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ABSTRACT

Central nervous system disorders produce the undesired, approximately rhythmic movement

of body parts known as pathological tremor. This undesired motion inhibits the patient’s abil-

ity to perform tasks of daily living and participate in society. Typical treatments are medications

and deep brain stimulation surgery, both of which include risks, side effects, and varying efficacy.

Since the pathophysiology of tremor is not well understood, empirical investigation drives tremor

treatment development. This dissertation explores tremor from a mechanical systems perspective

to work towards theory-driven treatment design. The primary negative outcome of pathological

tremor is the undesired movement of body parts: mechanically suppressing this motion provides

effective tremor treatment by restoring limb function. Unlike typical treatments, the mechanisms

for mechanical tremor suppression are well understood: applying joint torques that oppose tremor-

producing muscular torques will reduce tremor irrespective of central nervous system pathophysi-

ology. However, a tremor suppression system must also consider voluntary movements. For exam-

ple, mechanically constraining the arm in a rigid cast eliminates tremor motion, but also eliminates

the ability to produce voluntary motions. Indeed, passive mechanical systems typically reduce

tremor and voluntary motions equally due to the close proximity of their frequency content. Thus,

mechanical tremor suppression requires active actuation to reduce tremor with minimal influence
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on voluntary motion. However, typical engineering actuators are rigid and bulky, preventing clini-

cal implementations.

This dissertation explores dielectric elastomers as tremor suppression actuators to improve clin-

ical implementation potential of mechanical tremor suppression. Dielectric elastomers are often

called “artificial muscles” due to their similar mechanical properties as human muscle; these simi-

larities may enable relatively soft, low-profile implementations. The primary drawback of dielec-

tric elastomers is their relatively low actuation levels compared to typical actuators. This research

develops a tremor-active approach to dielectric elastomer-based tremor suppression. In a tremor-

active approach, the actuators only actuate to oppose tremor, while the human motor system must

overcome the passive actuator dynamics. This approach leverages the low mechanical impedance

of dielectric elastomers to overcome their low actuation levels. Simulations with recorded tremor

datasets demonstrate excellent and robust tremor suppression performance. Benchtop experiments

validate the control approach on a scaled system. Since dielectric elastomers are not yet commer-

cially available, this research quantifies the necessary dielectric elastomer parameters to enable

clinical implementations and evaluates the potential of manufacturing approaches in the literature

to achieve these parameters. Overall, tremor-active control using dielectric elastomers represents a

promising alternative to medications and surgery. Such a system may achieve comparable tremor

reduction as medications and deep brain stimulation with minimal risks and greater efficacy, but

at the cost of increased patient effort to produce voluntary motions. Parallel advances in scaled

dielectric elastomer manufacturing processes and high-voltage power electronics will enable con-

sumer implementations.
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In addition to tremor suppression, this dissertation investigates the mechanisms of central ner-

vous system tremor generation from a control systems perspective. This research investigates a

delay-based model for parkinsonian tremor. Besides tremor, Parkinson’s disease generally inhibits

movement, with typical symptoms including rigidity, bradykinesia, and increased reaction times.

This fact raises the question as to how the same disease produces excessive movement (tremor) de-

spite characteristically inhibiting movement. One possible answer is that excessive central nervous

system inhibition produces unaccounted feedback delays that cause instability. This dissertation

develops an optimal control model of human motor control with an unaccounted delay between

the state estimator and controller. This delay represents the increased inhibition projected from

the basal ganglia to the thalamus, delaying signals traveling from the cerebellum (estimator) to

the primary motor cortex (controller). Model simulations show increased delays decrease tremor

frequency and increase tremor amplitude, consistent with the evolution of tremor as the disease

progresses. Simulations that incorporate tremor resetting and random variation in control satu-

ration produce simulated tremor with similar characteristics as recorded tremor. Delay-induced

tremor explains the effectiveness of deep brain stimulation in both the thalamus and basal gan-

glia since both regions contribute to the presence of feedback delay. Clinical evaluation of me-

chanical tremor suppression may provide clinical evidence for delay-induced tremor: unlike state-

independent tremor, suppression of delay-induced tremor increases tremor frequency. Altogether,

establishing the mechanisms for tremor generation will facilitate pathways towards improved treat-

ments and cure development.
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CHAPTER 1
INTRODUCTION

Certain nervous system disorders produce the involuntary, approximately rhythmic movement

of body parts known as pathological tremor [1–3]. These involuntary motions can prevent individ-

uals from accomplishing everyday tasks such as eating, writing, and grasping objects. Tremor also

negatively impacts emotional health as the physical symptoms inhibit participation in society and

cause social embarrassment [4,5]. Overall, tremor decreases quality of life by forcing dependence

on others for daily living while simultaneously alienating the afflicted person from society. The

prevalence of tremor further motivates the need for effective treatment options: tremor is the most

common movement disorder, with approximately 7 million Americans afflicted by essential tremor

alone [6, 7]. Typical treatments are medications and surgery, both of which include inherent risks

and provide varying effectiveness [1, 8]. Therefore, recent research proposes mechanical suppres-

sion of tremor as an alternative treatment, whereby actuator torques counteract tremor-producing

muscular torques to reduce tremor motion. This dissertation investigates mechanical tremor sup-

pression using soft actuators to improve clinical implementation potential by increasing human

body compatibility. Dielectric elastomers can easily conform to the human body since they have

similar mechanical properties as human muscle, thereby reducing device profile and improving

patient acceptance compared to rigid actuators. In addition, this research models parkinsonian
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tremor using a control systems approach to investigate tremor generation and the central nervous

system (CNS) response to tremor suppression. In particular, this study explores the evidence that

pathological CNS delay causes feedback instability to produce tremor. Previous clinical evidence

maps the delay to excessive basal ganglia inhibition of the thalamus, reflecting an unaccounted

delay in signal transmission from the cerebellum (estimator) to primary motor cortex (controller).

1.1 Tremor as a Mechanical System

Neural dysfunction produces tremor, but the primary negative result is involuntary movement of

body parts: the mechanical motion is the variable of interest for tremor treatment. Therefore, one

may view tremor as a purely mechanical system, where the CNS is a black box that specifies mus-

cular torques that produce both voluntary and tremor motion. In theory, it is possible to eliminate

tremor motion by applying mechanical torques that exactly cancel the motion. Only considering

the mechanical domain of tremor removes the complex neurological and sensorimotor systems

from the treatment design, greatly simplifying the fundamental problem structure. However, sim-

plifying the fundamental problem complicates the applied problem: actually identifying the tremor

motion and applying appropriate torques is a significant challenge. Understanding the dynamics

and mechanical characteristics of tremor helps to achieve this difficult task.
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Figure 1.1: Recorded time series examples of parkinsonian tremor and essential tremor (data
from [9])

1.1.1 Tremor Dynamics

Tremor data recordings provide insight into the dynamics of tremor. Previous research recorded

the acceleration of the outstretched hand of several patients with Parkinson’s disease or essential

tremor; this data is available online1 [9]. Figure 1.1 illustrates the acceleration time series of one

1http://jeti.uni-freiburg.de/path tremor/
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patient with essential tremor (ET) and one patient with parkinsonian tremor (PD). While both time

series show approximately sinusoidal behavior, the signals clearly demonstrate amplitude and fre-

quency variation. Figure 1.2 presents the Fast Fourier Transform (FFT) of the same tremor record-

ings: the dominant tremor frequency lies between 4 Hz and 6 Hz. Finally, Fig. 1.3 illustrates the

amplitude and frequency variation over time. The amplitude variation is more pronounced than the

frequency variation, a characteristic attributed to the variations being different types of noise [2].

In addition, previous research showed parkinsonian and essential tremor are better modeled by

nonlinear stochastic second-order processes compared to deterministic chaotic processes [9]. The

primary takeaway for tremor identification is that tremor has time-varying dominant frequency and

time-varying amplitude.
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Figure 1.2: FFT of essential tremor and parkinsonian tremor data
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Figure 1.3: The amplitudes and dominant frequencies of pathological tremor change over time.

1.1.2 Mechanical Tremor Suppression

Mechanical methods of tremor suppression offer an interesting alternative to typical treat-

ments [10–21]. A mechanical suppression system works at the joint level, producing a torque

in the opposite direction of the tremor-producing muscle torque. A key advantage of mechani-

cal methods is that the mechanism of tremor suppression is well understood: only considering

mechanics reduces the complex human motor system to well-defined outputs. Application of the

correct mechanical torques will reduce motion regardless of the source. However, identifying and

applying the correct torques is no simple task. A mechanical suppression system must suppress

tremor without significantly affecting any intended motion. Passive mechanical systems reduce all
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motion regardless of whether the the motion was intentional or tremor [10, 11]. Therefore, recent

research focuses on applying actuators to actively suppress tremor [14–21].

Figure 1.4 presents a block diagram of the general strategy for active tremor suppression. The

suppression system acts in parallel to the human motor system control loop, providing a torque

about a given joint to oppose the muscular torque that produces tremor. The CNS selects desired

motions and plans muscular signals to produce those motions while considering sensory infor-

mation. Thus, this voluntary component of the motion is some combination of feedforward and

feedback control. When pathological tremor is present, the associated nervous system disorder

also sends signals to the muscles that produce the tremor motion. The source of these tremor-

causing signals depends on the disorder and remains an open research question in the medical

community. Regardless of the pathophysiology, the tremor signals lead to muscular activation that

produces undesired motion. The mechanical tremor suppression device must use a measurement to

determine and apply the appropriate torque to reduce tremor with minimal influence on the desired

motion. Thus, the controller must filter the signal to distinguish between tremor and voluntary

components. Fortunately, tremor frequency content (greater than 3 Hz) differs from typical vol-

untary motion frequency content (0–2 Hz) [18, 22]. Filtering techniques may separate tremor and

voluntary signals from the measurement. However, the close proximity of the frequency ranges

prohibits the use of linear filters for real-time applications. The need of an accurate, real-time, and

zero-phase tremor estimate is one significant challenge in active tremor suppression.
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Figure 1.4: Active mechanical tremor suppression methods (blue) apply control in parallel to the
human motor control loop (yellow).

Most previous mechanical tremor suppression implementations use DC motors to actuate

against the tremor [16–21, 23]. Other implementations use magnetorheological (MR) dampers,

pneumatic cylinders, or permanent magnet linear motors [11–15, 24]. All of these exoskeleton

systems are rigid and bulky, limiting their use to laboratory settings. This fact highlights another

major challenge for active tremor suppression: the lack of human body compatibility of traditional

engineering actuators prevents clinical applications.

1.2 Artificial Muscles for Tremor Suppression

This dissertation proposes dielectric elastomers as the actuators for mechanical tremor suppression.

Researcher often label dielectric elastomers as artificial muscles due to their many similarities with

human muscles [25, 26]. Compared to human muscle, dielectric elastomers have similar stiffness

and actuation speed while having greater maximum strain, pressure, and energy density [25]. Di-

7



electric elastomers even have the potential for self-sensing, drawing similarities to proprioceptive

feedback in human muscle [26–29]. Furthermore, dielectric elastomer actuators are electrically

activated and can be designed to operate as contractile actuators like human muscle.

The similarities of dielectric elastomers and natural muscle enable the design of a tremor sup-

pression system that mimics human mechanics. The artificial muscles serve as external analogs to

the internal muscles that produce motion about a joint. Figure 1.5 demonstrates a schematic exam-

ple of such a system to reduce tremor in elbow flexion-extension. The biceps and triceps form a

well known agonist-antagonist pair: activation of the biceps flexes the forearm about the joint while

activation of the triceps extends the forearm about the joint. To produce motion, the active muscle

group must overcome the passive impedance of the antagonist muscle group. Since dielectric elas-

tomers have similar passive properties as natural muscle, they may also use an agonist-antagonist

approach. This approach enables bi-directional actuation with contractile dielectric elastomer ac-

tuators without requiring an offset voltage.

Figure 1.5: Dielectric elastomer actuators may act as agonist-antagonist pairs similar to human
muscle: external artificial muscles counteract the tremor-producing torques from the underlying
natural muscles.
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Dielectric elastomers have relatively low actuation levels compared to typical engineering actu-

ators. This drawback may limit applicability towards tremor suppression applications. Therefore,

this dissertation develops a unique control approach tailored to dielectric elastomer-based tremor

suppression. The approach reduces actuation requirements by shifting the burden of the passive

actuator dynamics to the human motor system, which can overcome the increased passive influence

since it is predictable and on the same order as (or potentially lower than) the passive impedance

of muscle. In other words, the approach overcomes low actuation capabilities by exploiting the

low mechanical impedance of dielectric elastomers. Thus, the system improves the potential for

low-profile tremor suppression implementations at the cost of increased user effort.

1.3 CNS Response to Tremor Suppression

The physiological response to tremor suppression depends on how the CNS produces tremor. In

other words, will pathological CNS activity decrease, increase, or remain the same in the presence

of mechanical tremor suppression? This research considers two general hypotheses for the CNS

response to tremor suppression:

1. State-independent neural oscillations produce tremor: This hypothesis suggests CNS dys-

function produces neural signals that do not change due to external forces. Thus, tremor

torque remains the same irrespective of tremor suppression.
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2. Motor control dysfunction produces tremor: This hypothesis implies tremor depends on the

joint state. Thus, tremor suppression alters neural signals that may change tremor character-

istics.

If tremor is state-independent, muscles activate the same amount regardless of external forces.

A tremor suppression device must continuously oppose the tremor torque, but it is possible to pro-

duce an equal and opposite torque to reduce tremor. In this case, the muscles still have tremorous

actuation, but the joints do not include tremorous displacements. Most tremor suppression anal-

yses in this dissertation assume this form for tremor since it is a relatively conservative approach

and enables incorporation of real tremor data in simulations.

State-dependent tremor could increase, decrease, or have negligible effect on tremor torque

amplitude. If tremor is a CNS-targeted movement, muscular activation may increase to overcome

mechanical tremor suppression. However, this possibility is unlikely since previous implementa-

tions demonstrate effective mechanical tremor suppression [16]. Feedback instability is another

potential state-dependent mechanism for tremor generation. This dissertation explores increased

CNS delay as the instability that produces tremor and evaluates its effect on tremor suppression.

1.3.1 Parkinsonian Tremor as an Increased CNS Delay

Apart from tremor, Parkinson’s disease is associated with general movement inhibition, including

slowness of movement and increased reaction times [30]. Due to this fact, previous researchers

suggest tremor arises from increased feedback delays [31–33]. This dissertation investigates clini-
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cal research to develop a delay-based model for parkinsonian tremor: the model includes increased

CNS delay due to excessive inhibition projected from the basal ganglia to the thalamus. Figure 1.6

illustrates the block diagram for this model.

The tremor model adds the Parkinson’s disease pathology to a model for healthy motor con-

trol. In particular, optimal control theory produces an excellent approximation of human motion,

producing task-specific and minimum-energy movements [34–39]. Even healthy motor control in-

cludes feedback delays since neural signals must travel between limbs and the CNS. Forward mod-

els in the CNS compensate for feedback delays to produce stable feedback control. Present-state

predictions produced from delayed measurements compensate for healthy feedback delays [40,41].

Increased CNS delay in Parkinson’s disease represents an uncompensated delay in the feedback

loop. This unaccounted delay produces instability leading to tremor. This model enables investi-

gation of tremor suppression on state-dependent tremor and also provides new interpretations of

physiologically based tremor models and treatment effectiveness.

Figure 1.6: The delay-based Parkinson’s disease model proposes that increased CNS delays pro-
duce tremor.
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1.4 Dissertation Structure

This dissertation works towards improved treatment and fundamental understanding of pathologi-

cal tremor by approaching tremor from a mechanical systems perspective. This work includes two

general topics: dielectric elastomer-based tremor suppression (Chapters 3 and 4) and parkinsonian

tremor model development (Chapter 5).

Chapter 2 provides relevant background information related to pathological tremor, mechanical

tremor suppression, dielectric elastomers, and human motor control modeling. It includes discus-

sion of tremor treatments and prevailing theories of tremor pathophysiology. Mechanical tremor

suppression background details typical control strategies and actuator implementations. Dielec-

tric elastomer background characterizes actuator capabilities and limitations. Finally, the chapter

discusses control systems approaches to modeling the human motor system to facilitate the devel-

opment of a parkinsonian tremor model.

Chapter 3 develops a low-order model to simulate dielectric-elastomer based tremor suppres-

sion. It develops controllers for two different control approaches and demonstrates tremor sup-

pression performance for each approach.

Chapter 4 evaluates the current outlook for dielectric elastomer-based tremor suppression. It

provides experimental validation of tremor suppression simulations with a scaled benchtop sys-

tem. It then quantifies the required actuator characteristics to enable clinical implementations of

dielectric elastomer-based tremor suppression.
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Chapter 5 develops a low-order model for parkinsonian tremor. It models healthy motor control

using an optimal control approach and models Parkinson’s disease pathology as an increased CNS

delay. The model produces simulated tremor with similar characteristics as recorded tremor. In

addition, the chapter discusses the implications of delay-based tremor on treatment effectiveness,

existing tremor models, and mechanical tremor suppression.

Finally, Chapter 6 discusses the conclusions of this research, highlighting the novelty of the

proposed tremor suppression system and its potential long-term impact. It also discusses the

significance of the proposed parkinsonian tremor model, with improved disease pathophysiology

knowledge providing pathways toward improved treatments and cure development. The chapter

motivates future research directions to work towards realizing the high-impact potential of the

early-stage research in this dissertation.
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CHAPTER 2
BACKGROUND

This chapter describes relevant background and previous research related to pathological

tremor, mechanical tremor suppression, dielectric elastomer actuators, and human motor control.

Section 2.1 provides fundamental background and typical treatments for pathological tremor, along

with theories on the pathophysiology of the two most common forms of tremor: essential tremor

and Parkinson’s disease. Section 2.2 describes mechanical tremor suppression considerations and

previous implementations. Section 2.3 describes relevant background for dielectric elastomer ac-

tuators and motivates their application to tremor suppression. Finally, Section 2.4 presents funda-

mentals and low-order modeling of human motor control.

2.1 Pathological Tremor

Tremor is an involuntary, approximately rhythmic movement of body parts. Physiological tremor

occurs in all healthy people due to random firing of motoneurons [9]. This tremor type is only

relevant for very precise tasks, such as high-precision surgery [42, 43]. In contrast, pathological

tremor manifests from a CNS disorder and can affect day-to-day living significantly [2–4,44]. This
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section provides an overview of pathological tremor and typical treatments for reducing tremor to

improve quality of life.

2.1.1 Subsets of Pathological Tremor

Classifications of pathological tremor depend on the associated disease and the qualitative prop-

erties it exhibits. Tremor types based on etiology include essential tremor, parkinsonian tremor,

cerebellar tremor, and Holmes’ tremor [44]. Each of these classes has defining characteristics in

terms of frequency content and the qualitative tremor subtypes they typically exhibit. Still, it is

often difficult to distinguish between different tremor types; diagnosis methods are an active area

of research [33, 45, 46]. The qualitative subtypes of tremor include rest tremor and action tremor;

action tremor is further categorized into postural tremor and kinetic tremor. [44]. Rest tremor oc-

curs when the muscles are not attempting to move or maintain any posture and is most common in

Parkinson’s disease. Postural tremor occurs when the muscles are attempting to maintain a position

against gravity. Kinetic tremor occurs during a directed movement. One common type of kinetic

tremor is intention tremor, where the tremor amplitude increases as the limb approaches the target.

Essential tremor and Parkinson’s disease are the most common tremor-producing disorders.

Therefore, previous research focuses on these tremor types for analysis of tremor [2, 9]. Rest

tremor is a defining characteristic for Parkinson’s disease, but postural and kinetic tremor may also

be present [44, 47]. Postural and kinetic tremors are prominent for essential tremor, but again, rest

tremors may occur [44, 47]. The reported frequency content of these tremors varies slightly, but
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parkinsonian tremor typically ranges from approximately 3–6 Hz, while essential tremor ranges

from 4–12 Hz [47].

2.1.2 Pathophysiology of Tremor

The primary pathology in Parkinson’s disease is loss of dopaminergic cells in the basal gan-

glia [48]. How basal ganglia dopamine depletion translates to bradykinesia, rigidity, and tremor

remains unclear. In addition, the varying effectiveness of dopaminergic medications implies the

presence of other pathological mechanisms. Indeed, serotonergic pathology may affect tremor type

and treatment effectiveness: recent research suggests dopaminergic and serotonergic pathology

cause re-emergent and pure postural tremors, respectively [49]. Several theories exist for tremor

generation, typically centered on propagation of oscillatory activity through neural circuits [50].

Pacemaker models hypothesize that abnormal oscillatory activity in the thalamus or basal ganglia

drives abnormal activity in the remaining neural circuitry. Since hyperpolarization of thalamic cells

produces oscillation at 6 Hz (approximately tremor frequency), the thalamic pacemaker hypothesis

suggests thalamic nuclei hyperpolarization drives tremor. However, this model does not explain

why basal ganglia deep brain stimulation (DBS) reduces tremor (see following subsection for

more information on DBS). In contrast, the basal ganglia pacemaker hypothesis suggests patho-

logical oscillations originate in the basal ganglia. This hypothesis links basal ganglia dopamine

depletion to tremor generation, but does not explain tremor suppression for thalamic DBS. The

dimmer-switch hypothesis combines supporting evidence for each of these models: the basal gan-
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glia initiates tremor activity while the cerebello-thalamo-cortical (CTC) circuit drives tremor [51].

The finger-switch-dimmer model extends this theory by further breaking down the roles of CTC

circuit elements: the thalamus creates tremor oscillations while the cerebellum treats these tremor

oscillations as a voluntary movement [52]. Figure 2.1 illustrates these theories for parkinsonian

tremor pathophysiology.

Figure 2.1: Theories for parkinsonian tremor pathophysiology attempt to explain the neural mech-
anisms that cause tremor.

Essential tremor exhibits diverse characteristics due to the potential for misdiagnosis and ex-

istence of different subtypes [50]. Theories for essential tremor pathophysiology include the neu-

rodegeneration hypothesis, the GABA hypothesis, and the oscillating network hypothesis [50].

17



The neurodegeneration hypothesis argues essential tremor is a neurodegenerative disease and is

supported by postmortem evidence of cerebellar and brain stem disease. The GABA hypothesis

suggests dysfunction of the neurotransmitter GABA causes essential tremor, with evidence again

pointing towards reduced cerebellar GABA activity. Finally, the oscillating network hypothesis

suggests oscillators in the CTC circuit entrain each other to produce tremor.

2.1.3 Tremor Treatments

Typical treatments for reducing tremor vary based on the tremor type, but include two main cat-

egories: medications and surgery. The most common medications for essential tremor are primi-

done and propranolol, both of which provide an average tremor reduction of about 50% [8]. The

effectiveness of these drugs varies from person-to-person, with about half of patients having no

long-term benefit [8]. Furthermore, these drugs have side effects that can cause patients to stop

taking their doses and drug long-term effects are unknown [8]. Levodopa and dopamine agonists

are typical pharmaceutical treatments for Parkinson’s disease and can cause side effects that in-

clude motor complications, impulsive and compulsive behaviors, nausea, and hallucinations [53].

Altogether, pharmaceutical treatments are moderately successful in reducing tremor, but side ef-

fects and irregular efficacy motivate the need for alternative options.

Surgical intervention is a more extreme option for tremor treatment, but can offer substantial

benefits. The two common surgical interventions for tremor are thalamotomy (lesion to thalamus)

and deep brain stimulation, with DBS being the preferred option since it has fewer complica-
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tions [8]. In DBS surgery, the surgeon implants an electrode into the brain that is connected with a

wire to a stimulator implanted under the skin in the chest. The electrode is positioned to stimulate a

targeted area of the brain, typically the ventrolateral thalamus, subthalamic nucleus, or the internal

globus pallidus [54,55]. Figure 2.2 illustrates the positioning of the hardware and the surgical pro-

cedure for DBS. The stimulation produces excellent reduction of tremor, typically providing about

90% reduction [8]. However, DBS also has associated side effects that can cause patients to turn off

their stimulators [8]. More importantly, DBS includes the risk of serious surgical complications,

with rates of perioperative death as high as 4% [8, 56]. Other negative factors for DBS include

significant risk of hardware complications and hardware-related infection (about 25% of patients),

the need for battery replacement (which is also associated with an increased risk of infection), and

a loss of benefit over time and the need to reprogram the device [8, 57, 58].

(a) DBS diagram (b) DBS surgery

Figure 2.2: In DBS surgery, the surgeon implants an electrode in the brain that emits a tunable
pulse to a targeted area (from [59]).
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Figure 2.3: In FES, externally-placed electrodes stimulate the muscles to augment the dynamics in
a way that reduces tremor (from [60]).

Recent research seeks to develop alternative tremor treatments due to the inherent drawbacks

of pharmaceutical and surgical treatments. One alternative attempts to use the benefits of electrical

stimulation while eliminating the risks associated with surgery. This approach, termed functional

electrical stimulation (FES), applies electrical stimulation from outside the body to stimulate the

underlying muscles in a way that reduces tremor [60,61]. This stimulation either activates muscles

out-of-phase with tremor or activates antagonist pairs to produce co-contraction that augments the

mechanics of the limb [60, 61]. Figure 2.3 illustrates an implementation of FES, which achieved

tremor reduction up to 50% [60]. The only side effect of FES is the potential for muscle fatigue

since the stimulation activates the muscles. However, stimulation below the motor threshold also

shows promise for tremor reduction [62, 63].

Finally, mechanical tremor suppression is an active field of research due to the potential for ex-

cellent tremor reduction with limited risks and side effects. A significant advantage of mechanical

tremor suppression is that the mechanisms involved are well understood and quantifiable. Since the
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disorders that cause tremor are not well understood, the development of drugs and the implemen-

tation of electrical stimulation involves guesswork and intuition. Furthermore, these treatments

operate on the extremely complex human nervous system. The theory of FES is slightly more

understood since it involves augmenting the mechanics of muscles, but the electrical interaction

with the muscles is still difficult to quantify. Mechanical tremor suppression has the potential to

eliminate tremor motion regardless of the source. Indeed, the potential effectiveness of mechanical

tremor suppression is only matched by its difficulty in developing a feasible implementation. Such

a device must mechanically suppress tremor without affecting the mechanics of voluntary motion,

all while being comfortable and compact. Table 2.1 presents qualitative assessments of each of the

presented treatment options.

Table 2.1: Comparison of different tremor treatments

2.2 Mechanical Suppression of Tremor

Mechanical tremor suppression methods vary in approach and implementation. The approach

(ambulatory, non-ambulatory, active, passive) has a significant impact on the potential benefits and
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implementation difficulty. Even the same general approach (say, an ambulatory, active system) can

have different strategies (impedance control, voluntary-motion tracking, tremor torque cancella-

tion) that affect the overall performance. The implementation refers to the execution of the tremor

reduction approach. The method of implementation has a significant influence on the effectiveness

of the approach and the feasibility of reaching clinical applications. This section describes general

approaches for mechanical tremor suppression, discusses the motivation for targeting ambulatory,

active tremor suppression, and explains why current implementations are not suitable for clinical

use.

2.2.1 Subsets of Mechanical Treatments

Mechanical tremor treatments may be organized into several categories. Figure 2.4 illustrates

the hierarchy of these classes. First, mechanical tremor suppression is either ambulatory or non-

ambulatory [18]. Ambulatory devices are only mechanically connected to the user and produce

moments about a joint to reduce tremor. In contrast, non-ambulatory devices are mounted to

another object, such as a wheelchair. Examples of non-ambulatory tremor suppression devices

include the wheelchair joystick and the Liftware spoon [64, 65]. These non-ambulatory devices

are easier to implement and have already had commercial success. However, non-ambulatory

devices are inherently limited to task-specific applications. Ambulatory devices have the potential

to suppress tremor regardless of the task, marking a significant advantage over non-ambulatory

devices.

22



Figure 2.4: Mechanical tremor suppression contains several subsets, with active ambulatory sup-
pression having the most potential benefits.

Similar to other vibration reduction designs, tremor suppression is also divided into active

and passive subsets. Passive designs are non-powered and cannot supply energy to the system.

Therefore, there is no risk of instability or the device causing harm to the user. However, passive

systems suppress both tremor and voluntary motion. An example of a passive tremor suppression

device is the viscous beam orthosis [10]. In contrast, active tremor suppression uses powered

actuators to apply forces that oppose tremor. Active devices do add energy to the system; thus,

they should be designed carefully to minimize risk of injury. The primary advantage of using

active control is the ability to distinguish between tremor and voluntary motion to minimize the
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effect on the desired motion. Overall, ambulatory, active devices offer the most potential benefits

for treatment of pathological tremor. Thus, active tremor suppression has received a lot of attention

in the literature and is also the focus of this research [14–21].

2.2.2 Control Strategies

Previous designs for active tremor suppression include three general control strategies: impedance

control, tremor torque cancellation, and voluntary motion tracking. Figure 2.5 presents the block

diagrams for these three methods. In impedance control, the controller augments the effective

inertia, damping, or stiffness of the system [16]. First, the controller filters the measurement to

obtain an estimate of the tremor signal to add impedance only in the tremor frequency range. In

the torque cancellation approach, the controller uses the measurement to generate an estimate of

the tremor torque [14, 15]. Then the controller uses the dynamics of the actuator to determine the

actuator input that produces the tremor torque. This method is often implemented with a notch

filter centered about the dominant tremor frequency [15, 16, 18]. Finally, the voluntary motion

tracking method employs a filter to estimate the desired motion of the joint [19,20]. The controller

then attempts to track this voluntary motion estimate while rejecting noise (in this case, the tremor).

Thus, this method strongly depends on obtaining a good estimate of the voluntary motion; a poor

estimate will lead to tracking an undesired trajectory.

24



Figure 2.5: Control strategies for active tremor suppression include impedance control, tremor
torque cancellation, and voluntary motion tracking.

Regardless of the control strategy, there is a need to filter the measurement to obtain an estimate

of the tremor signal (or, conversely, the voluntary motion signal). This filter is what allows the sys-

tem to reduce tremor while avoiding influence on voluntary motion. There are two approaches to

estimating tremor: estimate the voluntary motion and subtract it from the measurement or directly

estimate tremor. The close proximity of voluntary and tremor frequency ranges prohibits the use

of traditional linear filters for real-time applications. Previous works use gh-filters and Kalman fil-

ters to estimate the voluntary motion [16, 18–20]. These filters produce a small phase lag that can

reduce tremor suppression performance, so there is a trade-off between tracking error and phase

lag.
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Previous works use filters based on Fourier Linear Combiner (FLC) methods for direct estima-

tion of the tremor signal. These filters have zero phase and approximate the signal as a summation

of sinusoids. The two general algorithms used for real-time tremor identification are the Weighted

Fourier Linear Combiner (WFLC) and the Band-Limited Multiple Fourier Linear Combiner (BM-

FLC). WFLC approximates the signal as sinusoid and a finite number of its harmonics [42, 43].

Recursive least squares updates the fundamental frequency and amplitudes to track the signal.

However, WFLC requires pre-filtering to only include the tremor signal, defeating the purpose of

a using a zero-phase filter. However, this algorithm successfully tracks the tremor frequency and

amplitude after pre-filtering, so it may estimate this information (with a slight delay) for use in

other parts of the controller (like an adaptive notch filter) [15].

In contrast to WFLC, the BMFLC algorithm does not allow the frequency to adapt. This

property prevents the estimate from converging to the low-frequency voluntary signal. BMFLC

approximates the signal as a summation of many sinusoids with equally spaced frequencies be-

tween a lower- and upper-frequency limit [66]. The recursive least squares only updates the am-

plitudes of the sinusoids. This filter works in real-time without the need for pre-filtering. Previous

works use BMFLC for tremor estimation for suppression of physiological tremor in surgical in-

struments [66, 67]. However, the frequency range of physiological tremor (8–12 Hz) is much

higher than pathological tremor (as low as 3 Hz). For pathological tremor estimation, there may

be spillover of the voluntary component via the adaptive amplitudes.
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2.2.3 Actuator Selection

Active tremor suppression requires actuators to apply torques about joints to oppose tremor. The

actuator must apply forces large enough to suppress tremor, operate in the tremor frequency range,

and attach to the human body. Other desirable characteristics include being small, lightweight, and

comfortable for the user; however, these characteristics are lacking in previous designs. Currently,

the use of bulky and rigid actuators limits the application of active tremor suppression to laboratory

settings. Most researchers use DC motors for tremor suppression since they are a well-established

technology that provides easier, more reliable implementation [16–21, 68]. In fact, DC motors are

the only actuators that have been tested on actual patients (other devices have performed benchtop

tests) [16,17,68]. Other researchers have proposed MR dampers, pneumatic cylinders, and perma-

nent magnet linear motors for tremor suppression, which still produce bulky systems [11–15, 24].

Figure 2.6 provides examples of tremor suppression exoskeletons that use DC motors, along with

one design for MR dampers that also forms the basis for implementations with pneumatic cylinders

and permanent magnet linear motors. Altogether, the actuators in mechanical tremor suppression

devices need to become smaller and more compatible with the human body before mechanical

tremor suppression becomes a viable clinical option for treatment. Recently, Zhou et al. developed

a DC motor-based glove that achieves a relatively small form factor by using cable-actuated power

transmission [23]. This approach may improve clinical implementation potential. This disserta-

tion explores tremor suppression with soft actuators as another potential pathway towards clinical

implementations.
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Figure 2.6: Previous ambulatory, active tremor suppression implementations produce bulky ex-
oskeletons that prevent clinical applications: (a) from [16], (b) from [68], (c) from [13], (d)
from [69], and (e) from [23].

2.3 Dielectric Elastomers

Dielectric elastomers belong to a class of soft actuators known as electroactive polymers (EAPs),

which contains two sub-classes: electronic and ionic. Electronic EAPs exhibit electrical actuation

via electrostrictive, electrostatic, piezoelectric, or ferroelectric forcing, while ionic EAPs actuate
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via mobility or diffusion of ions [70]. Advantages of EAPs include their ability to achieve large

strains and their similar mechanical properties as biological muscle. Thus, EAPs are an attractive

option for interaction with the human body. This research targets dielectric elastomers for tremor

suppression since they best address the critical needs of the system: fast response with the ability

to produce relatively large forces.

Dielectric elastomers are a relatively new actuation technology: Pelrine, Kornbluh, and

Joseph [71] first proposed dielectric elastomers as actuators in 1998. From a material perspec-

tive, dielectric elastomers are relatively soft (typical Young’s Modulus between 0.01 MPa and 10

MPa), insulating (typical relative permittivity between 2 and 10), and nearly incompressible [25].

Applying conductive material (electrodes) to opposing surfaces of a dielectric elastomer creates

a dielectric elastomer actuator (DEA), which is essentially a deformable capacitor. The elec-

trode material must be very thin and compliant since the electrodes deform with the elastomer;

researchers typically use carbon powder or grease [25,71–74]. Applying a voltage across the elec-

trodes produces electrostatic forcing as opposite charges attract and like charges repel [71, 72].

This electrostatic forcing tends to draw the electrodes closer together; since elastomers are nearly

incompressible, the DEA also expands in-plane. Figure 2.7 illustrates this actuation process.

Figure 2.7: Electrostatic forces produce in-plane expansion and through-thickness contraction in
dielectric elastomer actuators.
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2.3.1 Characteristics of DEAs

When proposing the DEA concept, Pelrine, Kornbluh, and Joseph showed the effective stress from

the electrostatic forcing is proportional to the square of the electric field across the electrodes [71].

Since the electric field is equal to the voltage divided by DEA thickness, DEAs require very high

voltages (typically greater than 1 kV) and very low thicknesses (typically 10–100 µm) to produce

usable actuation [25]. These requirements are two of the greatest challenges in DEA applications.

Fortunately, clever actuator design enables DEAs to meet force and displacement requirements

in a variety of applications. Also, despite the need for high voltages, DEAs typically operate at

relatively low currents, enabling implementation of relatively small power electronics. The ca-

pacitive nature of DEAs means they can remain in their actuated state without constant current

flow and their electromechanical coupling can enable self-sensing transducers. Finally, DEA ma-

terial selection and control design must consider the effect of viscoelastic properties on the system

dynamics.

2.3.1.1 Topology

Dielectric elastomer actuators may exploit either the in-plane expansion or through-thickness con-

traction for actuation. Different geometries and designs produce significantly different characteris-

tics and actuator capabilities. One important consideration for any design is the need to apply high

electric fields to produce usable actuation. This requires the use of very thin elastomer films for
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reasonable voltage levels. Thin DEAs are often prestretched and secured to rigid frames to further

decrease the thickness of the actuator and improve the dielectric breakdown strength of the mate-

rial [26]. Since DEA layers are necessarily very thin, single-layer actuators must utilize in-plane

extension to achieve appreciable displacement. These types of DEAs typically require mechanical

connections to stiff frames to transmit forces. Figure 2.8 demonstrates different DEA configura-

tions that exploit planar actuation. First, Fig. 2.8(a) shows a planar DEA that exemplifies the large

strains that are achievable with dielectric elastomers [75]. The diamond actuator in Fig. 2.8(b)

pre-stretches the dielectric elastomer film in a diamond frame to improve the work output of planar

actuation [76]. Spring roll actuators, illustrated in Fig. 2.8(c), wrap a thin dielectric membrane

around a spring to produce linear extension upon actuation [77]. Including separate membrane

sections enables multiple degree-of-freedom actuation with spring roll actuators, as demonstrated

in Fig. 2.8(d) [78]. Frameless planar actuation suits low-actuation applications such as inflatable

structures (Fig. 2.8(e)) and minimum energy grippers (Fig. 2.8(f)) [79,80]. Figure 2.8(g) illustrates

a multilayer planar actuator to replicate human jaw movements [81]. Finally, Fig. 2.8(h) illustrates

a cone membrane that exploits bistability to increase actuation stroke [82].

A single DEA film cannot produce forces great enough for tremor suppression. However,

stacking many thin layers of dielectric elastomers results in a much larger actuator capable of

macroscale actuation [73]. The literature often refers to these actuators as dielectric elastomer stack

actuators (DESA), dielectric electroactive polymer stack transducers (DEAP), stacked dielectric

elastomer actuators (SDEA), and dielectric elastomer stack transducers (DEST); this disseration
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uses DESA [83–85]. Similar to biological muscle, DESAs contract upon actuation. Thus, a tremor

suppression system may employ DESAs as external analogs to human muscle.

Figure 2.8: Different configurations of dielectric elastomers produce different functions and ac-
tuation capabilities: (a) from [75], (b) from [76], (c) from [77], (d) from [78], (e) from [79], (f)
from [80], (g) from [81], and (h) from [82].

Dielectric elastomer stack actuators require tens to hundreds of very thin layers, complicating

manufacturing. Most manufacturing approaches make smaller stacks, which are then piled up to

reach the desired stack length. Manufacturing methods include folding [86, 87], spin coating [88,

89], automated thin film processing [73, 90, 91], spray deposition [92], liquid deposition [85, 93,

94], casting [95], and aerosol jet printing [96]. Figure 2.9 illustrates several DESAs from the

literature. Figure 2.9(a) presents folded DESAs that simplify manufacturing: a single, continuous

elastomer strip produces a large stack [86,87]. Of particular note are the UV-cured acrylic DESAs
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produced by spin coating in Fig. 2.9(g), (h), and (i): the manufacturing approach produces large

stacks (greater than 10 cm) with very thin layers (approximately 30 µm), enabling relatively large

actuation levels [97].

Figure 2.9: Several DESAs from the literature: (a) from [86], (b) from [93], (c) from [94], (d)
from [95], (e) from [91], (f) from [73], and (g), (h), and (i) from [97]

2.3.1.2 Viscoelasticity

Dielectric elastomers exhibit viscoelastic material properties. Creep and stress relaxation capture

the fundamental characteristics of viscoelastic material. When subject to a constant force, the ma-
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terial deforms over time rather than instantaneously—this property is known as creep. In addition,

the material experiences decreased stress over time when fixed at a constant displacement—stress

relaxation. Spring-dashpot models capture these properties. The Maxwell model (spring-dashpot

in series) captures both effects, but does not converge to equilibrium values. The Kelvin-Voigt

model (spring-dashpot in parallel) captures convergence to an equilibrium point during creep, but

also produces instantanteous stress relaxation. The standard linear solid model (spring in parallel

with Maxwell element) combines the benefits of these two models and captures both creep and

stress relaxation. Figure 2.10 illustrates the stress relaxation and creep responses for these models.

Higher-order combinations of linear mechanical elements allows a model to capture a wide range

of viscoelastic behavior [98]. In addition, researchers have explored fractional-order elements to

better capture the rate dependence of viscoelastic materials [99]. In the context of active tremor

suppression, dielectric elastomer viscoelasticity represents another challenge in control design due

to the rate and history dependence of actuator force and displacement [81].

2.3.1.3 Self-Sensing

Just as electrostatic forcing produces DEA actuation, DEA deformation changes electrical proper-

ties. In particular, deformation changes the electrode area and layer thickness, producing a change

in capacitance. As illustrated in Fig. 2.11, actuator deformation may be inferred by measuring

the voltage across an external resistance connected to the DEA [100]. Superposition of a high-

frequency signal onto the actuation voltage enables self-sensing actuators that detect deformation
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via the high-frequency signal [28]. Existing self-sensing approaches exhibit decreased accuracy

for higher speeds and controller gains, but higher-order approaches and improved electronics may

enable higher-frequency applications [28, 82].

Figure 2.10: Spring-dashpot models capture fundamental viscoelastic characteristics like creep
and stress relaxation.

Figure 2.11: Measuring the voltage across an external resistor captures the change in DEA capac-
itance reactance, which relates to the DEA displacement (from [100]).
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2.3.2 Limitations

The implementation of compact power electronics is one challenge for dielectric elastomer-based

tremor suppression. Dielectric elastomers require high voltages at relatively low currents. The

relatively low power and high efficiency of DEAs means compact implementations are possible.

DC-DC converters enable high-voltage, low-current implementations in relatively compact form.

Project Peta-pico-Voltron is an open-source power supply using DC-DC converters designed for

DEA applications [101]. Recent research towards hydraulically amplified self-healing electrostatic

(HASEL) actuators extended the concepts in Project Peta-pico-Voltron to produce a power supply

that produces an 8 kV output at 0.3 mA while fitting in the palm of a hand with a mass of only

100 g [102]. Design optimization may further decrease the size of this prototype. In addition,

flyback converters enable bidirectional energy flow, improving energy efficiency [103]. Overall,

researchers continue to work towards compact power electronics for high-voltage, low-current

applications. This disseration focuses on the control and mechanical performance of dielectric

elastomers for tremor suppression; physical implementations likely require parallel advances in

power electronics to enable compact and lightweight systems.

Electrical safety is another challenge when dielectric elastomers interact with the human body.

As discussed above, dielectric elastomers operate at very high voltages, but also at relatively low

currents. The high voltage requirement initially seems troublesome for human body applications;

however, careful design can ensure patient safety. Pourazadi et al. [104] quantified electrical safety

for dielectric elastomers in close interaction with the human body based on guidelines from the
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Underwriters Laboratories (UL) and the International Electrotechnical Commission (IEC). These

guidelines specify the maximum current considered safe given the discharge duration. Since 20

mA is considered safe for any duration, human body DEA applications should limit the operating

current to 20 mA. Higher currents may occur during discharge of DEA capacitance, but these

higher currents may be acceptable due to the very small time period of discharge. This discharge

duration depends on the capacitance, while the discharge current depends on the voltage. Thus,

it is possible to define the maximum voltage in terms of the DEA capacitance, and vice versa;

Fig. 2.12 presents the upper voltage limit given DEA capacitance. Enforcing these voltage and

current limits nominally ensures electrical safety for the patient; however, real implementations

require rigorous investigation of electrical safety before clinical use.
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Figure 2.12: The maximum DESA voltage considered safe depends on the DESA capacitance.
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2.4 Human Motor Control

Humans complete complex movements with seemingly little effort: catching a ball, playing an

instrument, and timing a home run swing in Super Smash Brothers all appear relatively straight-

forward for the human motor system. However, robotics control challenges highlight the brilliance

of human motor control. Humans can readily adapt to new environments and changes in task goals

and constraints while demonstrating remarkable robustness to unexpected obstacles. In contrast,

control algorithms for robots often focus on one predetermined task. How do humans produce

robust movements that robots are, as of yet, incapable of achieving? Physically, neural struc-

tures plan and execute human movement. However, similar to robotic control systems, the human

motor system includes sensory feedback, evidence of internal models of task dynamics, and error-

based motor action. Regardless of the physical computation process, human motor control must

include some fundamental elements of a control system: measurement and state estimation to plan

movement and/or provide feedback along with feedback and/or feedforward control to execute the

desired motion. Thus, modeling human motor control with a control system approach provides

insight into how humans learn and execute tasks along with the roles of physiological structures.

As this dissertation explores in Chapter 5, computational motor control models may also provide

insight into disease pathophysiology.
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2.4.1 Internal Models

The human motor system requires internal models of body and task dynamics to successfully

complete motor tasks. Inverse models enable computation of motor commands to produce desired

limb trajectories in an open-loop, or feedforward, approach. Forward models predict the sensory

consequences of motor actions, enabling feedback control via state estimates even with sensory

delay. Figure 2.13 illustrates a block diagram of a combination of feedfoward and feedback control

to represent human motor control. Early theories suggested movements include pre-programmed

ballistic motion followed by terminal feedback to correct endpoint errors, but growing evidence

supports the existence of continuous feedback accomplished via forward model predictions [105].

Kurtzer, Pruszynski, and Scott [106] showed long-latency reflexes (LLR) include internal models

while short-latency reflexes (SLR) do not. For elbow motions, shoulder muscle SLR activated

based on muscle stretch while shoulder muscle LLR activated even without shoulder stretch to

compensate for interaction torques. This activation depended on limb geometry, implying the use

of internal models that enable task-specific and multi-joint feedback. Crevecoeur and Scott [40]

used known and unknown arm perturbations to show the LLR internal model includes a model of

the expected perturbation. The LLR activated based on the expected perturbation profile, indicating

a rapid update in the estimated current state based on delayed sensory feedback with forward

model prediction. Finally, Maeda et al. [107] evaluated elbow movements with the shoulder in

unlocked and locked positions to evaluate whether feedforward and feedback share an internal

model. Feedforward control learned to decrease shoulder actuation when the shoulder was locked.
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The addition of mechanical perturbations produced feedback that also showed decreased shoulder

actuation in the locked position. Thus, feedback uses model information learned from feedforward

control.

Internal models are adaptive and task-dependent. Motor learning enables task completion in

new and changing environments by adapting internal models. Shadmehr and Mussa-Ivaldi [108]

applied different force fields to reaching movements using a robotic manipulator. While force

fields initially produced distorted movements, participants adapted to successfully complete the

task. Participants also showed aftereffects of the learned dynamics when the force field was un-

expectedly removed. Thus, motor learning updated the internal model, which takes time to adapt

back to the no-field case. Immediately shifting force fields after learning showed that motor learn-

ing occurs on multiple timescales [109]. Altogether, humans develop internal models that adapt

to the task and environment to enable feedback and feedforward control processes that complete

desired tasks.

Figure 2.13: Internal models enable feedback and feedforward control in the human motor system.
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2.4.2 Optimal Control

Optimal control theory captures many characteristics of human motor control [34,36,38,110,111].

Figure 2.14 illustrates the block diagram for optimal control as a representation of human motor

control. An optimal controller implements estimator and controller gains based on a model of task

dynamics—the shared internal model discussed above. An optimal controller effectively includes

feedback and feedforward control since the state estimate depends on the relative confidence in

the measurement and the model. Forward predictions enable feedback control despite large sen-

sory delays [41]. The task-dependent cost function captures task-dependent motor behavior. For

example, Nashed, Crevecoeur, and Scott [112] demonstrated the minimum intervention princi-

ple of optimal control on forward reaching movements. When the goal was to reach a forward

position that spanned the width of the table, participants did not correct for horizontal perturba-

tions because the horizontal direction was not relevant to the task goal. An optimal controller

also captures the smooth movements that are characteristic of human motor control. The human

motor system includes multiplicative noise that plays a critical role in how humans perform opti-

mal movements; stochastic optimal control considers system noise in controller optimization [34].

This multiplicative noise explains the speed vs. accuracy tradeoff in human motor control. As

illustrated in Fig. 2.15, an optimal controller with multiplicative noise considerations produces a

smooth reaching motion with a bell-shaped velocity profile. Running many reaching simulations

with varying movement durations demonstrates higher accuracy for slower movements: Fig. 2.16

illustrates higher endpoint variation for faster reaching durations.
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Figure 2.14: Optimal control theory captures human movement characteristics, while forward
prediction enables compensation of feedback delays.
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Figure 2.15: Optimal control of reaching movements produces smooth trajectories consistent with
human motion.
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Figure 2.16: Inclusion of multiplicative noise produces a tradeoff between movement speed and
endpoint variation.

2.4.3 Roles of CNS Regions

Movement studies involving patients with impaired CNS regions provide insight into the roles

of different CNS regions in motor function. Three critical components of human motor control

are the cerebellum, basal ganglia, and primary motor cortex. Patients with cerebellum dysfunc-

tion lack the ability to predict the sensory consequences of motor actions. Nowak, Timmann, and

Hermsdörfer [113] demonstrated this fact through weight-catching tasks: participants used a basket

to catch a weight dropped by either the participant or the practitioner. When personally dropping

the weight, healthy participants increase grip force after releasing. These participants predict the

sensory consequence (increased basket weight) from motor actions (dropping the weight). How-
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ever, a patient with cerebellar agenesis did not adjust grip force upon releasing the weight, instead

waiting until ∼100 ms after weight contact with the basket. Thus, the patient relies on delayed

feedback rather than sensory prediction. Miall et al. [114] provide further support that the cerebel-

lum includes internal models. Applying transcranial magnetic stimulation (TMS) to the cerebellum

during initiation of reaching produced movements consistent with movements being planned∼140

ms out-of-date. These studies, along with many others, suggest the cerebellum contains internal

models that predict the sensory consequences of motor actions [115–117].

Basal ganglia dysfunction decreases motor vigor [115]. Mazzoni, Hristova, and Krakauer [118]

compared healthy participants and Parkinson’s disease patients when reaching at a targeted speed.

Parkinson’s disease patients required more trials to reach the targeted speed, showing decreased

willingness to perform faster movements. Another study showed that inactivation of basal gan-

glia output in monkeys produces lower movement velocities and undershooting of target reach-

ing [119]. Overall, clinical studies suggest the basal ganglia defines the cost and rewards for a

task, effectively scaling movement speed based on the effort cost and the reward for task comple-

tion.

The primary motor cortex (M1) activates muscles, with different M1 regions corresponding

to actuation of different muscle groups. However, M1 also performs intelligent processing to

determine these muscular activation signals [120]. Pruszynski et al. [121] demonstrated the role of

M1 in multi-joint feedback control. Mechanical elbow perturbation along with TMS stimulation of

M1 shoulder-activating neurons produced supra-linear activation of shoulder muscles, indicating

M1 includes fast feedback that considers interaction torques.
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Finally, the thalamus relays signals among these regions [122]. The cerebellum projects to the

motor cortex via the CTC circuit [123]. Based on the described optimal control model, the estima-

tor represents the role of the cerebellum in predicting the sensory consequences of motor actions.

The controller represents the role of the primary motor cortex in executing model-based feedback

to control muscles. Thus, the CTC circuit contains the primary components of the feedback loop

for human motor control. The planning stage of the optimal control model captures the role of the

basal ganglia in determining the costs and rewards for a task. As discussed in Section 2.1.2, the

CTC circuit and the basal ganglia exhibit abnormal activity in Parkinson’s disease. Chapter 5 ex-

plores a potential parkinsonian tremor model by considering the roles of these structures in healthy

motor control along with observed characteristics in Parkinson’s disease.
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CHAPTER 3
DESA-BASED TREMOR SUPPRESSION

Dielectric elastomers may improve the clinical implementation potential of mechanical tremor

suppression by enabling soft, low-profile devices. This chapter presents a theoretical investiga-

tion of DESA-based tremor suppression to develop effective control strategies and motivate future

work towards physical implementations. Section 3.1 develops a low-order model that enables nu-

merical evaluation of DESA-based tremor suppression. Sections 3.2 and 3.3 present two different

control approaches with simulations using the derived model. Research in this chapter is published

in [124–126].

3.1 Model Development

This section develops a system model to investigate DESA-based tremor suppression. The DESA

model includes geometric nonlinearities from large displacements as well as linear viscoelasticity.

Low-order kinematics relate DESA states to human joint states. Finally, parameter optimization

selects the DESA parameters for simulations in the remaining chapter sections.
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3.1.1 DESA Model

Dielectric elastomers are essentially soft, deformable capacitors. Figure 2.7 illustrates the actu-

ation of a DEA: applying a voltage across the compliant electrodes induces electrostatic forcing

as opposite charges attract and like charges repel, causing through-thickness compression and in-

plane expansion [71]. The effective pressure σel is proportional to the square of the electric field

E by the permittivity of free space ε0 and the relative permittivity of the elastomer εr [71]. This

electromechanical stress may be written in terms of the voltage across the electrodes Vp and the

thickness of the actuator d:

σel = ε0εrE2 = ε0εr

(
Vp

d

)2

. (3.1)

Since the electric field is inversely proportional to the thickness, reasonable voltage levels

require very thin layers for usable actuation. Therefore, a single DEA does not have suitable

geometry or actuation ability for macroscale applications. However, stacking many individual

DEA layers results in actuation capabilities on the same scale as human motion [73, 83, 84, 124].

Figure 3.1 illustrates a DESA with n layers, undeformed layer thickness d0, undeformed length

l0 = nd0, undeformed cross-sectional area A0, density ρ0, and Young’s modulus Y . The voltage

supply connects to the electrodes in an alternating fashion such that a single voltage potential

actuates all layers in parallel.
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Figure 3.1: DESAs include many stacked DEA layers connected in parallel to scale-up actuation
capabilities and can be modeled as a lumped-mass system.

The directional stretches λx, λy, and λz typically represent the deformation of viscoelastic ma-

terials such as elastomers. The stretch is the ratio of the deformed length over the original length.

Most researchers model dielectric elastomers as incompressible, producing a relation among the

three stretches [25, 72, 127]:

λxλyλz = 1. (3.2)

Using a square or circular cross section for the actuator produces equal stretches in the x- and

y-directions for unidirectional loading in the z-direction (λx = λy). Thus, a single stretch defines

the full deformation state of the actuator. The state of interest for the model is λz since DESAs are

designed for loading in the z-direction.
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This study largely follows the lumped DESA model developed by Hoffstadt and Maas; Fig. 3.1

illustrates this lumped model [83]. The external load σload and the electrostatic pressure act on

the lumped mass of the actuator ma = ρ0A0l0/3. This form of lumped mass assumes uniform

deformation with the DESA fixed at one end and is analogous to a spring with non-negligible

mass. A generalized Kelvin-Maxwell network models the viscoelastic nature of the material. This

network includes a nonlinear spring in parallel with a viscous element and Nmw Maxwell elements.

The nonlinear spring f (λz) is the derivative of the strain energy density with respect to λz. The

viscous element ηE and the Maxwell elements model the dynamic behavior of the elastomer. A

larger network (higher Nmw) captures more complex viscoelastic behavior. Noting the deformed

cross-sectional area A = A0/λz, a force balance produces the DESA equation of motion:

maloλ̈z =
Ao

λz
(σload−σelast−σvisc−σmw−σel) (3.3)

where σelast, σvisc, and σmw are the stresses from the nonlinear spring, viscous element, and

Maxwell elements, respectively. Previous research shows good agreement with experiments for

stretches between 0.8 and 1.25 when using the neo-Hookean model for strain energy, neglecting

the viscous element (σvisc = 0), and using only one Maxwell element (Nmw = 1) [83]. For this

application, the model only needs to capture the viscoelastic effects for a small frequency range

(approximately 0–8 Hz) and the actuator can be designed to only deform in the neo-Hookean

region; these facts further justify the model assumptions. Thus, the material-dependent stresses
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become

σelast =
Y
3
(λ 2

z −
1
λz
) (3.4)

σ̇mw = k1λ̇z−
k1

η1
σmw. (3.5)

An external force Fload from the human joint produces the load stress:

σload =
Fload

A
=

λzFload

A0
. (3.6)

Substituting into Eq. (3.3), the DESA equation of motion becomes

mal0λ̈z +
YA0

3

(
λz−

1
λ 2

z

)
+

ε0εrA0

d2
0

V 2
p

λ 3
z
+

A0

λz
σmw = Fload. (3.7)

Thus, Eqs. (3.5) and (3.7) define the dynamics of a single DESA in terms of the states λz, λ̇z, and

σmw and the voltage input Vp. The dynamics also depend on the geometric parameters (l0, d0, A0)

and the material parameters (ρ0, Y , k1, η1, and εr).

This study assumes the controller directly controls the DESA voltage. In practice, a power

source applies current to the DESA to achieve the desired voltage. The DESA is effectively an RC

circuit, with the corresponding transfer function of input voltage Vs to DESA voltage Vp related to

the capacitance C and resistance R:

V̄p

V̄s
=

1
1+ sRC

(3.8)
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where an overbar represents the Laplace transform and s is the Laplace variable. The electrical

current ic is

īc = sCV̄c. (3.9)

However, the transient dynamics of the RC circuit are much faster than the mechanical dynamics

of the system. In fact, including these electrical dynamics is prohibitive for numerical integration

due to the drastically different time scales. Simulations apply the 20 mA current limit by limiting

the change in voltage between time steps.

3.1.2 DESA-Joint Interaction

The universal joint model often represents the mechanical behavior of human joints [15, 22, 124,

128]. When only considering a single rotational degree-of-freedom θ , the system is a revolute joint

with linear, second-order differential equation:

Jθ̈ +Bθ̇ +Kθ = τ (3.10)

where the inertia J, damping B, and stiffness K depend on the passive mechanical properties of the

joint. The torque about the joint τ represents all active torques operating on the joint, including

the nonlinear part of the stiffness and damping of the muscles [129, 130]. This model is valid for

moderate rotations (at least up to ±15◦) [129, 130]. This initial study only evaluates the system

in this range since many functional tasks are completed near the neutral position. In the context
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of tremor suppression, the torque about the joint includes the muscular torque τm and the moment

about the joint from any DESA loading MDEA:

Jθ̈ +Bθ̇ +Kθ = τm +MDEA. (3.11)

Figure 3.2: Two DESAs form an agonist-antagonist pair to enable bidirectional actuation. The
kinematic relationships between DESA stretches and joint angle define the interaction between the
DESAs and joint.

Defining kinematic relations between DESA stretches and joint angle reduces the system to a

single displacement state. This study applies DESAs in an agonist-antagonist approach to enable

bidirectional actuation without an offset voltage; Fig. 3.2 demonstrates this configuration. Assum-

ing the centerline of the joint remains constant, the change in length of each actuator is equal to the

change in length of the surface to which it is attached. Using the geometry in Fig. 3.2, the stretches
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for the flexion (left) and extension (right) actuators are

λ f = 1− ro

lo
θ (3.12)

λe = 1+
ro

lo
θ . (3.13)

The DESA torque about the joint is the combination of the moment produced by the flexion actu-

ator M f and the moment produced by the extension actuator Me:

MDEA = M f +Me. (3.14)

Consider the configuration in Fig. 3.2 to determine the correct signs for how M f and Me relate to

the load force on each actuator. Applying a voltage to the flexion actuator produces a compressive

force in the DESA, resulting in a positive moment:

M f = r0Fload, f . (3.15)

However, a compressive force in the extension actuator produces a negative moment:

Me =−r0Fload,e. (3.16)
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Now substitution of Eqs. (3.12) and (3.13) into Eq. (3.7) provides the load forces for each actuator

in terms of θ . Algebra reveals the total DESA torque about the joint:

MDEA =−2r2
0maθ̈ −

2r2
0A0Y
3l0

1+
2

(1+ r2
0

l2
0

θ 2)2

θ +
r0A0ε0εr

d2
0

(
V 2

f

(1− r0
l0

θ)3 −
V 2

e
(1+ r0

l0
θ)3

)

+r0A0

(
σmw, f

1− r0
l0

θ
− σmw,e

1+ r0
l0

θ

)
.

(3.17)

Now define a controller voltage V that specifies the voltage on the flexion actuator Vf and extension

actuator Ve:

if V ≥ 0: Vf =V and Ve = 0

if V < 0: Vf = 0 and Ve =V.

(3.18)

This single control voltage fully defines the voltage state of both actuators. Rewrite the voltage-

dependent terms using Eq. (3.18):

MDEA =−2r2
0maθ̈ −

2r2
0A0Y
3l0

1+
2

(1+ r2
0

l2
0

θ 2)2

θ +
r0A0ε0εr

d2
0

(
V 2sgn(V )

(1− r0
l0

θsgn(V ))3

)

+r0A0

(
σmw, f

1− r0
l0

θ
− σmw,e

1+ r0
l0

θ

)
.

(3.19)

Now the torque from the actuators only depends on the state of the joint, the controller voltage

V , and the viscoelastic stresses from the two actuators. Rewrite the equations of motion for these
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stresses in terms of the joint angle θ rather than the stretch:

σ̇mw, f =−
r0k1

l0
θ̇ − k1

η1
σmw, f (3.20)

σ̇mw,e =
r0k1

l0
θ̇ − k1

η1
σmw,e. (3.21)

Inserting Eq. (3.19) into Eq. (3.11) produces the equation of motion of the DESA-joint system.

Finally, the controllers in the ensuing sections utilize the control input variable u, which inverts the

voltage nonlinearity:

u≡V 2sgn(V ). (3.22)

Thus, u fully defines V (and therefore the voltage applied to each actuator):

V =
√
|u|sgn(u). (3.23)

Linearizing the equation of motion provides insight into the passive and active influence of the

DESAs on the joint. The linearized DESA torque is

MDEA =−2r2
0maθ̈ −

2r2
0A0Y
l0

θ +
r0A0ε0εr

d2
0

u+ r0A0(σmw, f −σmw,e). (3.24)
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Defining a new state σmw reduces the number of states for the Maxwell stresses by one:

σmw ≡ σmw,e−σmw,f (3.25)

σ̇mw =
2r0k1

l0
θ̇ − k1

η1
σmw. (3.26)

Now the linearized equation of motion for the DESA-joint system becomes

(J+2r2
0ma)θ̈ +Bθ̇ + r0A0σmw +

(
K +

2r2
0A0Y
l0

)
θ = τm +

r0A0ε0εr

d2
0

u. (3.27)

Thus, applying DESAs to the joint increases system inertia and stiffness. The control input u

provides a means to actuate against the tremor-producing muscular torque included in τm. Define

the effective inertia meff, effective stiffness keff, and electromechanical force factor α to facilitate

parameter selection analysis:

meff ≡ 2r2
0ma (3.28)

keff ≡
2r2

0A0Y
l0

(3.29)

α ≡ r0A0ε0εr

d2
0

. (3.30)

Finally, the linear equations of motion enable analytical calculation of the system frequency re-

sponse. The Laplace transform of the Maxwell stress is

σ̄mw =

2r0k1
l0

s

s+ k1
η1

θ̄ . (3.31)
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Therefore, the equation of motion in the frequency domain becomes

(J+2r2
0ma)s2 +Bs+(K +

2r2
0A0Y
l0

)+

2r2
0k1A0
l0

s

s+ k1
η1

 θ̄ = τ̄m +
r0A0ε0εr

d2
0

ū. (3.32)

This equation enables analysis of the passive effect of the material on the joint via θ̄/τ̄m and the

actuation capabilities of the DESAs via θ̄/ū. Furthermore, assumptions about the form of control

and the measured quantity can produce a closed-loop transfer function. For instance, if a filter

perfectly separates the voluntary and tremor motion, the two components may be represented by

two separate loops with control only applied to the tremor loop. Defining the controller as a

feedback of the tremor state (say, u =−κsθ̄ ) results in a transfer function from the tremor torque

to the resulting undesired motion.

3.1.3 Parameter Selection

Optimal selection of DESA material and geometry produces better energy efficiency and user com-

fort. The optimal geometry largely depends on the targeted joint. From Eq. (3.27), it is clear that

greater area A0 and smaller layer thickness d0 produce greater actuation force. Greater length l0

(or greater number of layers n) produces greater displacements for a given force. The size of the

joint limits the area and length of the actuators, while manufacturing capabilities limit the layer

thickness. The ensuing simulations fix the geometry of the actuators to target suppression of wrist

flexion-extension (A0 = 1 cm2, d0 = 50 µm, and n = 2000 layers). Unless otherwise stated, the
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simulations also use the mean male parameters for wrist flexion-extension (J = 0.00276 kg/m2,

B = 0.03 Nms/rad, and K = 0.992 Nm/rad) [130]. The remaining DESA parameters depend on

the elastomer material and include the relative permittivity εr, the Young’s modulus Y , and the

viscoelastic parameters k1 and η1. Since viscoelastic parameters are not readily available in the lit-

erature, this study assumes these parameters are proportional to the Young’s modulus by constants

p1 and p2:

k1 = p1Y (3.33)

η1 = p2Y. (3.34)

This study selects constants that correspond to the experimentally-fitted values for the viscoelastic

parameters of polyurethane (p1 = 1.5 and p2 = 0.03) [83].

Optimal selection of the Young’s modulus depends on two factors: resistance to voluntary mo-

tion and energy efficiency. As will be discussed in Section 3.3, the tremor-active control approach

requires the human motor system to overcome the DESA passive dynamics. Figure 3.3 illustrates

the open-loop (zero voltage) frequency response function for wrist flexion-extension for several

values of Y , where Y = 0 is equivalent to removing the actuators. The angular displacement output

decreases for higher values of Y . In other words, the patient must exert additional muscular torque

to overcome the DESA material stiffness in the tremor-active approach. The additional stiffness

should be kept at a minimum to avoid muscle fatigue and increase user comfort.
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Figure 3.3: The FRF of the open-loop system demonstrates the passive effect of the DESA material
on the joint: higher Y requires increased muscular effort.

The second aspect of stiffness selection is energy efficiency. This objective may be viewed

as maximizing the electromechanical coupling of the DESA-joint system. This study defines a

coupling parameter Qc that is the ratio of the maximum mechanical potential energy during steady-

state excitation at a given frequency to the maximum electrical potential energy that would exactly

cancel that motion. The frequency response in Eq. (3.32) enables calculation of this parameter.

First, the magnitude of the transfer function θ̄/τ̄m produces the maximum value of the mechanical
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potential energy Umech based on the forcing frequency ω and amplitude A:

Umech(ω) =
1
2

keff

[
A
∣∣∣∣ θ̄

τ̄m

∣∣∣∣(ω)

]2

. (3.35)

The amplitude of the control input that exactly cancels this motion is ucanc = A/α . Therefore, the

maximum electrical energy Uelec depends on the undeformed capacitance C0 = nε0εrA0/d0 and the

DESA voltage:

Uelec =
1
2

C0V 2 =
1
2

C0ucanc =
1
2

C0
A
α
. (3.36)

Thus, the frequency-dependent coupling parameter becomes

Qc(ω) =
Umech(ω)

Uelec
=

r0keffA
l0

[∣∣∣∣ θ̄

τ̄m

∣∣∣∣(ω)

]2

. (3.37)

Note that this parameter depends on the amplitude of the muscular torque A. Since the actuation

targets tremor, the average coupling over the tremor frequency range Q̃c provides a general measure

of energy efficiency for this application. Figure 3.4 illustrates the optimal stiffness for energy

efficiency for the selected geometry and wrist parameters.

Finally, maximizing the relative permittivity εr of the material provides greater actuation with

lower voltages. Thus, material selection needs to balance energy efficiency (optimal Y for given

amplitude), user comfort (minimize Y ), and actuation ability (maximize εr). This study defines the

objective function L to optimize material selection: maximizing L produces the best performance

from available materials. The weights w1, w2, and w3 enable tailoring of the relative importance
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of each performance metric:

L = ew1εr − ew2Y + ew3Q̃c . (3.38)

Figure 3.5 presents some of the elastomers used as DEAs in the literature [25]. The curve repre-

sents a level set of the objective function with w1 = 0.1, w2 = 1, and w3 = 10 (note Y is in MPa).

Fluorosilicone is the optimal available material for this set of weights, with εr = 6.9 and Y = 0.5

MPa. The following simulations use these parameters for the DEA material.

Young’s modulus (MPa)
0 0.2 0.4 0.6 0.8 1

C
o
u
p
li
n
g
p
a
ra

m
e
te
r
Q̃

c

0

0.05

0.1

0.15

τ
m

=0.1 N·m

τ
m

=0.2 N·m

τ
m

=0.3 N·m

τ
m

=0.4 N·m

optimal Y

Figure 3.4: The optimal Young’s modulus for energy efficiency maximizes the electromechanical
coupling parameter.
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the optimal available material for this design.

3.1.4 Muscular Torque

Numerical investigations in this chapter simulate Eq. (3.11) via Eqs. (3.19), (3.20), (3.21),

and (3.23) with states θ , θ̇ , σmw, f , and σmw,e. The controller determines u, leaving the muscu-

lar torque τm as the only remaining undefined quantity. This study assumes the muscular torque

includes a tremor-producing torque τT and an independent torque τV that produces the desired, or

voluntary, motion:

τm = τT + τV (3.39)
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As discussed in Section 1.3, simulations assume the tremor torque does not depend on the state;

in other words, the signal that represents the tremor torque does not change due to the voluntary

motion or tremor suppression.

This study uses recorded tremor data from an online database to implement tremor signals

with realistic characteristics, including time-varying amplitude and frequency. This tremor data is

associated with [9] and may be found online1. The database includes ten normalized acceleration

time series recordings of the dorsum of the outstretched hand while the patient attempts to keep

their hand at rest: five datasets measure Parkinson’s disease patients (referred to as ‘PD1’ through

‘PD5’) and five datasets measure essential tremor patients (‘ET1’ through ‘ET5’). One dataset

(‘ET1’) is sampled at 300 Hz while the remaining datasets are sampled at 1000 Hz; all datasets

are recorded for 30 seconds. Figures 3.6 and 3.7 illustrate the first ten seconds of the parkinsonian

tremor datasets and the essential tremor datasets, respectively. Unless otherwise stated, simulations

in this chapter set the tremor torque equal to a scaled version of a single tremor dataset: the data

is scaled to achieve a targeted tremor displacement amplitude. Simulations implement this tremor

torque in a point-by-point manner with linear interpolation between samples. Thus, τT is a fixed

function of time.
1http://jeti.uni-freiburg.de/path tremor/
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Figure 3.6: The online database from [9] includes five parkinsonian tremor datasets.
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Figure 3.7: The online database from [9] includes five essential tremor datasets.

This chapter treats the voluntary torque as independent of the tremor torque. In general, the

voluntary torque may be any signal with frequency content exclusively in the 0–2 Hz range. Some

simulations in this chapter apply purely sinusoidal voluntary torque to capture fundamental system
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characteristics. However, most simulations apply voluntary torque signals associated with func-

tional tasks to provide examples of controller performance with realistic voluntary motion. The

joint displacement time series for these functional tasks were extracted from trials in [131] using

image processing software; Fig. 3.8 illustrates the joint angles for each task, including flexion-

extension (FE) and radial-ulnar deviation (RUD). The first task, labeled “Jar Task”, involves reach-

ing, opening, and replacing a jam jar. The second task, labeled “Pour Task”, involves picking up

and pouring water from a carton into a jug before returning the carton to the table. The volun-

tary torque associated with each trial was calculated via Eq. (3.11) with zero tremor torque. Thus,

similar to τT , τV is a known, fixed function of time.

time (s)

0 1 2 3 4 5 6 7 8 9 10

θ
(d

e
g
)

-20

-10

0

10

20

time (s)

0 1 2 3 4 5 6 7 8 9 10

θ
(d

e
g
)

-30

-20

-10

0

10

20

30

RUD

FE

JAR TASK

RUD

FE

POUR TASK

Figure 3.8: Recorded wrist angles from [131] include a jar-opening task and a carton-pouring task.
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3.2 Fully Active Controller

Previous mechanical tremor suppression implementations use actuators that are rigid in their pas-

sive state. Therefore, the actuators must actuate to suppress tremor and to follow the desired volun-

tary motion. This study labels such an approach as fully active since the actuator is active for tremor

suppression and voluntary motion tracking. In contrast, a tremor-active approach only actuates to

suppress tremor; Section 3.3 discusses the motivation and application of tremor-active control.

This section designs and simulates a fully active controller for DESA-based tremor suppression

based on an adaptive notch filter approach previously implemented for pneumatic cylinder-based

tremor suppression [15].

3.2.1 Adaptive Notch Filter

The fully active controller uses an adaptive notch filter to attenuate motion near the estimated

dominant tremor frequency and its first harmonic. The adaptive notch filter takes the joint velocity

as an input and outputs the estimated torque that would exactly cancel the tremor torque. The

DESA controller attempts to track this desired actuator torque output τd through force feedback. A

dominant frequency estimator produces the estimate ωT , which adapts the center frequency of the

adaptive notch filter. Figure 3.9 illustrates the block diagram for the fully active tremor suppression

controller.
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Figure 3.9: The DESA controller tracks the estimated tremor torque from the adaptive notch filter,
which adapts to the estimated dominant tremor frequency.

The adaptive notch filter effectively acts as a tremor torque estimator since the output is the

estimated tremor torque with opposite sign. Using superscript k to refer to the kth iteration with

sample time Ts, the adaptive notch filter output is the summation of contributions from the first

(i = 1) and second (i = 2) harmonics of ωT :

τ
k
d = τ

k
d1 + τ

k
d2 (3.40)

τ
k
di =

1
4

T 2
s
+ 4iζiωT

Ts
+ i2ω2

T

[
2bi

Ts
θ̇

k− 2bi

Ts
θ̇

k−2 +(
8

T 2
s
−2i2ω

2
T )τ

k−1
d +(− 4

T 2
s
+

4iζiωT

Ts
− i2ω

2
T )τ

k−2
d

]
(3.41)
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where the parameters bi determine the level of suppression and ζi determine the width of the

attenuation band [15].

The dominant frequency estimator outputs the estimate of the dominant tremor frequency given

the measured velocity input. The dominant frequency estimator includes three parts: high-pass

filter, band-pass filter, and WFLC filter. The high-pass filter outputs the tremor component of the

measurement by attenuating frequency content in the voluntary range. The high-pass filter output

θ̇ k
hp is

θ̇
k
hp =

1
8

T 3
s

α3 +
4

T 2
s

α2 +
2
Ts

α1 +α0

[
(

8
T 3

s
β3 +

4
T 2

s
β2 +

2
Ts

β1 +β0)θ̇
k

+(−24
T 3

s
β3−

4
T 2

s
β2 +

2
Ts

β1 +3β0)θ̇
k−1 +(

24
T 3

s
β3−

4
T 2

s
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2
Ts

β1 +3β0)θ̇
k−2

+(− 8
T 3

s
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4
T 2

s
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2
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24
T 3

s
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s
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2
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+ (−24
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s
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4
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hp +(

8
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α3−

4
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s
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Ts

α1−α0)θ̇
k−3
hp

]
(3.42)

where parameters α0, α1, α2, α3, β0, β1, β2, and β3 shape the filter characteristics. Since the

controller suppresses motion near the dominant tremor frequency, the band-pass filter amplifies

the signal near ωT to compensate for tremor suppression [15]. The band-pass filter output θ̇ k
bp is

θ̇
k
bp =

1
4

T 2
s
+

4ζbpωT
Ts

+ω2
T

[
4ζbpωT

Ts
θ̇

k
hp −

4ζbpωT

Ts
θ̇

k−2
hp +(

8
T 2

s
−2ω

2
T )θ̇

k−1
bp

+ (− 4
T 2

s
+

4ζbpωT

Ts
+ω

2
T )θ̇

k−2
bp

] (3.43)
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where ζbp determines filter bandwidth. The WFLC filter estimates a signal as the summation of a

sinusoid with discrete frequency ωk
0 and M harmonics of that frequency [42, 43]. The estimate ŷk

of input yk depends on the 2M×1 weight vector wk and the 2M×1 sinusoid vector xk:

ŷk =wT
kxk (3.44)

where the iteration k is written as a subscript for vectors. The rth element of xk is

xk
r = sin

(
r

k

∑
i=1

wi
0

)
for 1≤ r ≤M

xk
r = cos

(
(r−M)

k

∑
i=1

wi
0

)
for M+1≤ r ≤ 2M.

(3.45)

The estimate error ek updates the dominant frequency estimate ωk
0 and the weight vector via least

squares algorithms:

ek = yk− ŷk (3.46)

ω
k+1
0 = ω

k
0 +2µ0ek

M

∑
r=1

r(ωk
r xk

M+r−ω
k
M+rx

k
r) (3.47)

wk+1 =wk+2µ1xkek (3.48)

where adaptation gains µ0 and µ1 affect the tracking ability and stability of the estimation. In the

dominant frequency estimator, the WFLC filter receives input from the band-pass filter (yk ≡ θ̇ k
bp)
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and outputs the estimate for the dominant tremor frequency

ω
k+1
T =

ω
k+1
0
Ts

(3.49)

that forms the adaptive element of the adaptive notch filter.

Finally, the DESA controller calculates u such that MDEA tracks τd . From the linearized version

of MDEA in Eq. (3.24), the transfer function H(s) from u to MDEA is

H(s)≡ MDEA(s)
u(s)

=
roAoεoεr

d2
o

. (3.50)

Output torque is calculated from the measured force of the flexion (Ff ) and extension (Fe) actuators:

MDEA = r0(Fe−Ff ). (3.51)

The controller G(s) produces the desired closed-loop transfer function given feedback of MDEA:

MDEA(s)
τd(s)

=
G(s)H(s)

1+G(s)H(s)
=

ω2
d

s2 +2ζdωds+ω2
d

(3.52)

where ζd and ωd define the desired controller closed-loop characteristics. Solving for G(s) pro-

duces

G(s) =
ω2

d d2
o

roAoεoεr

1
s2 +2ζdωds

. (3.53)
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Discretization produces the control input uk given the torque output error ek
τ :

ek
τ ≡ τ

k
d − r0(Fk

r −Fk
l ) (3.54)

uk =
1

4
T 2

s
+ 4ζdωd

Ts

[
ω2

d d2
o

roAoεoεr
ek

τ +
2ω2

d d2
o

roAoεoεr
ek−1

τ +
ω2

d d2
o

roAoεoεr
ek−2

τ +
8ζdωd

T 2
s

uk−1

+(− 4
T 2

s
+

4ζdωd

Ts
)uk−2

]
.

(3.55)

Altogether, the dominant frequency estimator produces the center frequency ωT of the adaptive

notch filter, the adaptive notch filter produces desired actuator output τd , and the DESA controller

produces DESA control voltage u such that the DESA torque tracks τd .

3.2.2 Fully Active Simulations

Simulations use the same adaptive notch filter, high-pass filter, and band-pass filter parameters

as [15]: b1 = 3, ζ1 = 0.01, b2 = 8, ζ2 = 0.1, α0 = 27970, α1 = 631.5, α2 = 68.69, α3 = 1,

β0 = 279.3, β1 = 65.18, β2 = 9.03, β3 = 1, and ζbp = 0.025. The WFLC gains are µ0 = 5×10−5

and µ1 = 5× 103. The parameters for the desired DESA controller closed-loop transfer function

are ωd = 600 and ζd = 1. The controller sampling rate is fs = 1000 Hz. Appendix A.1 presents

the MATLAB code for the fully active simulations.

First, Fig. 3.10 presents the simulated jar-opening task with ‘PD5’ tremor. The fully active

controller produces excellent tracking of the desired motion. However, the electrical current safety

limit causes current saturation (∆V saturation in simulations). The adaptive notch filter design does
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not consider this nonlinearity, which could lead to instability. Indeed, Fig. 3.11 illustrates the same

task with ‘PD4’ tremor: current saturation produces a drastic decrease in tracking performance.

Figures 3.12 and 3.13 present jar-opening task simulations for all parkinsonian tremor and essen-

tial tremor datasets, respectively. Current saturation causes poor performance for ‘PD4’, ‘ET1’,

and ‘ET4’ datasets. The carton-pouring task produces similar performance variation: Figures 3.14

and 3.15 demonstrate particularly poor performance for ‘PD2’, ‘PD5’, and ‘ET4’ datasets. Al-

together, electrical safety limits the application of fully active control for DESA-based tremor

suppression. As discussed further in Chapter 4, achievable DESA actuation levels also limit the

applicability of fully active control. These limitations motivate the tremor-active approach de-

scribed in the following section.
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Figure 3.10: Fully active control for the jar-opening task with ‘PD5’ tremor
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Figure 3.11: Fully active control for the jar-opening task with ‘PD4’ tremor
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Figure 3.12: Fully active control for the jar-opening task for all parkinsonian tremor datasets
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Figure 3.13: Fully active control for the jar-opening task for all essential tremor datasets
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Figure 3.14: Fully active control for the carton-pouring task for all parkinsonian tremor datasets
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Figure 3.15: Fully active control for the carton-pouring task for all essential tremor datasets
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3.3 Tremor-Active Controller

One of the major drawbacks of dielectric elastomers is their relatively low actuation levels com-

pared with traditional actuators like DC motors. These low actuation levels coupled with electrical

safety limits place fully active control at the extreme limits of potentially achievable DESA per-

formance. This research proposes a tremor-active approach to overcome low actuation levels by

exploiting the low mechanical impedance of dielectric elastomers. A tremor-active approach only

actuates to suppress tremor while passively following voluntary motion. Thus, the DESA voltage

need only apply a force that opposes tremor without needing to overcome the passive DESA dy-

namics to track voluntary motion. Figure 3.16 illustrates how tremor-active control shifts the bur-

den of the DESA passive dynamics from the DESA to the human motor system. Unlike potential

influences from a fully active controller, the material acts on the voluntary motion in a predictable

manner. The human motor system can overcome the passive DESA dynamics just as it adapts to

other predictable environmental changes. The patient must exert additional effort to complete a

desired motion since the passive DESA dynamics add stiffness and damping to the joint that is not

compensated by the actuators. This additional effort is not ideal, but may be an acceptable tradeoff

to enable clinical implementations of low-profile tremor suppression. In summary, a DESA-based

system will improve patient acceptance of mechanical tremor suppression by decreasing device

profile and weight. Tremor-active control improves the likelihood of developing a DESA-based

tremor suppression system, though at the cost of increased patient effort. The acceptable level of

increased patient effort to enable tremor suppression implementation requires future research.
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Figure 3.16: The tremor-active approach (purple, dark) shifts the burden of the passive DESA
dynamics to the human motor system, significantly decreasing actuation requirements compared
to the fully active approach (teal, light).

3.3.1 Impedance Controller with Adaptive Gain

The tremor-active approach employs impedance control for tremor suppression since it is robust,

does not rely on an accurate model or system parameters, and is independent of the passive DESA

dynamics. Figure 3.17 illustrates the block diagram for this control strategy. The controller only

applies feedback on the tremor component of the measurement, ideally having no active effect on

the voluntary motion. The controller includes an adaptive feedback gain to reduce feedback when

the tremor estimate includes frequency content in the voluntary range. This adaptive gain ensures

high tremor reduction given a high-quality tremor estimate and minimal controller influence when

the tremor estimate is poor. In general, the impedance control method can apply feedback to any
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measured state. This study assumes measurement of the velocity (y= θ̇ ) to target an increase in the

effective damping in the tremor frequency range. The controller may use sensors that measure other

states (such as an accelerometer) by retuning the gains or estimating velocity with an observer.

Self-sensing DESAs are another attractive option for physical implementation, eliminating the

need for additional sensors [29].

Figure 3.17: The feedback gain adapts to the quality of the tremor estimate to minimize the con-
troller’s influence on voluntary motion.

The controller uses the BMFLC filter for extracting tremor since it works without prefiltering

and for multiple frequencies [66]. Also, since BMFLC is a zero-phase direct method of estimating

tremor, it avoids the distortion associated with methods that subtract a voluntary estimate from the

measured signal. Instead of assuming one dominant frequency like WFLC, BMFLC includes β

equally spaced frequencies in the fixed range ωa to ωb. Having a high frequency resolution (high

β ) allows the filter to capture all of the frequency content in that range. Since the frequency range

is fixed, the dominant frequency cannot converge towards the low-frequency voluntary motion.
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The rth element of the sinusoid vector ϕ(t) at time t is

ϕr(t) = sin
(

ωat +
(r−1)(ωb−ωa)

β
t
)

for 1≤ r ≤ β +1

ϕr(t) = cos
(

ωat +
(r−β −2)(ωb−ωa)

β
t
)

for β +2≤ r ≤ 2β +2.

(3.56)

Given the weight vector w, the estimate ŷ(t) of the measurement y(t) is

ŷ(t) =wTϕ. (3.57)

A least mean squares algorithm updates the weights based on the error e(t) and gain µ . A forgetting

factor ρ may also be included to provide more weight to newer data [132]:

e(t) = y(t)− ŷ(t) (3.58)

wT (n) = ρwT (n−1)+2µϕ(n)e(t). (3.59)

Research on the BMFLC algorithm has mostly targeted suppression of physiological tremor

for precision surgery [66, 67]. However, the frequency content for physiological tremor is 8–12

Hz, much higher than pathological tremor. The close proximity of the voluntary and pathological

tremor frequency ranges can cause some of the voluntary frequency content to appear in the tremor

estimate via the adaptive weights. The gain for the weight adaptation must be high enough to
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track changes in tremor amplitude and phase. However, this fast adaptation can cause the weights

to track voluntary motion, especially when voluntary and tremor frequencies are closer together.

This spillover effect has limited the use of BMFLC in pathological tremor suppression systems.

To compensate for the leakage of voluntary frequency content in the tremor estimate, this study

develops an adaptive gain to reduce the prominence of the controller when the tremor estimate is

poor.

The adaptive feedback gain depends on the quality of the tremor estimate. The power spectrum

of the tremor estimate provides insight into the quality of the estimate. A sliding window FFT of

the tremor estimate obtains this power spectrum information. The vector of coefficents from the

FFT Ŷ contains the power of the signal with frequency resolution d f = fs/Nw, where Nw is the

length of the window. The ratio of the energy Ur in the voluntary frequency range Uv to the energy

in the tremor frequency range Ut indicates the level of influence the voluntary motion has on the

tremor estimate. These energies are calculated from the coefficients of the FFT, where Ŷn is the nth

element of Ŷ and the dominant frequency range for the tremor is ft1 to ft2:

Ur =
Uv

Ut
=

∑
d1+2/d f e
n=1 Ŷn

∑
d1+ ft2/d f e
n=b1+ ft1/d f c Ŷn

(3.60)

Thus, higher Ur corresponds with a lower-quality tremor estimate. The controller selects a feed-

back gain κ that suits the quality of the estimate to minimize influence on voluntary motion. The

gain decreases exponentially with Ur:

κ = ae−bUr . (3.61)
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Proper tuning of gains a and b enables significant tremor suppression when the tremor dominates

the estimate and minimal influence on voluntary motion regardless of the quality of the estimate.

Finally, a moving average of the calculated gain from Eq. (3.61) smooths out the implemented

gain.

3.3.2 Tremor-Active Simulations

Since the tremor datasets include dominant frequencies between 4 Hz and 7 Hz, the BMFLC fil-

ter applies these frequency limits for ωa and ωb, with ad hoc tuning of parameters to produce

µ = 1× 10−5 and ρ = 0.994. Similarly, tuning controller parameters produced a = 3× 107 and

b = 9 for simulations. Appendix A.2 presents the MATLAB code for the tremor-active simula-

tions. First, Fig. 3.18 illustrates tremor-active suppression for the jar-opening task with ‘PD4’

tremor. Unlike the fully active controller (see Fig. 3.11), the tremor-active controller produces

good performance even with current saturation. Figures 3.19 and 3.20 illustrate the jar-opening

task for all parkinsonian tremor and essential tremor datasets, respectively. Similarly, Figs. 3.21

and 3.22 present the carton-pouring task for all parkinsonian tremor and essential tremor datasets,

respectively. The tremor-active controller provides excellent performance for all cases.
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Figure 3.18: Tremor-active suppression produces effective tracking for the jar-opening task even
with current saturation.
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Figure 3.19: Tremor-active control for the jar-opening task for all parkinsonian tremor datasets
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Figure 3.20: Tremor-active control for the jar-opening task for all essential tremor datasets
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Figure 3.21: Tremor-active control for the carton-pouring task for all parkinsonian tremor datasets
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Figure 3.22: Tremor-active control for the carton-pouring task for all essential tremor datasets
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Further analysis provides insight into the robustness and characteristics of the tremor-active

controller. Figure 3.23 presents the closed-loop frequency response function (FRF) compared to

the open-loop FRF. Each data point presents the steady-state amplitude obtained via simulation

with a single sinusoidal muscular torque. The controller offers excellent amplitude reduction in

the tremor frequency range with essentially no effect on the voluntary frequency range. Since

joint parameters will not be exactly known in real implementations, Fig. 3.23 demonstrates the

response for different joint parameters without changing controller parameters. For one case, the

joint stiffness and damping are 50% higher than the average male values. For the second case, the

joint stiffness and damping are 50% lower than the average female values [130]. These two varia-

tions cover the entire range of typical joint parameters for wrist flexion-extension. The controller

provides nearly identical performance for all three cases.

Next, Fig. 3.24 provides insight into tremor-active controller performance based on the charac-

teristics of the voluntary motion. Each data point represents the root-mean-square (RMS) tracking

error for a simulation with sinusoidal voluntary motion and ‘ET2’ tremor, with tracking error nor-

malized by the RMS error without control. Each simulation applies different voluntary frequency

and amplitude; the figure presents voluntary amplitude normalized by the maximum value of the

tremor torque. The controller produces better tracking for slower (lower frequency) and smaller

amplitude movements since these motions do not spillover into the BMFLC estimation. Controller

performance decreases for higher voluntary frequencies and amplitudes, but tracking error is al-

ways less than the uncontrolled system. Furthermore, the conditions of decreased performance

are also the circumstances where tremor suppression is likely unnecessary—tremor is often less
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prominent during large-scale motions and rapid motions approaching 2 Hz likely require far less

precision than slower voluntary motions.

Finally, this research demonstrates extension of the proposed system to multiple degrees-of-

freedom. Each additional degree-of-freedom may be treated separately by placing an additional

agonist-antagonist actuator pair that only actuates the new degree-of-freedom. To demonstrate

this concept, this study applies simultaneous tremor suppression of wrist FE and RUD. The linear,

coupled equations of motion for wrist rotation are

J1θ̈1 +B11θ̇1 +B12θ̇2 +K11θ1 +K12θ2 = τ1 (3.62)

J2θ̈2 +B12θ̇1 +B22θ̇2 +K12θ1 +K22θ2 = τ2 (3.63)

where subscripts 1 and 2 refer to FE and RUD, respectively. Once again, this study applies average

male parameters for the wrist [129, 130]. The simulations apply identical actuator pairs to both

wrist angles, retuning the RUD gain to aRUD = aFE/2. Figure 3.25 presents simulations for the

jar-opening task with ‘ET3’ and ‘ET4’ tremor in wrist FE and RUD, respectively, and the carton-

pouring task with ‘PD3’ and ‘ET4’ tremor in wrist FE and RUD, respectively. These simulations

demonstrate good performance even with joint coupling. Altogether, the tremor-active controller

provides robust tremor suppression about a single joint and separate application to multiple joints

enables scaling for global tremor suppression.
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CHAPTER 4
DESA IMPLEMENTATION OUTLOOK

Chapter 3 simulations provide numerical evidence of the potential effectiveness of DESA-

based tremor suppression. These simulations use relatively optimistic DESA parameters: most

DESA manufacturing approaches in the literature cannot produce stacks with hundreds of layers.

Furthermore, approaches that can achieve hundreds of layers are not yet commericalized and re-

quire expensive equipment and specialized techniques [73,97]. To provide experimental validation

of numerical tremor suppression results, this dissertation develops a scaled experimental system

with folded DESAs manufactured by hand, presented in Section 4.1. Then, Section 4.2 quantifies

the necessary DESA parameters to enable clinical implementations and evaluates the potential of

existing manufacturing techniques to meet these parameter requirements. Research in this chapter

is published in [133, 134].

4.1 Experiments

Benchtop experiments physically validate tremor-active suppression using DESAs. The DESAs

require layer thickness on the order of tens of microns to produce force levels required for wrist

tremor suppression. Stiffness limitations require DESA length of at least a few centimeters, re-
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quiring thousands of layers. Manufacturing methods that may achieve these requirements use

expensive and specialized equipment; these resources were not available for this research. Since

DESAs have not yet reached commercial availability, this study evaluates cost-efficient, easily-

manufactured DESAs with lower actuation levels. These lower actuation levels require experi-

mental evaluation of a scaled system: a cantilever beam represents the human joint, with muscular

actuation implemented via piezoelectric material.

4.1.1 DESA Manufacturing

The folding manufacturing approach enables low-cost DESA manufacturing and does not require

specialized techniques [86, 87]. Manufacturing by folding includes three general steps: mould-

casting, electrode application, and folding. Figure 4.1 illustrates these manufacturing steps. Fol-

lowing [87], the elastomer is a three-part silicone (TC-5005 A/B-C) that cures for 24 hours at room

temperature. Mixing Part A and Part B starts the curing process. Part C is a plasticizer that reduces

the elastomer stiffness and may compose up to 50% of the mixture weight. High Part C concentra-

tion can produce sticky elastomers, which complicates folding; this study uses approximately 40%

Part C concentration to achieve slightly sticky elastomers that help electrode application without

prohibiting manual folding. After mixing, a syringe pulls air from the flask to remove air bubbles

before pouring into a rectangular mould with length 89 cm, width 1.5 cm, and depth 1 mm—the

mould also includes a 0.5 mm-depth channel as an attempt to achieve greater actuation, but the re-
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sulting elastomers were too fragile to fold. The required high layer thickness is one of the primary

drawbacks to manufacturing by folding.

Figure 4.1: Manufactuing DESAs by folding includes mixing, degassing, curing in a mould, mask-
ing strip and brushing on carbon powder electrodes, folding, and sealing.

The elastomer is ready for electrode application after curing at room temperature for 24 hours.

The cured elastomer is removed from the mould and placed on a flat surface (in this case, the

backside of the mould). The DESAs require passive regions (no electrodes) along the edges to

prevent dielectric breakdown: masking tape applied to each edge prevents electrode application

in these regions. Previous folded DESAs use carbon black powder mixed in a one-part silicone

paste (CAF 4) [87]. This approach included several drawbacks in preliminary manufacturing:

the paste is very difficult to spread, cures too quickly, and produces very thick electrode layers.

These drawbacks motivate the advantage of using a slightly sticky elastomer: the stickiness enables
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application of loose carbon powder as the electrode material. Carbon powder was brushed onto the

masked elastomer and loose powder that did not stick was removed via suction. After application to

one side, the elastomer is flipped and the process repeated, producing a long, rectangular elastomer

with compliant electrodes on both sides.

Finally, folding the DEA produces a DESA with continuous electrodes that enable straight-

forward electrical connections. The rectangular strip is folded by hand to produce a square cross

section with width of approximately 1.5 cm. Another drawback for manufacturing by folding is the

lack of precision in folding by hand. Folding the entire length to produce a single actuator proved

difficult. Realized DESAs used half the strip length; thus, each manufactured strip produced two

DESAs. Small copper tape inserted between the final layers provide electrical leads for the DESA.

Finally, a thin layer of the TC-5005 mixture is poured over the folded elastomer to seal the DESA,

providing electrical insulation and containment of the carbon powder while preventing unfolding

of the actuator.

4.1.2 Scaled Tremor Suppression

This study evaluates tremor suppression on a scaled system due to the low actuation capabilities

of the folded DESAs. Figure 4.2 illustrates the experimental setup, which includes a cantilever

beam clamped at the base in a repurposed frame. The frame enables adjusting of the two DESAs

to align with the beam tip. Two surface-mounted piezoelectric patches on the beam represent the
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muscular torque, providing actuation to simulate tremor and voluntary actuation via a Trek Model

2205 High-Voltage Power Amplifier. A laser vibrometer measures the beam tip displacement.

Figure 4.2: Experimental setup for scaled DESA-based tremor suppression

The controller is implemented on a National Instruments cRIO-9035 using the Real-Time Mod-

ule in scan engine mode. The controller receives the displacement measurement from the vibrom-

eter and outputs the control voltages for each DESA. Pico HVP5P DC/DC high-voltage converters

proportionally scale the control voltages, producing DESA voltages up to 5 kV with maximum

current of 1 mA. All non-controller data input and output was executed using MATLAB’s Data

Acquisition Toolbox with a National Instruments cDAQ-9188 chassis. This MATLAB script in-

cludes the voltage output for piezoelectric actuation and measurements of beam displacement and

DESA voltages. Figure 4.3 illustrates a block diagram of the signals in the experimental setup.
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Figure 4.3: Signal block diagram for scaled DESA-based tremor suppression

Experiments implement tremor data from [9] and voluntary motion from [131] as described in

Chapter 3. Each test implements a superposed piezoelectric voltage that includes voluntary and

tremor components. The controller implements tremor-active control described in Section 3.3.

However, the experimental controller provides displacement feedback rather than velocity feed-

back due to the difficulty of reliably measuring the relatively low velocities in this system. Exper-

iments implement three different feedback gains to demonstrate the effect of the gain on perfor-

mance.

First, Fig. 4.4 presents the experimental time series for the jar-opening task with ‘PD1’ tremor.

The displacement time series includes two tests: one test without tremor suppression (uncontrolled)

and one test with tremor suppression (controlled). Post-processing of the time series extracts the

voluntary motion (low-pass filtering with MATLAB’s filtfilt). As demonstrated in the figure, the
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controller reduces the amplitude of voluntary motion. This amplitude reduction reflects the higher

power of voluntary motion content in the displacement measurement compared to measuring ve-

locity in previous simulations. The BMFLC filter cannot completely remove the voluntary content;

thus, the controller effectively increases stiffness in the voluntary range. However, the active ap-

proach still offers improvement over passive approaches since tremor suppression is greater than

voluntary motion suppression. Figures 4.5 and 4.6 present experimental results for the jar-opening

task for all parinsonian tremor and essential tremor datasets, respectively. The controller reduces

tremor for all cases, but with varying effectiveness.
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Figure 4.4: Experimental time series for jar-opening task with PD1 tremor.
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Figure 4.5: All PD experimental time series for jar-opening task.
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Figure 4.6: All ET experimental time series for jar-opening task.
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Next, Fig. 4.7 illustrates the experimental time series for a sinusoidal voluntary motion. Once

again, the controller reduces tremor and also reduces voluntary motion, but to a lesser extent. Ex-

ploring controller performance with sinusoidal voluntary motion provides insight into frequency-

dependent performance. Figures 4.8 and 4.9 present the normalized tracking errors and voluntary

amplitude ratios with varying parameters for the parkinsonian tremor and essential tremor datasets,

respectively. The normalized tracking error is the RMS error between the desired position and the

actual position, normalized by the RMS error in the uncontrolled case. The voluntary amplitude

ratio is the ratio of the voluntary amplitude in the controlled case to the uncontrolled case. Thus,

the normalized tracking error quantifies tremor suppression performance (lower error means bet-

ter performance) while the voluntary amplitude ratio quantifies the increased active stiffness in

the voluntary range (ideally, the voluntary amplitude ratio equals one). These figures indicate

the experimental system exhibits low dependence on tremor amplitude and voluntary frequency.

The controller gain has the largest effect on system performance: higher gains produce greater

tremor suppression but also increase voluntary motion reduction. Figure 4.10 illustrates this trade-

off between tremor suppression performance and voluntary motion resistance by comparing the

two parameters for all experimental cases in Figs. 4.8 and 4.9. The highest controller gain reduces

tremor by up to 80%, but can also reduce voluntary motion by ∼50%. The highest gain reduces

tremor by∼50% and only reduces voluntary motion by∼15%. Altogether, the displacement-based

feedback controller offers moderate tremor reduction at the expense of low-to-moderate increased

stiffness for voluntary motions. These experiments demonstrate the ability of DESAs to reduce

tremor via tremor-active control. Future improvements to actuator performance and controller de-

104



sign can lead to physical systems that achieve similar performance as simulations in Chapter 3. In

particular, these DESAs require much thinner layers to increase actuation capabilities; other exist-

ing DESAs may lack other necessary properties for tremor-active control. The following section

investigates the necessary parameters to achieve satisfactory performance.
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Figure 4.7: Experimental time series with sinusoidal voluntary motion (0.5 Hz) and ‘ET4’ tremor

105



0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8
PD1

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

PD1

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8
PD2

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

PD2

0 0.2 0.4 0.6 0.8 1

n
o
rm

a
li

ze
d

 t
ra

ck
in

g
 e

rr
o
r

0.2

0.4

0.6

0.8
PD3

0 0.2 0.4 0.6 0.8 1

v
o
lu

n
ta

ry
 a

m
p

li
tu

d
e 

ra
ti

o

0.2

0.4

0.6

0.8

1

PD3

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8
PD4

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

PD4

voluntary frequency (Hz)

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8
PD5

voluntary frequency (Hz)

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

PD5

Figure 4.8: Tracking error and voluntary motion resistance for all PD experiments with sinusoidal
voluntary motion (lighter color = higher gain)
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Figure 4.9: Tracking error and voluntary motion resistance for all ET experiments with sinusoidal
voluntary motion (lighter color = higher gain)
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4.2 Necessary Parameters for Tremor Suppression

The previous section demonstrates the ability of DESAs to suppress tremor in a physical, but

scaled system. This section quantifies the necessary DESA parameters to achieve clinical imple-

mentations of DESA-based tremor suppression. Given these necessary DESA characteristics, this

section discusses the outlook for DESA-based tremor suppression and necessary advances to reach

clinical implementations.
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4.2.1 Performance Limits

Performance limits quantify the required actuator characteristics that the DESA parameters must

achieve. The limits include the passive effect of the DESAs on voluntary motion, tremor sup-

pression performance, device size, and electrical safety. Some of these limits are qualitative in

nature: different patients may accept different device sizes, levels of increased stiffness, or levels

of tremor suppression. However, this study develops quantitative limits to characterize necessary

DESA parameters by estimating performance limit values. Future implementations require clinical

evaluation of these performance limits; this study provides a first-order approximation of DESA

parameters that may enable clinical tremor suppression about a given joint.

4.2.1.1 Passive effect of DESAs

Applying only to the tremor-active approach, the passive effect of the DESAs increases patient

effort and discomfort. This approach assumes patients will accept this increased effort to gain low-

profile tremor suppression. The acceptable level of increased stiffness requires clinical evaluation;

this study quantifies the the increased stiffness as a ratio of the joint stiffness, then provides numeric

values for an estimate of the acceptable stiffness increase. In addition to stiffness, DESAs exhibit

viscoelasticity that affects the dynamic joint characteristics. The human motor system is capable

of adapting to predictable changes in environment, but it is not clear to what extent viscoelasticity

may be tolerated in a tremor suppression device. This study estimates the allowable passive DESA
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dynamics by limiting the change in joint magnitude and phase. Without DESAs, the joint transfer

function from muscular torque to joint angle is

θ̄

τ̄m
=

1
Js2 +Bs+K

. (4.1)

The transfer function produces the magnitude and phase at frequency ω by inserting s = iω . From

Eq. (3.32), the transfer function with DESAs is

θ̄

τ̄m
=

1

(J+2r2
0ma)s2 +Bs+K +

2r2
0A0Y
l0

+
2r2

0A0k1
l0

s
s+ k1

η1

. (4.2)

Comparing these transfer functions enables quantification of the passive effect of the DESAs on

the joint. This passive effect only matters for the frequency content of voluntary motion (0–2

Hz). Furthermore, performance at higher frequencies is less important since faster motions are

inherently less precise. Thus, this study defines a frequency-dependent performance limit:

L( f ) =
L2−L0

4
f 2 +L0 (4.3)

where L is the performance upper limit at frequency f given the 0 Hz and 2 Hz limits L0 and

L2, respectively. This study applies this limit function to the magnitude ratio (without-DESA

over with-DESA) and the phase difference (with-DESA minus without-DESA). The magnitude

ratio reflects increased patient effort while the phase difference represents greater motor system

adaptation due to changes in muscular actuation timing. Unless otherwise stated, this study applies
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limits L0 = 2.5 and L2 = 4 for the magnitude ratio and L0 = 5◦ and L2 = 30◦ for the phase difference

as a first approximation of acceptable passive DESA performance.

4.2.1.2 Tracking error

The tracking error (difference between actual and desired joint angle) reflects the tremor suppres-

sion performance of the system. While perfect tremor cancellation is ideal, patients will likely be

satisfied with moderate tremor reduction. Again, the level of tremor reduction that patients deem

worthy of wearing a tremor suppression device requires clinical investigation. This study quanti-

fies the tracking performance as the RMS error with control normalized by the RMS error without

control.

4.2.1.3 Size

Device size is a limiting factor for existing mechanical tremor suppression systems. Patient accep-

tance and limb and joint size affect the maximum allowable actuator size. This study applies upper

limits for DESA length and area that depend on the targeted joint. In addition, this study applies

a lower limit on DESA length to maintain stretches near the linear range: the stretch change for a

30◦ degree joint rotation is limited to 0.3.
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4.2.1.4 Electrical safety

Finally, as discussed in Section 2.3.2, the current must be restricted to less than 20 mA and the

voltage must be less than a value that depends on the DESA capacitance [104]. Simulations enforce

the current limit by restricting the maximum change in voltage between fixed integration steps

sampled at frequency fs:

∆Vmax =
imax

fsC0
(4.4)

C0 =
nε0εrA0a

d0
(4.5)

where C0 is the DESA capacitance calculated with the electrode-covered cross-sectional area A0a.

This study applies the electrical limits as the last step before simulations, thereby presenting the

best-achievable performance when actuation and electrical limits do not allow perfect tremor can-

cellation.

4.2.2 Tremor-Active Parameters

The tremor-active approach requires DESAs to suppress tremor sufficiently with passive influence

on voluntary motion below the specified performance limits. Thus, the necessary DESA parame-

ters may be categorized into those that affect the passive dynamics and those that affect actuation

performance.
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4.2.2.1 Passive effect

First, the static stiffness of the DESAs reflects the additional effort the patient must exert to hold

a desired position. Define the static response ratio limit Xstiffness ≡ L0 and set s = 0 in Eqs. (4.1)

and (4.2) to obtain the upper limit for DESA stiffness:

YA0

l0
≤ K

2r2
0
(Xstiffness−1). (4.6)

Viscoelastic parameters k1 and η1 affect the ability of the DESAs to meet the phase difference

limits. This study quantifies the viscoelastic parameter limits given the effective joint stiffness to

generalize the results for any joint. These generalized viscoelastic parameters include the critical

relaxation time Tcr ≡ η1,cr/k1 (the maximum allowable relaxation time) and the effective Maxwell

stiffness ratio k̂1:

k̂1 ≡
k1,eff

Keff
. (4.7)

Here, the effective joint stiffness is

Keff ≡ K +
2r2

0A0Y
l0

(4.8)

and the Maxwell spring effective stiffness about the joint scales in a similar way as the Young’s

modulus:

k1,eff ≡
2r2

0A0k1

l0
. (4.9)
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Figure 4.12: Varying joint parameters (different colors) produces similar normalized viscoelastic
parameter limits.

Figure 4.12 illustrates the critical relaxation time with fixed performance limits but varying

DESA stiffness and joint parameters. Many combinations of Y , A0, and l0 produce static stiffness

ratios ranging from 1.2 to 2.4. Joint inertia and stiffness values range from one-third to six times

average male flexion-extension values [130]. Even with these wide parameter ranges, Tcr forms

a relatively consistent function of k̂1. Therefore, the joint stiffness approximately defines the vis-

coelastic parameter limits given phase difference performance limits. Figure 4.13 illustrates the

effect the phase difference performance limit has on these parameters. More strict phase differ-

ence requirements produce more strict viscoelastic parameter requirements, though with a similar

relation between Tcr and k̂1. Thus, as intuitively expected, the ability of the human motor system

to adapt to viscoelastic behavior limits the allowable viscoelasticity of the DESAs. This analysis
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provides a quantitative tool to characterize these viscoelastic parameter limits given an expected

acceptable level of muscular phase adaptation.
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Figure 4.13: The allowable viscoelastic parameter range decreases for stricter phase limits (differ-
ent colors).

4.2.2.2 Actuation

In the tremor-active approach, actuation to suppress tremor depends only on the electrostatic force

created by the DESA voltage. Electrical safety limits restrict the voltage and voltage rate (current).

Furthermore, the electrical breakdown strength Ebr of the material also affects the maximum volt-

age. Thus, these electrical limits affect the ability of the DESA to actuate to suppress tremor. This

study defines the actuation ratio τratio and the actuation rate ratio ∆Vratio to characterize tremor sup-
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pression performance in terms of electrical limits. Once again, this study uses tremor data from the

online database as the tremor torque τtremor [9]. Given the tremor torque time series, the controller

time series that exactly cancels tremor is

u(t) =−
d2

0
r0A0aε0εr

τtremor(t). (4.10)

Electrical limits may prohibit implementation of this controller time series. The actuation ratio

quantifies the achievable actuation magnitude given the maximum allowable voltage Vmax. This

maximum allowable voltage may be imposed by the electrical breakdown limit of the material or

by the electrical safety limit for the DESA capacitance. The actuation ratio is the maximum active

DESA torque normalized by the maximum value of the tremor torque:

τratio ≡
r0A0aε0εrV 2

max

d2
0 |τtremor|

. (4.11)

The current limit restricts the rate of change of the DESA voltage. The actuation rate ratio quanti-

fies this limit as the maximum allowable change in voltage normalized by the RMS voltage change

required for perfect tremor cancellation ∆Vcanc:

∆Vratio ≡
imax

fsC0∆Vcanc
. (4.12)

The actuation ratio and actuation rate ratio limits determine the the necessary DESA layer

thickness, relative permittivity, and electrical breakdown field. Simulations show how tremor am-
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plitude and joint parameters affect the ratio limits given the limiting electrical parameter (electrical

breakdown, voltage safety, or current safety). First, Fig. 4.14 presents the normalized tracking

error when the electrical breakdown strength is the limiting electrical factor. The figure also shows

the associated saturation fraction, or the fraction of time the voltage is saturated due to the electri-

cal limit. More voltage saturation produces greater tracking error. Next, Fig. 4.15 presents similar

results when the current is the limiting electrical factor (which is typically the case when electri-

cal breakdown is not the limiting factor). In this case, current saturation fraction is analogous to

voltage saturation in the previous case, and saturation produces increased tracking errors. Over-

all, DESA parameters must achieve high enough τratio and ∆Vratio to yield saturation fractions low

enough to produce sufficient tracking performance. Figure 4.16 illustrates the tradeoff between

actuation ratios when selecting DESA relative permittivity. Low relative permittivity produces a

low actuation ratio, high voltage saturation fraction, and high tracking error. However, higher rela-

tive permittivity decreases actuation rate ratio, leading to increased current saturation fraction and

tracking error. An optimal relative permittivity produces the greatest tremor suppression perfor-

mance by finding the best balance between τratio and ∆Vratio. Significantly, there is a wide range of

εr values that achieve moderate to high levels of tremor suppression even in the presence of voltage

and current saturation.
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Figure 4.14: Effect of actuation ratio on voltage saturation for tremor-active control
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Figure 4.15: Effect of actuation rate ratio on current saturation for tremor-active control
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Figure 4.16: Optimal εr selection finds tradeoff between voltage and current saturation.

4.2.3 Fully Active Parameters

The fully active approach requires DESAs to actuate to suppress tremor and follow voluntary

motion. There are no limits on passive DESA characteristics, but the DESAs must be able to

overcome their passive dynamics to track the voluntary motion. The actuation ratio and actuation

rate ratios fully characterize the necessary parameters for the fully active approach. However,

these parameters now include the additional torque τpassive and voltage rate ∆Vpassive required to
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overcome the passive DESA dynamics:

τratio ≡
r0A0aε0εrV 2

max

d2
0(|τtremor|+ |τpassive|)

(4.13)

∆Vratio ≡
imax

fsC0(∆Vcanc +∆Vpassive)
. (4.14)

Figures 4.17 and 4.18 present fully active simulations analogous to those in Figs. 4.14 and 4.15,

respectively. The tracking performances has a similar trend as with the tremor-active approach;

however, actuation ratios in the fully active approach represent more strict DESA parameters com-

pared to the tremor-active approach due to the additional actuation to track voluntary motion. The

voltage-limited performance is slightly worse for fully active, indicating the DESAs struggle to

track the magnitude of the voluntary motion. The current-limited performance is identical to the

tremor-active approach since tremor dominates the actuation rate due to its higher frequency. Note

that Fig. 4.17 uses the relatively low DESA stiffness values selected for tremor-active control;

Fig. 4.19 demonstrates performance for higher stiffness values. DESAs with low actuation ratios

cannot overcome the high stiffness values and produce tracking errors that are worse than those

without control. Thus, the fully active approach requires actuation capabilities much greater than

the passive DESA mechanical impedance. Unlike tremor-active control, fully active control offers

little leeway for actuators with relatively low actuation levels. Overall, the tremor-active approach

enables implementation with less strict DESA parameters, forming the most achievable option for

clinical implementations.
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Figure 4.17: Effect of actuation ratio on voltage saturation for fully active control
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Figure 4.18: Effect of actuation rate ratio on current saturation for fully active control
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Figure 4.19: Increased passive stiffness can drastically reduce performance for fully active control.

4.2.4 Outlook

Evaluation of DESAs available in the literature in context with the necessary parameters for clin-

ical implementation provides insight into the outlook of DESA-based tremor suppression. This

analysis targets suppression of wrist flexion-extension (an ideal first-step for mechanical tremor

suppression) and fixes the DESA geometry (l0 = 6.3 cm and A0 = 3.14 cm2). Figure 4.20 illus-

trates the potential for DESAs to meet the performance requirements for tremor-active suppression

of wrist flexion-extension, where the upper-left region above the actuation limit and below the

stiffness limit contains suitable DESAs. This figure includes data points that correspond to spe-

cific DESAs in the literature as well as estimated regions of potential values for each material.
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Literature DESA materials include silicone, IPN-acrylic, UV-cured acrylic, polyurethane, and rub-

ber [73, 83, 86–91, 93–95, 97, 135, 136]. Among DESAs from the literature, only six meet the

length requirement (star data points in Fig. 4.20) [73, 87, 93, 94, 97, 136]. The circle data points

in Fig. 4.20 demonstrate the achieved parameters by scaling up the number of layers of literature

DESAs to achieve the required length [83,88]. Finally, the square data point indicates the effect of

decreasing crosslinker or adding plasticizer to UV-cured acrylic [97, 137].

Figure 4.20: Slight modifications of literature DESAs produces DESAs that meet tremor suppres-
sion performance requirements (above actuation limit and below stiffness limit).
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Interpreting Fig. 4.20 provides insight into the necessary modifications to literature DESAs to

meet the requirements for tremor suppression. First, the low-actuation-ratio silicone DESAs have

very thick layers (d0 > 200 µm) [87, 94]. One of the scaled-length silicone DESAs has thin layers

(d0 = 30 µm) and is capable of meeting the performance requirements; however, the stacking

process for this DESA can only achieve stacks of approximately 100 layers [88]. The capability of

tuning the stiffness of silicone DESAs means they can meet the stiffness requirements for tremor

suppression. Improving manufacturing methods to develop large stacks with greater than 1000

relatively thin layers (d0 < 70 µm) could enable tremor suppression with silicone-based DESAs.

UV-cured acrylic is another promising material for DESA-based tremor suppression. Recent

research produces stacks of thousands of layers to achieve total lengths greater than 10 cm [97].

The achieved stiffness of this DESA is too high for tremor suppression, but the stiffness of UV-

cured acrylic depends on the amount of added crosslinker [89,137]. Furthermore, addition of plas-

ticizer to UV-cured acrylic also decreases stiffness and can improve viscoelastic properties [137].

Thus, decreasing crosslinker concentration or adding plasticizer could produce UV-cured acrylic

DESAs that are suitable for tremor suppression—these modifications are likely possible with an

already-existing manufacturing process [97]. The square data point in Fig. 4.20 demonstrates

the parameters produced by using one of these methods to reduce the Young’s modulus to 0.1

MPa: the DESA meets the performance requirements. Finally, Fig. 4.21 presents a simulation of

tremor-active suppression using the DESA parameters of this square data point (assuming perfect

knowledge of the tremor). This figure illustrates the ability of the DESAs to drastically reduce

tremor at the cost of a moderate increase in muscular effort by the patient.
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CHAPTER 5
PARKINSON’S DISEASE TREMOR MODEL

Chapters 3 and 4 explore dielectric-based tremor suppression while assuming state-independent

tremor generation. This chapter explores the evidence for delay-induced tremor in Parkinson’s dis-

ease. Section 5.1 describes the motivation for model structure and presents simulations of the

tremor model. Section 5.2 discusses the implications of delay-induced tremor for interpretation of

physiologically based models, treatment effectiveness, and the effect of mechanical tremor sup-

pression. Research in this chapter is published in [138].

5.1 Delay-Induced Tremor

Parkinson’s disease generally inhibits movement: typical symptoms include rigidity, bradykinesia,

and slowness of movement. Parkinsonian tremor represents a stark contrast to other Parkinson’s

disease symptoms. Pathophysiology theories must explain why the same disease inhibits move-

ment and also produces rapid, undesired motions. This symptom disparity has led researchers to

suggest different pathophysiologies produce the different symptoms in Parkinson’s disease. How-

ever, increased feedback delay is one possible pathology that can explain the coexistence of move-

ment inhibition and tremor. Previous works suggest feedback delay plays a role in parkinsonian
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tremor: large enough delays produce unstable feedback loops [31–33, 41]. Increased CNS delays

also explain increased reaction times and slowness of movement [30]. However, the human mo-

tor system already overcomes large sensory delays to successfully perform a wide range of tasks

with feedback control. Forward models are the key to this successful feedback: these internal

models predict the present state from delayed sensory information. Thus, the critical factor in

delay-induced tremor is the increased delay is unaccounted by the CNS. This research develops

an optimal control-based human motor system model with increased CNS delay. Clinical evi-

dence motivates the model structure, enabling mapping of physiological substructures to model

components. The proposed model provides insight into treatment effectiveness along with new

interpretations of physiologically based models.

Human motor control includes a planning stage and an execution stage. In the planning stage,

the basal ganglia and the motor cortex collaborate to identify the movement goal, quantify the

costs and rewards for the task, and select the appropriate motor pathways for execution [115].

During execution, M1 sends control signals to the muscles via the spinal cord [39, 107, 121]. Pro-

prioceptive feedback returns through the spinal cord to the cerebellum. The cerebellum integrates

delayed sensory information using forward models of task dynamics and efferent copies of control

inputs from M1 [37, 115, 139]. The thalamus relays this integrated signal from the cerebellum to

M1 [50,52]. Note the execution stage primarily involves the CTC circuit, which is associated with

pathological activity in Parkinson’s disease [51]. Given these functions, Fig. 5.1 maps the execu-

tion stage of the proposed optimal control model to physiological substructures. Prior to execution,

the optimal controller selects a task-based cost function and determines optimal feedback gains:
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this initialization represents the planning stage of motor control and movement initiation by the

basal ganglia. For healthy motor control, the optimal control model includes the limb dynamics,

a known proprioceptive feedback delay, a state estimator (cerebellum), and a feedback controller

(M1).

Figure 5.1: Increased inhibition in the thalamus delays the state estimate signal traveling from the
cerebellum to the primary motor cortex via the thalamus.
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As illustrated in Fig. 5.1, this research explores a potential increased CNS delay in Parkinson’s

disease by adding an unaccounted delay between the estimator and controller. Clinical evidence

motivates this location: the basal ganglia internal globus pallidus (GPi) projects excessive inhi-

bition to the anterior portion of the ventrolateral thalamus (VLa) [52]. The posterior portion of

the ventrolateral thalamus (VLp) relays information from the cerebellum to M1. The excessive

inhibition of VLa may spread to VLp via the thalamic reticular nucleus (TRN) [52]. This study

hypothesizes that this excessive inhibition delays the signal traveling from the cerebellum to M1

via VLp. In optimal control terminology, the controller provides feedback using a delayed state

estimate, producing an unstable feedback loop. Nonlinear elements in the human motor system

convert instability to a stable limit cycle. As a first step towards modeling tremor as an increased

feedback delay, this study applies control signal saturation to produce a limit cycle, as suggested

in previous studies on delay-induced tremor [33, 140].

5.1.1 Optimal Controller

This section describes the optimal control algorithm for healthy motor control. The optimal con-

troller largely follows previous works that derive optimal control for systems with multiplicative

noise and state prediction for systems with feedback delays [36, 41]. The delay compensation ex-

trapolates the delayed state to produce the pseudomeasurement, only extrapolating over the known

proprioceptive feedback delay. This study refers to the extrapolated state as the pseudomeasure-

ment since it replaces the role of the measurement in non-delayed optimal control. The model is
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extended for simulating parkinsonian tremor by adding an unaccounted delay between the estima-

tor and controller.

5.1.1.1 Problem Statement

The continuous dynamics of the human motor system are discretized over the small time interval

∆t to facilitate discrete control design. The discrete system includes

Dynamics xk+1 = Akxk +Bkuk +ξk + εkCuk

Delayed Measurement yk = Hxk−δk +σk

State Estimate x̂k+1 = Akx̂k +Bkuk +Kk(x̂
y
k− x̂k)+ηk

Control Input uk =−Lkx̂k

(5.1)

which depend on the state xk, delayed measurement yk, control input uk, and pseudomeasurement

x̂y
k. The system includes linear process noise ξk ∼N (0,Ωξ ), multiplicative process noise εk ∼

N (0, I), measurement noise σk ∼N (0,Ωσ ), and estimator noise η ∼N (0,Ωη). The matrix C =

αBk ensures the multiplicative noise adds to the control input with scaling factor α; this process is

consistent with control input noise in real motor control. The controller provides feedback using

a state estimate produced by a Kalman filter, which uses the pseudomeasurement in place of an

actual measurement. The optimization problem identifies the set of fixed estimator gains Kk and
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controller gains Lk that minimize the cost

Cost =
N

∑
k=1

(x>k Qkxk +u>k Rkuk) (5.2)

given initial estimate mean x̂1 and covariance P1. Unlike the linear case, multiplicative noise

couples the optimal estimator and controller gains [36].

5.1.1.2 Delay Compensation

The system compensates for measurement delay by predicting the present-time full state from

a delayed partial-state measurement [41]. This delay compensation includes three intermediate

steps:

1. Acquire delayed partial-state measurement yk.

2. Estimate delayed full state x̃k via Kalman filter.

3. Extrapolate delayed full state over delay interval to obtain the pseudomeasurement x̂y
k.

The optimal estimator treats the pseudomeasurement as a noisy full-state measurement with known

covariance. A linear Kalman filter produces the delayed full state from the delayed partial-state
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measurement:

Ky
k = AkPy

k H>(HPy
k H>+Ω

σ )−1

x̃k+1 = Akx̃k +Bkuk−δk +Ky
k (yk−Hx̃k)

Py
k+1 = Ω̃

ξ +(Ak−Ky
k H)Py

k A>k

(5.3)

initialized with known x̃1 and Py
1 . The selected process noise covariance Ω̃ξ replaces the true

process noise covariance Ωξ to enable tracking of unmodeled dynamics. Extrapolation of the

delayed full-state estimate over the interval k̆ = 1 to k̆ = δ k̂−1 produces the pseudomeasurement:

x̆k̆+1 = Akx̆k̆ +Bkuk−δk+k̆. (5.4)

where δ k̂ is the estimated delay, x̆k̆ is the intermediate extrapolation state initialized with x̆1 =

x̃k, and x̂y
k ≡ x̆

δ k̂ defines the pseudomeasurement. Propagation of the assumed delayed full-state

estimate covariance Ω̆σ over the delay interval produces the pseudomeasurement covariance Ωδ :

P̆k̆+1 = AkP̆k̆A>k +Ω
ξ (5.5)

where P̆1 = Ω̆σ and Ωδ ≡ P̆δk. The ensuing optimization treats the pseudomeasurement x̂y
k as a

noisy measurement with covariance Ωδ .
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5.1.1.3 Controller Gains

Todorov [36] derives an optimal controller for linear systems with multiplicative noise [36]. To

start, assume the estimator includes a fixed set of known gains Kk. The optimal controller gains Lk

may be calculated backward in time from known initial values Sx
N = QN , Se

N = 0, and sN = 0:

Lk =
(

Rk +B>k Sx
k+1Bk +C>(Sx

k+1 +Se
k+1)C

)−1
B>k Sx

k+1Ak

Sx
k = Qk +A>k Sx

k+1(Ak−BkLk)

Se
k = A>k Sx

k+1BkLk +(Ak−Kk)
>Se

k+1(Ak−Kk)

sk = tr(Sx
k+1Ω̄

ξ +Se
k+1(Ω̄

ξ +Ω
η +KkΩ

δ K>k ))+ sk+1

Expected cost = x̂>1 Sx
1x̂1 + tr((Sx

1 +Se
1)P1)+ s1.

(5.6)

Using Ω̄ξ instead of Ωξ can add robustness to unmodeled dynamics.

5.1.1.4 Estimator Gains

Optimizing estimator gains given a fixed set of controller gains also reduces the expected cost [36].

A forward pass in time produces the optimal estimator gains given initial conditions Pe
1 = P1,
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Px̂
1 = x̂1x̂>1 , and Px̂e

1 = 0 (note, Pex̂
1 = (Px̂e

1 )>):

Kk = AkPe
k (P

e
k +Ω

δ )−1

Pe
k+1 = Ω̄

ξ +Ω
η +(Ak−Kk)Pe

k A>k +CLkPx̂
k L>k C>

Px̂
k+1 = Ω

η +KkPe
k A>k +(Ak−BkLk)Px̂

k (Ak−BkLk)
>

+(Ak−BkLk)Px̂e
k K>k +KkPex̂

k (Ak−BkLk)
>

Px̂e
k+1 = (Ak−BkLk)Px̂e

k (Ak−Kk)
>−Ω

η .

(5.7)

Repeating controller gain optimization given these improved estimator gains produces an even

lower expected cost. Cycling through gain optimization until convergence produces the set of

controller and estimator gains with the lowest expected cost.

5.1.1.5 Algorithm Implementation

Now, implementation and simulation of the optimal control algorithm includes

1. Calculate the Kalman gains for the delayed full-state estimator via Eq. (5.3).

2. Calculate the pseudomeasurement covariance via Eq. (5.5).

3. Calculate the optimal open-loop controller gains via Eq. (5.6).

4. Iterate between optimal estimator gain calculation Eq. (5.7) and controller gain calculation

Eq. (5.6) until convergence.
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5. Simulate the system with Eqs. (5.1), (5.3), and (5.4).

5.1.2 Tremor Model Simulations

This research simulates two wrist biomechanics models with the presented optimal controller.

First, a single degree-of-freedom (SDOF) model demonstrates the fundamental characteristics of

delay-induced tremor. Then, a higher-order model produces simulated tremor with similar charac-

teristics as real tremor, including time-varying amplitude and frequency. The models assume the

delay estimate δ k̂ is equal to the true feedback delay δk in healthy control, with increased true

delay representing Parkinson’s disease pathology. Control input saturation produces stable limit

cycles for cases with increased delays.

5.1.2.1 SDOF Tremor Model

First, this study applies the tremor model to a SDOF joint with a single input to the muscles:

Jθ̈ +Gθ̇ +Kθ = f + fe

τ2 ḟ + f = g

τ1ġ+g = u

(5.8)
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which includes muscular torque f and external torque fe. The CNS control input u activates the

muscles, which include second-order low-pass filter dynamics with intermediate state g and time

constants τ1 and τ2. Rewrite these dynamics in the standard linear form:

ẋ = Ax+Bu

x =
[

θ θ̇ f g θ ∗ fe

]>

A =



0 1 0 0 0 0

−K/J −G/J −1/J 0 0 1/J

0 0 −1/τ2 1/τ2 0 0

0 0 0 −1/τ1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


B =

[
0 0 0 −1/τ1 0 0

]>
.

(5.9)

where the state is augmented with the desired position θ ∗. Discretizing over the small sample

interval ∆t enables application of the discrete controller:

Ak ≈ I +A∆t

Bk ≈ ∆tAkB.

(5.10)

The human motor system includes sensory information related to muscle stretch and changes in

stretch via muscle spindles along with muscle force from Golgi tendon organs [141]. This study
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assumes equally delayed measurements of these quantities due to the close proximity of these

mechanoreceptors. Thus, the observation matrix provides equally delayed measurements of the

joint position, joint velocity, and muscle force:

H =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 . (5.11)

The cost function depends on the task. For a posture task, the motor system attempts to main-

tain the desired position θ ∗. Thus, the controller should minimize (θ −θ ∗)2, producing

Qk =

[
1 0 0 −1 0 0

]>[
1 0 0 −1 0 0

]
(5.12)

for all k. When θ ∗ = 0, the posture task is considered a resting task. For a reaching task, the

motor system attempts to reach the desired position at the final time step N and maintain that

position. Since the task only values final states, Qk = 0 for k < N. At final time k = N, the

controller minimizes position error along with velocity and net force to ensure the joint remains at

the desired position:

QN =

[
1 0 0 −1 0 0

]>[
1 0 0 −1 0 0

]
+wv

[
0 1 0 0 0 0

]>[
0 1 0 0 0 0

]
+w f

[
0 0 −1 0 K −1

]>[
0 0 −1 0 K −1

]
.

(5.13)
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The weights wv and w f scale the influence of the final velocity and final net force compared to final

position. Finally, both tasks include a scalar weight for control effort throughout the task: Rk = r.

Simulations use parameter values associated with wrist FE and controller values tuned to pro-

duce good performance for healthy movements [130]. Appendix B.1 presents the MATLAB code

for these simulations, including parameter values. Figures 5.2 and 5.3 present a rest task and a

reach-posture-reach-posture task, respectively. Both tasks demonstrate controller robustness for

healthy motor control by including brief external impulses. The figures present performance given

an increased feedback delay of 20 ms: the unaccounted delay leads to instability during rest and

posture. However, reaching tasks are successful even with the increased delay. Figure 5.4 captures

the fundamental characteristics for delay-induced tremor. A critical delay value produces insta-

bility (this value depends on the system parameters; in this case, 15 ms). As the the unaccounted

delay increases, tremor amplitude increases and tremor frequency decreases. This property pro-

vides additional support for CNS delay as the source of parkinsonian tremor since disease progres-

sion produces larger amplitudes and decreased frequencies [33, 142]. In other words, this result

suggests the CNS delay increases over time due to disease progression.
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Figure 5.2: Simulation of a rest task with healthy control and increased feedback delay
(δ k̂ = δk+20)
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Figure 5.3: Simulation of a reach-posture-reach-posture task with healthy control and increased
feedback delay (δ k̂ = δk+20)
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Figure 5.4: Rest tremor amplitude and frequency based on the increased CNS delay

5.1.2.2 Higher-Order Tremor Model

The higher-order model demonstrates how added model complexities produce time-varying tremor

amplitudes and frequencies. The model includes a 3DOF wrist with forearm pronation-supination
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(PS), wrist FE, and wrist RUD:


IHy + IAy 0 0

0 IHz 0

0 0 IHx




α̈

β̈

γ̈

+


Bαα Bαβ Bαγ

Bαβ Bββ Bβγ

Bαγ Bβγ Bγγ




α̇

β̇

γ̇



+


Kαα Kαβ Kαγ

Kαβ Kββ Kβγ

Kαγ Kβγ Kγγ




α

β

γ

=


fα

fβ

fγ

+


feα

feβ

feγ

 .
(5.14)

where α , β , and γ refer to PS angle, FE angle, and RUD angle, respectively [130]. Appendix B.2

presents the MATLAB code for this simulation, including parameter values. The state matrices

take a similar form as Eq. (5.9), scaled for the additional degrees-of-freedom.

The higher-order model includes additional CNS elements that contribute to tremor variation.

First, noise exists in the human motor system at several levels [141]. This model adds noise to the

control saturation. Second, as previously discussed, clinical evidence associates the basal ganglia

with movement initiation [115]. Clinical evidence also points towards basal ganglia initiation of

changes in tremor amplitude [51]. Initialization of the optimal controller represents basal ganglia

initiation of a motor action in the proposed model. Thus, the higher-order model includes resetting

of the motor program to reflect re-initiation of the task. In other words, the CNS senses the lack of

task success and decides to redefine the controller and restart the task. The model includes random

variation for the resetting time and cost function weights.
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Figure 5.5 presents rest tremor for this 3DOF wrist model. The resulting tremor characteristics

appear much more realistic compared to the SDOF model: tremor amplitude and frequency vary

with time. Figure. 5.6 compares the simulated FE angle to the recorded wrist angles from [9] pre-

sented in Fig. 3.6. The simulated tremor (dark purple, thickest trace) exhibits similar amplitude

and frequency variation as recorded tremor. Indeed, the simulated tremor produces amplitude and

frequency standard deviations that are 16% and 4.7% of the mean values, respectively, compared to

average values of 18% and 3.1% for recorded tremor. These results demonstrate that even though

delay-induced tremor is produced by a clear phenomenon (increased CNS delay), the complexi-

ties of the human motor system can produce complex dynamic responses that obscure the tremor

source. The fact that a delay-induced tremor model produces tremor with similar characteristics as

real tremor provides additional evidence that Parkinson’s disease may cause increased CNS delay

and motivates clinical research exploring this hypothesis.
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Figure 5.5: Adding complexities to the wrist model (three degrees-of-freedom, control saturation
noise, controller resetting) produces tremor that more closely resembles real tremor recordings.
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5.2 Implications

The proposed delay-induced tremor model provides new interpretations of Parkinson’s disease the-

ories on pathophysiology and treatment effectiveness. Contextualizing the delay-induced tremor

model with previous clinical observations also provides further support for this theory.
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5.2.1 Physiological Models

Basal Ganglia Gating Model: The gating model suggests the basal ganglia acts as a gate for

volitional movement, inhibiting the thalamus to prevent undesired motor action (gate closed) and

disinhibiting the thalamus to allow desired motor action (gate open) [143]. The delay-induced

tremor model suggests excessive inhibition may cause the gate to open only partially, allowing

motor action but with delayed signal transfer through the thalamus. Thus, the basal ganglia gating

model for volitional movement and the delay-induced tremor model mutually support each other.

Dimmer-Switch Model: The dimmer-switch model for parkinsonian tremor suggests the basal

ganglia initiates tremor (onset/offset) while the CTC circuit drives tremor [51]. The delay-induced

tremor model fits the clinical observations that support the dimmer-switch model, but provides

different interpretations of neural characteristics. In the delay model, neural oscillations in the

cerebellum and thalamus are the sensor, not the source, for the tremor. Similarly, oscillations

in the motor cortex reflect the controller that produces tremor, but the oscillatory activity is the

product of the feedback delay, not pathology in the motor cortex. Changes in tremor amplitude

are the result of the basal ganglia re-initializing the motor program. Clinical studies indicate the

neural networks in parkinsonian tremor are similar to those in healthy motor control, but include

oscillatory thalamo-cortical activity. However, this fact does not require the oscillatory activity to

be directly induced by abnormal neural bursting [144]. CTC circuit neural oscillation could be

consistent with downstream effects of increased feedback delay.
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5.2.2 Treatments

Medications: Dopaminergic medication decreases the inhibition from GPi to VLa. Removing or

decreasing this excessive inhibition removes or decreases the additional delay.

Deep Brain Stimulation: Deep brain stimulation demonstrates tremor reduction when stimulat-

ing GPi, VLp, or the subthalamic nucleus (STN). Many Parkinson’s disease models fail to address

how stimulation of both the thalamus and basal ganglia produce tremor reduction (the dimmer-

switch hypothesis is a leading model because both regions contribute to tremor) [50]. Like the

dimmer-switch hypothesis, the delay-induced tremor model can explain DBS effectiveness for all

targeted regions. The diagram in Fig. 5.1 provides insight into how DBS affects delay-induced

tremor when considering the three DBS hypotheses: inhibition, excitation, and disruption [145].

Inhibition and disruption hypotheses suggest DBS inhibits neuronal activity or disrupts information

flow, respectively. These two hypotheses have similar effect on the delay-induced tremor model

(one reduces activity and one stops activity, so the difference is the extent of DBS effectiveness).

Disruption of GPi reduces the excessive inhibition projected to the thalamus, reducing or eliminat-

ing the pathological delay in a similar manner as dopaminergic medication. Since STN input to GPi

produces more GPi inhibitory output to the thalamus, disruption of STN also reduces inhibition and

thalamic delay. Finally, disruption of VLp disrupts the feedback circuit, initially requiring the mo-

tor system to operate without feedback. The aftereffects of thalamotomy (lesion to VLp) support

this concept: patients initially exhibit decreased perception of body position [52]. Neuroplasticity

restores feedback through new neural pathways. Thus, DBS applied to VLp may also cause the
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CNS to develop new feedback pathways that avoid the pathological delay in the thalamus. The

excitation hypothesis for DBS provides another possiblity: VLp excitation overcomes the patho-

logical inhibition to decrease or remove the thalamic delay. However, the excitation hypothesis is

counterintuitive for stimulation of basal ganglia regions: STN or GPi excitation increases thalamic

inhibition. Thus, the delay-induced tremor model supports inhibition and disruption hypotheses

for DBS.

Functional Electrical Stimulation: Functional electrical stimulation is a non-invasive approach

that can offer moderate tremor reduction through electrical stimulation of muscles [62]. Stim-

ulation above the motor threshold provides a clear tremor reduction mechanism: activating the

muscles in the opposite direction of tremor reduces tremor. However, stimulation below the motor

threshold also reduces tremor. Following the disruption theory of electrical stimulation, FES may

disrupt afferent signals, thereby breaking the feedback loop in a similar manner as VLp stimu-

lation. Another possibility is that FES increases noise in the proprioceptive feedback; the CNS

detects this increase in sensor noise and adjusts optimal feedback accordingly.

5.2.3 Mechanical Tremor Suppression

Chapters 3 and 4 evaluate tremor suppression for state-independent tremor. A delay-induced

tremor may react differently to tremor suppression. Figure 5.7 illustrates the effect of tremor

suppression on delay-induced tremor. Each datapoint corresponds to simulated suppression of

rest tremor via velocity feedback. Tremor suppression reduces the amplitude and increases the
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tremor frequency, mirroring the effect of decreased CNS delay. These simulations demonstrate

two facts. First, mechanical tremor suppression is still effective for delay-induced tremor. Sec-

ond, unlike fixed tremor, mechanical suppression of delay-induced tremor increases the tremor

frequency. Thus, clinical evaluation of tremor frequency during tremor suppression may provide

additional support for CNS delay as the cause of parkinsonian tremor.
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Figure 5.7: Mechanical suppression of delay-induced tremor reduces tremor amplitude and in-
creases tremor frequency.

148



CHAPTER 6
CONCLUSIONS & REMAINING QUESTIONS

This dissertation applies a mechanical systems perspective to pathological tremor, evaluat-

ing mechanical tremor suppression with soft actuators and tremor generation in the human motor

feedback loop. Typical tremor treatments are based on empirical findings and have varying ef-

fectiveness across patient populations. Selecting medication doses and DBS parameters involves

significant guesswork since the mechanisms of tremor reduction are not well understood. Mechan-

ical tremor suppression offers a potential alternative treatment with a well-defined mechanism for

tremor reduction. In theory, mechanical tremor suppression reduces tremor irrespective of tremor

pathophysiology. However, the bulkiness of typical actuators limits mechanical tremor suppression

to laboratory settings. One of the primary objectives of this research is to establish a pathway to-

wards soft, low-profile tremor suppression by exploring dielectric elastomers as tremor suppression

actuators. Dielectric elastomer stack actuators actuate linearly and can conform to the human limb

in the transverse direction to enable low-profile implementations. However, electrical safety lim-

its restrict the DESA voltage and current, reducing actuation capabilities of actuators that already

have relatively low actuation levels. As demonstrated in simulations, these limits can produce poor

performance for DESA-based systems that must actuate to track voluntary motion. This research

solves this problem by applying a tremor-active approach: DESAs actuate only to suppress tremor.
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The human motor system must overcome the passive DESA dynamics. Simulations show excellent

and robust tremor suppression, demonstrating the potential for DESA-based devices that suppress

tremor at the cost of slight-to-moderate increases in patient effort for voluntary movements.

The promising DESA-based tremor suppression simulations in this research use relatively op-

timistic DESA parameters. Therefore, this dissertation also investigates the potential for achieving

physical systems with acceptable performance. Since DESAs constitute a relatively young class

of actuators (only proposed two decades ago!), DESAs currently lack commercial availability,

and manufacturing processes require specialized equipment and techniques. Therefore, this re-

search evaluates a scaled system to experimentally validate the fundamental characteristics found

in simulations. Folded DESAs enable low-cost implementation, but with large layer thicknesses

that produce very low actuation forces. A piezoelectrically actuated cantilever beam represents

scaled-down human motion, including voluntary motion and tremor. Experiments demonstrate

the ability of DESAs to reduce tremor in a physical system using a tremor-active approach. To

work towards real applications, this research quantifies the necessary DESA parameters for clini-

cal implementations by applying limits on the passive DESA dynamics, tracking error, and actuator

size. Simulations indicate tremor-active control may achieve satisfactory performance even with

moderate levels of current and voltage saturation. Evaluation of literature DESAs indicates two

promising pathways for achieving DESAs that meet the necessary parameters for tremor suppres-

sion: scaling-up the number of layers of thin-layer silicone DESAs and decreasing crosslinker or

adding plasticizer to UV-cured acrylic DESAs.
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In addition to tremor suppression, this dissertation explores CNS delay as a potential mecha-

nism for tremor generation in Parkinson’s disease. Stochastic optimal control captures the funda-

mental characteristics of human motor control, with previous clinical evidence mapping control

model components to physiological structures. This mapping and known pathological charac-

teristics of Parkinson’s disease motivate model structure. Parkinson’s disease includes excessive

inhibitory projection from the basal ganglia to the thalamus. The thalamus relays signals from the

cerebellum to the primary motor cortex. Since the optimal control model represents the cerebellum

and primary motor cortex as the state estimator and controller, respectively, increased thalamic in-

hibition represents an unaccounted CNS delay between estimator and controller. Simulations show

that delays above a critical value produce instability, with higher delays producing higher ampli-

tudes and lower tremor frequencies. Adding additional complexities of the human motor system

produces simulated tremor with similar time-varying amplitude and frequency characteristics as

recorded tremor, providing further evidence of CNS delay as a potential mechanism for tremor

generation. A significant advantage of the delay-induced tremor hypothesis is its ability to capture

a wide range of known Parkinson’s disease characteristics. For example, delay-induced tremor

explains the effectiveness of DBS targeting the basal ganglia and the thalamus: DBS disruption of

signal flow either reduces excessive inhibition from the basal ganglia or breaks the unstable feed-

back loop. Finally, this research demonstrates two important properties for mechanical suppression

of delay-induced tremor: mechanical suppression can still effectively reduce delay-induced tremor

and suppression increases tremor frequency. The latter property may provide a pathway towards

obtaining clinical evidence of delay-induced tremor.
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6.1 Key Contributions

6.1.1 DESA-Based Tremor Suppression

While mechanical tremor suppression offers the potential for effective and robust tremor reduction,

bulky actuators prohibit clinical implementations. This research is the first to propose dielectric

elastomers as actuators for tremor suppression to improve clinical implementation potential. Key

advantages of dielectric elastomers are their small size, low weight, low number of mechanical

connections, stiffnesses on the same scale or lower than human muscle, electrical actuation, con-

tractile actuation, and high energy density. These advantages can significantly improve patient

acceptance of mechanical tremor suppression by enabling low-profile devices. However, such a

system must overcome several disadvantages of dielectric elastomers, including their viscoelastic

properties, relatively low actuation levels, need for high-voltage power electronics, and lack of

commercial availability.

A primary contribution of this research is the development of a control approach that addresses

the low actuation levels of dielectric elastomers. Since typical actuators are rigid in their passive

state, they must actuate to suppress tremor and follow voluntary motion—this is a fully active

approach since the actuators are active for tremor suppression and voluntary motion tracking. In

contrast, this research proposes a tremor-active approach for DESA-based tremor suppression: the

actuators are only active for tremor suppression while the human motor system overcomes the

passive actuator dynamics to complete voluntary tasks. This approach is only possible with com-
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pliant actuators like dielectric elastomers: tremor-active control leverages low actuator mechanical

impedance to reduce actuation requirements. This approach assumes patients will accept increased

effort for voluntary movements to gain low-profile tremor suppression. Simulations demonstrate

tremor reduction ranging from typical medication performance to typical DBS performance de-

pending on the voluntary motion and tremor characteristics. Achieving this level of performance

in physical systems will make DESA-based tremor suppression a viable clinical treatment option

at the very least, with the possibility for developing high-impact, ubiquitous devices.

A second contribution of this research is the evaluation of the outlook for achieving suitable

physical implementations of DESA-based tremor suppression. This research provides the first ex-

perimental evidence that a DESA-based system can reduce motion in the tremor frequency range to

a greater extent than the consequential reduction of motion in the voluntary range, thereby demon-

strating an improvement over passive systems. Since the actuation capabilities of the DESAs in

these experiments only enable suppression of a scaled-down system, this research identifies DESA

parameters to enable implementation in clinical devices. Significantly, this study quantifies per-

formance limits in terms of normalized parameters, generalizing the results for a class of similar

joints. One key finding from this investigation is that tremor-active control can produce satisfactory

performance even with moderate levels of controller saturation. These results further demonstrate

the ability of tremor-active control to improve DESA implementation potential by significantly re-

ducing actuation requirements. Overall, this analysis provides a map of DESA characteristics that

meet clinical implementation requirements to motivate the development of commercially available

DESAs that meet these requirements. This research identifies the recently developed manufac-
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turing method for UV-cured acrylic DESAs as a promising approach for developing DESAs for

tremor suppression. These DESAs include thousands of very thin layers to produce relatively

large actuators with relatively large actuation abilities. While reported stiffness values are likely

too large for tremor-active control, reducing crosslinker or adding plasticizer can decrease stiffness

to achieve DESAs that meet the necessary parameters.

6.1.2 Tremor Produced via CNS Delay

Uncovering tremor pathophysiology is an ongoing challenge as researchers work towards improved

treatments, cure development, and fundamental understanding of human motor control. A major

drawback for many pathophysiology theories is their inability to capture all disease characteristics.

In particular, many theories fail to capture how DBS reduces tremor when stimulating the basal

ganglia or the thalamus. Furthermore, many theories suggest separate pathologies for parkinsonian

tremor and other Parkinson’s disease symptoms. This research explores the idea that increased

feedback delay in the human motor control loop produces parkinsonian tremor. This mechanism

unifies the pathological element for tremor generation and other Parkinson’s disease symptoms:

excessive CNS inhibition slows movements and causes instability that produces tremor. The pri-

mary contribution of this research is the development of an evidence-based human motor control

model with CNS delay. Simulations of this model demonstrate increased tremor amplitudes and

decreased tremor frequencies as the unaccounted CNS delay increases. These characteristics mir-

ror tremor characteristics as the disease progresses. This research also demonstrates simulated
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tremor with time-varying amplitude and frequency that is similar to the variations observed in

recorded tremor. This result provides further support for the delay-induced tremor hypothesis. Ini-

tially, delay-induced tremor may seem overly simplistic since it produces constant amplitude and

frequency for baseline systems. However, adding more complexities of the human motor system

produces time-varying amplitudes and frequencies consistent with recorded tremor. Thus, com-

plex tremor characteristics may reflect the many complexities of human motor control while the

fundamental cause of tremor is CNS delay.

Another key contribution of this study is the ability to relate the delay-induced tremor model

to physiological structures. Previous clinical studies motivate model structure: increased thalamic

delay from excessive basal ganglia inhibitory projections produces a delay between the cerebel-

lum (estimator) and primary motor cortex (controller). This delay location provides insight into

treatment effectiveness and current theories on tremor pathophysiology. Deep brain stimulation

works by inhibiting or disrupting signal flow. Thus, DBS of the STN or GPi reduces tremor by

decreasing the excessive inhibition that produces the delay. In addition, DBS of the VLp reduces

tremor by breaking the feedback loop; neuroplasticity creates new feedback pathways for mo-

tor control. Clinical evidence that supports the dimmer-switch hypothesis of parkinsonian tremor

also supports the delay-induced tremor model. Basal ganglia activity produces tremor onset by

initializing motor action similar to healthy motor control. The CTC circuit drives tremor ampli-

tude just as it executes healthy motor control, with thalamic delay causing instability. Finally, this

research demonstrates the effect of tremor suppression on delay-induced tremor: suppression in-

creases tremor frequency. This fact may present a pathway towards obtaining clinical evidence of
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delay-induced tremor. Altogether, this research provides support for CNS delay as the source of

parkinsonian tremor, motivating future work towards clinical investigation of this hypothesis.

6.2 Remaining Questions

6.2.1 DESA Implementation

This dissertation establishes the potential benefits of DESA-based tremor suppression, but clinical

implementations require advances in DESA manufacturing and high-voltage power electronics.

While the literature does not reveal any DESAs that meet the derived necessary parameters for

tremor suppression, a recent process using UV-cured acrylic only requires minor adjustments to

decrease the Young’s modulus of the elastomer. These adjustments (decrease crosslinker concen-

tration or add plasticizer) may be easily implemented in the existing manufacturing process. Even

with the existence of manufacturing that produces satsifactory DESAs, the process must be scaled

for mass manfacturing to enable widespread implementation of DESA-based tremor suppression.

Dielectric elastomer-based devices also require high-voltage power electronics—ideally in a

compact and lightweight form. Despite requiring high voltages, dielectric elastomers operate at

relatively low power, enabling operation with relatively small power electronics. Project Peta-

pico-Voltron is one example of a relatively small power supply for DEA applications, while an

extension for use with HASEL actuators further demonstrates the small profile of even prototype

high-voltage power electronics. Furthermore, flyback converters improve energy efficiency by
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enabling bidirectional energy flow. Ultimately, continued advances in compact high-voltage, low-

current power electronics will facilitate future development of DESA-based tremor suppression

devices. In addition, any device requires thorough evaluation of electrical safety for close inter-

action with the human body. Significantly, the results of this dissertation suggest DESA-based

tremor suppression devices can be effective while meeting electrical safety limits.

A final consideration for clinical tremor suppression is general device design. This dissertation

focuses on control design and establishing the feasibility of DESA-based tremor suppression. Ac-

tual implementations require detailed design considerations to ensure effective transfer of forces

from DESAs to joints. The design must also consider ergonomics, user comfort, minimization of

device profile, and application to multiple degrees of freedom.

6.2.2 Clinical Evaluation of Delay-Induced Tremor

This dissertation provides theoretical evidence for delay-induced tremor. Future clinical inves-

tigation will help to evaluate the validity of this hypothesis. Mechanical tremor suppression is

one promising approach to investigate delay-induced tremor clinically: tremor suppression will

increase tremor frequency. Brain imaging studies also may help evaluate this hypothesis. This

research used clinical evidence to identify the thalamus as a potential location of increased CNS

delay (nominally between estimator and controller). However, other delay locations (or multiple

delay locations) are conceivable with similar effect. One unclear element of the proposed model is

exactly how excessive inhibition of VLa transfers to VLp. Another possibility is that VLa projects
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this inhibition to M1: thus, the delay occurs in the primary motor cortex (in optimal control termi-

nology, either just before or after the controller). Altogether, future clinical work should evaluate

the validity of CNS delay as the source of tremor along with the exact locations of pathological

delay. If future research establishes CNS delay as the source of tremor, this knowledge can inform

improved treatments and even facilitate cure development.
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APPENDIX A
MATLAB CODE FOR TREMOR SUPPRESSION SIMULATIONS
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A.1 Fully Active Simulation

A.1.1 Execution Script

%% Simulate adaptive notch filter controller
% Requires 'park01.mat' file: t=time, x=acceleration data
% Requires 'JarTaskBoth.mat' file: tjar=time, FEjar=FE angle (deg)
clear all; close all;
kdat = 1;
tremorfile = strcat('park0',num2str(kdat),'.mat');

%% System parameters
% DESA parameters
% Material parameters
Y = 0.5e6; eps = 6.9*8.854e−12; density = 1600;
k1 = 1.5*Y; n1 = 0.03*Y;
% Geometrical parameters
n = 2000; do = 50e−6; wo = 1e−2; Ao = woˆ2; lo = n*do;
% Inertia
ma = density*Ao*n*do/3;
% Wrist parameters
mw = 0.00276; cw = 0.03; kw = 0.992;
ro = 3e−2; % moment arm of DEA about wrist joint
% DESA parameter vector
pdeap = [k1 n1 Y eps density n do wo]';
% Wrist parameter vector
pwrist = [mw cw kw ro]';

%% Controller parameters
% Notch filter
b1 = −3;
wT = 2*pi*5;
zeta = 0.01;
zeta2 = 0.1;
b2 = −8;
fs = 1000;
Ts = 1/fs;

% Electrical limits
Cap0 = n*eps*Ao/do;
currentlimit = 20e−3;
csat = 4445; % Voltage limit calculated from capacitance
usat = csatˆ2;
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% High−pass filter
alpha0 = 27979; alpha1 = 631.5; alpha2 = 68.69; alpha3 = 1;
beta0 = 279.3; beta1 = 65.18; beta2 = 9.03; beta3 = 1;

%Band−pass filter
zetaf = 0.025;

% WFLC
muo = 0.00005; % Gain
mu = 0.005;
rhow = 1;
xrk = [];
wok = 2*pi*5*Ts;
wo = wok;
M = 1;
for r = 1:M

xrk(r,1) = sin(r*wo);
end
for r = M+1:2*M

xrk(r,1) = cos((r−M)*wo);
end
wk = zeros(2*M,1);
wk(1,1) = 1;
xh = wk'*xrk;
xhv = xh;
wkv = wk';
fdom(1,1) = wok/Ts/(2*pi);

% DEA controller
c1 = 4/Tsˆ2; c2 = 2*k1/(Ts*n1); c3 = −16*roˆ2*ma/Tsˆ3;
c4 = −8*roˆ2*ma*k1/(Tsˆ2*n1); c5 = −4*roˆ2*Ao*(Y+k1)/(Ts*lo);
c6 = −2*roˆ2*Ao*Y*k1/(lo*n1); c7 = 4*ro*Ao*eps/(Tsˆ2*doˆ2);
c8 = 2*ro*Ao*eps*k1/(Ts*doˆ2*n1);
c78 = −c7−c8;
w1 = (c3+c4+c5+c6)/c78; w2 = (−3*c3−c4+c5+3*c6)/c78;
w3 = (3*c3−c4−c5+3*c6)/c78; w4 = (−c3+c4−c5+c6)/c78;
w5 = (−c1−c2)/c78; w6 = (c1−c2)/c78; w7 = (c1+c2)/c78; w8 = (−c1+c2)/c78;
w9 = (−c7+c8)/c78; w10 = (−c7−c8)/c78; w11 = (c7−c8)/c78;
wvec = [w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11]';
yvec = [0 0 0 0]'; Mvec = [0 0 0 0]'; uvec = [0 0 0]';
xvec = [yvec; Mvec; uvec];

zetac = 1;
wc = 600;
Hue = ro*Ao*eps/doˆ2;
uv = [0; 0];
errv = [0 0 0]';
Mkh = 0;
Mkhv = 0;

%% Voluntary and tremor motion
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% Tremor
load(tremorfile);
time = t;
tauT = 0.1*x;
tautremor = tauT;
Adata = max(x);
% Voluntary
load('JarTaskBoth.mat')
ttask = tjar;
xtask = FEjar;
t = t(1:find(t>ttask(end),1)−1);
time = t;
tautremor = tautremor(1:length(t));
tauT = tautremor;
tvol = t;
xvol = interp1(ttask,xtask,tvol);
xvolrad = pi/180*xvol;
xdvolrad = fDiff(xvolrad,t(2)−t(1),1);
xddvolrad = fDiff(xvolrad,t(2)−t(1),2);
tauvolaa = mw*xddvolrad+cw*xdvolrad+kw*xvolrad;
tauvol = tauvolaa;
tauV = tauvol;
TimmerV = [tvol tauvol];

% Combined wrist torque
tauw = tauV+tauT;
Timmer = [time tauw];

% Simulations with and without tremor
[tuncs,xuncs] = ode45(@ANFsmdDis,time,[0 0]',[],mw,cw,kw,0,Timmer);
xunc = xuncs(:,1);
[tvols,xvols] = ode45(@ANFsmdDis,time,[0 0]',[],mw,cw,kw,0,TimmerV);
xvol = xvols(:,1);

%% Integration parameters
options = [];
x0 = [0 0 0 0];
t0 = 0;
tf = 10;
Nsim = round(fs*tf);
t1 = t0;
t2 = t1+Ts;
t = t0;
x = x0;
taud = 0; taudv = taud;
taudkv1 = [0 0]'; taudkv2 = taudkv1;
ykv = [0 0 0 0]';
xTkv = [0 0 0]';
xTv = 0;
xTfv = 0;
xTfkv = [0 0];
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uk = 0; ukv = uk;

%% Numerical integration
% Integrate over single sampling interval; loop over entire time interval
for k=1:Nsim

[tk,xk] = ode45(@ANFdea,[t1 t2],x0,options,pdeap,pwrist,Timmer,uk);
t = [t; tk(end)];
x = [x; xk(end,:)];
t1 = t(end); t2 = t1+Ts;
x0 = x(end,:);

%% Calculate desired output torque of actuator
yk = x(end,2); % Measurement and input to notch filter
ykv = [yk; ykv(1:3)];
taud1 = 1/(4/Tsˆ2+4*zeta*wT/Ts+wTˆ2)*(2*b1/Ts*ykv(1)−2*b1/Ts*ykv(3)+...

(8/Tsˆ2−2*wTˆ2)*taudkv1(1)+(−4/Tsˆ2+4*zeta*wT/Ts−wTˆ2)*taudkv1(2));
taud2 = 1/(4/Tsˆ2+8*zeta2*wT/Ts+4*wTˆ2)*(2*b2/Ts*ykv(1)...

−2*b2/Ts*ykv(3)+(8/Tsˆ2−8*wTˆ2)*taudkv2(1)+...
(−4/Tsˆ2+8*zeta2*wT/Ts−4*wTˆ2)*taudkv2(2));

taudkv1 = [taud1; taudkv1(1)];
taudkv2 = [taud2; taudkv2(1)];
taud = taud1+taud2;
taudv = [taudv; taud];

%% Extract Mdea
ukv = [ukv; uk];
% Calculate acceleration from EOM
xdd = 1/(mw+2*roˆ2*ma)*(tauw(1:length(t))−cw*x(:,2)−kw*x(:,1)−...

2*roˆ2*Ao*Y/(3*lo)*(1+2./(1+roˆ2/loˆ2*x(:,1).ˆ2).ˆ2).*x(:,1)+...
ro*Ao*eps/doˆ2*(ukv./(1−ro/lo*x(:,1).*sign(ukv)).ˆ3)+...
ro*Ao*(x(:,3)./(1−ro/lo*x(:,1))−x(:,4)./(1+ro/lo*x(:,1))));

Mdea = −2*roˆ2*ma*xdd−...
2*roˆ2*Ao*Y/(3*lo)*(1+2./(1+roˆ2/loˆ2*x(:,1).ˆ2).ˆ2).*x(:,1)+...
ro*Ao*eps/doˆ2*(ukv./(1−ro/lo*x(:,1).*sign(ukv)).ˆ3)+...
ro*Ao*(x(:,3)./(1−ro/lo*x(:,1))−x(:,4)./(1+ro/lo*x(:,1)));

% Calculate estimated actuator torque
Mkh = Mdea(end);
Mkhv = [Mkhv; Mkh];

%% Calculate controller input that outputs desired torque
err = taud−Mkh;
errv = [err; errv(1:2)];
uk = 1/(4/Tsˆ2+4/Ts*zetac*wc)*(wcˆ2/Hue*errv(1)+2*wcˆ2/Hue*errv(2)+...

wcˆ2/Hue*errv(3)+8/Tsˆ2*uv(1)+(−4/Tsˆ2+4/Ts*zetac*wc)*uv(2));

% Enforce electrical limits
uc = uk;
if abs(uc) > usat

uc = usat*sign(uc);
end
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Vchecknew = sqrt(abs(uc)).*sign(uc);
Vcheckold = sqrt(abs(uv(1))).*sign(uv(1));
dVcheck = Vchecknew−Vcheckold;
dVmax = currentlimit/fs/Cap0;
if abs(dVcheck) > dVmax

Vnew = Vcheckold+dVmax*sign(dVcheck);
uc = Vnewˆ2*sign(Vnew);

end
uk = uc;
uv = [uk; uv(1)];

%% Estimate dominant tremor frequency
% High−pass filter
xTk = 1/(alpha3*8/Tsˆ3+alpha2*4/Tsˆ2+alpha1*2/Ts+alpha0)*...

((beta3*8/Tsˆ3+beta2*4/Tsˆ2+beta1*2/Ts+beta0)*ykv(1)+...
(−beta3*24/Tsˆ3−beta2*4/Tsˆ2+beta1*2/Ts+3*beta0)*ykv(2)+...
(beta3*24/Tsˆ3−beta2*4/Tsˆ2−beta1*2/Ts+3*beta0)*ykv(3)+...
(−beta3*8/Tsˆ3+beta2*4/Tsˆ2−beta1*2/Ts+beta0)*ykv(4)+...
(alpha3*24/Tsˆ3+alpha2*4/Tsˆ2−alpha1*2/Ts−3*alpha0)*xTkv(1)+...
(−alpha3*24/Tsˆ3+alpha2*4/Tsˆ2+alpha1*2/Ts−3*alpha0)*xTkv(2)+...
(alpha3*8/Tsˆ3−alpha2*4/Tsˆ2+alpha1*2/Ts−alpha0)*xTkv(3));

xTkv = [xTk; xTkv(1:2)];
xTv = [xTv; xTk];

% Band−pass filter
xTf = 1/(4/Tsˆ2+4*zeta*wT/Ts+wTˆ2)*(4*zetaf*wT/Ts*xTkv(1)−...

4*zetaf*wT/Ts*xTkv(3)+(8/Tsˆ2−2*wTˆ2)*xTfkv(1)+...
(−4/Tsˆ2+4*zeta*wT/Ts−wTˆ2)*xTfkv(2));

xTfkv = [xTf; xTfkv(1)];
xTfv = [xTfv; xTf];

% WFLC
ek = xTf−wk'*xrk;
sumwx = 0;
for r = 1:M

sumwx = sumwx+(wk(r)*xrk(M+r)−wk(M+r)*xrk(r));
end
wok = wok+2*muo*ek*sumwx;
wk = wk+2*mu*xrk*ek;
wo = rhow*wo+wok;
for r = 1:M

xrk(r,1) = sin(r*wo);
end
for r = M+1:2*M

xrk(r,1) = cos((r−M)*wo);
end
xh = wk'*xrk;
xhv(k+1,1) = xh;
wdom = wok;
fdom(k+1,1) = wdom/Ts/(2*pi);
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wT = 2*pi*fdom(end);

end

%% Calculate actual actuator torque
xdd = 1/(mw+2*roˆ2*ma)*(tauw(1:length(t))−cw*x(:,2)−kw*x(:,1)−...

2*roˆ2*Ao*Y/(3*lo)*(1+2./(1+roˆ2/loˆ2*x(:,1).ˆ2).ˆ2).*x(:,1)+...
ro*Ao*eps/doˆ2*(ukv./(1−ro/lo*x(:,1).*sign(ukv)).ˆ3)+...
ro*Ao*(x(:,3)./(1−ro/lo*x(:,1))−x(:,4)./(1+ro/lo*x(:,1))));

Mdea = −2*roˆ2*ma*xdd−...
2*roˆ2*Ao*Y/(3*lo)*(1+2./(1+roˆ2/loˆ2*x(:,1).ˆ2).ˆ2).*x(:,1)+...
ro*Ao*eps/doˆ2*(ukv./(1−ro/lo*x(:,1).*sign(ukv)).ˆ3)+...
ro*Ao*(x(:,3)./(1−ro/lo*x(:,1))−x(:,4)./(1+ro/lo*x(:,1)));

%% Generate plots
% Convert to degrees
xcon = 180/pi*x(:,1);
xunc2 = 180/pi*xunc(1:length(t));
xvol2 = 180/pi*xvol(1:length(t));
trackerr = xcon−xvol2;

set(0,'DefaultAxesFontSize',12,'DefaultTextFontSize',12,...
'DefaultAxesFontName','Times','DefaultTextFontName','Times',...
'DefaultAxesFontWeight','bold','DefaultTextFontWeight','bold',...
'DefaultLineLineWidth',2,'DefaultLineMarkerSize',10,...
'DefaultFigureColor','w','DefaultFigurePosition',...
[100 100 0.4*[1600 1600]]);

Colm = colormap(parula(7));
Col = {Colm(1,:),Colm(2,:),Colm(3,:),Colm(4,:),...

Colm(5,:),Colm(5,:),Colm(6,:),Colm(7,:)};
V = sqrt(abs(ukv)).*sign(ukv);
dVplot = diff(V); dVplot = [0; dVplot];
figure; subplot(3,1,1); plot(t,xunc2,'Color',Col{7})
hold on; plot(t,xcon,'Color',Col{3})
hold on; plot(t,xvol2,'Color',Col{1})
xlim([t0 10])
ylim([−25 10])
legend({'uncontrolled','controlled','desired'},'Position',...

[0.28 0.842 0.72 0.2],...
'Units','normalized','Orientation','horizontal');

ylabel('\boldmath$\theta$ \textbf{(deg)}','interpreter','latex')
ax = gca;
ax.YTick = [−25:5:10];
subplot(3,1,2); plot(t,V/1000/4.445,'Color',Col{1})
xlim([t0 10])
ylabel('\boldmath$V/V {\mathrm{lim}}$','interpreter','latex')
ylim([−1 1])
ax = gca;
ax.YTick = [−1:0.5:1];
subplot(3,1,3); plot(t,dVplot/dVmax,'Color',Col{1})
xlim([t0 10])
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ylim([−1.1 1.1])
xlabel('time (s)')
ylabel('\boldmath$\Delta V/\Delta V {\mathrm{lim}}$','interpreter','latex')

A.1.2 Associated Functions

A.1.2.1 ANFdea

function dx = ANFdea(t,x,pdeap,pwrist,Timmer,u)

% Unwrap parameters
% DEAP parameter vector
k1 = pdeap(1); n1 = pdeap(2); Y = pdeap(3); eps = pdeap(4); rho = pdeap(5);
n = pdeap(6); do = pdeap(7); wo = pdeap(8);
Ao = woˆ2; lo = n*do; ma = rho*Ao*n*do/3;
% Wrist parameter vector
mw = pwrist(1); cw = pwrist(2); kw = pwrist(3); ro = pwrist(4);

% Wrist torque
tautime = Timmer(:,1); torque = Timmer(:,2);
tw = interp1(tautime,torque,t);

% Differential equations of motion
% x = [theta thetadot sigmamwl sigmamwr]
dx1 = x(2);
dx2 = 1/(mw+2*roˆ2*ma)*(tw−cw*x(2)−kw*x(1)−...

2*roˆ2*Ao*Y/(3*lo)*(1+2/(1−roˆ2/loˆ2*x(1)ˆ2)ˆ2)*x(1)+...
ro*Ao*eps/doˆ2*(u/(1−ro/lo*x(1)*sign(u))ˆ3)+...
ro*Ao*(x(3)/(1−ro/lo*x(1))−x(4)/(1+ro/lo*x(1))));

dx3 = −ro*k1/lo*x(2)−k1/n1*x(3);
dx4 = ro*k1/lo*x(2)−k1/n1*x(4);
dx = [dx1 dx2 dx3 dx4]';

A.1.2.2 ANFsmdDis

function dx = ANFsmdDis(t,x,mw,cw,kw,taud,Timmer)

% Wrist torque
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tautime = Timmer(:,1); torque = Timmer(:,2);
tw = interp1(tautime,torque,t);

% Differential equations of motion
% Wrist
dx1 = x(2);
dx2 = 1/mw*(tw+taud−cw*x(2)−kw*x(1));
dx = [dx1 dx2]';

A.1.2.3 fDiff

function yd = fDiff(y,dx,nOrder)

ind = 2:length(y)−1;
yd = zeros(size(y));

if nOrder == 1,
yd(ind) = 1/(2*dx)*(y(ind+1)−y(ind−1));
yd(1) = 1/(2*dx)*(−y(3)+4*y(2)−3*y(1));
yd(end) = 1/(2*dx)*(3*y(end)−4*y(end−1)+y(end−2));

elseif nOrder == 2,
yd(ind) = 1/dxˆ2*(y(ind+1)−2*y(ind)+y(ind−1));
yd(1) = 1/dxˆ2*(−y(4)+4*y(3)−5*y(2)+2*y(1));
yd(end) = 1/dxˆ2*(2*y(end)−5*y(end−1)+4*y(end−2)−y(end−3));

end

A.2 Tremor-Active Simulation

A.2.1 Execution Script

%% Simulate tremor−active suppression
% Requires 'et02.mat' file: t=time, x=acceleration data
% Requires 'JarTaskBoth.mat' file: tjar=time, FEjar=FE angle (deg)
close all; clear all;
options = [];
kdat = 2;
tremorfile = strcat('et0',num2str(kdat),'.mat');
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%% Define parameters
% DESA parameters
% Material parameters
Y = 0.5e6; eps = 6.9*8.854e−12; density = 1600;
k1 = 1.5*Y; n1 = 0.03*Y;
% Geometrical parameters
n = 2000; do = 50e−6; wo = 1e−2; Ao = woˆ2; lo = n*do;
% Inertia
m = density*Ao*n*do/3;
% Capacitance
Cap0 = n*eps*Ao/do;
% Wrist parameters
mw = 0.00276; cw = 0.03; kw = 0.992;
ro = 3e−2; % moment arm of DEA about wrist joint
% Contoller parameters
gainfA =3e7;
currentlimit = 20e−3;
csat = 4445; % Voltage limit calculated from capacitance
usat = csatˆ2;
fs = 1000; T = 1/fs;
% DESA parameter vector
pdeap = [k1 n1 Y eps density n do wo]';
% Wrist parameter vector
pwrist = [mw cw kw ro]';

%% Calculate muscular torque
% Specify tremor torque
load(tremorfile);
Adata = max(x);
tautremor = 0.1*x;
TimmerT = [t tautremor];

% Specify voluntary motion
load('JarTaskBoth.mat')
ttask = tjar;
xtask = FEjar;
t = t(1:find(t>ttask(end),1)−1);
time = t;
tautremor = tautremor(1:length(t));
tauT = tautremor;
tvol = t;
xvol = interp1(ttask,xtask,tvol);
xvolrad = pi/180*xvol;
xdvolrad = fDiff(xvolrad,t(2)−t(1),1);
xddvolrad = fDiff(xvolrad,t(2)−t(1),2);
tauvolaa = mw*xddvolrad+cw*xdvolrad+kw*xvolrad;
[tsigf,sigmwf] = ode45(@sigfeom,tvol,0,[],k1,n1,ro,lo,tvol,xdvolrad);
[tsige,sigmwe] = ode45(@sigeeom,tvol,0,[],k1,n1,ro,lo,tvol,xdvolrad);
tauvol = tauvolaa+2*roˆ2*m*xddvolrad+...

2*roˆ2*Ao*Y/(3*lo)*(1+2./(1−roˆ2/loˆ2*xvolrad.ˆ2).ˆ2).*xvolrad+...
ro*Ao*(sigmwe./(1+ro/lo*xvolrad)−sigmwf./(1−ro/lo*xvolrad));
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TimmerV = [tvol tauvol];

% Simulated voluntary motion
[tvol,xvols] = ode45(@DEAfull,t,[0 0 0 0]',options,...

pdeap,pwrist,TimmerV,[0; 0],0,30);
xvol = xvols(:,1);

torque = tautremor+tauvol;
tautime = t;

Timmer = [tautime torque];
% Simulated uncontrolled system
[tuncs,xuncs] = ode45(@DEAfull,t,[0 0 0 0]',options,...

pdeap,pwrist,Timmer,[0; 0],0,30);
xunc = xuncs(:,1);

%% Initialization of filter parameters
% BMFLC for residual estimate
flow = 4; fhigh = 7;
wa = round(2*pi*flow); wb = round(2*pi*fhigh); % frequency range
beta = 50; % number of frequencies
eta = 0.00001; % gain
wvec = [wa:1/beta:wb]';
Tp = 0.5; dT = 1/fs; delta = Tp/dT; alpha1 = 0.05; rho = alpha1ˆ(1/delta);
phi = [];
t0 = 0;
N = beta*(wb−wa);
for k = 0:N−1

phi(k+1,1) = sin(wa*t0+(k/beta)*t0);
end
for k = N:2*N−1

phi(k+1,1) = cos(wa*t0+(k/beta)*t0);
end
theta = zeros(length(phi),1);
xh = theta'*phi;
xhv = xh;

%% Integration parameters
x0 = [0 0 0 0];
t0 = 0;
tf = t(end);
fss = fs; % Sampling frequency of controller in Hz
Ts = 1/fss;
Nsim = round(fss*tf)−1;
t1 = t0;
t2 = t1+Ts;
t = t0;
x = x0;
uin = 0; uv = [0; 0];
gainfv = 0;
gainfv2 = 0;
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%% Numerical integration
% Integrate over single sampling interval; loop over entire time interval
for k=1:Nsim

[tk,xk] = ode45(@DEAfull,[t1 t2],x0,options,...
pdeap,pwrist,Timmer,uv(end−1:end),t1,Ts);

t = [t; tk(end)];
x = [x; xk(end,:)];
t1 = t(end); t2 = t1+Ts;
x0 = x(end,:);

% BMFLC
E = x(end,2)−xh;
theta = rho*theta+2*eta*phi*E;
for kn = 0:N−1

phi(kn+1,1) = sin(wa*t1+(kn/beta)*t1);
end
for kn = N:2*N−1

phi(kn+1,1) = cos(wa*t1+(kn/beta)*t1);
end
xh = theta'*phi;
xhv(k+1,1) = xh;

% Ratio of low to high frequency power of tremor estimate
Nwin = fs*3;
if k == 1

Xrwinv = 0;
end
if length(xhv) >= Nwin

xhwin = xhv(end−Nwin+1:end);
else

xhwin = [zeros(Nwin−length(xhv),1); xhv];
end
Nf = length(xhwin);
delf = fs/Nf;
f = [0:Nf−1]*delf;
f = f';
Xwin = abs(fft(xhwin,Nf))*2/Nf;
fvolw = find(f>=2,1);
fh1 = find(f>=flow,1)−1;
fh2 = find(f>=fhigh,1);
Xvolw = sum(Xwin(1:fvolw));
Xhw = sum(Xwin(fh1:fh2));
Xrwin = Xvolw/(Xhw+1e−11);
Xrwinv(k+1,1) = Xrwin;

% Calculate next controller input
% Feedback controller with adaptive gain
gainf = gainfA*exp(−9*Xrwin);
gainfv(k+1,1) = gainf;
if length(gainfv) > 1000
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gainf = mean(gainfv(end−1000:end));
end
gainfv2(k+1,1) = gainf;
% Check voltage saturation
uc = −gainf*xhv(end);
if abs(uc) > usat

uc = usat*sign(uc);
end
% Check current saturation
uin = uc;
uvun(k+1,1) = uc;
Vchecknew = sqrt(abs(uc)).*sign(uc);
Vcheckold = sqrt(abs(uv(end))).*sign(uv(end));
dVcheck = Vchecknew−Vcheckold;
dVmax = currentlimit/fs/Cap0;
if abs(dVcheck) > dVmax

Vnew = Vcheckold+dVmax*sign(dVcheck);
uin = Vnewˆ2*sign(Vnew);

end
uv(k+1,1) = uin;

end

%% Plot results
set(0,'DefaultAxesFontSize',12,'DefaultTextFontSize',12,...

'DefaultAxesFontName','Times','DefaultTextFontName','Times',...
'DefaultAxesFontWeight','bold','DefaultTextFontWeight','bold',...
'DefaultLineLineWidth',2,'DefaultLineMarkerSize',10,...
'DefaultFigureColor','w','DefaultFigurePosition',...
[100 100 0.4*[1600 1600]]);

Colm = colormap(parula(7));
Col = {Colm(1,:),Colm(2,:),Colm(3,:),Colm(4,:),...

Colm(5,:),Colm(5,:),Colm(6,:),Colm(7,:)};
u = sqrt(abs(uv)).*sign(uv);
dVplot = diff(u); dVplot = [0; dVplot];
figure; subplot(3,1,1); plot(tautime,xunc*180/pi,'Color',Col{7})
hold on; plot(t,x(:,1)*180/pi,'Color',Col{3})
hold on; plot(tautime,xvol*180/pi,'Color',Col{1})
xlim([t0 10])
ylim([−25 10])
legend({'uncontrolled','controlled','desired'},'Position',...

[0.28 0.842 0.72 0.2],'Units','normalized','Orientation','horizontal');
ylabel('\boldmath$\theta$ \textbf{(deg)}','interpreter','latex')
ax = gca;
ax.YTick = [−25:5:10];
subplot(3,1,2); plot(t,u/1000/4.445,'Color',Col{1})
xlim([t0 10])
ylabel('\boldmath$V/V {\mathrm{lim}}$','interpreter','latex')
ylim([−1 1])
ax = gca;
ax.YTick = [−1:0.5:1];
subplot(3,1,3); plot(t,dVplot/dVmax,'Color',Col{1})
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xlim([t0 10])
ylim([−1.1 1.1])
xlabel('time (s)')
ylabel('\boldmath$\Delta V/\Delta V {\mathrm{lim}}$','interpreter','latex')

A.2.2 Associated Functions

A.2.2.1 DEAfull

function dx = DEAfull(t,x,pdeap,pwrist,Timmer,uin,tu0,Ts)

% Unwrap parameters
% DEAP parameter vector
k1 = pdeap(1); n1 = pdeap(2); Y = pdeap(3); eps = pdeap(4); rho = pdeap(5);
n = pdeap(6); do = pdeap(7); wo = pdeap(8);
Ao = woˆ2; lo = n*do; m = rho*Ao*n*do/3;
% Wrist parameter vector
mw = pwrist(1); cw = pwrist(2); kw = pwrist(3); ro = pwrist(4);

% Controller input
u = interp1([tu0; tu0+Ts],uin,t);

% Wrist torque
tautime = Timmer(:,1); torque = Timmer(:,2);
tw = interp1(tautime,torque,t);

% Differential equations of motion
% x1=theta, x2=theta dot, x3=sigma maxwell r, x4=sigma maxwell l
dx1 = x(2);
dx3 = k1*ro/lo*x(2)−(k1/n1)*x(3);
dx4 = −k1*ro/lo*x(2)−(k1/n1)*x(4);
dx2 = (1/(mw+2*roˆ2*m))*(tw−cw*x(2)−kw*x(1)−...

2*Y*roˆ2*Ao/(3*lo)*(1+2/(1−roˆ2/loˆ2*x(1)ˆ2)ˆ2)*x(1)+...
eps*ro*Ao/doˆ2*u/(1−ro/lo*x(1)*sign(u))ˆ3+...
ro*Ao*x(4)/(1−ro/lo*x(1))−ro*Ao*x(3)/(1+ro/lo*x(1)));

dx = [dx1 dx2 dx3 dx4]';

A.2.2.2 fDiff
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function yd = fDiff(y,dx,nOrder)

ind = 2:length(y)−1;
yd = zeros(size(y));

if nOrder == 1,
yd(ind) = 1/(2*dx)*(y(ind+1)−y(ind−1));
yd(1) = 1/(2*dx)*(−y(3)+4*y(2)−3*y(1));
yd(end) = 1/(2*dx)*(3*y(end)−4*y(end−1)+y(end−2));

elseif nOrder == 2,
yd(ind) = 1/dxˆ2*(y(ind+1)−2*y(ind)+y(ind−1));
yd(1) = 1/dxˆ2*(−y(4)+4*y(3)−5*y(2)+2*y(1));
yd(end) = 1/dxˆ2*(2*y(end)−5*y(end−1)+4*y(end−2)−y(end−3));

end

A.2.2.3 sigfeom

function dsigf = sigfeom(t,x,k1,n1,ro,lo,tvol,xdvolrad)

kin = find(tvol>t,1);
if isempty(kin)

thetadot = xdvolrad(end);
else

thetadot = (xdvolrad(kin)−xdvolrad(kin−1))/...
(tvol(kin)−tvol(kin−1))*(t−tvol(kin−1))+xdvolrad(kin−1);

end
dsigf = −ro*k1/lo*thetadot−k1/n1*x(1);

A.2.2.4 sigfeom

function dsige = sigeeom(t,x,k1,n1,ro,lo,tvol,xdvolrad)

kin = find(tvol>t,1);
if isempty(kin)

thetadot = xdvolrad(end);
else

thetadot = (xdvolrad(kin)−xdvolrad(kin−1))/...
(tvol(kin)−tvol(kin−1))*(t−tvol(kin−1))+xdvolrad(kin−1);

end
dsige = ro*k1/lo*thetadot−k1/n1*x(1);
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APPENDIX B
MATLAB CODE FOR DELAY-INDUCED TREMOR SIMULATIONS
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B.1 SDOF Reach-Posture-Reach-Posture Task

B.1.1 Execution Script

%% Run reach−posture−reach−posture task with and without CNS delay
close all; clear all;
set(0,'DefaultAxesFontSize',12,'DefaultTextFontSize',12,...

'DefaultAxesFontName','Times','DefaultTextFontName','Times',...
'DefaultAxesFontWeight','bold','DefaultTextFontWeight','bold',...
'DefaultLineLineWidth',1.5,'DefaultLineMarkerSize',10,...
'DefaultFigureColor','w','DefaultFigurePosition',...
[100 100 0.35*[1400 1000]]);

Colm = colormap(parula(7));
Col = {Colm(1,:),Colm(2,:),Colm(3,:),Colm(4,:),Colm(5,:),Colm(6,:)};

%% Healthy case
tdeldiff = 0e−3; % Zero CNS delay
MrprpTask;
subplot(2,1,1); plot(t,x1,'Color',Col{1});
xlabel('time (s)')
ylabel('position (deg)')
legend('healthy')
xlim([0 t(end)])
ylim([−40 40])
ax = gca;
ax.YTick = [−40 −20 0 20 40];

%% CNS delay case
tdeldiff = 20e−3; % 20 ms CNS delay
MrprpTask;
subplot(2,1,2); plot(t,x1,'Color',Col{3});
xlabel('time (s)')
ylabel('position (deg)')
legend('increased delay')
xlim([0 t(end)])
ylim([−40 40])
ax = gca;
ax.YTick = [−40 −20 0 20 40];
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B.1.2 Associated Scripts and Functions

B.1.2.1 MrprpTask

%% Reach−posture−reach−posture task
% Define CNS delay 'tdeldiff' before running script

%% Define parameters
nst = 6;
thetastar = 30*pi/180;
xh1 = zeros(nst,1); % initial state estimate
xh1(5,1) = thetastar;
P1 = zeros(nst,nst); % initial state estimate error covariance
Py1 = eye(nst,nst);
Py1(5,5) = 1e−9;
xhydel0 = xh1;
% State and control history (must be at least as long as delay)
xHist0 = zeros(nst,1,1000);
xHist0(:,:,end) = xh1;
uHist0 = zeros(1000,1);

%% Reaching task
treach = 0.25;
pulse = [1; 0.1; 0];
[tr,xr,ur,xhr,xhydelr,Pr,Pry] = MreachingFun(xh1,P1,Py1,...

treach,thetastar,uHist0,xHist0,xhydel0,tdeldiff,pulse);

%% Posture task
tpost = 1.75;
pulse = [1−0.25; 0.01; −1];
uHist0 = ur;
xHist0 = xr;
xhydel0 = xhydelr(:,:,end);
xh1 = xhr(:,:,end);
P1 = Pr(:,:,end);
P1y = Pry(:,:,end);
[tp,xp,up,xhp,xhydelp,Pp,Ppy] = MpostureFun(xh1,P1,Py1,...

tpost,thetastar,uHist0,xHist0,xhydel0,tdeldiff,pulse);

%% Another reaching task
treach2 = 0.35;
pulse = [0.1; 0.1; 0];
thetastar = −30*pi/180;
uHist0 = up;
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xHist0 = xp;
xHist0(5,1,end) = thetastar;
xhydel0 = xhydelp(:,:,end);
xhydel0(5,1) = thetastar;
xh1 = xhp(:,:,end);
xh1(5,1) = thetastar;
P1 = Pp(:,:,end);
P1y = Ppy(:,:,end);
[tr2,xr2,ur2,xhr2,xhydelr2,Pr2,Pry2] = MreachingFun(xh1,P1,Py1,...

treach2,thetastar,uHist0,xHist0,xhydel0,tdeldiff,pulse);

%% Another posture task
tpost2 = 2;
pulse = [1; 0.1; 0];
uHist0 = ur2;
xHist0 = xr2;
xhydel0 = xhydelr2(:,:,end);
xh1 = xhr2(:,:,end);
P1 = Pr2(:,:,end);
P1y = Pry2(:,:,end);
[tp2,xp2,up2,xhp2,xhydelp2,Pp2,Ppy2] = MpostureFun(xh1,P1,Py1,...

tpost2,thetastar,uHist0,xHist0,xhydel0,tdeldiff,pulse);

%% Assemble results
t = [tr(1:end−1); tp+tr(end)];
t = [t; tr2(2:end)+t(end)];
t = [t; tp2(2:end)+t(end)];
x1r(:,1) = xr(1,1,1:end−1);
x1p(:,1) = xp(1,1,:);
x1r2(:,1) = xr2(1,1,2:end);
x1p2(:,1) = xp2(1,1,2:end);
x1 = 180/pi*[x1r; x1p; x1r2; x1p2];
xh1r(:,1) = xhr(1,1,1:end−1);
xh1p(:,1) = xhp(1,1,:);
xh1r2(:,1) = xhr2(1,1,2:end);
xh1p2(:,1) = xhp2(1,1,2:end);
xh1 = 180/pi*[xh1r; xh1p; xh1r2; xh1p2];
u = [ur(1:end−1); up; ur2(1:end−1); up2(1:end−1)];

B.1.2.2 MreachingFun

function [t,x,u,xh,xhydel,P,Py] = MreachingFun(xh1,P1,Py1,tf,...
thetastar,uHist0,xHist0,xhydel0,tdeldiff,pulse)
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Mparameters;
Mreaching;
Mcontrolgains;
Msimulation;

B.1.2.3 MpostureFun

function [t,x,u,xh,xhydel,P,Py] = MpostureFun(xh1,P1,Py1,tf,...
thetastar,uHist0,xHist0,xhydel0,tdeldiff,pulse)

Mparameters;
Mposture;
Mcontrolgains;
Msimulation;

B.1.2.4 Mparameters

%% Define parameters
G = 0.03;
I = 0.00276;
Kj = 0.992;
usat = 0.9;
tau1 = 40e−3;
tau2 = 40e−3;
delh = 50e−3;
delt = delh+tdeldiff;

dt = 1e−3;
delk = round(delt/dt);
delkh = round(delh/dt);

A = [0 1 0 0 0 0; −Kj/I −G/I 1/I 0 0 1/I; 0 0 −1/tau2 1/tau2 0 0;...
0 0 0 −1/tau1 0 0; 0 0 0 0 0 0; 0 0 0 0 0 0];

B = [0 0 0 1/tau1 0 0]';
Ak = eye(length(A))+A*dt;
Bk = dt*Ak*B;
nst = length(Ak);
H = [1 0 0 0 0 0; 0 1 0 0 0 0; 0 0 1 0 0 0];

uHist = zeros(delk,1);
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uHist = uHist0(end−delk:end−1);
xHist = zeros(nst,1,delk);
xHist(:,:,1:delk) = xHist0(:,:,end−delk:end−1);

B.1.2.5 Mreaching

%% Reaching task for optimal control model

%% Cost function weights
wv = 0.25; % final velocity weight
wf = 1.5; % final muscle force weight
r = 1e−5; % control weight
pvec = [1 0 0 0 −1 0]'; % positional accuracy
vvec = [0 wv 0 0 0 0]'; % zero velocity at final time
fvec = wf*[0 0 −1 0 Kj −1]'; % zero net static force at final time
QN = pvec*pvec'+vvec*vvec'+fvec*fvec';
Qk = 0;
Rk = r;

%% Noise parameters
N = round(tf/dt);
% States over a nominal reaching trajectory help to select noise parameters
out = RelReach(30*pi/180,0.25,dt,I,G,Kj,tau1,tau2);
% Multiplicative noise
alpha = 0.1;
C = alpha*Bk;
% Controller Process noise
Omxim = eye(nst);
Omxim(1,1) = 0.1*pi/180;
Omxim(2,2) = Omxim(1,1)*out(2);
Omxim(3,3) = Omxim(1,1)*out(3);
Omxim(4,4) = Omxim(1,1)*out(4);
Omxim(5,5) = Omxim(1,1)*1e−3;
Omxim(6,6) = Omxim(3,3);
Omxim = 1e−3*Omxim;
Omxib = 1e2*Omxim;
% Estimator noise
Ometa = 0*Omxim;
Ometa(6,6) = 1*Ometa(6,6);
% Process noise
Omxi = 0*Omxim;
% Measurement noise
Omsig = 1e−1*Omxim(1:3,1:3);
% Estimator measurement noise
Omsigb = 1e−2*Omxim;
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B.1.2.6 Mposture

%% Posture task for optimal control model

%% Cost function weights
r = 3e−3; % control weight
pvec = [1 0 0 0 −1 0]'; % positional accuracy
QN = pvec*pvec';
Qk = QN;
Rk = r;

%% Noise parameters
N = round(tf/dt);
% States over a nominal reaching trajectory help to select noise parameters
out = RelReach(30*pi/180,0.25,dt,I,G,Kj,tau1,tau2);
% Multiplicative noise
alpha = 0.1;
C = alpha*Bk;
% Controller Process noise
Omxim = eye(nst);
Omxim(1,1) = 0.1*pi/180;
Omxim(2,2) = Omxim(1,1)*out(2);
Omxim(3,3) = Omxim(1,1)*out(3);
Omxim(4,4) = Omxim(1,1)*out(4);
Omxim(5,5) = Omxim(1,1)*1e−3;
Omxim(6,6) = Omxim(3,3);
Omxim = 1e−3*Omxim;
Omxib = 1e2*Omxim;
% Estimator noise
Ometa = 0*Omxim;
Ometa(6,6) = 1*Ometa(6,6);
% Process noise
Omxi = 0*Omxim;
% Measurement noise
Omsig = 1e−1*Omxim(1:3,1:3);
% Estimator measurement noise
Omsigb = 1e−2*Omxim;

B.1.2.7 Mcontrolgains

%% Calculate optimal controller
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%% Calculate gains for measurement estimator and pseudomeasurement cov.
% Measurement estimator gains
Kykv = zeros(nst,size(H,1),N−1);
Pykv = zeros(nst,nst,N);
Pykv(:,:,1) = Py1;
for k = 1:N−1

Pyk = Pykv(:,:,k);
Kyk = Ak*Pyk*H'*inv(H*Pyk*H'+Omsig);
Pykv(:,:,k+1) = Omxib+(Ak−Kyk*H)*Pyk*Ak';
Kykv(:,:,k) = Kyk;

end
% Pseudomeasurement covariance (ignoring multiplicative noise)
Vkv = zeros(nst,nst,N);
for k = 1

Vold = Omsigb;
for kex = 1:delkh

Vnew = Ak*Vold*Ak'+Omxi;
Vold = Vnew;

end
Vk = Vold;
Vkv(:,:,k) = Vk;

end

%% Calculate optimal open−loop controller gains
Kkv = zeros(nst,nst,N−1);
kbv = linspace(N−1,1,N−1)';
Lkv = zeros(1,nst,N);
S = zeros(nst,nst,N);
Sx = S;
Se = S;
s = zeros(N,1);
Sx(:,:,N) = QN;
% Calculate control gains backward in time
for kb = 1:N−1

k = kbv(kb);
Sxp = Sx(:,:,k+1);
Sep = Se(:,:,k+1);
Kk = Kkv(:,:,k);
Lk = inv(Rk+Bk'*Sxp*Bk+C'*(Sxp+Sep)*C)*Bk'*Sxp*Ak;
Lkv(:,:,k) = Lk;
Sx(:,:,k) = Qk+Ak'*Sxp*(Ak−Bk*Lk);
Se(:,:,k) = Ak'*Sxp*Bk*Lk+(Ak−Kk)'*Sep*(Ak−Kk);
s(k,1) = trace(Sxp*Omxim+Sep*(Omxim+Ometa+Kk*Vk*Kk'))+s(k+1,1);

end
costv = xh1'*Sx(:,:,1)*xh1+trace((Sx(:,:,1)+Se(:,:,1))*P1)+s(1);

%% Update Kalman gains and control gains until convergence
nitcon = 15;
for kitcon = 2:nitcon

%% Update Kalman gains given controller gains
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Pe = zeros(nst,nst,N);
Px = Pe; Pxe = Pe;
Pe(:,:,1) = P1;
Px(:,:,1) = xh1*xh1';
for k = 1:N−1

Lk = Lkv(:,:,k);
Pek = Pe(:,:,k);
Pxk = Px(:,:,k);
Pxek = Pxe(:,:,k);
Pexk = Pxek';
Kk = Ak*Pek*inv(Pek+Vk);
Kkv(:,:,k) = Kk;
Pe(:,:,k+1) = Omxim+Ometa+(Ak−Kk)*Pek*Ak'+C*Lk*Pxk*Lk'*C';
Px(:,:,k+1) = Ometa+Kk*Pek*Ak'+(Ak−Bk*Lk)*Pxk*(Ak−Bk*Lk)'+...

(Ak−Bk*Lk)*Pxek*Kk'+Kk*Pexk*(Ak−Bk*Lk)';
Pxe(:,:,k+1) = (Ak−Bk*Lk)*Pxek*(Ak−Kk)'−Ometa;

end

%% Update controller gains given Kalman gains
kbv = linspace(N−1,1,N−1)';
Lkv = zeros(1,nst,N);
S = zeros(nst,nst,N);
Sx = S;
Se = S;
s = zeros(N,1);
Sx(:,:,N) = QN;
for kb = 1:N−1

k = kbv(kb);
Sxp = Sx(:,:,k+1);
Sep = Se(:,:,k+1);
Kk = Kkv(:,:,k);
Lkv(:,:,k) = inv(Rk+Bk'*Sxp*Bk+C'*(Sxp+Sep)*C)*Bk'*Sxp*Ak;
Sx(:,:,k) = Qk+Ak'*Sxp*(Ak−Bk*Lkv(:,:,k));
Se(:,:,k) = Ak'*Sxp*Bk*Lkv(:,:,k)+(Ak−Kk)'*Sep*(Ak−Kk);
s(k,1) = trace(Sxp*Omxim+Sep*(Omxim+Ometa+Kk*Vk*Kk'))+s(k+1);

end
costv(kitcon,1) = xh1'*Sx(:,:,1)*xh1+trace((Sx(:,:,1)+...

Se(:,:,1))*P1)+s(1);
end

B.1.2.8 Msimulation

%% Simulate optimal control human motor system model

%% Initialize system
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x = zeros(nst,1,N);
x(:,:,1) = xHist0(:,:,end);
xh = x;
xh(:,:,1) = xh1;
xhydel = xh;
xhydel(:,:,1) = xhydel0;
y = zeros(size(H,1),1,N−1);
xhy = xh;
u = zeros(N,1);
costkv = zeros(N,1);
P = zeros(nst,nst,N);
P(:,:,1) = P1;
Py = zeros(nst,nst,N);
Py(:,:,1) = Py1;

%% Simulate over each time step
for k = 1:N−1

% Unwrap values at k
xk = x(:,:,k);
xhk = xh(:,:,k);
Lk = Lkv(:,:,k);
if Qk == QN

Lk = Lkv(:,:,round(N/2));
end
Pk = P(:,:,k);
Pyk = Py(:,:,k);
% Control input
uk = −Lk*xhk;
if abs(uk) > usat

uk = usat*sign(uk);
end
% Noise terms
xik = Omxi*randn(nst,1);
sigk = Omsig*randn(3,1);
etak = Ometa*randn(nst,1);
epsk = randn;
% State update
xkp = Ak*xk+Bk*uk+xik+epsk*C*uk;
if k == round(pulse(1)/dt)

xkp(6,1) = pulse(3);
elseif k == round((pulse(1)+pulse(2))/dt)

xkp(6,1) = 0;
end
% Measurement
xdelkv = MatrixHist(x,xHist,k);
xdelk = xdelkv(:,:,1);
yk = H*xdelk+sigk;
% Delayed state estimate from measurement
uEx = VectorHist(u,uHist,k);
Kyk = Kykv(:,:,k);
xhydelk = xhydel(:,:,k);
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xhydelp = Ak*xhydelk+Bk*uEx(1)+Kyk*(yk−H*xhydelk);
Pyp = Omxi+(Ak−Kyk*H)*Pyk*Ak';
% Extrapolate state estimate from measurement
xold = xhydelk;
for kex = 1:delkh

uold = uEx(kex);
xnew = Ak*xold+Bk*uold;
xold = xnew;

end
xhyk = xold;
% Estimate
Kk = Kkv(:,:,k); % Non−adaptive
xhp = Ak*xhk+Bk*uk+Kk*(xhyk−xhk)+etak;
Pp = Omxi+Ometa+(Ak−Kk)*Pk*Ak'+C*uk*uk'*C';
% Store new values
x(:,:,k+1) = xkp;
y(:,:,k) = yk;
xhy(:,:,k) = xhyk;
u(k,1) = uk;
xhydel(:,:,k+1) = xhydelp;
xh(:,:,k+1) = xhp;
costkv(k,1) = xk'*Qk*xk+uk'*Rk*uk;
P(:,:,k+1) = Pp;
Py(:,:,k+1) = Pyp;

end
costkv(N,1) = xkp'*QN*xkp;
cost = sum(costkv);

t = [0:dt:tf−dt]';
x1(:,1) = 180/pi*x(1,1,:);
x2(:,1) = x(2,1,:);
x3(:,1) = x(3,1,:);
x1h(:,1) = 180/pi*xh(1,1,:);
y1(:,1) = 180/pi*y(1,1,:); y1(end+1) = y1(end);
y1h(:,1) = 180/pi*xhy(1,1,:);
Fe(:,1) = x(6,1,:);
Feh(:,1) = xh(6,1,:);

B.1.2.9 RelReach

function out = RelReach(thetastar,tf,T,J,G,Kj,tau1,tau2)

% Calculate state values over reaching interval
t = [0:T:tf]';
theta = thetastar*(t/tf−1/(2*pi)*sin(2*pi*t/tf));
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thetad = thetastar/tf*(1−cos(2*pi*t/tf));
thetadd = 2*pi*thetastar/tfˆ2*sin(2*pi*t/tf);
thetaddd = 4*piˆ2*thetastar/tfˆ3*cos(2*pi*t/tf);
thetadddd = −8*piˆ3*thetastar/tfˆ4*sin(2*pi*t/tf);
f = J*thetadd+G*thetad+Kj*theta;
fd = J*thetaddd+G*thetadd+Kj*thetad;
fdd = J*thetadddd+G*thetaddd+Kj*thetadd;
g = tau2*fd+f;
gd = tau2*fdd+fd;
u = tau1*gd+g;

% Normalize rms values by final position
out1 = rms(theta)/thetastar;
out2 = rms(thetad)/thetastar;
out3 = rms(f)/thetastar;
out4 = rms(g)/thetastar;

% Output rms of u to help calculate multiplicative noise
out5 = rms(u);

% Normalize sum of squared control by squared final position
out6 = sum(u.ˆ2)/thetastarˆ2;

% Generate output vector
out = [out1 out2 out3 out4 out5 out6]';

B.1.2.10 VectorHist

function Xv = VectorHist(X,Xhist,k)

% Given a one−dimensional variable X in which X(k,1) is value
% of the scalar at time k, output the variable Xv which is the portion
% of X and Xhist needed to integrate from k−delk to k, where
% Xhist is the previous time history of the scalar with length kdel

% Xv is Matrix(k−delk:k−1)

delk = length(Xhist);
if k > delk

Xv(1:delk) = X(k−delk:k−1);
elseif k == 1

Xv = Xhist;
else

Xv(1:delk−k+1) = Xhist(end−(delk−k):end);
Xv(delk−k+2:delk) = X(1:k−1);
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end

B.1.2.11 MatrixHist

function Xv = MatrixHist(X,Xhist,k)

% Given a three−dimensional variable X in which X(:,:,k) is value
% of the matrix at time k, output the variable Xv which is the portion
% of X and Xhist needed to integrate from k−delk to k, where
% Xhist is the previous time history of the matrix with length kdel

% Xv is Matrix(:,:,k−delk:k−1)

delk = length(Xhist(1,1,:));
if k > delk

Xv(:,:,1:delk) = X(:,:,k−delk:k−1);
elseif k == 1

Xv = Xhist;
else

Xv(:,:,1:delk−k+1) = Xhist(:,:,end−(delk−k):end);
Xv(:,:,delk−k+2:delk) = X(:,:,1:k−1);

end

B.2 3DOF Rest Tremor

B.2.1 Execution Script

%% Simulate 3DOF wrist with delay, tremor resetting, and saturation noise
close all; clear all;

%% Define parameters
tdeldiff = 20e−3; % CNS delay
nst = 18; ninp = 3; % number of states, number of DOF
thetastar = 0*pi/180; % desired position
xh0 = zeros(nst,1); % initial state estimate
xh0(5,1) = thetastar;
P1 = zeros(nst,nst); % initial state estimate error covariance
Py1 = 1e−5*eye(nst,nst);
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xhydel0 = xh0;
% State and control history (must be at least as long as delay)
xHist0 = zeros(nst,1,1000);
xHist0(:,:,end) = xh0;
uHist0 = zeros(ninp,1,1000);
% Tremor resetting parameters
tmean = 2;
Omtmean = 0.8;

%% Initial execution of rest task
trest = tmean+Omtmean*randn;
while trest <= 0.01

trest = tmean+Omtmean*randn;
end
pulse = [0.2; 0.01; −1];
[tr,xr,ur,xhr,xhydelr,Pr,Pry] = M3postureFun(xh0,P1,Py1,...

trest,thetastar,uHist0,xHist0,xhydel0,tdeldiff,pulse);

t = tr;
x1(:,1) = xr(1,1,:);
xh1(:,1) = xhr(1,1,:);
x2(:,1) = xr(7,1,:);
xh2(:,1) = xhr(7,1,:);
x3(:,1) = xr(13,1,:);
xh3(:,1) = xhr(13,1,:);
u1(:,1) = ur(1,1,:);
u2(:,1) = ur(2,1,:);
u3(:,1) = ur(3,1,:);

%% Rest task with tremor resetting
for kreset = 1:15

tpost = tmean+Omtmean*randn;
while tpost <= 0.01

tpost = tmean+Omtmean*randn;
end
pulse = [0.2; 0.01; 0];
uHist0 = ur;
xHist0 = xr;
xhydel0 = xhydelr(:,:,end);
xh0 = xhr(:,:,end);
P1 = Pr(:,:,end);
P1y = Pry(:,:,end);
[tp,xp,up,xhp,xhydelp,Pp,Ppy] = M3postureFun(xh0,P1,Py1,...

tpost,thetastar,uHist0,xHist0,xhydel0,tdeldiff,pulse);
ur = up; xr = xp; xhydelr = xhydelp; xhr = xhp; Pr = Pp; Pry = Ppy;

t = [t; tp(2:end)+t(end)];
x1p = []; x1p(:,1) = xp(1,1,2:end);
x1 = [x1; x1p];
xh1p = []; xh1p(:,1) = xhp(1,1,2:end);
xh1 = [xh1; xh1p];
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x2p = []; x2p(:,1) = xp(7,1,2:end);
x2 = [x2; x2p];
xh2p = []; xh2p(:,1) = xhp(7,1,2:end);
xh2 = [xh2; xh2p];

x3p = []; x3p(:,1) = xp(13,1,2:end);
x3 = [x3; x3p];
xh3p = []; xh3p(:,1) = xhp(13,1,2:end);
xh3 = [xh3; xh3p];

u1p = []; u1p(:,1) = up(1,1,2:end);
u1 = [u1; u1p];
u2p = []; u2p(:,1) = up(2,1,2:end);
u2 = [u2; u2p];
u3p = []; u3p(:,1) = up(3,1,2:end);
u3 = [u3; u3p];

end
x1 = 180/pi*x1;
x2 = 180/pi*x2;
x3 = 180/pi*x3;

%% Plot tremor time series
set(0,'DefaultAxesFontSize',12,'DefaultTextFontSize',12,...

'DefaultAxesFontName','Times','DefaultTextFontName','Times',...
'DefaultAxesFontWeight','bold','DefaultTextFontWeight','bold',...
'DefaultLineLineWidth',1.5,'DefaultLineMarkerSize',10,...
'DefaultFigureColor','w','DefaultFigurePosition',...
[100 100 0.4*[1800 1200]]);

Colm = colormap(parula(7));
Col = {Colm(1,:),Colm(2,:),Colm(3,:),Colm(4,:),Colm(5,:),Colm(6,:)};

figure;
subplot(3,1,1); plot(t,x1,'Color',Col{1});
ylabel('PS (deg)')
xlim([0 15])
ylim([−65 65])
ax = gca;
ax.XTick = [0:1:15];
ax.YTick = [−50:25:50];
subplot(3,1,2); plot(t,x2,'Color',Col{1})
ylabel('FE (deg)')
xlim([0 15])
ylim([−45 45])
ax = gca;
ax.XTick = [0:1:15];
ax.YTick = [−40:20:40];
subplot(3,1,3); plot(t,x3,'Color',Col{1})
xlabel('time (s)')
ylabel('RUD (deg)')
xlim([0 15])
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ylim([−25 25])
ax = gca;
ax.XTick = [0:1:15];
ax.YTick = [−20:10:20];

B.2.2 Associated Scripts and Functions

B.2.2.1 M3postureFun

function [t,x,u,xh,xhydel,P,Py] = M3postureFun(xh1,P1,Py1,tf,...
thetastar,uHist0,xHist0,xhydel0,tdeldiff,pulse)

%% Define parameters
Kaa = 0.756; Baa = 0.0236;
Kbb = 0.992; Bbb = 0.03;
Kgg = 2.92; Bgg = 0.0882;
Kab = 0.0175; Kag = 0.291; Kbg = −0.0991;
Bab = 0.000791; Bag = 0.00831; Bbg = −0.00316;
Igg = 0.00317; Ibb = 0.00276; Iaa = 0.000501+0.00137;
taua1 = 40e−3; taua2 = 40e−3;
taub1 = 40e−3; taub2 = 40e−3;
taug1 = 40e−3; taug2 = 40e−3;
delh = 50e−3;
delt = delh+tdeldiff;

usat = [0.8 0.9 2.5]';
Omusat = [0.2 0.3 1]';

%% Discretization parameters
dt = 1e−3;
delk = round(delt/dt);
delkh = round(delh/dt);

%% Calculate matricies
Arz = zeros(1,18);

Ar1 = Arz; Ar1(2) = 1;
Ar2 = 1/Iaa*[−Kaa −Baa 1 0 0 1 −Kab −Bab 0 0 0 0 −Kag −Bag 0 0 0 0];
Ar3 = Arz; Ar3(3) = −1/taua2; Ar3(4) = 1/taua2;
Ar4 = Arz; Ar4(4) = −1/taua1;
Ar5 = Arz; Ar6 = Arz;

Ar7 = Arz; Ar7(8) = 1;
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Ar8 = 1/Ibb*[−Kab −Bab 0 0 0 0 −Kbb −Bbb 1 0 0 1 −Kbg −Bbg 0 0 0 0];
Ar9 = Arz; Ar9(9) = −1/taub2; Ar9(10) = 1/taub2;
Ar10 = Arz; Ar10(10) = −1/taub1;
Ar11 = Arz; Ar12 = Arz;

Ar13 = Arz; Ar13(14) = 1;
Ar14 = 1/Igg*[−Kag −Bag 0 0 0 0 −Kbg −Bbg 0 0 0 0 −Kgg −Bgg 1 0 0 1];
Ar15 = Arz; Ar15(15) = −1/taug2; Ar15(16) = 1/taug2;
Ar16 = Arz; Ar16(16) = −1/taug1;
Ar17 = Arz; Ar18 = Arz;

A = [Ar1; Ar2; Ar3; Ar4; Ar5; Ar6; Ar7; Ar8; Ar9;...
Ar10; Ar11; Ar12; Ar13; Ar14; Ar15; Ar16; Ar17; Ar18];

B = zeros(18,3);
B(4,1) = 1/taua1; B(10,2) = 1/taub1; B(16,3) = 1/taug1;

Ak = eye(length(A))+A*dt;
Bk = dt*Ak*B;
nst = length(Ak);

H = zeros(9,18);
H(1,1) = 1; H(2,2) = 1; H(3,3) = 1;
H(4,7) = 1; H(5,8) = 1; H(6,9) = 1;
H(7,13) = 1; H(8,14) = 1; H(9,15) = 1;

nmea = size(H,1);
ninp = size(B,2);

%% History matricies
uHist = zeros(ninp,1,delk);
uHist(:,:,1:delk) = uHist0(:,:,end−delk:end−1);
xHist = zeros(nst,1,delk);
xHist(:,:,1:delk) = xHist0(:,:,end−delk:end−1);

%% Posture task
rb = 2e−3+0.8e−3*randn; % control weight
rg = 0.5e−3+0.2e−3*randn; % control weight
ra = 2e−3+0.8e−3*randn;

wpb = 1;
wpg = 1;
wpa = 1;

pvz = zeros(nst,1);
pveca = pvz; pvecb = pvz; pvecg = pvz;
pveca(1) = 1; pveca(5) = −1; pveca = pveca*wpa;
pvecb(7) = 1; pvecb(11) = −1; pvecb = pvecb*wpb;
pvecg(13) = 1; pvecg(17) = −1; pvecg = pvecg*wpg;
QN = pveca*pveca'+pvecb*pvecb'+pvecg*pvecg';
QN = QN;
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Qk = QN;
Rk = [ra 0 0; 0 rb 0; 0 0 rg];

%% Noise parameters
N = round(tf/dt);
outb = RelReach(30*pi/180,0.25,dt,Ibb,Bbb,Kbb,taub1,taub2);
outg = RelReach(30*pi/180,0.25,dt,Igg,Bgg,Kgg,taug1,taug2);
outa = RelReach(30*pi/180,0.25,dt,Iaa,Baa,Kaa,taua1,taua2);
% Multiplicative noise
alpha = 0.1;
C = alpha*Bk;
% Controller process noise
Omxim = eye(nst);
Omxim(1,1) = 0.1*pi/180;
Omxim(2,2) = Omxim(1,1)*outa(2);
Omxim(3,3) = Omxim(1,1)*outa(3);
Omxim(4,4) = Omxim(1,1)*outa(4);
Omxim(5,5) = Omxim(1,1)*1e−3;
Omxim(6,6) = 1e0*Omxim(3,3);
Omxim(7,7) = 0.1*pi/180;
Omxim(8,8) = Omxim(1,1)*outb(2);
Omxim(9,9) = Omxim(1,1)*outb(3);
Omxim(10,10) = Omxim(1,1)*outb(4);
Omxim(11,11) = Omxim(1,1)*1e−3;
Omxim(12,12) = 1e0*Omxim(9,9);
Omxim(13,13) = 0.1*pi/180;
Omxim(14,14) = Omxim(1,1)*outg(2);
Omxim(15,15) = Omxim(1,1)*outg(3);
Omxim(16,16) = Omxim(1,1)*outg(4);
Omxim(17,17) = Omxim(1,1)*1e−3;
Omxim(18,18) = 1e0*Omxim(15,15);
Omxim = 1e−3*Omxim;
Omxib = 1e2*Omxim;
% Estimator noise
Ometa = 0*Omxim;
% Process noise
Omxi = 0*Omxim;
% Measurement noise
Omsig = zeros(round(nmea),round(nmea));
for koms = 1:nmea

Omsig(koms,koms) = 1e−1*Omxim(koms,koms);
end
% Estimator measurement noise
Omsigb = 1e−2*Omxim;

%% Calculate gains for measurement estimator and pseudomeasurement cov.
% Measurement estimator gains
Kykv = zeros(nst,size(H,1),N−1);
Pykv = zeros(nst,nst,N);
Pykv(:,:,1) = Py1;
for k = 1:N−1
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Pyk = Pykv(:,:,k);
Kyk = Ak*Pyk*H'*inv(H*Pyk*H'+Omsig);
Pykv(:,:,k+1) = Omxib+(Ak−Kyk*H)*Pyk*Ak';
Kykv(:,:,k) = Kyk;

end
% Pseudomeasurement covariance (ignoring multiplicative noise)
Vkv = zeros(nst,nst,N);
for k = 1

Vold = Omsigb;
for kex = 1:delkh

Vnew = Ak*Vold*Ak'+Omxi;
Vold = Vnew;

end
Vk = Vold;
Vkv(:,:,k) = Vk;

end

%% Calculate optimal open−loop controller gains
Kkv = zeros(nst,nst,N−1);
kbv = linspace(N−1,1,N−1)';
Lkv = zeros(ninp,nst,N);
S = zeros(nst,nst,N);
Sx = S;
Se = S;
s = zeros(N,1);
Sx(:,:,N) = QN;
% Calculate control gains backward in time
for kb = 1:N−1

k = kbv(kb);
Sxp = Sx(:,:,k+1);
Sep = Se(:,:,k+1);
Kk = Kkv(:,:,k);
Lk = inv(Rk+Bk'*Sxp*Bk+C'*(Sxp+Sep)*C)*Bk'*Sxp*Ak;
Lkv(:,:,k) = Lk;
Sx(:,:,k) = Qk+Ak'*Sxp*(Ak−Bk*Lk);
Se(:,:,k) = Ak'*Sxp*Bk*Lk+(Ak−Kk)'*Sep*(Ak−Kk);
s(k,1) = trace(Sxp*Omxim+Sep*(Omxim+Ometa+Kk*Vk*Kk'))+s(k+1,1);

end
costv = xh1'*Sx(:,:,1)*xh1+trace((Sx(:,:,1)+Se(:,:,1))*P1)+s(1);

%% Update Kalman gains and control gains until convergence
nitcon = 15;
for kitcon = 2:nitcon

%% Update Kalman gains given controller gains
Pe = zeros(nst,nst,N);
Px = Pe; Pxe = Pe;
Pe(:,:,1) = P1;
Px(:,:,1) = xh1*xh1';
for k = 1:N−1

Lk = Lkv(:,:,k);
Pek = Pe(:,:,k);
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Pxk = Px(:,:,k);
Pxek = Pxe(:,:,k);
Pexk = Pxek';
Kk = Ak*Pek*inv(Pek+Vk);
Kkv(:,:,k) = Kk;
Pe(:,:,k+1) = Omxim+Ometa+(Ak−Kk)*Pek*Ak'+C*Lk*Pxk*Lk'*C';
Px(:,:,k+1) = Ometa+Kk*Pek*Ak'+(Ak−Bk*Lk)*Pxk*(Ak−Bk*Lk)'+...

(Ak−Bk*Lk)*Pxek*Kk'+Kk*Pexk*(Ak−Bk*Lk)';
Pxe(:,:,k+1) = (Ak−Bk*Lk)*Pxek*(Ak−Kk)'−Ometa;

end

%% Update controller gains given Kalman gains
kbv = linspace(N−1,1,N−1)';
Lkv = zeros(ninp,nst,N);
S = zeros(nst,nst,N);
Sx = S;
Se = S;
s = zeros(N,1);
Sx(:,:,N) = QN;
for kb = 1:N−1

k = kbv(kb);
Sxp = Sx(:,:,k+1);
Sep = Se(:,:,k+1);
Kk = Kkv(:,:,k);
Lkv(:,:,k) = inv(Rk+Bk'*Sxp*Bk+C'*(Sxp+Sep)*C)*Bk'*Sxp*Ak;
Sx(:,:,k) = Qk+Ak'*Sxp*(Ak−Bk*Lkv(:,:,k));
Se(:,:,k) = Ak'*Sxp*Bk*Lkv(:,:,k)+(Ak−Kk)'*Sep*(Ak−Kk);
s(k,1) = trace(Sxp*Omxim+Sep*(Omxim+Ometa+Kk*Vk*Kk'))+s(k+1);

end
costv(kitcon,1) = xh1'*Sx(:,:,1)*xh1+trace((Sx(:,:,1)+...

Se(:,:,1))*P1)+s(1);
end

%% Initialize system for simulation
x = zeros(nst,1,N);
x(:,:,1) = xHist0(:,:,end);
xh = x;
xh(:,:,1) = xh1;
xhydel = xh;
xhydel(:,:,1) = xhydel0;
y = zeros(nmea,1,N−1);
xhy = xh;
u = zeros(ninp,1,N);
costkv = zeros(N,1);
P = zeros(nst,nst,N);
P(:,:,1) = P1;
Py = zeros(nst,nst,N);
Py(:,:,1) = Py1;

%% Simulate over each time step
for k = 1:N−1
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% Unwrap values at k
xk = x(:,:,k);
xhk = xh(:,:,k);
Lk = Lkv(:,:,k);
Pk = P(:,:,k);
Pyk = Py(:,:,k);
% Control input
uk = −Lk*xhk;
for kinp = 1:ninp

usatk = usat(kinp)+Omusat(kinp)*randn;
if abs(uk(kinp)) > usatk

ukkinp = usatk*sign(uk(kinp));
if sign(ukkinp) ˜= sign(uk(kinp))

ukkinp = −ukkinp;
end
uk(kinp) = ukkinp;

end
end
% Noise terms
xik = Omxi*randn(nst,1);
sigk = Omsig*randn(nmea,1);
etak = Ometa*randn(nst,1);
epsk = randn(ninp,1);
epskm = zeros(ninp);
for kinp = 1:ninp

epskm(kinp,kinp) = epsk(kinp);
end
% State update
xkp = Ak*xk+Bk*uk+xik+C*epskm*uk;
if k == round(pulse(1)/dt)

xkp(6,1) = pulse(3);
elseif k == round((pulse(1)+pulse(2))/dt)

xkp(6,1) = 0;
end
% Measurement
xdelkv = MatrixHist(x,xHist,k);
xdelk = xdelkv(:,:,1);
yk = H*xdelk+sigk;
% Delayed state estimate from measurement
uEx = MatrixHist(u,uHist,k);
Kyk = Kykv(:,:,k);
xhydelk = xhydel(:,:,k);
xhydelp = Ak*xhydelk+Bk*uEx(:,:,1)+Kyk*(yk−H*xhydelk);
Pyp = Omxi+(Ak−Kyk*H)*Pyk*Ak';
% Extrapolate state estimate from measurement
xold = xhydelk;
for kex = 1:delkh

uold = uEx(:,:,kex);
xnew = Ak*xold+Bk*uold;
xold = xnew;

end
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xhyk = xold;
% Estimate
Kk = Kkv(:,:,k); % Non−adaptive
xhp = Ak*xhk+Bk*uk+Kk*(xhyk−xhk)+etak;
Pp = Omxi+Ometa+(Ak−Kk)*Pk*Ak'+C*uk*uk'*C';
% Store new values
x(:,:,k+1) = xkp;
y(:,:,k) = yk;
xhy(:,:,k) = xhyk;
u(:,:,k) = uk;
xhydel(:,:,k+1) = xhydelp;
xh(:,:,k+1) = xhp;
costkv(k,1) = xk'*Qk*xk+uk'*Rk*uk;
P(:,:,k+1) = Pp;
Py(:,:,k+1) = Pyp;

end
costkv(N,1) = xkp'*QN*xkp;
cost = sum(costkv);

t = [0:dt:(N−1)*dt]';
x1(:,1) = 180/pi*x(7,1,:);
x2(:,1) = x(2,1,:);
x3(:,1) = x(3,1,:);
x1h(:,1) = 180/pi*xh(7,1,:);
y1(:,1) = 180/pi*y(4,1,:); y1(end+1) = y1(end);
y1h(:,1) = 180/pi*xhy(7,1,:);
Fe(:,1) = x(6,1,:);
Feh(:,1) = xh(6,1,:);
u1(:,1) = u(1,1,:);

B.2.2.2 RelReach

function out = RelReach(thetastar,tf,T,J,G,Kj,tau1,tau2)

% Calculate state values over reaching interval
t = [0:T:tf]';
theta = thetastar*(t/tf−1/(2*pi)*sin(2*pi*t/tf));
thetad = thetastar/tf*(1−cos(2*pi*t/tf));
thetadd = 2*pi*thetastar/tfˆ2*sin(2*pi*t/tf);
thetaddd = 4*piˆ2*thetastar/tfˆ3*cos(2*pi*t/tf);
thetadddd = −8*piˆ3*thetastar/tfˆ4*sin(2*pi*t/tf);
f = J*thetadd+G*thetad+Kj*theta;
fd = J*thetaddd+G*thetadd+Kj*thetad;
fdd = J*thetadddd+G*thetaddd+Kj*thetadd;
g = tau2*fd+f;
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gd = tau2*fdd+fd;
u = tau1*gd+g;

% Normalize rms values by final position
out1 = rms(theta)/thetastar;
out2 = rms(thetad)/thetastar;
out3 = rms(f)/thetastar;
out4 = rms(g)/thetastar;

% Output rms of u to help calculate multiplicative noise.
out5 = rms(u);

% Normalize sum of squared control by squared final position
out6 = sum(u.ˆ2)/thetastarˆ2;

% Generate output vector
out = [out1 out2 out3 out4 out5 out6]';

B.2.2.3 MatrixHist

function Xv = MatrixHist(X,Xhist,k)

% Given a three−dimensional variable X in which X(:,:,k) is value
% of the matrix at time k, output the variable Xv which is the portion
% of X and Xhist needed to integrate from k−delk to k, where
% Xhist is the previous time history of the matrix with length kdel

% Xv is Matrix(:,:,k−delk:k−1)

delk = length(Xhist(1,1,:));
if k > delk

Xv(:,:,1:delk) = X(:,:,k−delk:k−1);
elseif k == 1

Xv = Xhist;
else

Xv(:,:,1:delk−k+1) = Xhist(:,:,end−(delk−k):end);
Xv(:,:,delk−k+2:delk) = X(:,:,1:k−1);

end
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