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“Simplicity is prerequisite for reliability.”
–Edsger Dijkstra

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

–Donald Knuth





Abstract
This thesis will investigate different robotic manipulation and grasping ap-
proaches. It will present an overview of robotic simulation environments, and
offer an evaluation of PyBullet, CoppeliaSim, and Gazebo, comparing various
features. The thesis further presents a background for current approaches to
robotic manipulation and grasping by describing how the robotic movement
and grasping can be organized. State-of-the-Art approaches for learning robotic
grasping, both using supervised methods and reinforcement learning methods
are presented. Two set of experiments will be conducted in PyBullet, illustrat-
ing how Deep Reinforcement Learning methods could be applied to train a 7
degrees of freedom robotic arm to grasp objects.
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1
Introduction
Humans can see objects and easily determine how to pick them up and move
them. Even if the objects are novel, it is generally considered to be a simple
task not given much thought. Robots have a much harder time performing this
seemingly trivial task, and it remains a critical challenge to design robots and
software that can operate at levels of dexterity and control resembling that of a
human. There is an interest in robotic grasping in both industry and academia,
and it has been researched in literature for quite some time. Despite this, it
still remains a very challenging problem and still is considered an unsolved
problem in robotics [48].
Over the last decades robots have increased their capability to work in con-
trolled environments, and are efficient at grasping and manipulation in repeti-
tive and familiar environments [3]. In such environments, the physical param-
eters such as object geometry and environment geometry, material properties
like friction, texture and weight of the objects are usually known. One example
of this could be picking up parts on a car-assembly line, or working with other
specifically designed tasks in industry settings1.

1. https://go.nature.com/3svzmRp
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Robotic grasping is interesting, because it is a stepping stone for further steps in
a robotics pipeline, such as robotic manipulation and placement. One primary
goal of robotics is dextereous manipulation. Dextereous manipulation increases
the robots capability to perform complex human-like tasks.

Robotics for automation and optimization systems become especially important
with regards to the current digital revolution, known as The Fourth Industrial
Revolution or Industry 4.0.

Nayyar and Kumar ( [34, p. 2]) refer to Industry 4.0 as:

... a planned phase of the industrialization process in accordance
with future expectations.

Industry 4.0 is usually characterized by automation in industry and other
sectors facilitated by the use of smart technology. One of the important aspects
of Industry 4.0 is the notion of the Smart Factory, where manifacturing is
automated and the different parts of the factory are all interconnected digitally
into one system [16]. There are nine pillars, or fundamental technologies that
are necessary for Industry 4.0 to become a reality ( [34, pp. 6-7]), as shown in
fig. 1.12.

Figure 1.1: The nine technolocigal pillars of Industry 4.0

Robotic technology is one pillar of Industry 4.0, and could help facilitate
automation and optimization in industries. It could also help solve tasks that
are considered too dangereous or challenging for humans to solve easily.

2. https://bit.ly/3svUc32

https://bit.ly/3svUc32
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Human-Robot Collaboration (HRC) technologies, such as the Kuka LBR IIWA
robot, is an example of a collaborative robot (Cobot) that belongs to a new
type of robotic technology. They work in close cooperation with humans, in a
safer manner, and don’t need the same security restrictions as other industrial
robots [16].

Robotic systems have improved a lot since the early days of robotics. This is
largely due to the development of optical sensors, which means robots don’t
have to rely as much on human inputs for grasping objects, and can learn
to grasp objects automatically utilizing vision-based systems. The progress of
machine learning in the field of computer vision has also greatly facilitated
robotic learning based on visual data [15].

Although robotics has seen a lot of progress over the last decades, there are
still many challenges associated with this field. Particularly, robust robotic
grasping is challenging due to several factors. One of the challenges could be
imprecisions in the sensors and the actuators of the robotic system. This often
leads to uncertainty about the shape of the object, pose of the object and pose
of the actuator, material properties, and object mass [29] [30].

There’s also some challenges facing robotic grasping systems utilizing ma-
chine learning and deep learning techniques. Deep learning based approaches
often require a lot of training data to perform well. Oftentimes it becomes
time-consuming, expensive, and impractical to generate the data required for
training a particular model. Especially in robotics, the generation of training
data from real world settings is problematic due to the abovementioned prob-
lems, and also the fact that the generated data are not invariant to hardware
changes (changing gripper, robotic hand) and the experimental parameters
(table height, camera placement) [22].

Training robotic grasping in simulations are a good alternative to overcome
these problems. Simulations can be used to generate vast amounts of training
data with annotations. Additionally, they allow faster training, compared to
training amodel in a real world setting. However, training amodel in simulation
is challenging due to the mismatch between the properties of the simulation
and the real world. Models trained in simulation usually don’t transfer well to
the real world.

The domain of roboticmanipulation and grasping is a complex, interdisciplinary
field that requires knowledge from different fields including, but not limited to:
robotics, control systems engineering, computer vision, AI and ML, program-
ming, physics and mathematics, hardware and algorithm design. Knowledge
of the application domain is also an important aspect. In an industrial setting
where real-time and robust systems is a practical necessity, certain elements
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of the task pipeline may be replaced by more robust and simple methods from
computer vision or the control engineering discipline, while other parts that are
more difficult to automate may be replaced by more advanced learning-based
methods from AI and machine learning.



1.1 limit ing the scope 5

1.1 Limiting the Scope

The task description is attached in the appendix. Briefly summarized, it includes
the following elements:

• Investigate current approaches for robotic manipulation and grasping.

• Determine how to train a data-driven method

• Determine environments used for training

• Hardware

• Look into single view 3D reconstruction using 3D reconstruction from
point clouds with an RGB-D sensor mounted on a robot arm.

• Demonstrate pipeline/methodology for reconstruction of objects with an
RGB-D sensor mounted on a robot arm.

The task description of the thesis is comprehensive and contain many elements.
To limit the scope of the thesis and make it fit into the timespan available, the
thesis emphasize the following questions:

• How are learning-based methods applied in current approaches of robotic
manipulation and grasping?

• What kind of knowledge and software tools are needed in order to set up
learning-based experiments in a robotic simulator?

• How can learning-based methods be applied in a robotic simulation envi-
ronment?

By focusing on these questions, the thesis offer an interpretation of what
level of knowledge individuals assigned to work on robotic simulations should
have.

The questions lead to four distinct focus-points:

1. Literature review
Investigate current data-driven/learning-based approaches for robotic
manipulation and grasping.

2. Training
Determine how to train the system with reinforcement learning.
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3. Environment
Investigate and compare simulation environments used for training of
robotic manipulation and grasping, focusing on applicability, flexibility,
complexity and availability of models and platforms for learning.

4. Implementation
Choose one particular simulation environment and implement chosen
reinforcement learning methods.

A literature review will provide insight into the complex and interdisciplinary
nature of the field. It will further add information on how learning-based
methods are applied in current approaches for robotic manipulation and grasp-
ing.

Exploring how training with reinforcement learning is applied is of great im-
portance in respect to investigating tools and approaches to learning. Training
using Reinforcement Learning (RL) is the primary primary focus for learning-
based methods in this work. RL is closely related to the field of robotics and the
techniques it offers to automatically acquire end-to-end solutions by trial and
error, meaning the task doesn’t necessarily have to be subdivided into multiple
sequential sub-tasks. Furthermore, there is no need for a training set, which
often could be time-consuming and impractical to produce.

The third element considers simulators. It is an important point, because
simulators function as a test-bed for different algorithms before being deployed
on the real platform. It’s also important to include a comparison of a selection of
simulators, due to the different sub-domains of robotics they are targeted to and
the particular features they have that support the field of robotic manipulation
and grasping. The last element is more practical, and gives more insight into
how an experiment can be set up in a simulator.

1.2 Thesis Structure

Chapter two will provide a backgroud for the thesis and include an inves-
tigation of the field of robotic manipulation and grasping with respect to
data-driven/learning-based methods and State-of-the-Art methods. Following
the literature review, there will be a short overview of the main paradigms of
machine learning, and where RL fits in. In chapter three, the foundations of
classical reinforcement learning will be presented. Chapter four compares the
simulators PyBullet, CoppeliaSim and Gazebo with respect to built-in features,
their applicability for robot manipulation and grasping, and their suitability
for robotic learning. In chapter five, an experiment is presented and set up
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in one of the three simulators, the learning methods are described, and the
results from the learning methods will be presented. Chapter six will discuss
the results from the experiments, and the following chapter will present future
work.





2
Background
A robotic grasping system can be divided into three sub-systems [25]: a grasp
detection system, a grasp planning system and a control system. The grasp
detection system are the first sub-system in the pipeline, and can be further
divided into three tasks: target object localization, pose estimation and grasp
detection. The grasp detection system together with the grasp planning sub-
systemmakes up a typical robotic grasping pipeline. The control system pertain
to the control engineering discipline.

2.1 Vision-based Robotic Grasping: Four key
tasks

Vision-based robotic grasping can be decomposed into four key tasks [39]:

1. Target object localization

2. Pose estimation

3. Grasp detection

4. Motion planning

9
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Target object localization finds the location of the target object from the sensor
data. Object pose estimation estimates the position and orientation of the
target object with respect to a reference frame. Grasp detection finds the grasp
points/region on to the target object. Motion planning determines the path
from the robot hand to the grasp region on the target object.

 

Figure 2.1: Typical vision-based robotic grasping pipeline [22]. Top row: Model-based
approaches. Bottom row: Model-free approaches.

2.2 Robotic Grasping Approches and Criteria

Robotic grasping is a wide field, and it is challenging to organize all of the
existing methods into a few categories with respect to different criteria. In the
robotics research community, robotic grasping approaches are usually divided
into two approaches: analytical approaches and empirical approaches [5].
Methods used in robotic grasping and manipulation can be categorized with
respect to several different criteria [22]:

Model-based vs model-free methods
The robotic grasping system has access to knowledge about the target
objects. This could be a CAD model or scanned model.

Rigid or flexible objects
The objects to be grasped could be rigid or articulated. Articulated means
composed of several rigid parts. They could also be flexible or deformable.

Known or unknown objects
This specifies whether the method is able to generalize to unknown
objects not seen during the training phase, or if it only works on a limited
set of objects used during training.
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Type of machine learning
This criteria specifies the type of machine learning used during train-
ing of the system. Usually the system will be trained using supervised
learning (SL) or reinforcement learning (RL). Labeling of the dataset
(annotations) could either be manually created by humans, or obtained
automatically.

Discriminative vs generative approaches
Approaches also differ based on how the machine learning algorithm
handles grasp candidates. Discriminative approaches usually sample
grasp candidates and give them a score (ranking) using a neural network.
Generative approaches directly generate grasp poses from the input data.

Training environment
The environment used for training of the robotic system is another dis-
tinction. Robotic systems could be trained solely in simulation or the
real world, or the system could be trained in a simulation environment
and also the real world. There are some challenges when transferring
the learnt knowledge from simulation to the real world (sim-to-real-
transfer). The most prominent problem is the reality gap - differences
between simulation environment and real-world environment. Several
methods address this problem, e.g. domain randomization and domain
adaptation.

Sensors and sensor data
A robotic grasping system could utilize different sensors for observation
of the environment. Commonly used sensor data in robotic grasping are:
RGB, depth, RGB-D, point clouds, or a combination of different sensor
data.

Open-loop vs closed-loop systems
Another distinction is closed-loop vs open-loop systems for robotic grasp-
ing. Open-loop systems are also known as non-feedback systems, whilst
closed-loop systems are known as feedback systems. This means that
the output of an open-loop system will not be used to correct the sys-
tem. Contrary to open-loop systems, closed-loop systems are able to
self-correct in order to achieve the desired goal state by comparing the
goal state with the actual output from the system. Closed-loop systems
usually have a higher execution time compared to open-loop systems. A
popular technique used for closed-loop robotic grasping systems is visual
servoing. Visual servoing controls the robot using visual feedback. Visual
servoing is, in essence, a method for robotic control where the sensor
used is a camera (visual sensor or similar). Servoing consists primarily
of two techniques [6]. One involves using information from the image
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to directly control the degrees of freedom of the robot. The other in-
volves the geometric interpretation of the information extracted from
the camera, such as estimating the pose of the target and parameters of
the camera (assuming some basic model of the target is known).

Robotic hardware
The robotic hardware used in the robotic system also determines the
type of robotic grasping andmanipulation that can be performed. Typical
robotic hardware used in a vision-based robotic system consist of the
robotic arm, the end-effector, and the sensors gathering data for training.

Grasping scenario
Approaches also differ based on the type of grasping scenario that is
studied. Different grasping scenarios varywith regards to the objects used
in the environment. It also depends on the configuration of the objects in
the robotic workspace. The environment could contain single separated
objects or densely cluttered objects. In densely cluttered environments,
some of the objects to be grasped could be partially or fully occluded
by other objects. There’s also a distinction between static and dynamic
environments. An example of a static environment could be a table with
a certain number of objects to be grasped, and an example of a dynamic
environment could be a moving conveyor belt. For static environments,
both open-loop and closed-loop algorithms could be used. For dynamic
environments, it is necessary to use closed-loop algorithms. Advantages
of using closed-loop methods are ability of the robot to adapt to changes
in the environment, and also the camera calibration and position controls
don’t have to be as accurate as it would have to be in an open-loop system
[17].

2.2.1 Analytical Approach

Analytical approaches, also known as geometrical approaches, usually analyze
the shape of the target object to determine the grasp pose [22]. Historically,
these approaches were based on the analytical constructions of force-closure
grasps [14].

Analyticalmethods for robotic grasping often suffers from a high time-complexity
and poor generalization capabilities to new objects.
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2.2.2 Empirical Approach

Empirical approaches, also known as data-driven approaches, were introduced
to remedy the difficulties encountered by the analytical approaches. Empiri-
cal approaches utilize machine learning and deep learning. Data-driven ap-
proaches have gained popularity in recent years due to the increased availability
of datasets, better computational resources and better algorithms [22].

2.3 State-of-the-Art

Analytical approaches for robotic grasping, besides being time-consuming,
usually offer poor generalization abilities to novel objects, since the features
are often hand-crafted by domain experts and the control system are special-
ized for the specific task [11]. A literature review of current State-of-the-Art
methods for learning-based robotic grasping will be briefly discussed in this
section. Literature review for learning-based approaches will here be divided
into supervised deep learning approaches and deep reinforcement learning
approaches.

2.3.1 Supervised Deep Learning Approaches for Robotic
Grasping

Supervised Learning methods for robotic grasping can be categorized into
discriminative and generative approaches. Discriminative approaches use the
grasp configuration as input for the neural network and output a ranking for the
current grasp configuration, while generative approaches generate the grasp
configuration as output citekleebergerSurvey.

Discriminative Approaches

Discriminative approaches use a neural network to sample and rank grasp
configurations. An example of this is the work of Levine et al. [28], where
hand-eye coordination for grasping from monocular images (RGB) is learned
via a large convolutional neural network (CNN). To train their network they
equipped 6-14 robotic manipulators that collected over 800,000 grasp attempts
over a two month period. The trained CNN was able to predict the grasp
success for a given grasp candidate from the RGB image of the cluttered bin,
and navigate the gripper to the bin using visual servoing [28].

In the work of Mahler et al. [29], they suggest a Grasp Quality Convolutional
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Neural Network (GQ-CNN) for predicting robust grasps from depth images. The
GQ-CNN is trained on a synthetic dataset created in a simulator. The dataset
consists of 6.7 million synthetic point clouds and associated grasp candidates.
During testing, when the robot tries to pick up an object, the attached depth
camera returns a 3D point cloud. From this point cloud antipodal points
represent several different grasp candidates. Among these, the GQ-CNN ranks
and outputs the most robust grasp.

Contrary to discriminative approaches, for generative approaches the neural
network outputs grasp configurations. Robotic grasp detection is a generative
approach that is similar to object detection in computer vision [37] [43]. An
example of robotic grasp detection is the generative approach suggested by
Jiang et al. [20]. They introduced a generative method that learns grasping
of objects from RGB-D images and their aligned depth maps. From these
images, the goal is to estimate the location, orientation, and opening width of
the parallel jaw gripper. These parameters can be represented as an oriented
rectangle in the image plane as shown in

Lenz et al. [27] also uses a generative learning-based approach with oriented
rectangles to represent grasp configurations. In their work, they proposed a
two-step cascaded system with two DNN’s. The first DNN has fewer features
than the second DNN, and discards unlikely grasp candidates. The second
network is slower, but only considers the grasp candidates with highest rank
from the first. Kumra et al. [26] utilizes a similar approach, but increase the
complexity of the two networks, and obtain a better performance. In their work,
two 50-layer deep convolutional residual neural networks were used.

2.3.2 Deep Reinforcement Learning Approaches for
Robotic Grasping

A lot of research has been done on robotic grasping. In real-world scenarios the
robot cannot obtain a 100% success rate in grasping a variety of objects. This is
due to inaccuracies in the potential grasp detection and ultimately leads to the
problem of not being able to select the best possible grasp for an object. Recent
work has addressed this by converting it into a detection problem which works
on visual aspects of the image to infer the location where the robotic gripper
needs to be placed, involving robotic manipulation and grasping.

Levine et al. [28] demonstrates how an implementation of hand-eye coor-
dination may be applied using a stereo-vision RGB camera as sensory input
to control movement and gripping. By continuously recomputing the most
promising motor commands, the approach continuously integrates sensory
cues from the environment, allowing it to react to perturbations and adjust the



2.4 machine learning 15

grasp to maximize the probability of success based using an adapted 16-layer
convolutional neural network.

Kalashnikov et al. [21] adapted a different approach called QT-Opt by using a
scalable self-supervised vision-based reinforcement learning framework based
on Q-learning. The framework is based on a general formulation of robotic
manipulation as a Markov Decision Process (MDP). At each time step, the
policy observes the image from the robot’s camera and chooses a gripper
command. The grasping task is defined using a sparse reward; a successful
grasp results in a reward of 1, and a failed grasp a reward of 0. A grasp is
considered successful if the robot holds an object above a certain height at the
end of the episode.

Intelligent manipulation benefits from the capacity to flexibly control an end-
effector with high degrees of freedom (DoF) and dynamically react to the
environment. However, due to the challenges of collecting effective training
data and learning efficiently, most grasping algorithms today are limited to
top-down movements and open-loop execution. In [40] Song et al. offer an
approach they have labelled Grasping in the Wild. This approach to robotic
grasping deep reinforcement learning exploits a grasping model that have an
"action-view" which is used to simulate future states with respect to different
possible actions. By evaluating these states using a learned value function (Q-
function), the authors claim the method is able to better select corresponding
actions that maximize total rewards (i.e., grasping success).

Quillen et al. [36] explored several off-policy, model-free deep reinforcement
learning methods for vision-based robotic grasping. The tested algorithms
were Q-Learning methods, Path consistency learning (PCL), Deep Deterministic
Policy Gradient (DDPG), Monte Carlo Policy Evaluation, and Corrected Monte
Carlo. The algorithms were tested and evaluated in a simulated grasping
benchmark made in PyBullet containing a Kuka robotic arm with a two-finger
parallel gripper, and a tray with diverse objects. They concluded that Deep
Q-Learning (DQL) methods performed better on the grasping tasks than the
other algorithms in low-data regimes. The Monte Carlo and the corrected
version of it, performed betterin high-data regimes.

2.4 Machine Learning

Machine learning differs from classical programming in how the rules or logic
of the program is arrived at. In classical programming, a program is written
to follow a set of rules. The program takes in the input data, processes the
input data according to the rules created by the programmer, and outputs the
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results. Machine learning automates the process of arriving at the rules by
taking in the input data and desired results, and outputting the rules.

Figure 2.2: Classical programming vs machine learning.

2.5 Machine Learning Paradigms

Machine learning algorithms are often classified into three types of learning:
supervised learning, unsupervised learning and reinforcement learning. These
learning paradigms are differentiated by the type of feedback the system learns
from.

Figure 2.3: The three types of machine learning.
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In supervised learning, a training set of (input, output) pairs is provided. The
input in a training set sample consists of some features to learn from, and the
output, also known as the target or label value, which is the correct response
for the given input. A supervised learning algorithm trains on the samples
in the training set and tries to learn a function that maps from input to
output. The goal of supervised learning is generalization to new samples that
weren’t encountered in the training set. Supervised learning algorithms can be
grouped into classification and regression algorithms. Classification algorithms
processes the inputs and tries to decide which of N classes the inputs belong
to. Regression algorithms try to predict a real, continuous value from the
inputs.

Unsupervised learning differs from supervised learning in the sense that there
is no feedback supplied to the learning algorithm. The algorithm tries to detect
similarities and patterns in the input data. The most common tasks of unsuper-
vised learning are: clustering and dimensionality reduction. A clustering algo-
rithm groups the input data into different clusters where each cluster contains
data that share some common properties. Dimensionality reduction algorithms
transforms high-dimensional data to a more compact low-dimensional data
representation. The low-dimensional data representation should ideally con-
tain all of the necessary features of the high-dimensional data, but encoded in
a lower dimension. Dimensionality reduction techniques could remove noise,
simplify the learning set provided to the learning algorithm, and help the
learning algorithm converge faster.

Reinforcement learning lies somewhere between supervised and unsupervised
learning methods. In reinforcement learning, the learning algorithm receives
feedback whether the answer was correct or wrong, but doesn’t get any instruc-
tions on how to correct the answer. The learning algorithm explores different
possibilities through trial and error until it figures out how to achieve the
goal.

Self-supervised learning (SSL) is a machine learning method that could be
considered to be part of unsupervised learning. In SSL, the labels are generated
automatically from the training data, and supervised learning methods are
used for training the system.





3
Foundations of
Reinforcement Learning

Reinforcement learning (RL) is a machine learning paradigm which draws
inspiration from behavioral learning theory, and how animals learn and adapt
through interactions with the environment Learning through trial-and-error
and the Law of Effect are the underlying concepts that reinforcement learning
builds upon. They suggest that animals learn which actions or behaviour to
follow in an environment by repeatedly trying out different actions, and the
learned behaviour is based on the type of response the environment provides,
meaning that responses the animal considers satisfying are reinforced and are
more likely to occur in the future.

Reinforcement learning focuses on how an agent can learn from interaction
with an environment, in order to maximize a reward signal (Sutton et al. [41,
pp. 1-13]). In RL, the decision maker in the environment is called the agent, and
the world the agent acts in and learns from is called the environment. There
could be environments with one agent (single-agent systems), or environments
with several agents (multi-agent systems). At every step of interaction, the
agent observes the state of the environment, and performs an action in the
environment. The action performed by the agent yields a feedback to the agent
from the environment, in the form of a reinforcement. The reinforcement is
either a reward or a punishment that informs the agent how good the current
state of the environment is. The action makes the agent transition to a new state
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in the environment. The goal of the agent is to try and maximize the reward
in the long run (the cumulative reward), which is called the return.

Sutton et al. [41] mention three important characteristics that could be con-
sidered to be the most distinguishing features of a RL problem:

1. RL problems could be considered to be closed-loop problems, since the
actions an agent takes influence the input it receives later. The essential
closed-loop behaviour of an RL system is illustrated in fig. 3.1.

2. The agent is not informed what actions to take, but discovers the actions
that gives the agent the best long-term reward through trial-and-error.
It discovers a mapping between the states and the actions that results in
a good policy.

3. In an environment, the actions of an agent might influence what rewards
the agent obtains in the future, and not only the immediate reward.

The third characteristic is closely related to the credit assignment problem.
When an agent gets a reward it is often difficult for the agent to know what
action should get the credit for it, and similarly what action to blame when the
agent gets a bad reward. More generally, it could be described as: the problem
of determining the sequence of actions that yielded in a particular outcome
[32]. The credit assignment problem usually occurs when the rewards are
sparse and delayed, meaning that the rewards provided to the agent is limited,
and often provided at the end of an episode.

An example of this could happen in robotic grasping systems, when the rewards
are sparse and delayed. The reward could be set to 1 for a successful grasp
and 0 for a failed grasp. The problem or difficulty relating to this reward setup
becomes evident when the robot must perform a large sequence of actions
before it gets the final reward of 1. In the start of the training, the agent will
explore the statespace and try out random actions, and it might be difficult for
the agent to even reach the final reward.

3.1 Elements of a Reinforcement Learning
System

Apart from the agent and the environment, there are four main elements of a
RL system: a reward function, a value function, a policy, and a model of the
environment.
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The interaction between the agent and the environment could be divided
into a sequence of discrete time-steps, t = 0, 1, 2, . . . . The time-steps are
usually restricted to be discrete to keep things simple, but could be extended
to continuous time-steps. An episode constitutes a sequence of time-steps of
interaction between the agent and the environment. The agent starts in an
initial state, and perform steps until it reaches a terminal state, which ends
the episode and starts a new episode. Episodes are also called trajectories
or rollouts in RL. Mathematically, a trajectory could be represented as τ =
(s0,a0, s1,a1, . . . ). The first state in the environment s0 is often randomly
sampled from a start-state distribution ρ0: s0 ∼ ρ0(·) [46].

Figure 3.1: The basic components of a RL system.

In the next subsections, terminology related to reinforcement learning and the
fundamental ideas which it builds upon will be introduced. Examples of how
it relates to the problem of robotic grasping will be given.

3.2 States

A state completely describes the state of the environment, whereas an obser-
vation contains only partial information of the state. At every time-step t , the
agent obtains a representation of the state of the environment St ∈ S. The set
S denotes the state-space, which is the set of all states in the environment the
agent can visit.

Environments where the agent can perceive the full state of the environment
are called fully observed environments, as opposed to partially observed environ-
ments.
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States in RL problems could be represented in a variety of ways, and there’s a
distinction to be made between discrete and continous state-spaces. In discrete
state-spaces it is possible to enumerate all of the states in the environment.
An example of this is in chess, where the state-space are the 64 squares of the
board. Traditional reinforcement learning methods typically considers the case
of discrete state-spaces, and tabular RL methods are a way to solve them. For
continuous state-spaces, a state could be represented as a vector of features,
where each feature lies in a continuous range of real numbers. In a robotic
grasping scenario, the feature vector could for instance contain the joint angles
of the robotic arm as one feature, and the data from a sensor mounted on the
arm as the other feature. Each joint angle will lie in a continous range.

In robotics, the true state of the environment is rarely completely observable
and noise-free. It will often be difficult for the agent to know which state it is
in, and differentiate between states that appears to be similar [23]. Because of
this, environments for robotics applications are often represented via partially
observable environments. It is common to use filters in robotics applications
to get an estimate of the true state [23]. An example of this is a RL system
where a robot arm learns to play table-tennis. Two features of the state will be
the position and velocity of the ball. In order to track the ball, a Kalman filter
might be used to get an estimate of these features along with the uncertainty
of the estimate.

3.3 Actions

The set of possible actionsA the agent can perform in an environment is called
the action-space. At each time-step t in an episode, the agent is in a state St and
can choose an action At ∈ A(St ), where A(St ) denotes the available actions
in state St .

The action-space differs between various environments. Action-spaces could
be either discrete or continuous. In the game of PacMan, the action-space is
discrete, because the agent can choose to either go in one of four directions,
wait in a cell, or eat a pellet. Continuous state-spaces are common in robotics,
and actions are usually represented as real-valued vectors. For robotic grasping,
an action could be the feature vector representing the amount of torque to
apply to the joint motors of the arm.
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3.4 Policy

A policy helps an agent decide which action to choose in a particular state.
The agent tries to find the policy that maximizes the cumulative reward with
respect to the goal of the reinforcement learning task. There are three types
of policies in RL: discrete, stochastic, and parametrized policies. Parametrized
policies will be discussed later as they are essential for Deep RL (DRL).

Discrete Policy
A discrete policy is a function that maps from a state to a given action:
π (s).

Stochastic Policy
A stochastic policy is the more general case. It is a function that maps
from a given state s to the probabilities for choosing each action: π (a |s).

A policy π is considered to be equal to or better than another policy π ′ if the
expected return of π is equal or greater than π ′ for all states in the state-
space:

π ≥ π ′ ⇐⇒ vπ (s) ≥ vπ ′(s) ∀s ∈ S

The policy pi that satisfies the above inequality is referred to as the optimal
policy. There might be several optimal policies in a RL problem, and the set of
all optimal policies is usually denoted π ∗.

3.5 Reward

The reward signal/function is closely related to the goal of the RL problem, and
the reward signal affects the policy the agent chooses. As mentioned earlier,
the agent tries to maximize the reward in the long run, over a trajectory, with
respect to a certain goal. The reward is dependent on the state, action taken
by the agent, and the next state: Rt = R(St−1,At−1, St ).

3.6 Model of Environment

A model of the environment makes it possible to make inferences of how the
environment will behave. The model predicts the next state and reward from
the current state and action. Models are often used for planning in RL, which
entails that it’s possible to decide on the future actions the agent should take
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before the agent experiences them.

RLmethods that use models for planning are calledModel-basedmethods. Their
counterpart are referred to as Model-free methods and uses trial-and-error for
learning the policy.

Figure 3.2: Different RL methods: model-based and model-free learning.

Model-free vs Model-based methods
The advantage of having a model of the environment is the ability it gives
the agent to plan ahead. It makes it possible for the agent to form a policy
based on what it will experience in the future. However, the agent is not
always given a model of the environment, but will in many cases have to
learn the model from interacting with the environment. The challenge
of learning the model from experiences is that the learned model could
be biased. The agent could exploit the bias in the model and learn to
behave well in this particular environment, but perform badly in the real
world scenario [46]. A relevant example of this is an agent learning in a
simulated robotic environment. The agent could try to learn the model of
the environment, but the model it learns will be biased towards a certain
configuration of the real world. The light conditions and dynamics of the
simulation might match only a subset of the real world scenarios.

Model-free methods on the other hand often have lower sample-efficiency
than model-based methods [12]. The sample-efficiency of an algorithm
refers to the amount of data or experiences that needs to be gathered
before the algorithm reaches a certain performance during training. In
other words, an algorithm has low sample-efficiency if it needs to sample
many experiences before it learns something useful related to the goal.
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3.7 Exploration vs Exploitation

On-line decision making involves a fundamental choice; exploration, where
we gather more information that might lead us to better decisions in the future
or exploitation, where we make the best decision given current information.
Exploration is inherently costly in terms of resource, time and opportunity. It
is of great interest to address the dichotomy between exploration of uncharted
territory and exploitation of existing knowledge. Such question exists in both
the stateless RL settings and in multi-state RL settings. The agent need to
balance between greedily exploiting what has been learned so far to choose
actions that yield near-term higher rewards, and continuously exploring the
environment to acquire more information to potentially achieve long-term
benefits [7].

3.8 Markov Chains

Markov chains were initially studied by the mathematician Andrey Markov. A
Markov chain is a stochastic process with no memory, which randomly evolves
from one state to the next state at each time-step. Markov chains have a
finite number of states, and the probability for a state transition from s to s ′
remains fixed for every time-step. The no-memory condition means that the
probability for a state transition solely depends on the current state and next
state, and no prior states in the episode. This condition is known as theMarkov
property.

3.9 Markov Decision Processes

The main components and the sequential decision making aspect of a RL
problem are often modeled mathematically in terms of a Markov Decision
Process (MDP). MDP’s were described by Richard Bellman in the 1950s. MDP’s
extend Markov chains to also include actions and rewards, and similarly to
Markov chains, MDP’s also satisfy the Markov property.

The Markov Property
The Markov property states that the next state the agent transitions to
and the reward it gets will only depend on the current state and action,
and not the prior states and actions taken by the agent. An example of
this is in the game of chess, where the current board position state and
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move, is enough to evaluate the next board position.

P(St+1 |St ) = P(St+1 |S1, . . . , St )

One of the main differences between Markov chains and MDP’s, is that the
transition probability for moving from a state s to the next s ′ doesn’t remain
fixed, but will depend on the action a chosen by the agent.

Figure 3.3: An example of a simple MDP from Wikipedia. Green circles are states,
orange circles are actions, and red arrows are rewards.

A MDP can be represented as the tuple (S,A,R, P, ρ0) where:

• S is the state space

• A is the action space

• R : S × A × S 7→ R is the reward function

• P : S × A 7→ S is the transition function that maps from a (state,
action) tuple to the probability of ending up in a next state s ′. P(s ′ |s,a)
is the transition probability of going to state s ′ from state s, if action a is
chosen. This function can be deterministic or stochastic.

• ρ0 is the starting state distribution.
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The dynamics of a MDP are specified with respect to the state-transition func-
tion:

p(s ′ |s,a) = P(St+1 = s
′ |St = s,At = a) =

∑
r ∈R

p(s ′, r |s,a) (3.1)

where p(s ′, r |s,a) specifies the probability of next state and reward s ′, r given
the state-action tuple (s,a):

p(s ′, r |s,a) = P(St+1 = s
′,Rt+1 = r |St = s,At = a) (3.2)

3.10 Expected Return

The objective of the agent is to maximize the expected reward it gets over
a trajectory. The first type of return the agent could consider, is the sum of
rewards over a certain amount of steps in the environment:

Gt = Rt+1 + Rt+2 + · · · + RT

where T denotes the final step in the episode. This return is called the finite-
horizon undiscounted return, and is used for episodic tasks.

The other type of return is called the finite-horizon discounted return, and is
used for continuing tasks:

Gt = Rt+1 + γRt+2 + γ
2Rt+3 · · · =

∞∑
k=0

γ kRt+k+1

where 0 ≤ γ ≤ 1. The parameter γ is called the discount rate.

3.11 Value Functions

Contrary to the reward signal, which is an immediate response to the agent,
the value function tries to estimate the rewards the agent can expect to obtain
in the future. More specifically, the value of a state s gives an estimate of
the expected return the agent can expect to obtain in the future, taking into
consideration the states that are likely to follow from state s [42, p. 70].

A state could for instance return a low reward, but the value of that state
could be good, since the trajectory that follows the state contains good future
rewards. The future rewards depend on the actions taken, so the value function
necessarily depends on the policy of the agent.
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There are two types of fundamental value functions in RL.

The value function mentioned above, considers the value of a state s with
respect to a policy π , and is referred to as the state-value function: vπ (s).

It is defined mathematically, in terms of a MDP, as:

vπ (s) = Eπ (Gt | St = s) = Eπ

[
∞∑
k=0

γ kRt+k+1

����� St = s
]

(3.3)

where Eπ (Gt | St = s) is the expected value of the return, given the state s at
time t .

The other type of value function takes into consideration the action a taken
in the state s, and following a policy π thereafter: qπ (s,a). It is known as the
action-value function.

It is defined as:

qπ (s,a) = Eπ (Gt | St = s,At = a) = Eπ

[
∞∑
k=0

γ kRt+k+1

����� St = s,At = a

]
(3.4)

Equation 3.3 can be formulated recursively:

vπ (s) =
∑
a

π (a |s)
∑
s ′,r

p(s ′, r |s,a) [r + γvπ (s
′)] (3.5)

Similarly, for the action-function 3.4, there is a recursive formulation:

qπ (s,a) =
∑
s ′

∑
r

p(s ′, r |s,a) [r + γvπ (s
′)] (3.6)

The recursive formulations are a useful way to express the value functions,
and it is known as the Bellman equation for vπ and the Bellman equation for
qπ , respectively. It says that the value of the current state is the immediate
reward, plus the expected reward from the next state. The Bellman equations
for updating and estimating the value of a state is central to many algorithms
encountered in RL.
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3.12 Optimal Value Functions

Optimal policies have the same state-value function. The state-value function
is called the optimal state-value function in this case, and denoted v∗:

v∗(s) = max
π

vπ (s) ∀s ∈ S (3.7)

Similarly, the action-value function is the same for optimal policies, and called
the optimal action-value function:

q∗(s,a) = max
π

qπ (s,a) ∀s ∈ S,a ∈ A

The optimal action-value function can also be written as:

q∗(s,a) = E [Rt+1 + γv
∗(St+1) | St = s, At = a] (3.8)

Equations 3.7 and 3.8 can be written as Bellman equations in the following
form ( [41, p. 76]):

v∗(s) = max
π

vπ (s) ∀s ∈ S (3.9)

v∗(s) = max
a∈A(s)

∑
s ′,r

p(s ′, r |s,a) [r + γv∗(s ′)] (3.10)

q∗(s,a) =
∑
s ′,r

p(s ′, r |s,a)
[
r + γ max

a′
q∗(s ′,a′)

]
(3.11)

and they are refered to as Bellman optimality equations.

Since the value functions store a value for each state in the MDP, the memory
considerations are of importance when applying RL algorithms. MDP’s with
huge state and action spaces require a lot ofmemory to store the approximations
of the value functions, policies and the models [42, p. 80]. For MDP’s with finite,
small state and action spaces it is common to store these approximations in
tables. These methods are refered to as tabular methods.

However, in many real world applications of RL, the state-spaces are high-
dimensional and it is impractical to use the tabular approaches encountered
in traditional RL. The value functions need to be approximated in this case.
Apart from the memory problem, there’s also a problem relating to the time
needed to build up the tables and the issue of generalization to new states
( [41, p. 255]).
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This especially holds true for state and action spaces usually encountered in
robotics applications. Such state or action spaces are usually continuous and
in the form of sensory inputs. In such tasks, a lot of the states will not have
been encountered before by the agent. Therefore, the agent needs to learn by
generalizing from previous visited states to the the new states.

Combining traditional RL methods with function approximation methods from
supervised learning, is one way of getting around this problem. This method
forms the basis of Deep reinforcement learning (DRL), and will be talked about
in the section on DRL.

3.13 Classical Reinforcement Learning Methods

The purpose of reinforcement learning is for the agent to learn an optimal,
or nearly-optimal, policy that maximizes the "reward function" or other user-
provided reinforcement signal that accumulates from the immediate rewards.
This section elaborates on classical reinforcement learning methods.

3.13.1 Dynamic Programming vs Monte Carlo Methods

Reinforcement learning is typically defined in the form of a Markov decision
process (MDP). Many reinforcement learning algorithms for this context use
dynamic programming techniques. The main difference between the classical
dynamic programming methods and reinforcement learning algorithms is
that the latter do not assume knowledge of an exact mathematical model of
the MDP and they target large MDPs where exact methods become infeasible.
Dynamic Programming (DP) requires a complete knowledge of the environment
or all possible transitions, whereas Monte Carlo methods (MC) work on a
sampled state-action trajectory on one episode. DP includes only one-step
transition, whereas MC goes all the way to the end of the episode to the
terminal node.

3.13.2 Q-Learning

The Q-learning algorithm was introduced by Chris Watkins in 1989 and was
an important breakthrough in RL. It is an off-policy temporal difference (TD)
algorithm [42, p. 157]. The simplest form of the algorithm could be written as:

qnew(st ,at ) ← qold(st ,at ) + α
[
rt+1 + γ max

a
q(st+1,a) − q

old(st ,at )
]

(3.12)
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where α ∈ (0, 1] is the learning rate, γ ∈ [0, 1] is the discount factor, st ∈ S,
and at ∈ A.

The action-value for each state-action pair is updated using the update rule
in 3.12. It has been shown that the learned action-value function directly
approximates the optimal action-value function q∗, irrespective of what policy
is being followed [42, p. 157].

3.14 Deep Reinforcement Learning Methods

Deep reinforcement learning algorithms (DRL) can be divided into two classes,
namelymodel-free algorithms andmodel-based algorithms. This work concerns
model-free algorithms. For model-free algorithms there are two fundamental
types of algorithms: Policy gradient/optimization and Q-learning methods.
Additionally, there are methods that combine elements from both. Actor-Critic
methods is an example of this.

In DRL, the policy depends on the parameters of the neural network (weights
and biases), and are called parameterized policies: πθ (s) for discrete policies
and πθ (a |s) for continuous policies, where θ represents the network parame-
ters.

3.14.1 Policy Gradient and Q-Learning methods

Policy optimization methods learns the policy directly, contrary to Q-learning
methods that learns it indirectly from the action-value function. Policy op-
timization methods optimize the parameters of the network θ directly via
gradient ascent/descent on the expected return function, or by maximizing
the local approximations of it [46].

Q-learningmethods learn the policy by approximating the action-value function
qθ (s,a). The optimization is often performed off-policy, which facilitates the
use of previously collected data for the update. A common technique is to use
experience replay, that stores previous experiences in a replay buffer. During
training the algorithm samples from it randomly, making the experiences
decorrelated. This has been shown to stabilize training [46].
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3.14.2 DQN

A Deep Q-Network (DQN) is a DRL method that contrary to the tabular Q-
learning method, approximates the action-value function qπ (s,a)with a neural
network. The network will take the state as input, and output a prediction
of the expected return for each action. DQN is an off-policy algorithm, and
utilizes a replay buffer to store experiences, and samples from it randomly
during training.



4
Simulators
The first part of this chapter concerns simulators used in robotics. It will intro-
duce four robotic simulators that could be used for robotic tasks, particularly
for robotic manipulation and grasping scenarios. Additionally it will introduce
relevant tools often used in robotic simulators . It will compare the simulators
PyBullet, CoppeliaSim and Gazebo with regard to several factors. In the last
section, a discussion related to the choice of simulator will be presented.

Learning-based methods for robotic grasping requires data for training. One
way of generating this data is through experimental trial and error. The process
of learning through trial and error on a real robotic platform is costly, time-
consuming, and may result in robotic damage. Therefore, it is often desirable to
obtain the training data for the robot in a simulator. After training in simulation,
it is possible to specalize the training on the real robotic platform.

However, training in a simulator imposes some challenges. It is necessary that
the simulator is able to accurately simulate the robotic task to be performed.
Another concern is the transfer of the learned model from the simulater to
the real world, called ”Sim-to-Real Transfer”. This is often challenging due to
the ”reality gap” (Bousmalis et al., 2018). That is, simulator trained models
generally do not work as well in the real world compared to in simulation.
Some techniques, such as domain randomization and domain adaptation have
been suggested to overcome these difficulties.

In choosing a simulator for the robotic task to be performed, several factors
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need to be accounted for. In this project, factors such as active community
support, documented usage in research, usability and possible integration with
other tools and libraries for machine learning and deep learning have been
emphasized in choosing the simulator.

There are a lot of simulators used for robotic grasping and manipulation. Some
of the more well-known simulators are: MoJuCo, Gazebo, CoppeliaSim (for-
merly known as V-REP),Webots,RoboDK,PyBullet,Nvidia Isaac andUnity.

4.1 Robot Operating System

The Robot Operating System (ROS), was initially started back in 2007. Efforts
of creating an ongoing collaborative framework for robotics was the initial goal
that lead to its creation. It aims at facilitating the creation of

complex and robust robot behaviour across a wide variety of robotic
platforms1.

Creating general and robust robot software is difficult, and therefore the idea
was to fuse together the expertise from different groups working on robotics
to make collaboration and building upon existing work easier, and functions
like a middleware for robotics.

ROS is an open-source framework that supports Unix based operating systems.
It includes several software libraries and tools for building robot applications
and writing robot software.

4.2 URDF

Unified Robot Description Format (URDF) is a XML format which is used to
describe a robot model. URDF includes descriptions for the kinematics and
dynamics of the robot, a visual representation, and a collision representation
of the robot. The format can only represent robots in a tree structure, ruling
out parallel robots. Another assumption is that the robot consists of rigid links
that are connected by joints.

URDF’s are the standard format for importing robots in ROS, and can cover a
vast majority of robot models, including most articulated robot arms. However,

1. https://www.ros.org/about-ros/

https://www.ros.org/about-ros/
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they can only specify the properties of a robot separate from the rest of the
simulation (e.g. pose of a robotwith respect to the world frame of the simulation
can not be specified.)

4.3 SDF

Simulation Description Format (SDF) is a new XML format which tries to
remedy the deficiencies of the URDF format. SDF is a more complete format
that includes descriptions of the robot and the simulation world. It was initially
created for the Gazebo simulator. In addition to the URDF format, SDF can
define robot sensors, surface properties of a robot, surface textures, friction
between joints and links, environment lights, terrain, and many more.

4.4 PyBullet

PyBullet [10] is a Python module for the physics engine Bullet. The Bullet
engine was initially developed by Erwin Coumans who won a Scientific and
Technical Academy Award for the work he did on Bullet. The physics engine
has been used in computer games, for visual effects in animation movies, and
in a plethora of research projects. Bullet is a free and open-source project and
is currently hosted on GitHub2. It supports real-time collision detection, soft
body dynamics and rigid body dynamics.

Bullet was initially targeted for game development, visual effects in movies
and robotics. With the introduction of PyBullet, it has improved the support
for robotics, reinforcement learning and virtual reality (VR) applications. It in-
cludes robotic examples for the simulation of the Minitaur qaudruped, running
humanoids, and robotic grasping setups.

4.5 CoppeliaSim

CoppeliaSim, formerly called V-REP, is a robot simulator for rigid body dynam-
ics, that was initially developed at Toshiba R&D. It is currently maintained by
the company Coppelia Robotics AG, located in Zurich, Switzerland. There are
three software versions of CoppeliaSim: player, edu and pro.

2. https://github.com/bulletphysics/bullet3

https://github.com/bulletphysics/bullet3
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player edu pro
Full simulation functionality Yes Yes Yes

Full editing capabilities No Yes Yes
Commercial usage Yes No Yes

The pro version is not free, but the player version is free to use for every-
one, and the edu version is free to use for students, teachers and people in
academia.

CoppeliaSim supports an integrated development environment and is based
on a distributed control architecture3. The control arhitecture was designed
with flexibility, portability and scalability in mind, in the sense that it facili-
tates easier adjustment of the control code of a specific object/model in the
simulation [38].

The user has the ability to choose between or combine different programming
techniques in CoppeliaSim: embedded scripts, add-ons, plug-ins, remote API
clients and ROS nodes [38].

CoppeliaSim supports several physics engines for the rigid body dynamics
calculations: Bullet, ODE, Vortex and Newton. Additionally, there are a lot of
builtin modules that could help facilitate robotic research and prototyping,
such as sensor and actuator models, motion planning, and forward and inverse
kinematics [8].

A recent toolkit named PyRep was introduced by James et al. [19]. It is a toolkit
built on top of CoppeliaSim that facilitates rapid prototyping in RL, imitation
learning (IL), state estimation, mapping, and computer vision [19].

4.6 Gazebo

Gazebo [24] is a robotics simulator initially developed at University of Southern
California in 2002. At the time of its creation, many of the robotic simulators
were restricted to 2D worlds. Gazebo was designed as a freely available, open-
source simulator to cater to the need for a 3D dynamic multi-robot environment
that could recreate and simulate complex environments. Its development was
partly motivated by the, at the time, increasing use of robotic vehicles for
outdoor applications [24].

By default, Gazebo uses the Open Dynamics Engine (ODE) as the underlying

3. https://www.coppeliarobotics.com/

https://www.coppeliarobotics.com/
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physics engine, to simulate dynamics and kinematics for articulated rigid bod-
ies. However, Gazebo is designed such that it is possible to replace ODE with
other physics engines. It has the ability to support Bullet, Simbody and DART
physics engines.

It is possible to integrate Gazebo with ROS. The combination of Gazebo as
the 3D robotics simulator and ROS as the interface for the robot is a popular
setup.

4.7 MuJoCo

MuJoCo [45], short forMulti-Joint dynamics with Contact, was released back in
2015. It was designed for research and development in robotics, biomechanics,
graphics and animation, and other application domains that require fast and
accurate simulation⁴.

MuJoCo has an API for programming in C, and is compatible with Windows,
Linux and Mac. The open-source library mujoco-py⁵, released by OpenAI,
makes it possible to program MuJoCo from Python 3.

MJCF is MuJoCo’s native format for loading XML models.

4.8 Software Libraries and Tools

4.8.1 OpenAI Gym

OpenAI Gym is an open-source library for reinforcement learning research
made by OpenAI. It was created to provide a variety of benchmark problems
for comparing RL algorithms [4]. OpenAI Gym includes many different envi-
ronments with a common interface, and the environment makes no assumption
about how the code for the agent is structured. The gym framework assumes
that the environment can be modeled as a MDP, and focuses on episodic RL
tasks.

Following Python code illustrates the standard interface an agent follows for
interacting with the environment.

Listing 4.1: Gym interface in Python.

4. http://www.mujoco.org/
5. https://github.com/openai/mujoco-py

http://www.mujoco.org/
https://github.com/openai/mujoco-py
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import gym
env = gym.make( "EnvName−v1 " )
observa t ion = env . r e s e t ()
for _ in range ( ep i sodes ) :

env . render ()
# agent tak ing random ac t i on s
ac t i on = env . ac t ion_space . sample ()
# A t r a n s i t i o n in the MDP
observat ion , reward , done , i n fo = env . s tep ( ac t i on )

i f done :
observa t ion = env . r e s e t ()

env . c l o s e ()

The main methods that need to be implemented are:

step(self, action)
The step method transitions the environment by the action. It returns
a new observation, reward signal, a done flag that indicates if the new
state is a terminal state, and an info ...

reset(self)
The reset method resets the state of the environment and returns an
observation. It needs to be called at the beginning of every episode.

render(self, mode=’human’)
The render method renders one frame of the environment.

close()
The close method closes the environment.

seed()
The seed method is used to specify a seed for providing reproducability
when doing experiments.

4.8.2 Reinforcement Learning Libraries

OpenAIGym provides a standard framework for the environment. There are a
handful of open-source RL algorithm libraries that provide code for the agent
side, such as: Stable Baselines, OpenAI Spinning Up and RLlib.
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4.9 Comparison

In this section, the robotic simulators PyBullet, CoppeliaSim and Gazebo will
be compared. A comparison of features offered by the simulators, their suit-
ability with respect to robotic manipulation tasks, and their application for
robotic learning will be discussed. All of the mentioned simulators are being
actively developed, used in research and have a large user community, which
means it’s unlikely that they will be deprecated in the near future. Free and
open-source software simulators with a large user community also have an
advantage compared to licensed, closed-source software, as they benefit from
the contributions from different robotic research groups and, more generally,
people working in different robotic fields.

Collins et al. included a citation count from Google Scholar of 28 reviewed
simulators in the period from 2016 to 2020, where the citations were gathered
from one or more research papers related to the simulator, reference manual or
other citation type and the search was filtered with the keyword robotics [8].
Out of all the simulators, the top three cited simulators were Gazebo as num-
ber one, MuJoCo and CoppeliaSim coming in second and third, respectively.
PyBullet was the seventh most cited simulator.

The citation count for PyBullet, CoppeliaSim and PyBullet suggest their active
usage in research, and why it is reasonable to choose these simulators for
comparison.

Furthermore, Collins et al. [8] define a robotic simulator as a software that
includes at least the following basic functionality:

i Physics engine for realistic modelling

ii Collision detection and friction models

iii Graphical User Interface (GUI)

iv Possibility to import scenes, models and meshes

v API facilitating programming language(s) used by robotics community

vi Builtin models for joint arrays, actuators and sensors ready to use
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4.9.1 Features

Both CoppeliaSim and Gazebo support multiple physics engines. According
to Collins et al., the support of multiple physics engines is a domain random-
ization technique that could prevent a learned policy to overfit for the current
simulation environment [8]. When it comes to scene editor, PyBullet is the
only simulator that doesn’t have one. Models and properties need to be edited
and configured programmatically. Both CoppeliaSim and Gazebo offers a GUI
for scene editing, which can increase usability and facilitate rapid prototyping.
Though Gazebo offers a scene editor, it has been stated to be quite limited
according to [31]. Pitonakova et al. states similar concerns related to poor
general usability, difficulty altering and optimizing models, various issues with
the interface, and difficulty installing dependencies for Gazebo and third-party
models [35].

Out of all the simulators, CoppeliaSim is the only one that offers mesh editing
capabilities and the support for meshmanipulation during runtime (e.g. milling
operations). PyBullet is the only simulator that supports soft-body contacts.
This could be an asset when trying to simulate more realistic scenarios.

The next three tabels is a summarization of key features provided by the
three simulators in terms of general features, models and mesh features, and
programming support. The information presented in the tables are based on
experience gathered during thesis work and recent work done comparing and
surveying robotic simulators [8, 35].



Simulator CoppeliaSim PyBullet Gazebo 

Features 

Platform Available for Windows, 
Linux and MacOS. 
Binaries available for all. 

Available for Windows, 
Linux and MacOS.  

Available for Windows, 
Linux and MacOS. 
Binaries available for 
Linux Debian. 

Physics engines Bullet 2.78, Bullet 2.83, 
ODE, Vortex, Newton 

By default, PyBullet 
uses Bullet 2.x API. 

ODE available by default. 
Possible to change engine 
to: GazeboBullet, 
Simbody and DART (Need 
to build from source). 

Code/scene  
editor 

Code and scene editor 
included. 

No scene editor. 
Possible to use Blender 
as scene editor. Blender 
has Bullet integrated. 

Code and scene editor 
included. 

Meshes Possible to manipulate 
meshes during runtime 
(e.g., milling operations). 

Not supported. Not supported. 

Scene objects Scene objects can be 
manipulated (moved, 
added) during simulation 
by user. Possible to reset 
simulation to original 
state, which facilitates 
its use for RL. 

Scene objects can be 
manipulated (moved) 
during simulation by 
user. Possible to reset 
simulation to original 
state, which facilitates 
its use for RL. 

Scene objects can be 
manipulated (moved, 
added) during simulation 
by user. Environment 
doesn’t go back to 
original state when 
simulation is reset. 

Multi-body 
import 

Yes Yes Yes 

Soft-body 
contacts 

No Yes No 

Discrete 
Element 
Method (DEM) 
simulation 

Yes Yes Fluidix 

Fluid Mechanics No No Fluidix 

Particles Includes particle 
systems. 

Not supported. Not supported. 

Headless mode Yes Yes Yes 

Teleoperation Yes Yes Yes 

Realistic 
rendering 

No No No 

IK, FK Yes Yes Yes 

RGBD, LiDAR 
sensors 

Yes Yes Yes 

Force sensor Yes Yes Yes 

Linear actuator, 
Cable actuator 

Linear actuator Linear actuator Linear actuator 

 



Simulator CoppeliaSim PyBullet Gazebo 

Models and mesh capability 

Robot types Provides various types 
of default mobile and 
non-mobile robots such 
as: humanoids, 
hexapods, wheeled 
robots, quadcopter, 
snake robots and a 
good selection of 
robotic arms. 

Includes examples for 
mobile and non-
mobile robots such as 
quadruped robots, 
humanoid robots, 
robot arms, etc. 

Model library is not as 
diverse. Includes mostly 
mobile and aerial 
robots. Not many robot 
arms are included in the 
model library. 

Meshes Meshes are imported 
as a collection of 
subcomponents. It 
facilitates modification 
of the individual parts 
of the model. Simulator 
also supports import of 
URDF and SDF. 

Meshes are imported 
programmatically as a 
collision/visual shape 
from Wavefront OBJ 
files, and can be 
combined to form a 
multibody. The 
recommended way 
according to the 
PyBullet user manual, 
is to import meshes as 
URDF, SDF, or MJCF. 

Meshes are imported as 
single objects. Models 
consisting of several  
components have to be 
assembled from DAE 
files in Gazebo. 
Simulator also supports 
import of URDF and 
SDF. 

Mesh  
modifiability 

Possible to modify 
mesh geometry directly 
in simulator (mesh 
simplification, split 
meshes, combine 
meshes). Mesh 
simplification interface 
allows user to optimize 
the triangle count of 
heavy models for faster 
and more reliable 
simulation. 

Not possible to modify 
mesh geometry. 
Needs to be done in 
third-party software 
(e.g. Blender). 

Not possible to modify 
mesh geometry in 
simulator. Needs to be 
done in third-party 
software (e.g. Blender).  



Simulator CoppeliaSim PyBullet Gazebo 

Programming 

Scene Scene saved natively 
(*.ttt format or 
*.simscene.xml 
format). 

Scene editing done 
programmatically via 
Python. 

Scene is saved in XML 
format. 

Programming 6 ways to program: 
embedded scripts, add-
ons, plug-ins, remote 
API clients, ROS nodes 
and TCP/IP, ZeroMQ 
nodes. 

Python. No built-in 
support for ROS. 

Programming in Gazebo 
is done via Gazebo C++ 
plug-ins, ROS nodes or 
python bindings for 
Gazebo (pygazebo). 

Scripts Various types of scripts 
are supported, such as: 
the sandbox script, 
add-ons, and 
embedded scripts. 
Embedded LUA scripts 
are part of a scene or a 
model and are 
saved/loaded together 
with the scene. 

N/A Supports scripting via 
GazeboJs, which 
provides a scripting 
interface as a javascript 
client to the  Gazebo 
simulator. Pitonakova et 
al. states the difficulty 
of recognizing how a 
third-party robot model 
works and its plug-in 
dependencies. 

API  
documentation 

API documentation, 
user manual, tutorials 
and code examples 
exist. Support forum 
with a large user 

API documentation, 
quickstart guide/user 
manual and example 
tutorials/demos exist. 
Large support forum 

API documentation, 
guided tutorials for 
beginners to advanced 
users, example codes 
and large user 
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4.9.2 Robotic Manipulation and Grasping

Robotic manipulation is a large and varied field within robotic research, in-
vestigating tasks such as the design of robotic arms and grippers, motion and
grasp planning, collaborative manipulation, and specific tasks related to ma-
nipulation, such as pick-and-place, assembly, peg-in-hole, deformable objects
and shelf picking [9, 8].

The fundamental types of actuators and sensors supported by a robotic simu-
lator partially determines it usability for robotic manipulation and grasping. In
[8], the authors state that actuators for position, velocity, and torque control
are the most commonly used actuators when controlling a robot arm, and must
be supported by the simulator. They also state the need for force/torque sen-
sors, and lists usefull built-in features such as: inverse and forward kinematics
algorithms, path planning, and inverse dynamics algorithms.

Manipulation  CoppeliaSim  PyBullet  Gazebo 
Path Planning  Yes  Yes  Yes 
Inverse Dynamics  No  Yes  Yes 
Inverse Kinematics  Yes  Yes  Yes 
Suction  Yes  No  No 
Deformable Objects  No  Yes  No 
Force/Torque sensor  Yes  Yes  Yes 
Realistic rendering  No  No  No 

Figure 4.1: Robotic manipulations. Table information from recent survey [8].

Another concern when designing robotic grasping and manipulation experi-
ments in simulators, is the accuracy of the rigid/soft body contact dynamics
the underlying physics engine provides. One aspect of the simulation is the
kinematics and visualization, which help achieve convincing visual effects.
However, in robotics applications, the physical accuracy of the simulation is
very important. Robotic grasping and manipulation is one domain of robotics
that is characterized by heavily-constrained systems, and where the need for
accurate modelling of contact dynamics holds true [13].
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In [13], the authors compare and evaluate the physics engines: Bullet, Havok,
MuJoCo, ODE and PhysX on four model systems with different measures of
accuracy. The model systems were simulation instances created in a specific
state. They were advanced one time step forward given joint torques input,
and the output is a new state in a uniform format. The performance metrics
they user are consistency measure, energy and momentum conservation. Ad-
ditionally, they recorded the CPU timing results for all the model systems and
analyzed grasp stability.

The consistency measure was related to integration errors. They first obtained
a reference trajectory using a small timestep for the given model system, and
gradually increased the timestep where they measured the average deviation
from the reference trajectory.

One of the model systems was a grasping scenario with a 35-DOF robotic arm,
which is a heavily-constrained system with many simultaneous contacts.

Figure 4.2: Figure from [13]. First column: task related to grasping an object rigidly
and moving it around. Second column: CPU timing results as thousands
of evaluations per second. Third column: Speed-accuracy trade-off with
respect to a consistency measure.

Figure 4.2 shows the model system, cpu timing results, and the speed-accuracy
trade-off plot where x is simulation speed and y represents the consistensy
measure. The optimal speed-accuracy plot should resemble a Pareto front. Tha
authors points out that the reason Bullet and ODE have partial speed-accuracy
curves is because for larger timesteps they go unstable on the system.

For grasp stability, they ran the simulation for increasing timestep values and
recorded the largest timestep with the object still in the hand after moving
it around. Their results show that MuJoCo obtained the best grasp stability,
whilst ODE and Bullet obtained the worst.
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4.9.3 Robotic Learning in Simulation

There are many advantages of robot learning in simulation. One advantage is
that the simulation environment can be used to benchmark and test different
algorithms from different areas of machine learning before it is deployed on
the real platform. Due to the sample inefficiency of many DRL algorithms, it
is often impractical to train the algorithms directly on the real platform, as it
requires many episodes before the robot starts to learn good policies, and the
exploration of the state-action space can also cause the robot to fail or lead to
damage during training [8].

As mentioned in the section above, the accuracy or fidelity of the contact
dynamics is important [13, 8], but besides the need for robust contact dynamics,
sensor support is also relevant. All of the three simulators have support for RGB-
D, LiDAR and force-torque sensors. Out of all the three simulators, CoppeliaSim
and Gazebo are the simulators that offers the most diverse set of sensors. In
Gazebo, the user also have the ability to add noise to the sensor via a noise
model, which may yield a more accurate description of the real sensor. In
PyBullet it’s more difficult to set up a sensor. There exist functionality for
returning RGB image, depth buffer and segmentation mask.

Used in learning  CoppeliaSim PyBullet  Gazebo 
Random external forces  Yes  Yes  Yes 
RGBD + LiDAR  Yes  Yes  Yes 
Force sensor  Yes  Yes  Yes 
Multiple physics engines Yes  No  Yes 
Realistic rendering  No  No  No 

Figure 4.3: Robotic learning. Table information from recent survey [8].

In [8], the authors remark upon the importance of a simulators capability of
facilitating environment changes between episodes and being able to reset
a simulation without shutting down the simulator. Furthermore, they state
that overcoming the reality gap is one of the most important consideration
researchers need to address when choosing a simulator for robotic learning.
Domain randomization is one such mean for overcoming the reality gap when
transfering a learned policy to the real platform [44].

Various techniques could include changing the initial position and orientation
of the scene objects, randomize textures, light conditions, the characteristics of
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the camera, and randomizingmass, inertia and friction properties [44, 8]. Small
random external forces applied to the robot is another domain randomization
technique, and could prevent the policy overfitting to the particular simulation
environment [8]. All of the simulators provide this.

All of the simulators have the ability to support domain randomization tech-
niques. The support for randomizing textures of rendered objects and camera
characteristics is not supported in Gazebo by default [8]. However, a plugin
was created to support domain randomization in Gazebo⁶.

None of the simulators provide realistic rendering. This could be a problem
when learning vision-based policies for manipulation and grasping in the
simulator, and transfering the model to the real platform. However, Tobin et
al. showed that it was possible to succesfully transfer a deep neural network
trained only on simulated RGB images to the real world where it was used for
grasping in clutter [44].

4.10 Discussion

All of the three simulators have decent API documentation, tutorials and
support forums with large user bases. Collins et al. [8] provided a citation count
that shows the three simulators documented usage in research. It shows that
CoppeliaSim, Gazebo, and PyBullet have good documented usage in research
compared to the other simulators included in the citation count. Ivaldi et al.
performed a survey on robotic simulators based on user feedback [18]. The user
ratings with respect to documentation, support, installation, tutorials, advanced
usage, active project and community, and API showed that CoppeliaSim had
the overall best rating. As mentioned earlier, concerns related to the general
usability of Gazebo and various issues with the interface was documented by
some authors [31, 35].

Taking into consideration all of these factors, the reviewed surveys, and the
different feature comparisons, CoppeliaSim was initially investigated as the
robotic simulator for the experiments.

CoppeliaSim offers a lot of useful features for designing robotic experiments
including sensors and actuators, robot models, motion planning, forward and
inverse kinematics. Out of the three simulators it offers the most diverse
set of features. I opted for the combination of CoppeliaSim and PyRep for
programming.

6. https://github.com/jsbruglie/gap

https://github.com/jsbruglie/gap
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However, being such a feature-rich simulation enviroment, CoppeliaSim be-
comes complex for simpler and non-professional tasks. The intended use was to
create a simulation thatwas transferable, utilizing the ROS integration provided
by CoppeliaSim, to the real-life Nachi MZ07 six DOF robotic arm contained
at the Machine lab at UiT Narvik. However, this led to additional challenges
getting the joints of the robotic model to perform according to specifications,
controlling the robot during simulations, movement and gripping turned out
to be difficult to control.

Eventually, CoppeliaSim was abandoned in favor of PyBullet. PyBullet has re-
leased resources related to RL⁷ and different RL environments⁸ on their Github
page. This helps facilitate quick experimentation with various RL environments,
and was the primary reason for switching to PyBullet.

7. https://bit.ly/3y6evrf
8. https://bit.ly/3hoy73S

https://bit.ly/3y6evrf
https://bit.ly/3hoy73S


5
Experiments
In this chapter, the experimental setup will be described, the DRL methods will
be described, and the results will be presented.

5.1 Experimental Setup

The robotic grasping experiment in this work is based on a PyBullet OpenAI
Gym environment1 contributed to PyBullet by the authors of [36]. In their
work, they used it as a benchmark environment for comparing and evaluating
different DRL off-policy algorithms for vision-based robotic grasping.

The PyBullet environment consists of a 7 DOF Kuka robotic arm with a two-
finger parallel gripper trying to grasp objects from a bin with random objects.
For each episode, the bin spawns a number of random objects from a dataset of
900 objects. The dataset is split into 900 training objects and 100 test objects.
The Kuka arm has a fixed number of timesteps per episode to try find a grasp
(default is 8). When the max steps has been reached, the episode ends.

This environment (KukaDiverseObjEnv) builds on a simpler environment (Kuk-
aGymEnv). The simple environment doesn’t support visual observations, and
the Kuka arm trains on a single block object.

1. https://bit.ly/3uhVYpB

49
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Figure 5.1: KukaDiverseObjEnv Figure 5.2: KukaGymEnv

5.2 Diverse Kuka Environment

5.2.1 Goal

The goal of the environment is to grasp an object from the tray, and lift it up to
a predefined threshold height of 0.2 units. A broader goal is the generalization
to the unseen objects in the test set.

5.2.2 The Environment

The environment inherits the Gym environment class, which means it conforms
to the OpenAI Gym API and defines the methods mentioned in the OpenAI
Gym section. One benefit of the environment using the Gym interface is
that it can facilitate the integration with various open-source RL libraries
that provide robust implementations of State-of-the-Art RL methods. Stable
Baselines, OpenAI Spinning Up and RLlib are some examples of libraries that
can provide code for the agent side.

There are two different versions of the PyBullet environment. The first version is
a simplified version with a height-hack. This means that for every action taken
in an epsiode, the gripper automatically moves downward to the tray a fixed
amount. For the second version, the downward z movement is part of the action-
space. The second version, is a much harder version of the environment.
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5.2.3 Actions

The action-space of the environment depends on the version of the environment
and whether it accepts discrete or continuous actions.

Simplified version

• For discrete actions, the agent can choose between seven actions:
moving the gripper along the x-axis(2), y-axis(2), yaw rotation of
the gripper(2), and one action for not moving(1).

• For continous actions, each of the x, y and yaw actions are limited
to the interval [−1, 1].

Harder version

• Same actions as the simplified version with the addition of two
actions for moving along the z-axis.

• Same actions as the simplified version with the addition of z-axis in
the interval [−1, 1].

5.2.4 Observations

The agent receives visual observations in the form of (width,heiдht, 3) images
representing the state. The environment has the ability to provide RGB, RGB-D,
and a segmentation mask as image-based observations to the agent.

5.2.5 Reward

For both versions of the environment there is provided a sparse reward. The
agent gets a reward of 1 for lifting up an object above the threshold height,
and 0 if not.
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5.3 Simple Kuka Environment

The goal of the environment is the same goal as in the Diverse Kuka Envi-
ronment. The most prominent differences between the two environments are:
the training set which is reduced to a single block object, the change from
image based observation to non-image based observation, and the change of
the reward function.

5.3.1 Actions

The action-space is the same as for the Diverse Kuka Environment, where the
action-space is discrete and the height-hack is enabled.

5.3.2 Observations

For discrete state-space, the observation is a 9-dimensional vector:

(x,y, z,α, β,γ , xgripper,ygripper,αgripper)

where x,y, z is the position of the gripper, α, β,γ the orientation of the gripper,
and xgripper,ygripper,αgripper is the x,y position and yaw-rotation of the block
object relative to the gripper coordinate frame.

5.3.3 Reward

For the Diverse Kuka Environment the reward function was defined as a sparse
reward. The reward function for the simple environment is based on the
euclidean distance between the gripper and the block object. If the object
is grasped and lifted above a height of 0.2, there is an additional reward of
10000.
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5.4 DQN

The Q-network used for training, is a Convolutional Neural Network (CNN)
that takes a state as input and outputs Q values for each action. The input
to the network is a stack of consecutive (64, 64, 3) RGB frames from the
camera. One reason for using consecutive frames as input is to try and capture
the environment dynamics. Before being sent to the network, the input is
converted to grayscale and resized.

Experience replay is used for storing transitions in a cyclic replay buffer, and
during training it samples batches from it randomly.

The loss function used for minimizing the error in the network weights is the
Huber Loss:

L(δ ) =

{
1
2δ

2 for |δ | ≤ 1
|δ | − 1

2 otherwise

where δ is the temporal difference error:

δ = q(s,a) − (r + γmaxaq(s
′,a))

The Huber loss behaves like the mean squared error for small values of the error,
and behaves like the mean absolute error for larger values of the error.

Epsilon decay is used to encourage exploration in the beginning of the training
and exploitation later on.

The model architecture of the DQN is shown in the figure below.

Figure 5.3: Model architecture of baseline DQN.

The input to the model is a stack of frames, and the output are the predicted
Q-values q(s,ai ) for each action ai . In this case, the size of the action-space is 7,
so the output of the Q-network are 7 Q-values corresponding to the predicted
expected return for each action.
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5.5 Experiment 1

Using the Diverse Kuka Environment as described earlier in this chapter, the
experiment is using the code offered by Mahyar Abdeetedal in [1]. This code
represents the baseline for three differentiated approaches to inspect whether
they can improve upon the baseline results, investigating the following three
approaches:

1. Changing the static RGB camera to a camera mounted at the gripper
(eye-in-hand), making the camera observation dynamic.

2. Changing the vanilla DQN algorithm to the policy gradient algorithm
TD3.

3. Switching to the Simple Kuka Environment, and adapt the DQN to handle
non-image based observations. Additionally, the reward function is no
longer sparse, but takes into account the distance between gripper and
object.

The first experiment is based on single-frame observations and a replay buffer
of size 100.000.

5.5.1 Moving the camera

The idea behind moving the camera is to find out how dynamically changing
images influences the learning. Consequently, the changes in the baseline code
are minimal to implement.



5.5 experiment 1 55

Figure 5.4: Eye-in-hand camera

5.5.2 TD3

The idea is to replace the Q-learning algorithm DQN with the algorithm Twin
Delayed Deep Deterministic Policy Gradient (TD3). TD3 belongs to the class of
model-free RL algorithms, and uses both policy optimization and Q-learning,
which means it is able to trade-off between the weaknesses and strengths
encountered by policy gradient methods and Q-learning methods. Q-Learning
methods tend to be less stable, while simultaneously having the advantage
of being more sample efficient if tuned correctly, due to their ability to reuse
previous experiences [46]. Policy gradient methods tend to be more robust
as they arrive at the optimal policy directly, and not indirectly via the action-
value function as seen in Q-learning [46]. TD3 only works for continuous
action-spaces, while DQN only works for discrete action-spaces.

With this in mind, it is useful to see if TD3 can improve upon the DQN, com-
bining the benefits of both policy gradient methods and Q-learning methods.
In this experiment the camera will be dynamically positioned making the ob-
served results comparable to the results acquired, as described in the previous
subsection.
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A TD3 implementation was developed for this purpose, utilizing the network
architecture and replay buffer from [47].

5.5.3 Non-image based observations

The dimensionality of images are fairly large compared to the observation type
used in the Simple Kuka Environment. Reducing the data complexity may be
an apporach to improve upon baseline results. In this experiment, the baseline
DQN is adapted to use the 9-dimensional observation used in the Simple Kuka
Environment.

The reward function is also changed in this environment, from a sparse reward
to a reward that takes into account the distance between the gripper and block
object. It is relevant to see if a reward shaping of the original sparse reward
can guide the training better.

5.6 Experiment 2

In the first experiment single frame observations were used. This new ex-
periment takes as input a stack of 10 frames, still using a replay buffer of
100.000. Investigating this setup will give information on whether using a
stack of frames will capture the environemnt dynamics better. The experiment
will require more time, based on complexity of data and data amount needed
to be processed by the algorithms.

The experiment will compare three different approaches:

1. The baseline DQN approach as found in [1], using a static RGB camera.

2. Changing the static RGB camera to a camera mounted at the gripper
(eye-in-hand), making the camera observation dynamic.

3. Change the type of input to the network from RGB to greyscale depth
images.

Finally, the trained models will be tested on the 100 objects in the testset for
1000 test iterations/episodes. The 100 objects in the test set are new objects,
and have not been seen during training. It could hint at the generalization
capabilities of the models.
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5.7 Experiment 1 - Results

Figure 5.5: Mean avg. reward for previous 10 episodes.

The figure illustrates the mean reward over 10 episodes during training for the
DQN approach, labeled Kuka RL, the DQN where the camera used as sensory
input is moved into the gripper (Kuka Eye in Hand, the TD3 approach with
camera in gripper (TD3 Eye in Hand), and finally the version Kuka RL Simple
where the DQN is adapted to handle non-image based observations.

The experiment was executed based on single-observation input, that is either
a single RGB camera image of 64x64 RGB data except for the Kuka RL Simple
approach which used an observation consisting of position and orientation of
the gripper, and the relative x,y and yaw rotation of the target object with
respect to the gripper coordinate frame.

The number of episodes during training was limited to 15.000 due to processing
time and for creating comparable result-sets. During training identical datasets
were used.

The Kuka RL Simple approach did not perform very well. The learning started
very slowly and started to level out at around 400 episodes. At the last
episode, the approach only leveled out at a 17 mean reward over the 10 last
episodes.
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The TD3 Eye in Hand approach did get better results than the Kuka RL Simple,
but low mean reward compared to the other approaches. The learning started
with fairly the same speed as for Kuka Eye in Hand and Kuka RL, but leveled
out much faster. The mean reward did not increase after episode 700, and
ended on a mean reward of 38.

Kuka Eye in Hand and Kuka RL had a very close race all the way. Two distinct
observations may be commented in this respect. Firstly, Kuka RL had a steep
increase of mean reward until episode 700 where it levelled out and had a very
slow increase culminating at around 14970 reaching a value of 57. Secondly,
Kuka Eye in Hand had a slower increase of mean reward compared to Kuka RL
for the first 1.000 episodes, but after this the Kuka Eye in Hand is approaching
Kuka RL and ends up reaching a value of 55 at 15.000 episodes.

5.8 Experiment 2 - Results

Figure 5.6: Mean avg. reward for previous 10 episodes.

The figure illustrates the mean reward over 10 episodes during training for the
DQN approach, labelled Static, the DQN with the eye-in-hand camera (Eye in
Hand), and finally a version substituting the RGB camera with a Depth image
camera mounted in the gripper (Depth in Hand). The experiment was executed
based on a stack of 10 frames used as sensory input to the model. Additionally,
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after having trained for approximately 50.000 episodes, the approaches were
tested for 1.000 test iterations/episodes, where the test set containing 100
previously unseen objects were spawned in the tray. The results are labelled
Test Eye in Hand for the test of Eye in Hand, Test Depth for the test of Depth
in Hand, and Test Static for the test of Static training. Training and tests used
identical reproducible learning- and test-data.

Using a framebuffer of 10 as opposed to a single frame as input to the model
could help increase learning, and this is also what can be observed. The Static
is more or less identical to Kuka RL in Experiment 1, and it performs relatively
good reaching a mean average of 72 at 50.000 episodes. The testing, Test Static,
illustrated however that the training did not prepare the network to handle
objects not previously seen during training, giving a mean reward over 1.000
episodes of only 46. Rotations of the gripper were barely visible and could be
interpreted as random.

Eye in Hand showed a similar behaviour as was observed in Experiment 1,
with a more slow increase of mean reward compared to Static for the first
episodes. But, around episode 15.000 the Eye in Hand approach passes the
Static approach and continues to increase the mean reward over the last 10
episodes until at around episode 49.300 reaching 77. The testing, Test Eye in
Hand, illustrated that the training to some extent succeeded in preparing the
network for objects not previously seen during training, giving a mean reward
over 1.000 episodes of 63. Rotations of the gripper became more prominent
and oriented the gripper better for grasping objects.

Depth in Hand had a more successful training compared to the two other
approaches. Depth in Hand used a depth image and converted it to greyscale
prior to sending the image into the adapted DQN version. The result showed a
steep increase ofmean reward until episode 4100where some degree of leveling
occur. The training seems to give better and better results and ended up at 84
mean reward. The testing, illustrated by Test Depth, showed that during 1.000
test episodes, an average of 75% of grasp attempts were successful. Rotations
of the gripper became more prominent and oriented the gripper better for
grasping objects.
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5.9 Discussion

The results from the first experiment with single frames as input and a replay
buffer of size 100.000 seems to indicate that changing the camera from static
to an eye-in-hand camera didn’t have a significant effect. In the second experi-
ment, a stack of 10 frames was used as input to the network and a replay buffer
of the same size. Notably, the second experiment trained for a longer amount of
time than the first experiment. The second experiment shows that changing the
camera had an effect at around 15.000 episodes, where the mean reward of the
eye-in-hand test surpassed the static camera test. The first experiment trained
for approximately 15.000 episodes, and might have shown similar results to
experiment two if it had been trained for the same amount of time.

One observed difference between the the static camera and the eye-in-hand
camera during testing,was the rotation of the gripper. During testing, themodel
trained with the eye-in-hand camera (Eye in Hand) accounts more for rotation
compared to the model trained with the static camera (Static). This might be
the reason why the Eye in Hand surpasses the Static in experiment two. The
combination of consecutive frames as input and the eye-in-hand camera in
experiment two,might result in the model learning to predict a higher expected
return from the image observations to the yaw rotation action.

Both DQN and TD3 belong to the class of model-free RL algorithms. This
means they sacrifice the potential increase in sample efficiency compared
to their counterpart, model-based methods, which often have better sample
efficiency [46]. Another concern when training DRL algorithms, is the hyperpa-
rameter sensitivity. The results from the model trained with the TD3 algorithm
(TD3 Eye in Hand) in experiment one, yielded lower mean reward compared
to the other models. One reason for this might be the hyperparameters of the
TD3 model. DRL methods are often sensitive to hyperparameters, and although
TD3 was created to overcome the hyperparameter sensitivity encountered by
its predecessor algorithm Deep Deterministic Policy Gradient (DDPG) [46], it
still could require some tuning to obtain better results.

The non-image based observation experiment Kuka RL Simple have a 9-
dimensional observation input consisting of the position of the gripper (x,y, z),
the orientation of the gripper (α, β,γ ), and the relative x,y position and euler
angle of the target object with respect to the gripper coordinate system. The
reward function was designed to account for the distance between gripper and
target object. The reward function design might be one of the major causes of
the low mean reward as it does not take into account the yaw orientation of the
gripper. By including the orientation distance between the gripper orientation
and the target object orientation in the reward design, it will guide the robot
arm to also account for the right grasp orientation.
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In the second experiment, the change of input from RGB to depth observation
showed a significant increase inmean reward. The depth image input highlights
the necessary features, which is the target objects and the height information.
Additionally, it removes the noise due to the texture of the tray, as can be seen
in figure 5.7. This makes it easier for the CNN net in the DQN algorithm to
detect the necessary features, and is perhaps the main reason why depth input
had a better result compared to the RGB image input.

Figure 5.7: (64, 64) depth image observation before grayscale, cubic filtering and
cropping preprocessing.





6
Future Work
6.1 Different Algorithms

Future work related to the algorithm part could be to extend the DQN to some
of the variants of it, such as: double DQN (DDQN), duelling DQN, and DQN
with prioritized experience replay (PER).

Apart from Q-learning methods, the Soft Actor Critic (SAC) algorithm seems
like an interesting approach, as it optimizes for expected return and entropy.
According to [46], optimizing for a trade-off between entropy and expected
return can result in more exploration later on in training, preventing the policy
from stagnating at a suboptimal local policy. This might be the reason the DQN
leveled out during training, as it settled for a suboptimal policy.

Approaches to help reduce the sample-inefficiency could also be relevant to
consider. Curriculum Learning (CL) is one approach that breaks the problem
down into a curriculum of tasks gradually increasing in complexity, and utilizes
experience from the simpler tasks to solve the original problem [33].

Hindsight Experience Replay (HER) is another technique which could help
increase the sample-efficiency when dealing with sparse rewards [2].

63
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6.2 Transfer of Model

Transfering the model to the real Nachi MZ07 robot arm contained at the
Machine Lab at UiT Narvik platform requires a preliminary step of changing
the Kuka robot arm in the PyBullet environment. Furthermore, the workspace
according to the specifications of the Nachi MZ07 model should be accounted
for when setting up the digital twin. Additional steps, but not limited to, would
be to account for sensor noise, calibration of sensor, and intregration with ROS.
Domain Randomization techniques might be necessary to prevent the policy
from degrading when transferred to the real platform.

Figure 6.1: Imported and configured Nachi MZ07 model in CoppeliaSim.

6.3 Simulators

Investigating other simulators in more depth could also be listed as future
work, especially Gazebo, as it provides good integration with ROS and is one
of the most used simulators for robotics.



7
Concluding remarks
The task description of this thesis was very comprehensive and had to be
narrowed to fit into the timespan available. Another aspect of the thesis work
was that during the lecturing at UiT, robotic simulation environments was only
touched upon briefly in the curriculum. Consequently, sufficient knowledge
and experience in robotic simulation environments and integration of AI into
these environments had to be accomplished during the thesis work.

Limiting the scope of the thesis was necessary to be able to complete the thesis
work. By limiting the scope of the thesis, it was decided to try to focus on three
specific issues and offer an answer. The questions were:

• How are learning-based methods applied in current approaches of robotic
manipulation and grasping?

• What kind of knowledge and software tools are needed in order to set up
learning-based experiments in a robotic simulator?

• How can learning-based methods be applied in a robotic simulation envi-
ronment?

Chapter 2 gave the background for current approaches to robotic manipulation
and grasping by describing how the robotic movement and grasping usually is
organized. It further presented State-of-the-Art approaches for learning robotic
grasping both using supervised methods and reinforcement learning methods.

65
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Chapter 3 focused on reinforcement learning and presented the theoretical
foundation approaches for learning in terms of robotic grasping. These two
chapters in combination offer an answer to the first question that this thesis try
to elaborate on; How are learning-basedmethods applied in current approaches
of robotic manipulation and grasping?

Chapter 4 presented an overview on a subset of robotic simulator environments
and an evaluation of three such simulators that are available to the academic
community free-of-charge. Chapter 5 offered two distinct set of experiments
that focused on elaborating on how simulations can be applied in a robotic
simulation environment, and a discussion on the results from the experiments.
As such, these chapter offer insight into how learning-based methods can be
applied in a robotic simulation environment, thereby an answer to the third
question.

The second question, what kind of knowledge and software tools are needed
in order to set up learning-based experiments in a robotic simulator, is directly
related to elements of Industry 4.0. Robotic technology is one pillar of Industry
4.0, and hold promises to facilitate automation and optimization in industries.
But, what are the actual knowledge needed to be able to be able to use these
software tools, produce data in a simulation environment, prepare data in the
simulation environment for learning, execute the learning in the simulator
environment, transfer the learning from the simulator environment into the
real-world, and finally deploy this in the real-world robotic environment? The
thesis only offers answer to some of these questions. As far as this thesis goes,
this may be summarized as follows:

• To be able to operate a robotic simulation environment, knowledge and
understanding of the robot in question and the application domain is
crucial along with the ability to utilize the features offered by the robotic
simulation environment. This is no small or easy task. It requires intimate
understanding on how the robot is built, mechanics and control system
engineering skills, and finally experience on how to use the robotic
simulation environment.

• Programming the simulator and create relevant simulation data for train-
ing and testing requires extensive knowledge on sensory capabilities,
including computer vision and image processing. Further, knowledge on
how to prepare data for training and intimate understanding of how sen-
sory input can be pre-processed and utilized by different AI algorithms,
including but not limited to machine learning. Again, this is no simple
task. Numerous frameworks offer capabilities in this context, but they
also might lack features that could be preferable with the application
domain in question.
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As far as this thesis goes, the questions stated in the start of the thesis have
been addressed. Keep in mind that the domain of robotic manipulation and
grasping is a complex field. Adding simulator environments into the equation
adds additional complexity.
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Problem description 

This is a thesis regarding robotic grasping of 3D objects and possible application 
domains, including: pick-and-place (sorting) and/or assembly of 3D objects. Robotic 
grasping is a complex operation that tries to imitate the way humans grasp objects. 
Robotic grasping is usually divided into analytic and data-driven methods.  
Analytic/geometric methods try to analyze the shape of the object to identify a suitable 
grasp pose. Data-driven methods are based on machine learning techniques. For robotic 
grasping to work, it is necessary for the robot to know/infer the shape of the object and 
the 6DoF pose of the object (x,y,z + orientation of object). Path planning and image 
recognition are also crucial steps in a robotic grasping pipeline.  

 
Figure 1: Typical pipeline for robotic grasping. A Survey on Learning-Based Robotic Grasping [Ref. 1]. 

 
The suggested thesis should: 

• Investigate current approaches (literature review) for robotic grasping and 

manipulation of 3D objects: 

o Analytic/geometric vs data-driven methods 

o Model-free vs model-based approaches 

• For data-driven method:  

o Determine how to train the system. Using supervised learning (SL) or 

reinforcement learning (RL) 

o Find suitable datasets for training: 

▪ Annotated datasets 

▪ Synthetic datasets 

▪ Augmented datasets 

• Determine environments used for training: 

o Furthermore, approaches differ on whether they are trained in a 

simulation environment, in the real world, or both and utilize various 

kinds of sensor data (RGB image, depth image, RGB-D image, point cloud, 

potentially multiple sensors,…) [Ref.1] 

o sim-to-real transfer 

• Hardware: 
o «Du vil derfor jobbe med Raspberry-Pi som utviklingsplattform for robotarmen 

basert på Makeblock ultimate 2.0 kit (Lenker til en ekstern side.), alternativ en 

allerede eksisterende robotarm» [Fra Samlebåndsortering] 



 

o RGB-D image sensor 
 

• Look into single view 3D reconstruction using 3D reconstruction from point 

clouds with an RGB-D sensor mounted on a robot arm. 

o Inference and Shape Completion using Keras or PyTorch for fast 3D 
reconstruction of objects which are free and/or occluded. 

• Demonstrate pipeline/methodology for reconstruction of objects with an RGB-D 
sensor mounted on a robot arm 
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