Julian day and the number of animals seen. Inclusion of Julian day in all models reflects the seasonal occurrence of blue whales off southern California; however, the seasonal peak in visual encounters and acoustic encounters of D calling whales (July–August) was offset from the peak in acoustic encounters of singing whales (August–September). The relationship between visual and acoustic encounter rates varied regionally, with significant differences in several northern regions. The number of whales heard D calling was positively related to the number of animals seen, whereas the number of singing whales was not related to visual encounter rate

    The Third Battle

    Get PDF
    Since the beginning of the twentieth century, submarines have been the weapon of choice for weaker naval powers that wish to contest a dominant power\u27s control of the seas or its ability to project power ashore from the sea. This is because submarines have been and are likely to remain the weapon system with the highest leverage in a battle for control of the ocean surface. Hence, antisubmarine warfare (ASW) will always re-main the most important element of the U.S. Navy\u27s core mission-sea control.https://digital-commons.usnwc.edu/usnwc-newport-papers/1017/thumbnail.jp

    The significance of passive acoustic array-configurations on sperm whale range estimation when using the hyperbolic algorithm

    Get PDF
    In cetacean monitoring for population estimation, behavioural studies or mitigation, traditional visual observations are being augmented by the use of Passive Acoustic Monitoring (PAM) techniques that use the creature’s vocalisations for localisation. The design of hydrophone configurations is evaluated for sperm whale (Physeter macrocephalus) range estimation to meet the requirements of the current mitigation regulations for a safety zone and behaviour research. This thesis uses the Time Difference of Arrival (TDOA) of cetacean vocalisations with a three-dimensional hyperbolic localisation algorithm. A MATLAB simulator has been developed to model array-configurations and to assess their performance in source range estimation for both homogeneous and non-homogeneous sound speed profiles (SSP). The non-homogeneous medium is modelled on a Bellhop ray trace model, using data collected from the Gulf of Mexico. The sperm whale clicks are chosen as an exemplar of a distinctive underwater sound. The simulator is tested with a separate synthetic source generator which produced a set of TDOAs from a known source location. The performance in source range estimation for Square, Trapezium, Triangular, Shifted-pair and Y-shape geometries is tested. The Y-shape geometry, with four elements and aperture-length of 120m, is the most accurate, giving an error of ±10m over slant ranges of 500m in a homogeneous medium, and 300m in a non-homogeneous medium. However, for towed array deployments, the Y-shape array is sensitive to angle-positioning-error when the geometry is seriously distorted. The Shifted-pair geometry overcomes these limits, performing an initial accuracy of ±30m when the vessel either moves in a straight line or turns to port or starboard. It constitutes a recommendable array-configuration for towed array deployments. The thesis demonstrates that the number of receivers, the array-geometry and the arrayaperture are important parameters to consider when designing and deploying a hydrophone array. It is shown that certain array-configurations can significantly improve the accuracy of source range estimation. Recommendations are made concerning preferred array-configurations for use with PAM systems

    ORCA-SPY enables killer whale sound source simulation, detection, classification and localization using an integrated deep learning-based segmentation

    Get PDF
    Acoustic identification of vocalizing individuals opens up new and deeper insights into animal communications, such as individual-/group-specific dialects, turn-taking events, and dialogs. However, establishing an association between an individual animal and its emitted signal is usually non-trivial, especially for animals underwater. Consequently, a collection of marine species-, array-, and position-specific ground truth localization data is extremely challenging, which strongly limits possibilities to evaluate localization methods beforehand or at all. This study presents ORCA-SPY, a fully-automated sound source simulation, classification and localization framework for passive killer whale (Orcinus orca) acoustic monitoring that is embedded into PAMGuard, a widely used bioacoustic software toolkit. ORCA-SPY enables array- and position-specific multichannel audio stream generation to simulate real-world ground truth killer whale localization data and provides a hybrid sound source identification approach integrating ANIMAL-SPOT, a state-of-the-art deep learning-based orca detection network, followed by downstream Time-Difference-Of-Arrival localization. ORCA-SPY was evaluated on simulated multichannel underwater audio streams including various killer whale vocalization events within a large-scale experimental setup benefiting from previous real-world fieldwork experience. Across all 58,320 embedded vocalizing killer whale events, subject to various hydrophone array geometries, call types, distances, and noise conditions responsible for a signal-to-noise ratio varying from −14.2 dB to 3 dB, a detection rate of 94.0 % was achieved with an average localization error of 7.01∘. ORCA-SPY was field-tested on Lake Stechlin in Brandenburg Germany under laboratory conditions with a focus on localization. During the field test, 3889 localization events were observed with an average error of 29.19∘ and a median error of 17.54∘. ORCA-SPY was deployed successfully during the DeepAL fieldwork 2022 expedition (DLFW22) in Northern British Columbia, with a mean average error of 20.01∘ and a median error of 11.01∘ across 503 localization events. ORCA-SPY is an open-source and publicly available software framework, which can be adapted to various recording conditions as well as animal species

    Vector sensors for underwater : acoustic communications

    Get PDF
    Acoustic vector sensors measure acoustic pressure and directional components separately. A claimed advantage of vector sensors over pressure-only arrays is the directional information in a collocated device, making it an attractive option for size-restricted applications. The employment of vector sensors as a receiver for underwater communications is relatively new, where the inherent directionality, usually related to particle velocity, is used for signal-to-noise gain and intersymbol interference mitigation. The fundamental question is how to use vector sensor directional components to bene t communications, which this work seeks to answer and to which it contributes by performing: analysis of acoustic pressure and particle velocity components; comparison of vector sensor receiver structures exploring beamforming and diversity; quanti cation of adapted receiver structures in distinct acoustic scenarios and using di erent types of vector sensors. Analytic expressions are shown for pressure and particle velocity channels, revealing extreme cases of correlation between vector sensors' components. Based on the correlation hypothesis, receiver structures are tested with simulated and experimental data. In a rst approach, called vector sensor passive time-reversal, we take advantage of the channel diversity provided by the inherent directivity of vector sensors' components. In a second approach named vector sensor beam steering, pressure and particle velocity components are combined, resulting in a steered beam for a speci c direction. At last, a joint beam steering and passive time-reversal is proposed, adapted for vector sensors. Tested with two distinct experimental datasets, where vector sensors are either positioned on the bottom or tied to a vessel, a broad performance comparison shows the potential of each receiver structure. Analysis of results suggests that the beam steering structure is preferable for shorter source-receiver ranges, whereas the passive time-reversal is preferable for longer ranges. Results show that the joint beam steering and passive time-reversal is the best option to reduce communication error with robustness along the range.Sensores vetoriais acústicos (em inglês, acoustic vector sensors) são dispositivos que medem, alem da pressão acústica, a velocidade de partícula. Esta ultima, é uma medida que se refere a um eixo, portando, esta associada a uma direção. Ao combinar pressão acústica com componentes de velocidade de partícula pode-se estimar a direção de uma fonte sonora utilizando apenas um sensor vetorial. Na realidade, \um" sensor vetorial é composto de um sensor de pressão (hidrofone) e um ou mais sensores que medem componentes da velocidade de partícula. Como podemos notar, o aspecto inovador está na medição da velocidade de partícula, dado que os hidrofones já são conhecidos.(...)This PhD thesis was supported by the Brazilian Navy Postgraduate Study Abroad Program Port. 227/MB-14/08/2019

    Acoustic ecology of marine mammals in polar oceans

    Get PDF
    In polar habitats, research on marine mammals including studies of the possible ecological consequences of anthropogenic impact is hampered by adverse climate conditions restricting human access to these regions. Marine mammals are known to produce sound in various behavioural contexts, rendering (hydro-)acoustic recording techniques, which are quasi-omnidirectional and independent of light and weather conditions, an apt tool for year round monitoring of marine mammal presence and behaviour in polar habitats. Acoustic behaviour is shaped by the species-specific behavioural ecology, as well as by abiotic, biotic and anthropogenic factors of the animal's living environment, a concept known as acoustic ecology. Acoustic ecology thereby describes the interaction between an animal and its environment as mediated through sound. An understanding of the acoustic ecology is important when interpreting acoustic data, as the acoustic ecology of a species determines if physical presence results in acoustic presence, on which temporal scale acoustic activity occurs and over which spatial scales acoustic presence can be detected. This thesis comprises ten manuscripts/papers, which are based on acoustic data collected in the Southern and Arctic Oceans. All provide examples of how aspects of the acoustic ecology of the species shape acoustic behaviour. In addition, the majority of manuscripts/papers also illustrate how acoustic monitoring can provide information of physical presence of marine mammals in areas where prolonged visual observations are not possible. Acoustic ecology forms the overarching concept that braces these publications. Given the relatively sparse literature on this concept with respect to marine mammals, this synopsis includes a first detailed conceptual description of acoustic ecology for polar habitats. Particular emphasis thereby is given to the specific environmental conditions in polar habitats and the looming threats of climatic change and other anthropogenic influences

    The Tools of Owatatsumi: Japan's Ocean Surveillance and Coastal Defence Capabilities

    Get PDF
    Japan is quintessentially by geography a maritime country. Maritime surveillance capabilities – underwater, shore-based and airborne – are critical to its national defence posture. This book describes and assesses these capabilities, with particular respect to the underwater segment, about which there is little strategic analysis in publicly available literature
    corecore