742 research outputs found

    A Signal Temporal Logic Motion Planner for Bird Diverter Installation Tasks with Multi-Robot Aerial Systems

    Full text link
    This paper addresses the problem of task assignment and trajectory generation for installing bird diverters using a fleet of multi-rotors. The proposed solution extends our previous motion planner to compute feasible and constrained trajectories, considering payload capacity limitations and recharging constraints. Signal Temporal Logic (STL) specifications are employed to encode the mission objectives and temporal requirements. Additionally, an event-based replanning strategy is introduced to handle unforeseen failures. An energy minimization term is also employed to implicitly save multi-rotor flight time during installation operations. The effectiveness and validity of the approach are demonstrated through simulations in MATLAB and Gazebo, as well as field experiments carried out in a mock-up scenario.Comment: 23 pages, 14 figures, journal preprint, accepted for publication to IEEE ACCES

    Object manipulation with high-resolution and highly deformable tactile sensors

    Get PDF
    En aquest projecte explorem l'aplicació dels sensors tàctils a la manipulació robòtica. Utilitzem els sensors Soft Bubbles que estan formats per dues bombolles de làtex deformables i proporcionen informació tàctil sobre el seu estat. En aquest treball proposem un paradigma de control basat en l'estructura sentir-raonar-actuar que tracta de produir trajectòries desitjades amb els objectes manipulats, tot adreçant els reptes en representació i predicció que sorgeixen de l'ús de sensors tàctils distribuïts. Aquest paradigma està format per un model d'observació que infereix la posició dels objectes, un model dinàmic capaç de predir les deformacions complexes en el sensor i un controlador predictiu basat en model que optimitza les seqüències d'accions per tal d'aconseguir el comportament desitjat durant la manipulació. Aquest mètode l'apliquem a la tasca de pivotar objectes dins la mà robòtica i el comparem amb altres estratègies de l'estat de l'art.En este proyecto exploramos la aplicación de sensores táctiles a la manipulación robótica. Utilizamos los sensores Soft Bubbles formados por dos burbujas de látex deformables que proporcionan información táctil sobre su estado. En este trabajo proponemos un paradigma de control basado en la estructura sentir-razonar-actuar que trata de producir trayectorias deseadas con los objetos manipulados, afrontando los retos en representación y predicción que surgen del uso de sensores táctiles distribuidos. Este paradigma está formado por un modelo observacional que infiere la posición de los objetos, un modelo dinámico capaz de predecir las complejas deformaciones en el sensor y un controlador predictivo basado en modelo que optimiza las secuencias de acciones para conseguir el comportamiento deseado durante la manipulación. Este método lo aplicamos a la tarea de pivotar objetos dentro de la mano robótica y lo comparamos con otras estrategias del estado del arte.In this project, we explore the application of tactile sensing as an enabling technology for dexterous robotic manipulation. We use the Soft Bubbles Sensors which consist of a compliant end-effector providing feedback on contact patches. We propose a novel sense-reason-act paradigm that tries to produce desired object trajectories by addressing the challenges of representation and prediction that arise from using distributed tactile sensors. This paradigm is built upon an observation model, which infers the pose of a grasped object, a dynamics model of the membrane capable of predicting complex deformations in the bubbles, and a model-predictive controller responsible for optimizing the action sequences to achieve the goal behavior during manipulation. Our approach is applied to the robotic task of in-hand pivoting and benchmarked against other state-of-the-art methodologies in object manipulation.Outgoin

    Registration of 3D Point Clouds and Meshes: A Survey From Rigid to Non-Rigid

    Get PDF
    Three-dimensional surface registration transforms multiple three-dimensional data sets into the same coordinate system so as to align overlapping components of these sets. Recent surveys have covered different aspects of either rigid or nonrigid registration, but seldom discuss them as a whole. Our study serves two purposes: 1) To give a comprehensive survey of both types of registration, focusing on three-dimensional point clouds and meshes and 2) to provide a better understanding of registration from the perspective of data fitting. Registration is closely related to data fitting in which it comprises three core interwoven components: model selection, correspondences and constraints, and optimization. Study of these components 1) provides a basis for comparison of the novelties of different techniques, 2) reveals the similarity of rigid and nonrigid registration in terms of problem representations, and 3) shows how overfitting arises in nonrigid registration and the reasons for increasing interest in intrinsic techniques. We further summarize some practical issues of registration which include initializations and evaluations, and discuss some of our own observations, insights and foreseeable research trends

    Humanoid gait generation via MPC: stability, robustness and extensions

    Get PDF
    Research on humanoid robots has made significant progress in recent years, and Model Predictive Control (MPC) has seen great applicability as a technique for gait generation. The main advantages of MPC are the possibility of enforcing constraints on state and inputs, and the constant replanning which grants a degree of robustness. This thesis describes a framework based on MPC for humanoid gait generation, and analyzes some theoretical aspects which have often been neglected. In particular, the stability of the controller is proved. Due to the presence of constraints, this requires proving recursive feasibility, i.e., that the algorithm is able to recursively guarantee that a solution satisfying the constraints is found. The scheme is referred to as Intrinsically Stable MPC (IS-MPC). A basic scheme is presented, and its stability and feasibility guarantees are discussed. Then, several extensions are introduced. The guarantees of the basic scheme are carried over to a robust version of IS-MPC. Furthermore, extension to uneven ground and to a more accurate multi-mass model are discussed. Experiments on two robotic platforms (the humanoid robots HRP-4 and NAO) are presented in the concluding section

    Pathological Tremor as a Mechanical System: Modeling and Control of Artificial Muscle-Based Tremor Suppression

    Get PDF
    Central nervous system disorders produce the undesired, approximately rhythmic movement of body parts known as pathological tremor. This undesired motion inhibits the patient\u27s ability to perform tasks of daily living and participate in society. Typical treatments are medications and deep brain stimulation surgery, both of which include risks, side effects, and varying efficacy. Since the pathophysiology of tremor is not well understood, empirical investigation drives tremor treatment development. This dissertation explores tremor from a mechanical systems perspective to work towards theory-driven treatment design. The primary negative outcome of pathological tremor is the undesired movement of body parts: mechanically suppressing this motion provides effective tremor treatment by restoring limb function. Unlike typical treatments, the mechanisms for mechanical tremor suppression are well understood: applying joint torques that oppose tremor-producing muscular torques will reduce tremor irrespective of central nervous system pathophysiology. However, a tremor suppression system must also consider voluntary movements. For example, mechanically constraining the arm in a rigid cast eliminates tremor motion, but also eliminates the ability to produce voluntary motions. Indeed, passive mechanical systems typically reduce tremor and voluntary motions equally due to the close proximity of their frequency content. Thus, mechanical tremor suppression requires active actuation to reduce tremor with minimal influence on voluntary motion. However, typical engineering actuators are rigid and bulky, preventing clinical implementations. This dissertation explores dielectric elastomers as tremor suppression actuators to improve clinical implementation potential of mechanical tremor suppression. Dielectric elastomers are often called artificial muscles due to their similar mechanical properties as human muscle; these similarities may enable relatively soft, low-profile implementations. The primary drawback of dielectric elastomers is their relatively low actuation levels compared to typical actuators. This research develops a tremor-active approach to dielectric elastomer-based tremor suppression. In a tremor-active approach, the actuators only actuate to oppose tremor, while the human motor system must overcome the passive actuator dynamics. This approach leverages the low mechanical impedance of dielectric elastomers to overcome their low actuation levels. Simulations with recorded tremor datasets demonstrate excellent and robust tremor suppression performance. Benchtop experiments validate the control approach on a scaled system. Since dielectric elastomers are not yet commercially available, this research quantifies the necessary dielectric elastomer parameters to enable clinical implementations and evaluates the potential of manufacturing approaches in the literature to achieve these parameters. Overall, tremor-active control using dielectric elastomers represents a promising alternative to medications and surgery. Such a system may achieve comparable tremor reduction as medications and deep brain stimulation with minimal risks and greater efficacy, but at the cost of increased patient effort to produce voluntary motions. Parallel advances in scaled dielectric elastomer manufacturing processes and high-voltage power electronics will enable consumer implementations. In addition to tremor suppression, this dissertation investigates the mechanisms of central nervous system tremor generation from a control systems perspective. This research investigates a delay-based model for parkinsonian tremor. Besides tremor, Parkinson\u27s disease generally inhibits movement, with typical symptoms including rigidity, bradykinesia, and increased reaction times. This fact raises the question as to how the same disease produces excessive movement (tremor) despite characteristically inhibiting movement. One possible answer is that excessive central nervous system inhibition produces unaccounted feedback delays that cause instability. This dissertation develops an optimal control model of human motor control with an unaccounted delay between the state estimator and controller. This delay represents the increased inhibition projected from the basal ganglia to the thalamus, delaying signals traveling from the cerebellum (estimator) to the primary motor cortex (controller). Model simulations show increased delays decrease tremor frequency and increase tremor amplitude, consistent with the evolution of tremor as the disease progresses. Simulations that incorporate tremor resetting and random variation in control saturation produce simulated tremor with similar characteristics as recorded tremor. Delay-induced tremor explains the effectiveness of deep brain stimulation in both the thalamus and basal ganglia since both regions contribute to the presence of feedback delay. Clinical evaluation of mechanical tremor suppression may provide clinical evidence for delay-induced tremor: unlike state-independent tremor, suppression of delay-induced tremor increases tremor frequency. Altogether, establishing the mechanisms for tremor generation will facilitate pathways towards improved treatments and cure development

    GRASP News Volume 9, Number 1

    Get PDF
    A report of the General Robotics and Active Sensory Perception (GRASP) Laboratory

    Vision-based Robotic Grasping in Simulation using Deep Reinforcement Learning

    Get PDF
    This thesis will investigate different robotic manipulation and grasping approaches. It will present an overview of robotic simulation environments, and offer an evaluation of PyBullet, CoppeliaSim, and Gazebo, comparing various features. The thesis further presents a background for current approaches to robotic manipulation and grasping by describing how the robotic movement and grasping can be organized. State-of-the-Art approaches for learning robotic grasping, both using supervised methods and reinforcement learning methods are presented. Two set of experiments will be conducted in PyBullet, illustrating how Deep Reinforcement Learning methods could be applied to train a 7 degrees of freedom robotic arm to grasp objects

    Fiscal year 1973 scientific and technical reports, articles, papers, and presentations

    Get PDF
    Formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY73 are presented. Papers of MSFC contractors are also included
    corecore