14 research outputs found

    Impact of different trajectories on extrinsic self-calibration for vehicle-based mobile laser scanning systems

    Get PDF
    The trend toward further integration of automotive electronic control units functionality into domain control units as well as the rise of computing-intensive driver assistance systems has led to a demand for high-performance automotive computation platforms. These platforms have to fulfill stringent safety requirements. One promising approach is the use of performance computation units in combination with safety controllers in a single control unit. Such systems require adequate communication links between the computation units. While Ethernet is widely used, a high-speed serial link communication protocol supported by an Infineon AURIX safety controller appears to be a promising alternative. In this paper, a high-speed serial link IP core is presented, which enables this type of high-speed serial link communication interface for field-programmable gate array–based computing units. In our test setup, the IP core was implemented in a high-performance Xilinx Zynq UltraScale+, which communicated with an Infineon AURIX via high-speed serial link and Ethernet. The first bandwidth measurements demonstrated that high-speed serial link is an interesting candidate for inter-chip communication, resulting in bandwidths reaching up to 127 Mbit/s using stream transmissions

    UAS Navigation with SqueezePoseNet—Accuracy Boosting for Pose Regression by Data Augmentation

    Get PDF
    The navigation of Unmanned Aerial Vehicles (UAVs) nowadays is mostly based on Global Navigation Satellite Systems (GNSSs). Drawbacks of satellite-based navigation are failures caused by occlusions or multi-path interferences. Therefore, alternative methods have been developed in recent years. Visual navigation methods such as Visual Odometry (VO) or visual Simultaneous Localization and Mapping (SLAM) aid global navigation solutions by closing trajectory gaps or performing loop closures. However, if the trajectory estimation is interrupted or not available, a re-localization is mandatory. Furthermore, the latest research has shown promising results on pose regression in 6 Degrees of Freedom (DoF) based on Convolutional Neural Networks (CNNs). Additionally, existing navigation methods can benefit from these networks. In this article, a method for GNSS-free and fast image-based pose regression by utilizing a small Convolutional Neural Network is presented. Therefore, a small CNN SqueezePoseNet) is utilized, transfer learning is applied and the network is tuned for pose regression. Furthermore, recent drawbacks are overcome by applying data augmentation on a training dataset utilizing simulated images. Experiments with small CNNs show promising results for GNSS-free and fast localization compared to larger networks. By training a CNN with an extended data set including simulated images, the accuracy on pose regression is improved up to 61.7% for position and up to 76.0% for rotation compared to training on a standard not-augmented data set

    SQUEEZEPOSENET: IMAGE BASED POSE REGRESSION WITH SMALL CONVOLUTIONAL NEURAL NETWORKS FOR REAL TIME UAS NAVIGATION

    Get PDF
    The number of unmanned aerial vehicles (UAVs) is increasing since low-cost airborne systems are available for a wide range of users. The outdoor navigation of such vehicles is mostly based on global navigation satellite system (GNSS) methods to gain the vehicles trajectory. The drawback of satellite-based navigation are failures caused by occlusions and multi-path interferences. Beside this, local image-based solutions like Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) can e.g. be used to support the GNSS solution by closing trajectory gaps but are computationally expensive. However, if the trajectory estimation is interrupted or not available a re-localization is mandatory. In this paper we will provide a novel method for a GNSS-free and fast image-based pose regression in a known area by utilizing a small convolutional neural network (CNN). With on-board processing in mind, we employ a lightweight CNN called SqueezeNet and use transfer learning to adapt the network to pose regression. Our experiments show promising results for GNSS-free and fast localization

    SQUEEZEPOSENET: Image based pose regression with small convolutional neural networks for real time uas navigation

    Get PDF
    The number of unmanned aerial vehicles (UAVs) is increasing since low-cost airborne systems are available for a wide range of users. The outdoor navigation of such vehicles is mostly based on global navigation satellite system (GNSS) methods to gain the vehicles trajectory. The drawback of satellite-based navigation are failures caused by occlusions and multi-path interferences. Beside this, local image-based solutions like Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) can e.g. be used to support the GNSS solution by closing trajectory gaps but are computationally expensive. However, if the trajectory estimation is interrupted or not available a re-localization is mandatory. In this paper we will provide a novel method for a GNSS-free and fast image-based pose regression in a known area by utilizing a small convolutional neural network (CNN). With on-board processing in mind, we employ a lightweight CNN called SqueezeNet and use transfer learning to adapt the network to pose regression. Our experiments show promising results for GNSS-free and fast localization

    CNN-BASED INITIAL LOCALIZATION IMPROVED BY DATA AUGMENTATION

    Get PDF
    Image-based localization or camera re-localization is a fundamental task in computer vision and mandatory in the fields of navigation for robotics and autonomous driving or for virtual and augmented reality. Such image pose regression in 6 Degrees of Freedom (DoF) is recently solved by Convolutional Neural Networks (CNNs). However, already well-established methods based on feature matching still score higher accuracies so far. Therefore, we want to investigate how data augmentation could further improve CNN-based pose regression. Data augmentation is a valuable technique to boost performance on training based methods and wide spread in the computer vision community. Our aim in this paper is to show the benefit of data augmentation for pose regression by CNNs. For this purpose images are rendered from a 3D model of the actual test environment. This model again is generated by the original training data set, whereas no additional information nor data is required. Furthermore we introduce different training sets composed of rendered and real images. It is shown that the enhanced training of CNNs by utilizing 3D models of the environment improves the image localization accuracy. The accuracy of pose regression could be improved up to 69.37 % for the position component and 61.61 % for the rotation component on our investigated data set

    CNN-Based Initial Localization Improved by Data Augmentation

    Get PDF
    Image-based localization or camera re-localization is a fundamental task in computer vision and mandatory in the fields of navigation for robotics and autonomous driving or for virtual and augmented reality. Such image pose regression in 6 Degrees of Freedom (DoF) is recently solved by Convolutional Neural Networks (CNNs). However, already well-established methods based on feature matching still score higher accuracies so far. Therefore, we want to investigate how data augmentation could further improve CNN-based pose regression. Data augmentation is a valuable technique to boost performance on training based methods and wide spread in the computer vision community. Our aim in this paper is to show the benefit of data augmentation for pose regression by CNNs. For this purpose images are rendered from a 3D model of the actual test environment. This model again is generated by the original training data set, whereas no additional information nor data is required. Furthermore we introduce different training sets composed of rendered and real images. It is shown that the enhanced training of CNNs by utilizing 3D models of the environment improves the image localization accuracy. The accuracy of pose regression could be improved up to 69.37% for the position component and 61.61% for the rotation component on our investigated data set

    External multi-modal imaging sensor calibration for sensor fusion: A review

    Get PDF
    Multi-modal data fusion has gained popularity due to its diverse applications, leading to an increased demand for external sensor calibration. Despite several proven calibration solutions, they fail to fully satisfy all the evaluation criteria, including accuracy, automation, and robustness. Thus, this review aims to contribute to this growing field by examining recent research on multi-modal imaging sensor calibration and proposing future research directions. The literature review comprehensively explains the various characteristics and conditions of different multi-modal external calibration methods, including traditional motion-based calibration and feature-based calibration. Target-based calibration and targetless calibration are two types of feature-based calibration, which are discussed in detail. Furthermore, the paper highlights systematic calibration as an emerging research direction. Finally, this review concludes crucial factors for evaluating calibration methods and provides a comprehensive discussion on their applications, with the aim of providing valuable insights to guide future research directions. Future research should focus primarily on the capability of online targetless calibration and systematic multi-modal sensor calibration.Ministerio de Ciencia, InnovaciĂłn y Universidades | Ref. PID2019-108816RB-I0

    Selbstkalibrierung mobiler Multisensorsysteme mittels geometrischer 3D-Merkmale

    Get PDF
    Ein mobiles Multisensorsystem ermöglicht die effiziente, räumliche Erfassung von Objekten und der Umgebung. Die Kalibrierung des mobilen Multisensorsystems ist ein notwendiger Vorverarbeitungsschritt für die Sensordatenfusion und für genaue räumliche Erfassungen. Bei herkömmlichen Verfahren kalibrieren Experten das mobile Multisensorsystem in aufwändigen Prozeduren vor Verwendung durch Aufnahmen eines Kalibrierobjektes mit bekannter Form. Im Gegensatz zu solchen objektbasierten Kalibrierungen ist eine Selbstkalibrierung praktikabler, zeitsparender und bestimmt die gesuchten Parameter mit höherer Aktualität. Diese Arbeit stellt eine neue Methode zur Selbstkalibrierung mobiler Multisensorsysteme vor, die als Merkmalsbasierte Selbstkalibrierung bezeichnet wird. Die Merkmalsbasierte Selbstkalibrierung ist ein datenbasiertes, universelles Verfahren, das für eine beliebige Kombination aus einem Posenbestimmungssensor und einem Tiefensensor geeignet ist. Die fundamentale Annahme der Merkmalsbasierten Selbstkalibrierung ist, dass die gesuchten Parameter am besten bestimmt sind, wenn die erfasste Punktwolke die höchstmögliche Qualität hat. Die Kostenfunktion, die zur Bewertung der Qualität verwendet wird, basiert auf Geometrischen 3D-Merkmalen, die wiederum auf den lokalen Nachbarschaften jedes Punktes basieren. Neben der detaillierten Analyse unterschiedlicher Aspekte der Selbstkalibrierung, wie dem Einfluss der Systemposen auf das Ergebnis, der Eignung verschiedener Geometrischer 3D-Merkmale für die Selbstkalibrierung und dem Konvergenzradius des Verfahrens, wird die Merkmalsbasierte Selbstkalibrierung anhand eines synthethischen und dreier realer Datensätze evaluiert. Diese Datensätze wurden dabei mit unterschiedlichen Sensoren und in unterschiedlichen Umgebungen aufgezeichnet. Die Experimente zeigen die vielseitige Einsetzbarkeit der Merkmalsbasierten Selbstkalibrierung hinsichtlich der Sensoren und der Umgebungen. Die Ergebnisse werden stets mit einer geeigneten objektbasierten Kalibrierung aus der Literatur und einer weiteren, nachimplementierten Selbstkalibrierung verglichen. Verglichen mit diesen Verfahren erzielt die Merkmalsbasierte Selbstkalibrierung bessere oder zumindest vergleichbare Genauigkeiten für alle Datensätze. Die Genauigkeit und Präzision der Merkmalsbasierten Selbstkalibrierung entspricht dem aktuellen Stand der Forschung. Für den Datensatz, der die höchsten Sensorgenauigkeiten aufweist, werden beispielsweise die Parameter der relativen Translation zwischen dem Rigid Body eines Motion Capture Systems und einem Laserscanner mit einer Genauigkeit von ca. 1 cm1\,\mathrm{cm} bestimmt, obwohl die Distanzmessgenauigkeit dieses Laserscanners nur 3 cm3\,\mathrm{cm} beträgt

    Camera Re-Localization with Data Augmentation by Image Rendering and Image-to-Image Translation

    Get PDF
    Die Selbstlokalisierung von Automobilen, Robotern oder unbemannten Luftfahrzeugen sowie die Selbstlokalisierung von Fußgängern ist und wird für eine Vielzahl an Anwendungen von hohem Interesse sein. Eine Hauptaufgabe ist die autonome Navigation von solchen Fahrzeugen, wobei die Lokalisierung in der umgebenden Szene eine Schlüsselkomponente darstellt. Da Kameras etablierte fest verbaute Sensoren in Automobilen, Robotern und unbemannten Luftfahrzeugen sind, ist der Mehraufwand diese auch für Aufgaben der Lokalisierung zu verwenden gering bis gar nicht vorhanden. Das gleiche gilt für die Selbstlokalisierung von Fußgängern, bei der Smartphones als mobile Plattformen für Kameras zum Einsatz kommen. Kamera-Relokalisierung, bei der die Pose einer Kamera bezüglich einer festen Umgebung bestimmt wird, ist ein wertvoller Prozess um eine Lösung oder Unterstützung der Lokalisierung für Fahrzeuge oder Fußgänger darzustellen. Kameras sind zudem kostengünstige Sensoren welche im Alltag von Menschen und Maschinen etabliert sind. Die Unterstützung von Kamera-Relokalisierung ist nicht auf Anwendungen bezüglich der Navigation begrenzt, sondern kann allgemein zur Unterstützung von Bildanalyse oder Bildverarbeitung wie Szenenrekonstruktion, Detektion, Klassifizierung oder ähnlichen Anwendungen genutzt werden. Für diese Zwecke, befasst sich diese Arbeit mit der Verbesserung des Prozesses der Kamera-Relokalisierung. Da Convolutional Neural Networks (CNNs) und hybride Lösungen um die Posen von Kameras zu bestimmen in den letzten Jahren mit etablierten manuell entworfenen Methoden konkurrieren, ist der Fokus in dieser Thesis auf erstere Methoden gesetzt. Die Hauptbeiträge dieser Arbeit beinhalten den Entwurf eines CNN zur Schätzung von Kameraposen, wobei der Schwerpunkt auf einer flachen Architektur liegt, die den Anforderungen an mobile Plattformen genügt. Dieses Netzwerk erreicht Genauigkeiten in gleichem Grad wie tiefere CNNs mit umfangreicheren Modelgrößen. Desweiteren ist die Performanz von CNNs stark von der Quantität und Qualität der zugrundeliegenden Trainingsdaten, die für die Optimierung genutzt werden, abhängig. Daher, befassen sich die weiteren Beiträge dieser Thesis mit dem Rendern von Bildern und Bild-zu-Bild Umwandlungen zur Erweiterung solcher Trainingsdaten. Das generelle Erweitern solcher Trainingsdaten wird Data Augmentation (DA) genannt. Für das Rendern von Bildern zur nützlichen Erweiterung von Trainingsdaten werden 3D Modelle genutzt. Generative Adversarial Networks (GANs) dienen zur Bild-zu-Bild Umwandlung. Während das Rendern von Bildern die Quantität in einem Bilddatensatz erhöht, verbessert die Bild-zu-Bild Umwandlung die Qualität dieser gerenderten Daten. Experimente werden sowohl mit erweiterten Datensätzen aus gerenderten Bildern als auch mit umgewandelten Bildern durchgeführt. Beide Ansätze der DA tragen zur Verbesserung der Genauigkeit der Lokalisierung bei. Somit werden in dieser Arbeit Kamera-Relokalisierung mit modernsten Methoden durch DA verbessert
    corecore