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Abstract

Self-localization of cars, robots or Unmanned Aerial Vehicles (UAVs) as well as self-
localization of pedestrians is and will be of high interest for a wide range of applications.
A major task is autonomous navigation of vehicles, whereas the localization in the
surrounding scene is a key component. Since cameras are well-established built-in sensors
in cars, robots and UAVs, there is little to no extra cost in utilizing them for subsequent
localization. The same applies for pedestrian localization, where smartphones serve as
mobile platforms for cameras. Camera re-localization, where the pose of a camera is
determined with respect to a certain scene, is therefore a valuable process to solve or
support localization solutions of such vehicles or pedestrians. Cameras are low-cost
sensors that are established commonly in the everyday life of humans and machines. The
support of camera re-localization is not limited to applications related to navigation but
can in general be applied to support image analysis or image processing tasks as scene
reconstruction, detection, classification or alike. For these purposes, this thesis concerns
the improvement of the camera re-localization task. As Convolutional Neural Networks
(CNNs) and hybrid pipelines to regress camera poses are recently competing against
established hand-crafted designed pipelines reaching similar or superior accuracies, the
focus is set on the former in this thesis. The main contributions of this thesis include the
design of a CNN to regress camera poses, with focus on a lightweight architecture fitting
the requirements to be applicable on mobile platforms. This network achieves accuracies
in the same order as CNNs with larger model sizes. Furthermore, the performance of
CNNs is highly depending on the quantity and quality of training data utilized for
their optimization. Hence, further contributions are considering image rendering and
image-to-image translation to extend such training data in terms of Data Augmentation
(DA). 3D models are utilized for image rendering to valuable extend training datasets.
Generative Adversarial Networks (GANs) serve for DA by image-to-image translation.
Whereas image rendering is increasing the quantity of images in datasets, image-to-image
translation on the other hand aims to enhance the quality of such data. Experiments are
carried out on datasets augmented by image rendering and image-to-image translation. It
is shown, that both approaches valuable enhance the localization concerning accuracy.
Therefore, state-of-the-art localization is improved by DA in this thesis.
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Kurzfassung

Die Selbstlokalisierung von Automobilen, Robotern oder unbemannten Luftfahrzeugen
sowie die Selbstlokalisierung von Fußgängern ist und wird für eine Vielzahl an Anwendun-
gen von hohem Interesse sein. Eine Hauptaufgabe ist die autonome Navigation von solchen
Fahrzeugen, wobei die Lokalisierung in der umgebenden Szene eine Schlüsselkomponente
darstellt. Da Kameras etablierte fest verbaute Sensoren in Automobilen, Robotern und
unbemannten Luftfahrzeugen sind, ist der Mehraufwand diese auch für Aufgaben der
Lokalisierung zu verwenden gering bis gar nicht vorhanden. Das gleiche gilt für die Selb-
stlokalisierung von Fußgängern, bei der Smartphones als mobile Plattformen für Kameras
zum Einsatz kommen. Kamera-Relokalisierung, bei der die Pose einer Kamera bezüglich
einer festen Umgebung bestimmt wird, ist ein wertvoller Prozess um eine Lösung oder
Unterstützung der Lokalisierung für Fahrzeuge oder Fußgänger darzustellen. Kameras
sind zudem kostengünstige Sensoren welche im Alltag von Menschen und Maschinen
etabliert sind. Die Unterstützung von Kamera-Relokalisierung ist nicht auf Anwendungen
bezüglich der Navigation begrenzt, sondern kann allgemein zur Unterstützung von
Bildanalyse oder Bildverarbeitung wie Szenenrekonstruktion, Detektion, Klassifizierung
oder ähnlichen Anwendungen genutzt werden. Für diese Zwecke, befasst sich diese Arbeit
mit der Verbesserung des Prozesses der Kamera-Relokalisierung. Da Convolutional Neural
Networks (CNNs) und hybride Lösungen um die Posen von Kameras zu bestimmen in den
letzten Jahren mit etablierten manuell entworfenen Methoden konkurrieren, ist der Fokus
in dieser Thesis auf erstere Methoden gesetzt. Die Hauptbeiträge dieser Arbeit beinhalten
den Entwurf eines CNN zur Schätzung von Kameraposen, wobei der Schwerpunkt auf einer
flachen Architektur liegt, die den Anforderungen an mobile Plattformen genügt. Dieses
Netzwerk erreicht Genauigkeiten in gleichem Grad wie tiefere CNNs mit umfangreicheren
Modelgrößen. Desweiteren ist die Performanz von CNNs stark von der Quantität und
Qualität der zugrundeliegenden Trainingsdaten, die für die Optimierung genutzt werden,
abhängig. Daher, befassen sich die weiteren Beiträge dieser Thesis mit dem Rendern von
Bildern und Bild-zu-Bild Umwandlungen zur Erweiterung solcher Trainingsdaten. Das
generelle Erweitern solcher Trainingsdaten wird Data Augmentation (DA) genannt. Für das
Rendern von Bildern zur nützlichen Erweiterung von Trainingsdaten werden 3D Modelle
genutzt. Generative Adversarial Networks (GANs) dienen zur Bild-zu-Bild Umwandlung.
Während das Rendern von Bildern die Quantität in einem Bilddatensatz erhöht, verbessert
die Bild-zu-Bild Umwandlung die Qualität dieser gerenderten Daten. Experimente werden
sowohl mit erweiterten Datensätzen aus gerenderten Bildern als auch mit umgewandelten
Bildern durchgeführt. Beide Ansätze der DA tragen zur Verbesserung der Genauigkeit der
Lokalisierung bei. Somit werden in dieser Arbeit Kamera-Relokalisierung mit modernsten
Methoden durch DA verbessert.
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1 Introduction

Camera re-localization is a crucial problem in fields of autonomous driving, navigation of
robots [CN08] or UAVs [MUJ17], pedestrian self-localization, Simultaneous Localization
And Mapping (SLAM) [Dav+07; ED06] or Augmented and Virtual Reality (AR and VR)
[CKM08; Lyn+15]. Therefore, camera re-localization is deployed on various platforms
including cars, robots, Unmanned Aerial Vehicles (UAVs) and underwater vehicles,
smartphones or AR and VR devices. It is crucial to know the localization of such platforms
in the present scene for applications as navigation or human interaction. Camera re-
localization is the estimation of a camera pose given a single image in a known scene. This
problem is also referred to as monocular camera re-localization, one shot re-localization
or visual re-localization. The known scene is generally given by a set of images and their
corresponding poses. Since the scene must be known, this task is specified as re-localization.
For simplicity, the term localization is synonymously used when referring to the camera
re-localization problem in this thesis.

Figure 1.1 depicts the full localization pipeline from the original data (left) to a camera
pose (right). The figure is structured as follows. The very top row depicts the general data
(blue) and methods (green) forming the pipeline. The second row from the top depicts
the data and methods more specific, while the methods are divided into hand-crafted
(yellow) and data-driven (orange) approaches. The bottom row depicts particular methods
exemplary including recent state of the art.

The modules compounding the camera re-localization pipeline can be generally tackled
via hand-crafted or data-driven designed approaches. Localization methods based on
hand-crafted local image features, such as Scale Invariant Feature Transform (SIFT) [Low04],
Speeded-Up Robust Features (SURF) [BTV06], Features from Accelerated Segment Test
(FAST) [RD06b], Binary Robust Independent Elementary Features (BRIEF)[Cal+10] or
Oriented FAST and Rotated BRIEF (ORB) [Rub+11] estimate camera poses by a known
mathematical model. According methods that are based on such features are Active
Search (AS) [SLK11; SLK12; SLK16], solvers for the general Perspective-n-Point (PnP)
problem [Gao+03], Perspective-3-Point (P3P) problem [Gao+03; QL99; Har+94] or Efficient
Perspective-n-Point (EPnP) problem [LMF08], Structure from Motion (SfM) [KD91; Wu13;
SF16] or solvers for image retrieval [AZ13; SM97]. Matching 2D features can be approached
in a hand-crafted manner by Normalized Cross Correlation (NCC) [YH09] or by data-driven
approaches like MatchNet [Han+15].

Data-driven methods that solve camera re-localization in an end-to-end manner are firstly
introduced with the publication of PoseNet [KGC15]. The term end-to-end learning is
referred to as the process of learning a complex system considering only the input on
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1 Introduction

Figure 1.1: Overview of the camera re-localization pipeline. The illustration shows the general image
localization pipeline from left (beginning with image data) to the right (ending with a camera pose). The
very top row defines data (blue) and methods (green) to solve the localization task. The second row shows
the particular data (blue) and general methods based on hand-crafted (yellow) and data-driven (orange)
approaches. The bottom row depicts exemplary methods including recent state of the art. Note that the
Feature Extraction column summarizes detection, description and matching of features. The exemplary
methods are marked with DD (detection and description) or M (matching) depending on what parts of the
feature extraction pipeline they solve.

one end and the output on the other end. Convolutional Neural Networks (CNNs) are
an example for such networks, that are trained in an end-to-end fashion, whereas the
trainable parameters are optimized iteratively without user interaction. Nevertheless,
such a model may include non-trainable parts provided in a hand-crafted manner. CNNs
are able to estimate a camera pose from single images in a scene after being trained on
respective data. This means, that there is no need for hand-crafted designed features
between the input (image) and the output (camera pose). The whole model between
the input and output is learned during a training process with no or little need for
user-based supervision. Enhancements are the Bayesian PoseNet [KC16] which provides a
re-localization uncertainty or Long Short-Term Memory (LSTM) [HS97] layers to boost the
accuracy of pose estimation [Wal+17]. A lightweight CNN for camera re-localization is
introduced with SqueezePoseNet [MUJ17].

Followed by these approaches, that solve the camera re-localization in one step, further
methods split up the process of pose estimation in generally two main parts. Feature
extraction and localization. As mentioned above, both parts can be tackled by hand-crafted
approaches. However, data-driven approaches for feature extraction and localization are
established similarly. Feature extraction performed by a CNN like LIFT [Yi+16] outperforms
hand-crafted features like SIFT on selected challenging datasets. However, compared on
a wide range of scenarios, hand-crafted features perform on similar or better than LIFT
[Sch+17]. D2-Net [Dus+19], another CNN, is even capable to produce image features that
enable feature matching between images of different domains, like day and night, sharp
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1 Introduction

and blurred or between images of different styles. Whereas the most common way is a
two-fold process of detection and description, D2-Net handles the entire feature extraction
simultaneously.

The feature space of localization approaches like the mentioned SfM utilizes 2D image
features like SIFT. The EPnP algorithm on the other hand is based on correspondences of 2D
features in an image and 3D features in the world. Such features and their correspondences
can be derived by data-driven approaches like 2D3D-MatchNet [Fen+19], a network that
jointly learns the descriptors for 2D and 3D keypoints from images and point clouds.

The hand-crafted and data-driven division continues for image retrieval, with hand-crafted
approaches [Phi+07; NS06] and data-driven approaches [Gor+16]. Image retrieval is the
task of finding the most similar images from a database, given a query image. Therewith,
image retrieval does not solve camera re-localization primarily. However, given a database
with images and their corresponding poses enables the assignment of a pose to a query
image, according to its most similar image(s) from the database. Therefore, image retrieval
can be a way to solve re-localization. Besides that, image retrieval is utilized to find relevant
parts of 3D models for further 2D-3D point correspondence estimation [Irs+09].

A hybrid method that consists of a CNN for scene coordinate regression and a PnP solver
is trained in an end-to-end manner by providing a fully differential pipeline [Bra+17]. This
workflow is considered as hybrid since it combines data-driven learning with hand-crafted
designed spatial estimation in an end-to-end trained pipeline.

The camera re-localization workflow is completed with approaches considering DA. DA is
an optional step, yet very powerful and wide-spread in the computer vision community
supporting various tasks. In terms of camera re-localization, DA can be carried out by trivial
image transformations such as rotating, scaling, blurring or alike. Ahead on this, image
rendering is a valuable process, generating synthetic data from 3D models. Besides these
hand-crafted methods, style transfer or image-to-image translation constitute approaches
based on data-driven learning. Image rendering and image-to-image translation is covered
in this thesis to support camera re-localization.

7



1 Introduction

1.1 Motivation

This thesis aims on the investigation and improvement of camera re-localization and is
motivated by the rising interest of disciplines like computer vision and robotics deploying
such methods for solving initial localization in Visual Odometry (VO) and SLAM-based
systems, for complementing existing localization frameworks or for usage as deployable
stand-alone systems. Such re-localization is a necessity in the fields of autonomous driving
or AR and VR. In contrast to local positioning techniques as VO or SLAM which derive
camera poses in a local reference frame, camera re-localization derives camera poses in a
global reference frame, assuming accordingly labeled training data. This is more valuable
given informations about the absolute position and orientation in a global reference system.
If no labeled image poses in a global reference frame are provided, camera re-localization
can only carried out locally with respect to a scene coordinate frame.

Applications for the navigation of vehicles or the self-localization of pedestrians rely on
real-time or near real-time processing to be applicable in real-world scenarios. Data-driven
deep learning methods are known for their excessive time consuming training processes
including the so-called backward propagation – or short backpropagation – relying on
sufficient hardware to be practicable utilized. However, during runtime only forward passes
need to be handled, which are basically chained multiplications that can be processed
within milliseconds.

Localizing vehicles or robots is often carried out by utilizing Global Navigation Satellite
Systems (GNSSs). As camera re-localization, GNSS methods derive a pose in a global
reference frame. However, GNSS generally lacks accuracy from shadowing and multi-path
effects or fails in indoor or strong occluded scenes. Camera re-localization overcomes
these issues and therefore effectively complements existing GNSS localization. Camera
re-localization differs from GNSS in a way that they are both inside-out localization
approaches, whereas a sensor gathers information about the surrounding scene to localize
itself within this scene. Considering GNSS, the scene has to be equipped with satellites
providing active signals (space segment). A rover determines its position processing these
received signals. An orientation can not be determined by using merely GNSS. Also the
user does not have assured control of the so-called space segment. In contrast, camera
re-localization relies merely on images captured in a scene or a 3D model and provide
camera orientations as well.

The number of images publicly available or owned by companies (like Google LCC or
flickr) increased throughout the last years. Important landmarks and parts of cities could
successfully be reconstructed utilizing only publicly available images from the internet.
Projects like BigSFM: Reconstructing the World from Internet Photos [Uni] or Reconstructing
the World in Six Days [Hei+15] have the objective to reconstruct the whole world or large
parts of it using only internet photo collections. Therewith, one of the modules for camera
re-localization - the data - is available in a vast amount.

8



1.2 Problems and Contribution

1.2 Problems and Contribution

With the success of deep learning, the problem of camera re-localization experienced an
essential change concerning methodological solvers. While the problem is well known and
a popular field of research improved by hand-crafted advancements over the last years,
data-driven methods caught the interest of many researches in the field. While the first
data-driven methods could solve camera re-localization only up to a certain degree not
outperforming existing methods based on hand-crafted design, the data-driven approaches
improved over time and caught up on hand-crafted methods or even surpassing them
lately for particular scenes.

In the following, existing problems and the corresponding contributions of this thesis
tackling these problems are highlighted.

• Problem I: Limitation of memory capacity. Navigation frameworks benefit from
camera re-localization. Potential platforms for such navigation frameworks are cars,
robots, UAVs, unmanned underwater vehicles, smartphones or alike. A drawback
of data-driven deep learning methods is their system requirements. Due to the
high number of parameters stored in CNN models, the memory capacity of mobile
devices or embedded computers attached to such platforms is a limiting factor. When
large CNNs do not satisfy the requirements for on-board processing, lightweight
networks could potentially substitute them without simultaneous drawbacks.
Contribution I: A lightweight CNN [MUJ17] to solve camera re-localization by pose
regression is proposed (Chapter 5). This network is capable of running on embedded
computers, deployable on UAVs or small robots.

• Problem II: Lack of training data. Camera re-localization requires distinct knowledge
of a regarding scene to be functional. This knowledge is at least given by images
covering the scene and optionally their corresponding image poses or by 3D models.
Considering CNNs for camera re-localization, the training data usually consists
of images and their corresponding poses. The performance of such networks
depends heavily on the underlying training data. The amount of training data
and its distribution affect the performance significant, whereas networks generally
benefit from a high amount of training data and a rich distribution of such. If such
training data is not provided with sufficient quantity and distribution, the camera
re-localization suffers or fails.
Contribution II: Data Augmentation (DA) by image rendering is proposed [MJ18;
MMJ18] to overcome the stated problem of lacking training data (Chapter 6).
Therefore, images are rendered from 3D models to generate an arbitrary amount of
training data while increasing its distribution.

• Problem III: Domain differences. As stated in the description of Problem II, the
issue of lacking training data is overcome by DA by utilizing image rendering.
The training data is either enhanced by rendered images or exclusively consists
of such. These rendered images appear – depending on the 3D model serving for
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rendering – with visual appearance or styles that differ from the characteristics of
the evaluation data. Therewith, training and evaluation images exist in different
domains. Training a network on a specific domain X and operating on domain Y
leads to inconsistencies, since the network has never learned about the distribution
of domain Y. This issue leads to dissimilarities in the feature space and affects the
camera pose estimation negatively.
Contribution III: Image-to-image translation is utilized for mapping images between
different domains [Mül+19] to overcome recent drawbacks (Chapter 7). By image-to-
image translation the radiometric and geometric information of images is mapped to
a target domain improving the characteristics considering the similarity of training
and evaluation data. Generative Adversarial Networks (GANs) are trained for
the mapping between such image domains. Therewith, the accuracy of camera
re-localization is enhanced.

1.3 Organization of the Thesis

The thesis is structured as follows. Chapter 1 introduces camera re-localization, motivates
the relevance of the topic and outlines the contributions. Chapter 2 summarizes important
works and contributions to the camera re-localization problem considering DA, feature
extraction and visual localization. The fundamentals of deep learning, including CNNs
and GANs are outlined in Chapter 3 as such methods are utilized throughout the thesis.
Important datasets utilized or acquired within this thesis are outlined in Chapter 4. The
three chapters considering localization without DA (Chapter 5), localization with DA
by image rendering (Chapter 6) and localization with DA by image-to-image translation
(Chapter 7) form the methodological main chapters. Subsequently, the corresponding
experiments are carried out in Chapter 8. The results of the experiments are discussed in
Chapter 9. Finally a conclusion and outlook of the thesis is presented with Chapter 10.
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This chapter presents an overview of the modules compounding the camera re-localization
pipeline from raw image data over optional DA to feature extraction and finally the
localization process to derive an image pose. The definition of an image pose and its
parametrization is conducted in the Appendix A. The general aim is to estimate an image
pose with respect to a fixed reference frame given a set of images and their poses in the
same reference frame. Such an image pose can be estimated by different localization
methods (Section 2.3), either by spatial estimation modeled in a hand-crafted manner
(Section 2.3.1) or by end-to-end learned models (Section 2.3.2). Both strategies rely in some
way on features, extracted from the input images. The approaches to extract such features
can be split into hand-crafted and data-driven methods and are described in Section 2.2.
The input images for such feature extraction can be represented by the original data or by
augmented data originated from the former. Such DA is covered in Section 2.1 and can be
conducted by either transformations of the original images or by generating completely
new images by image rendering or image-to-image translation. All these approaches use
merely the original data as input, either in a direct or indirect way.

The sections compounding the fundamentals are tightly coupled to the camera re-
localization pipeline shown in Figure 1.1. As illustrated, the three methodological modules
Data Augmentation, Feature Extraction and Visual Localization (green) each can be approached
by either hand-crafted (yellow) or data-driven (orange) solutions. Therefore, the sections of
fundamentals are loosely split into subsections focusing on both hand-crafted and data-
driven methodology. Within the pipeline of determining an image pose, the sub-methods
of localization, feature extraction and DA can be modularly exchanged partially, whereas
the decision which parts should be carried out by hand-crafted methods and which parts
by data-driven methods to derive best results for an image pose is of high interest. In this
thesis, selected modules from the image localization pipeline are enhanced to advance the
state of the art.

2.1 Data Augmentation

DA is a scheme that artificially inflates a dataset by generating additional, type preserving
data using domain specific synthesization. Data-driven and hand-crafted methods rely
on sufficient training data to maximize performance. With the limitation of such data,
both these approaches run into deficiency. These problems occur and are maximized
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with the level of discrepancy between training and evaluation data. Generally, the more
similarity a evaluation dataset shares with its linked training dataset, the more satisfactory
can a subsequent task be performed. Such similarity can not always be ensured and is
often not favored in terms of transferability and generalization. If a pipeline is aimed to
provide a preferable general and robust performance on arbitrary data, it is not desirable
to provide a training set with similar distribution of data, since this leads to overfitting.
Overfitting is referred to systems or models when they perform satisfactory on a particular
data but not on general data. These models are therefore overfitted to a restricted number
of appearances but can not be deployed on more general tasks. Aside from gathering
more instances of data samples that are representative for a distinct task, the process of
DA refers to the operation to generate more samples by synthesization given a basis of
data. In the case of image pose estimation, the robustness and accuracy of an applied
method highly relies on the basis of the given image data. The performance of both,
data-driven and hand-crafted localization methods is improved by DA [TN17; PW17;
MJ18; MMJ18; Mül+19]. Considering the pipeline in Figure 1.1, DA is the module that
impacts the pose estimation throughout the whole processing chain, independent of the
choice of subsequent processing steps. It fundamentally impacts both, hand-crafted and
data-driven methods and is therefore an affective module of interest in the processing
chain. Lack of training data is a major problem in different fields of computer vision and
other disciplines. The generation of training data is often tedious and expensive due to
manual annotations and labeling. DA generally provides a beneficial option to generate
additional data with little cost. DA includes image transformations, image rendering and
image-to-image translation. Image transformations (Section 2.1.1) include generic and
often trivial geometric and radiometric transformations that are applied to base images to
directly produce variants of new images. Image rendering (Section 2.1.2) is carried out by
utilizing a 3D model of a scene to generate an arbitrary amount of images from synthetic
poses. The advantage of this method is, that images with purely new scene views and
poses are added to the database that provide beneficial value. Image-to-image translation
introduced in Section 7.3.1 is the process of mapping an input image in a certain source
domain to an output image in a target domain. At the frontier for such image-to-image
translation are GANs [Goo+14], that are able to generate synthetic images in particular
domains (like summer and winter) or with artistically styles.

2.1.1 Image Transformation

A trivial way to expand an image dataset is to artificially enlarge the dataset by label-
preserving radiometric and geometric image transformations. Common geometric and
radiometric transformations include but are not limited to scaling, rotating, shifting,
smoothing, cropping, edge enhancement, blurring, regional dropout, color jittering, adding
different types of noise and affine, perspective or radiometric transformations or principal
component analysis. This supports algorithms to learn invariance, to e.g. shift and
rotation, which helps to generalize and increase the accuracy of the model. Figure 2.1
illustrates different kinds of image transformations considering a single input image (left).
The sheer size of a training dataset can be increased significantly with such exemplary

12
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transformations. Applications like classification [He+15; How13; KSH12], object detection
[He+15], action recognition in videos [SZ14a] or handwriting recognition [SSP03] benefit
from this technique. The authors of the latter publication state, that getting the training set
as large as possible is "the most important practice". In general image transformations
support data-driven methods to achieve invariance and/or robustness to geometry and
radiometry. Moreover, by varying the transformation parameters, an infinite amount of
augmented data may be generated.

noise

affine

crop + pad

perspective + flip

image transformation

original image

transformed images

Figure 2.1: Examples for image transformations [Jun+19]. An original image is transformed by various
single mapping functions or combinations of them. Further transformations could be blur, rotate, regional
dropout, colour jittering, channel shuffle, gray scale conversion and other geometric or radiometric
transformations.

2.1.2 Image Rendering

In contrast to the previous outlined method on image transformation for DA, image
rendering is a more complex but also a more versatile way to enhance an existing image
dataset. Image rendering is the process of generating completely new data from artificial
or reconstructed 3D models from an arbitrary camera viewpoint respectively an arbitrary
pose. Figure 2.2 depicts this process. Rendering can potentially provide infinite and
generally richer training data compared to the generic augmentation methods mentioned
in Section 2.1.1. DA by image rendering is successfully utilized for hand gesture recognition
[LA17], face recognition [Mas+19] or viewpoint estimation [Su+15]. 3D models are also
used to learn deep object detectors [Pen+15]. Images of faces from purely new viewpoints
are rendered to provide richer data for face recognition [Lom+18]. The new views are
generated given only an original image of a face. In general, image transformations
(Section 2.1.1) on rendered images can also be utilized to further enhance a training dataset.
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rendering

3D model rendered images

Figure 2.2: Overview of the image rendering scheme. Given a 3D model, any number of images can be
rendered from arbitrary poses. These new images can then be added to a training dataset and be utilized
to enhance methods for camera re-localization.

2.1.3 Image-to-Image Translation

Image-to-image translation is the process of mapping an input image in domain y to
an output image in domain x (Figure 2.3). Such translations can be applied to map
images between different artistically styles, seasonal domains or generally for image
enhancements. The domains are conditioned from the distribution of image characteristics.
Exemplary domains for such mappings are spring, summer, autumn and winter [Zhu+17],
day and night [Ano+19], rendered and captured [Mül+19] or translations between different
artistically styles [Ano+18; Zhu+17]. By image-to-image translation, images can be mapped
between these domains, generally in all directions. A summer image can be translated
into a winter image or vice-versa. This process is recently carried out by GANs which are
described more detailed in Section 3.3. Rendered images of eyes are translated to reduce
the gap to distributions of real images to improve training on synthetic images [Shr+17b].
Image-to-image translation made a huge leap benefiting from the advancements and better
understanding of deep learning and could provide beneficial value serving for DA. The
idea is to learn a mapping between two domains whereas the target domain coincides
with the image characteristics of a training dataset. From image rendering, images are
generated with a deficient quality concerning conformity to the training dataset. By
image-to-image translation, this issue can be overcome by mapping the rendered images
from their rendered domain to images in a captured domain increasing the quality of such
images considering their appearance characteristics. Key differences of the mentioned
image-to-image translation approaches are that they are based on GANs that do not need
paired training data. Concerning a mapping between summer images and winter images,
there is no need to provide a labeled image pair in both domains for training. Rather the
algorithms are able to learn solely from arbitrary, un-paired summer and winter images.
This is a huge advantage, since the tedious labeling or the sheer collection of such data is
often hard or even impossible to achieve.
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image-to-image
translation

image in target domain ximage in source domain y

Figure 2.3: Exemplary image-to-image translation. An image in a source domain y is mapped into an
image in the target domain x. The image-to-image translation shown in this figure is carried out from a
rendered image in the rendered domain y to a translated image in the captured domain x.

2.2 Feature Extraction

Feature extraction is a two-fold task that is composed by detecting distinct points or interest
points (feature detection) and describing them (feature description). Feature detection and
description can be solved by either hand-crafted methods which are focused in Section 2.2.1
or data-driven methods which are focused in Section 2.2.2. Feature extraction is a key
function in computer vision and photogrammetry as being a fundamental module that is
mandatory for numerous higher level tasks in this fields. It is also a prerequisite for all in
Section 2.3.1 mentioned spatial estimation methods. Data-driven end-to-end methods also
utilize features to estimate poses. However, these methods learn suitable features within
the learning pipeline.

2.2.1 Hand-crafted Design

Hand-crafted feature extraction is the task to detect and describe features at points of
interest or at keypoints in an image by hand-crafted designed image analysis methods. A
feature should represent a distinctive and unique part of an image. Such features are used
as a starting point in many computer vision and photogrammetry algorithms including
object tracking, image matching or classification. Feature extraction is an initial operation
for many algorithms and is applied directly on raw or preprocessed data. The repeatability
of a feature is of high importance to detect corresponding features reliable over two or
more images with varying viewpoints or in varying domains.

The initial part of feature extraction is feature detection. Many algorithms for feature
detection have been proposed, which vary widely in the kinds of features that are detected,
the computational complexity and the repeatability. Such algorithms generally detect
points as corners or blobs. The first feature detectors are introduced by Harris and Stevens
[HS88] finding interest points by calculating differences of intensity. Shi and Tomasi [ST94]
modified that detector improving the performance by changing the score function that
decides if a corner is existent in a patch or not. Other corner detectors are BRIEF, ORB,
Adaptive and Generic corner detection based on the Accelerated Segment Test (AGAST)
[Mai+10] or Binary Robust Invariant Scalable Keypoints (BRISK) [LCS11]. The most
popular blob detectors are SIFT and the more efficient variant SURF. The SIFT detector
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computes Gaussian filters with different variances and detects extrema in Difference of
Gaussians computed over neighboring filtered maps creating a scale space. With SURF
this process is sped up by approximating the Gaussian derivatives with box filters and
utilizing integral images, therefore upscaling the filter size does increase computational
complexity. The KAZE feature detector avoids blurring the images by non-linear diffusion
[ABD12] therefore avoids smoothing details of present objects. KAZE reaches a higher
repeatability over SIFT. These algorithms examine every pixel in an image and decide if
there is an interesting region around that pixel or not.

The second part of feature extraction is feature description. After finding distinct points,
description for these points based on their local neighborhood are computed. The
description of an image feature is usually mapped into a descriptor. If a detector provides
information about the orientation or scale of a feature, the descriptor can be made invariant
to such transformations. Descriptors are stored as floating point values or binary strings.
These descriptors are then utilized to e.g. compare image contents, perform image matching
or compute image transformations.

However, feature extraction is often one of the more computationally expensive parts of an
image processing pipeline. Learned methods aim to reduce the expenditure of time, while
generating more robust and distinct features in varying conditions.

2.2.2 Data-driven Design

In contrast to hand-crafted feature extraction, pipelines that detect and describe features
can be alternatively learned in a data-driven manner. Approaches learn such pipelines for
feature extraction in an end-to-end manner. End-to-end learning is the process of learning
all parameters of a model jointly rather than in multiple single steps. Therefore, a model is
optimized given input and desired output, whereas no parameters have to be set manually
during the training process. To train such pipelines in an end-to-end fashion by deep
learning methods, the differentiability has to be preserved, which can be one of the most
difficult problems of such tasks. Approaches solve that problem for single parts of the
feature extraction pipeline separately. A feature detector that extracts repeatable keypoints
under drastic image changes like varying weather conditions or lighting changes from
day to night is given with the Temporally Invariant Learned DEtector (TILDE) [Ver+15].
TILDE outperforms hand-crafted features like SIFT, SURF, FAST and others on challenging
datasets. A feature orientation extractor learned by a siamese CNN [Moo+16] improves
the matching of feature points over orientations extracted from SIFT, SURF, FAST, ORB,
KAZE and others. The approach also leads to enhanced Multi-View Stereo (MVS) results
improving the completeness and the details of generated point clouds. A feature descriptor
learned by a siamese CNN [Sim+15] shows a higher robustness to rotation than SIFT
and a data-driven approach [SVZ14]. The authors state that the descriptor generalizes
well against scaling, rotation, perspective transformations, non-rigid deformation and
illumination changes. The descriptor has a 128-dimensionality and can therefore easily
be used as a replacement for descriptors like SIFT which has the same dimensionality.
Further developments aim to solve more parts of the feature extraction pipeline at once.
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Feature detection with a jointly computation of feature similarities for subsequent feature
matching is introduced with MatchNet [Han+15]. To ensure higher repeatability, the
training data is augmented with synthetic samples that help reduce overfitting. An
interesting part is the study on the trade-off between feature dimension (storage) and
accuracy. The accuracy improves with increasing feature dimension. The paper shows
that CNNs are effective for wide-baseline patch matching. MatchNet produces superior
accuracies compared to SIFT and a data-driven approach [SVZ14] using a 4096-dimension
feature. Feature dimensionalities (64, 128, 512) trained with MatchNet score similar or
better than other hand-crafted and data-driven matching approaches. The first pipeline
that solves feature detection, feature orientation estimation and feature description jointly
preserving end-to-end differentiability is the Learned Invariant Feature Transform (LIFT)
[Yi+16]. Spatial Transformers [Jad+15] are used to consecutively assemble the individual
steps of feature detection [Ver+15], feature orientation [Moo+16] and feature description
[Sim+15]. The spatial transformer is utilized to rectify the output image patches of the
detector and the orientation estimator to serve as an input for the subsequent modules.
Furthermore a soft arg max function is applied for non-local maxima suppression while
preserving differentiability. Another combined solver for feature detection and description
is introduced with D2-Net [Dus+19]. The network based on a single CNN solves the
feature extraction task in its full extent. It outperforms variants of SIFT as well as other
data-driven approaches under difficult imaging conditions and appearance changes such
as illumination differences from daytime to nighttime, motion blur or even changes in the
artistically style of the images. The key idea is to address the detection step in a later stage
within the network rather than on low-level information basis in the early stages, thus
leading to a higher stability. Such feature detection pipelines outperform hand-crafted
methods lately for datasets with challenging conditions as the Aachen Day-Night dataset
[Sat+18a].

An other approach for image pose estimation is utilizing 2D-3D matches. Besides the
2D features extracted from images, 3D information is necessarily provided or generated
within the process. By finding 2D-3D correspondences, camera localization can be solved
– for instance by a Perspective-n-Point (PnP) solver. 3D point clouds store valuable
information to solve or support camera localization. A drawback is the difficulty in
obtaining 2D-3D image to point cloud correspondences. An approach that focuses on
finding such correspondences reliable is the 2D3D-MatchNet [Fen+19], an end-to-end
trainable network that jointly learns descriptors for 2D and 3D points in images respectively
point clouds, whereas a point cloud of the scene has to be provided.

A further approach focuses on generating 3D points of the scene on the fly by learning
a scene coordinate regression CNN and a scoring hypothesis function for camera poses
from 2D-3D correspondences generated by the former scene regression. To learn such a
pipeline in an end-to-end manner all parts have to be differentiable. The usually used
RANSAC algorithm [FB81], whose hypothesis selection is not differentiable is substituted
by the Differentiable RANSAC (DSAC). DSAC learns scene coordinate regression and pose
hypothesis scoring jointly [BR18; Bra+17]. However, the only learnable component of the
pipeline is the scene regression CNN, generating 2D-3D correspondences. Subsequently,
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a PnP solver determines the camera localizations by a known mathematical model in a
hand-crafted manner. Scene coordinate regressors are originally based on Random Forest
approaches [Sho+13a; Bra+16].

A further 2D-3D approach is the Descriptor-Matcher [Nad+19], which exploits 3D features
extracted from dense point clouds as well as 2D features extracted from images. This
2D-3D descriptor matcher is based on a Random Forest [Bre01] classifier. The matcher
is trained on 2D SIFT- and 3D descriptors such as 3D-SIFT [SAS07] or Harris 3D [SB11].
Subsequently, the derived 2D-3D matches are used to solve the P3P problem with the robust
Maximum Likelihood Estimation Sample Consensus (MLESAC) [TZ00] estimator. Their
experiments show competitive results compared to hand-crafted methods and methods
that learn 2D-3D correspondences utilizing a CNN.

2.3 Visual Localization

In this section an overview of visual localization methods is presented. The localization
task is also known as re-localization, since prior knowledge of the scene has to be given.
Generally visual localization is the process of determining the pose of an image with respect
to a given reference frame in six Degrees of Freedom (DoF). In contrast to localization
but close related is the relative poses estimation between one or more images as in
VO or SLAM systems. A key difference is the determination of the pose in a global
reference frame by localization methods in contrast to the determination of a pose with
respect to a local reference frame (usually a neighboring image or an initial keyframe) by
relative pose estimation. Considering Figure 1.1, visual localization is split into methods of
spatial estimation and end-to-end learning. Methods of these divisions are subsequently
introduced in Section 2.3.1 and Section 2.3.2.

2.3.1 Spatial Estimation

In this section a brief introduction to spatial estimation that utilize hand-crafted designed
algorithms to derive an image pose is given. State-of-the-art solutions are solvers for
the PnP problem, SfM and image retrieval, which are relevant for this thesis and will be
highlighted in the following.

The Perspective-n-Point problem is the issue of estimating the pose of a camera given a
set of n 3D points in a scene and their corresponding 2D points in an image. The camera
pose consists of six DoF which are composed by the orientation (roll, pitch, and yaw) and
the position (x, y, z) of the camera with respect to a higher-level reference frame. The
image pose of a camera with center C0 is given by a rotation matrix R and translation
vector t with respect to a global reference frame W0. The image pose is computed from
corresponding 2D points and 3D points (Figure 2.4).

PnP is well known in the computer vision [HZ03] and photogrammetry [MMB04]
communities. A commonly used solution to the problem is P3P [Gru41; Har+94], where
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Figure 2.4: The Perspective-n-Point problem is stated as the issue of estimating an image pose given a set
of 3D points of a scene and their corresponding 2D points in an image. The image pose of a camera with
center C0 is given by a rotation matrix R and translation vector t with respect to a global reference frame
W0. The image pose is computed from corresponding 2D points (orange) and 3D points (green).

n = 3 and many solutions are available for the general case of n > 3. A solution for n = 2
only exists when additional information, like feature orientations at the two particular
points, is given. A more common case would be a known camera direction that is acquired
by inertial measurements or by constructed vanishing points in images [KBP10]. EPnP
[LMF08] is a non-iterative solution for n ≥ 4 with a complexity linear growing with n.
In contrast, other works on this problem have complexities of O(n5) or up to O(n8) at
same accuracies. With EPnP, each of the n points are expressed as a weighted sum of four
virtual control points. The unknown parameters of the problem are then the coordinates
of the control points which serve for solving the camera pose. This reduces the problem to
estimating the coordinates of these points in the camera to O(n). The first non-iterative
PnP solution that achieves better results than iterative solutions concerning accuracy is the
Robust PnP [LXX12]. Further advantages are the handling of planar cases, ordinary 3D
cases and quasi-singular cases while achieving a computational complexity of O(n).

An n-point algorithm is used for camera pose estimation in combination with AS, where
2D-3D correspondences between images and a 3D model are found by firstly using a
SIFT ratio test to reject ambiguous matches and secondly solving an n-point algorithm
inside a RANSAC loop. The key novelty of the AS approach is the active correspondence
search, where correspondences are actively searched in a region where a 2D-3D match is
already found. While achieving comparable or superior runtime against other localization
methods. AS scores the best registration performance on three benchmark datasets of,
which are Vienna [Irs+09], Rome and Dubrovnik [LSH10].

Structure from Motion is the process of simultaneous 3D surface reconstruction and image
pose estimation [Ull79]. Given multiple images showing different but partly overlapping
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views of a particular scene, SfM aims to reconstruct the scene while simultaneously
estimating the camera poses with respect to the scene (Figure 2.5). Initially, the relative

xm,i
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xn,i
xo,i

Cm Co

Figure 2.5: Given a number of images with overlapping scene views, SfM is the task of reconstructing 3D
points of the scene while estimating the relative image poses.

orientations and translations between the utilized images have to be computed. This
is also known as image alignment or image registration. A necessity for that is the
feature extraction (Section 2.2) of distinctive points in single images and the matching of
homologous features in view-overlapping images. This is generally followed by a robust
estimator for outlier detection like RANSAC and subsequently completed by Bundle
Adjustment [Tri+99].

Bundle Adjustment is the process of simultaneously optimizing a surface reconstruction
expressed as 3D points as well as camera poses and optionally the cameras internal
parameters. This optimization aims to minimize the reprojection error between the
reprojected scene points in an image and the corresponding measured points in the
same image. The minimization is processed using nonlinear least-square algorithms.
The runtime of such optimizations scales with the number of images and can lead to
time-consuming procedures.

Early self-calibrating systems [MQV95; BTZ96; FZ98] are followed by nowadays well-
established SfM pipelines, which are provided with VisualSFM [Wu13] or COLMAP [SF16;
Sch+16]. Pipelines like this are often used to generate labeled training data for camera
re-localization or related tasks.

Image retrieval is the task of searching and retrieving images from a data base of multiple
images. This could be solved with so-called meta search, where the images have associated
meta data such as text, keywords or labels if such are existent. Such meta data is not
generally provided and only raw images are stored in data bases. Therefore, only the
images content composed of its pixel data can be used for a retrieval task. One image
retrieval method, based on such data is Content Based Image Retrieval (CBIR), where

20



2.3 Visual Localization

colors, shapes or textures of an image are analyzed by computer vision algorithms to find
similarities between two or more images. Given a query image, the task is to retrieve the
most similar image(s) from the database. Generally this is unrelated to pose estimation.
However, under the assumption that similar images have similar poses, one can determine
poses of query images if the poses of the data base images are provided. Thus, by image
retrieval the pose of an image is determined according to a measure of similarity to one or
multiple other image(s) in a data base. Let Iq be the query image and In

db a number of n data
base images with known poses. By determining a measure of similarity one can assign
the most similar image(s) in a data base to a query image. The pose of a query image can
then be estimated by simply assigning the pose of the most similar data base image to the
query image. Likewise one could assign a median or mean value of the m most similar
data base images to the query image. Figure 2.6 illustrates the general approach of image
retrieval. Early successful retrieval systems query images with respect to image data bases

Figure 2.6: Image Retrieval. A query image is compared to data base images by a similarity measure (e.g.
differences of histograms). The pose of the query image can then be estimated by assigning the pose of the
most similar image (according to the similarity measure) or a mean value of the nearest m images. A
geometric scheme is illustrated exemplarly in this figure where a query image (blue) and the two most
similar data base images (green) as well as other data base images (yellow) that are less similar to the
query image are shown. The pose of the query image is then interpolated considering the poses of the
nearest data base images.

or videos [Fli+95; RHM97].

2.3.2 End-to-End Learning

In this section an introduction to approaches based end-to-end learning to solve visual
localization is given. The first deep learning approach that could solve such image
localization is presented with the publication of PoseNet [KGC15], a CNN, that is able to
regress poses from images in six DoF in a certain scene after being shown a number of
images of the same scene and their corresponding poses. Further developments in this
field utilize LSTM to boost the accuracy [Wal+17]. These networks generally have no need
for additional hand-crafted or manual optimizations. In this section, PoseNet and an LSTM
approach will be highlighted as two end-to-end pipelines for image pose regression.
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PoseNet is the first CNN to regress image poses in an end-to-end manner and marks
a milestone of camera re-localization. The input of the network during training are
Red-Green-Blue (RGB) images of a particular scene and the corresponding poses for
these images in six DoF. The model is trained in an end-to-end manner, that means that
the models parameters are optimized given input, desired output and a loss function.
The network is shown to operate indoors and outdoors with a processing time of five
milliseconds per image - which is considered as real time for many real-world applications.
The accuracy of pose regression on benchmark datasets scores about 2 m and 3◦ for
large outdoor scenes and about 0.5 m and 5◦ for indoor scenes. The network learns the
appearance of the images and their location and is able to regress poses of unseen images of
the same scene during test time. This is achieved by a 23 layer deep convolutional network
containing convolutional layers, pooling layers, fully connected layers, softmax layers
and Rectified Linear Units (ReLUs) for non-linearity. PoseNet shows promising results
concerning challenging image characteristics as changing lighting conditions, variable
camera intrinsics and motion blur where feature-based SIFT registration fails. The authors
justify this robustness by the network’s focus on high level features which they demonstrate
with the illustration of activation maps. The generation of training data for re-localization
networks is simply generated from images datasets. The images are processed through
SfM or an equivalent pipeline to obtain a six DoF pose label for every image. This labeled
data suffices as training data for PoseNet or other localization networks. PoseNet learns
feature vectors, that are mapped to a pose which is stated by the authors to generalize
to unseen scenes with only a few additional training samples. However, this conclusion
is vague and does not generally hold for any kind of scene without a potential loss of
accuracy in the pose estimation. The loss L of an image I is computed by the loss function

L(I) = ‖x̂− x‖2 + β‖q̂− q
‖q‖‖2 , (2.1)

where x̂ and q̂ are ground truth position and orientation of an image and x and q are
estimated position and orientation of the corresponding image computed by a forward
pass of the network. The orientations q∗ are denoted as quaternions (Appendix A.2)
where q̂ is a normalized quaternion. ‖·‖ denotes the norm respectively the L2-norm. The
loss function aims to minimize both, the position and the orientation term. However, for
different tasks or applications one may want to minimize the position over the orientation
or vice versa. Therefore, the weight or scaling parameter β is set manually and regulates
this trade-off. To avoid the manual setting of a hyperparameter β, a loss function with
respect to the re-projection error which combines position and orientation naturally is
introduced in [KC17]. This weights the position and orientation depending on the scene
and camera geometry. To define such a loss, a function π, which maps a 3D point g to 2D
image coordinates (u, v)T is firstly considered as

π(x, q, g)→
(

u
v

)
, (2.2)

where x and q are the camera position and orientation. The function π is defined as
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2.3 Visual Localization

u′

v′

w′

 = K(Rg + x),

(
u
v

)
=

(
u′/w′

v′/w′

)
, (2.3)

where K is the camera’s calibration matrix and R the mapping of q to the SO(3) rotation
matrix (see Appendix A for reference to SO(3)). The final loss is then defined as

Lg(I) =
1
|G‘| ∑

gi∈G‘
‖π(x, q, gi)− π(x̂, q̂, gi)‖1 , (2.4)

where G‘ is the subset of all 3D points in the scene which are visible in the image I. The
loss is therefore defined as the mean of all residuals computed from the points gi ∈ G‘.

This loss function boosts the performance of visual localization over the loss introduced in
Equation 2.1 while avoiding a weighting parameter and no hyperparameter tuning by
learning position and orientation simultaneously based on a reprojection error based loss.
However, the reprojection loss could only be utilized for model refinement since it does
not converge for random initialized models [KC17].

LSTMs [HS97] are a type of Recurrent Neural Network (RNN) [GK96] designed to
accumulate relevant contextual information. RNNs are able to process temporal information
by archiving an internal state to process sequences of input. Over iterative training steps,
the internal states of previous training passes are taken into account during the present
training pass, functioning as a memory. LSTMs have been applied with great success
tackling handwriting recognition [GS09] and natural language processing [SVL14]. LSTMs
are also successfully combined with CNNs considering pose regression [Wal+17]. The
memory units reduce the dimensionality on the feature vector of networks like PoseNet,
whereas the feature vector is treated like a sequence. A fully connected layer of 2048
neurons, representing a feature vector, as in the architecture of PoseNet, tends to overfitting,
since the network is able to mostly learn the complete training data due to the high number
of parameters – especially considering few training samples. LSTMs handle features
from the convolutional and fully connected layers for better correlation by reducing the
feature dimensionality. Four of such LSTM units are used to reduce the dimensionality in
a structured way [Wal+17]. These four units are implemented to sequence over the fully
connected layer, whereas the layer is reshaped to a 32 × 64 matrix. The memory units are
then applied in up, down, left and right directions over this matrix. The four outputs are
concatenated and serve as input for the fully connected pose layer. This dimensionality
reduction prevents overfitting, likewise dropout layers, but is shown to work better as
such. The memory units of the LSTM structure identify the most useful correlations for
pose regression in the feature vector. The combination of a CNN architecture with LSTMs
is shown to improve camera re-localization over PoseNet, which consists of a CNN only.
The improvements are achieved on indoor and outdoor scenes of benchmark datasets.
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3 Fundamentals of Deep Learning

In this chapter the fundamentals of deep learning are introduced with the general idea
and theory of Artificial Neural Networks (ANNs) in Section 3.1 followed by Section 3.2
and 3.3 covering the fundamentals of CNNs and GANs.

3.1 Artificial Neural Networks

The idea of ANNs is firstly introduced by McCulloch and Pitts in 1943 [MP43]. They
aimed to model the learning process of biological systems like the human brain. Ahead on
this, Rosenblatt developed the first artificial neurons called perceptrons to model brain
mechanics [Ros58]. ANNs consist of multiple such perceptrons or artificial neurons and
are also called Multi-Layer Perceptrons. These networks aim to model biological neural
processes but are not necessarily identical to them. A neuron in the brain is known to
process an output y given an input x. This applies for artificial neurons as well and is given
as

y = σ
( N

∑
i=0

wixi + b
)
= σ

(
wTx + b

)
, (3.1)

where xi are the inputs with N as the number of input elements, wi are the weights, b
is the bias and σ(·) is an activation function. The weights and the bias are the learnable
parameters that are adjusted during the training phase. The activation function is specified
by the user. Activation functions are necessary to ensure that the model can achieve
non-linearity and being able to generate non-linear models. Non-linear activation functions
are therefore crucial for the system. The first proposed function to serve as an activation
function is the step function for activating or deactivating neurons in a network. However
this function leads to an unstable behavior throughout the training processes since small
changes in the input may affect the output crucial. This unbalanced behavior handicaps
the iterative adjustment of the learnable parameters and hinders the training process.
Functions as Sigmoid, Hyperbolic Tangent, ReLU and Leaky ReLU suit the process of training
better since small changes in the input do not necessarily impact the output too highly but
rather ensure a more stable optimization. Figure 3.1 illustrates these common activation
functions.

A perceptron and its biological inspiration are illustrated in Figure 3.2 and Figure 3.3.
One such perceptron or artificial neuron could only learn a single linear function. By
connecting multiple of these neurons forming an ANN, this limitation can be overcome.
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Figure 3.1: Activation functions to preserve non-linearity in neural networks.
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Figure 3.2: Biological interpretation of a perceptron consisting of nucleus, axon, dendrites and axon
terminals.
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Figure 3.3: Artifical perceptron consisting of neurons, weights, bias, activation and output.
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Figure 3.4: A neural network consisting of multiple perceptrons. This exemplary network has two hidden
layers. The number of neurons of the input and output layer depends on the input and output data. The
number of neurons of hidden layers depends on the general architecture.

ANNs consist of an input layer, an output layer and one or more hidden layers. Figure 3.4
illustrates such a network with two hidden layers. Networks with one hidden layer are
called shallow neural networks, whereas networks with two or more hidden layers are
called deep neural networks. All layers consist of neurons (depicted as circles in Figure 3.4)
which are connected by their weights (depicted as arrows) to the neurons of the consecutive
layer. Each layer has a bias unit marked with b in this figure. The number of neurons per
layer can vary depending on the input data, the task and the general network architecture.

Denoting such a layer of multiple artificial neurons in matrix notation produces an output
y as

y = σ(W1x + b1) = σ(h) , (3.2)

where W is the matrix compounding all weights of one layer, x are the inputs to this
layer, b is the vector of biases in this layer and σ is the activation function. Denoting the
consecutive assembling of multiple artificial neurons in subsequent layers leads to

y = σ2(W2 σ1(W1x + b1) + b2) , (3.3)

where y is the output vector of the network. This forward pass can be generally expressed
for one layer as

hin
i = Wihout

i−1 + bi

hout
i = σi(hin

i ) ,
(3.4)
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3 Fundamentals of Deep Learning

where i = 1, ..., L− 1 with L being the total number of layers. For the first layer hin
1 = x

applies.

Neural networks with arbitrary numbers of hidden layers can be expressed with such
chained matrix multiplications. This multiplication chain is known as forward pass
computation and is applied to compute outputs given inputs. However, a crucial step that
makes networks able to learn is the backward pass or backpropagation. A backpropagation
algorithm developed by Werbos made training of multi-layer networks feasible and efficient
[Wer74]. Neural network specific applications of efficient backpropagation are described
by Werbos [Wer82]. By demonstrating the emergence of useful internal representation in
hidden layers, backpropagation achieved high popularity for neural networks [RHW86].
In the backpropagation step the gradients of expressions are computed through recursive
application of the chain rule. The gradient descent approach of backpropagation is an
iterative and recursive method that updates the weights and biases of a network by
optimizing a cost function or loss function. Such loss functions are a further crucial part of
neural networks and will be handled later in this section. The entirety of weights W and
biases b compose the set of learnable parameters of the network θ = (W, b). To perform
backpropagation, the derivatives of all expressions within the network are required to
be known. That includes calculating the derivative of the loss function with respect to
the weights of the network. Backpropagation is explicit used by the gradient descent
optimization algorithm to adjust the weights and biases by calculating the gradient of
the loss function, whereas gradient descent uses the gradients for training the model by
optimization. Therefore learning is considered an optimization problem.

During the training process, both the input and the output is provided in a supervised
manner. The network processes forward propagations by simply computing the given inputs
throughout the network by matrix multiplications. This is followed by the backpropagation
step, updating the weights and biases in the network. These steps are iteratively performed
whereas the weights are updated within every step, thus the network is optimized.

The loss function describes how the loss L is computed. This term is minimized during
the training process. It is often expressed as a distance function or mean square error and
can be expressed as

L(ŷ, y) = L
(

ŷ(n), fW,b(x(n))
)
= ‖ŷ(n) − fW,b(x(n))‖2 , (3.5)

with fW,b(x(n)) = y(n) as the predictions of the last layer hout
L−1 = σL−1(hin

L−1) computed by
a forward pass (Equation 3.4) and ŷ as the labeled ground truth. The trainable parameters
θ of the network are initialized with small random values for the weights and zeros for
the biases, by specific initialization schemes or with parameters achieved from previous
training processes. Thus, initial parameterization can be realized by transferring weights
from previous trainings by such transfer learning. Transfer learning supports faster
convergence and helps to achieve higher accuracies [KGC15]. To enable transfer learning,
the architecture of the source network has to fit the architecture of the target network. This
can also be carried out partially for a network – e.g. for the first few layers – whereas the
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3.1 Artificial Neural Networks

last layers of the network are initialized by random numbers. This is a popular scheme,
since the first layers are known to learn low level features like edge and blob filters (similar
to hand-crafted designed features) that are not too specifically related to the training data.
The latter layers learn high level features, that are more dependent on the training data,
thus are valuable to be re-trained.

After the initialization of the parameters, the loss is minimized by an optimization algorithm
such as gradient descent. With gradient descent, the network’s parameters are optimized
in an iterative way, aiming to find the optimal values by minimizing the computed loss.
The weights and biases are updated in an iterative way as

w(t)
i,j ← w(t)

i,j − λ
∂E(W, b)

∂w(t)
i,j

b(t)i ← b(t)i − λ
∂E(W, b)

∂b(t)i

,
(3.6)

where i is the number of a neuron in layer t, j is the number of a neuron in layer t + 1,
E(W, b) is the overall error given by the sum over all training examples in the training
datasetDTrain and λ is the learning rate that determines the step size for parameter updates
of θ.

The learning rate is usually set before training and is updated during the training process.
Figure 3.5 and 3.6 illustrate a different choice of learning rates and their effect on the
training process.

A learning rate set too low (blue) will lead to low convergence and the model is likely to get
stuck in a local minimum. A learning rate set too high (red) will eventually fail to find the
global minimum but will circulate around it or diverge. An optimal learning rate (green)
will approach the global minimum fast with a high learning rate at the beginning and
will come close to the global minimum by a decreased learning rate in the later training
process.

The overall error E(W, b) is given by the sum over all training examples in DTrain

E(W, b) =
N

∑
n=1
L
(

ŷ(n), fW,b(x(n))
)

. (3.7)

As stated above, backpropagation is applied for efficient training of the network. Therewith
the partial derivatives from Equation 3.6 have to be computed. The derivatives can be
computed as

∂E(W, b)

∂w(t)
i,j

=

∂
Nb

∑
n=1
L
(

W, b, x(n), y(n)
)

∂w(t)
i,j

=
Nb

∑
n=1

∂L
(

W, b, x(n), y(n)
)

∂w(t)
i,j

, (3.8)
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loss

epoch

good

too high

learning rates

too low

Figure 3.5: Different choice of learning rates and their influence on the loss over epochs. A learning rate
set too low (blue) will lead to low convergence and the model is likely to get stuck in a local minimum. A
learning rate set too high (red) will eventually fail to find the global minimum but will circulate around it
or diverge. An optimal learning rate (green) will approach the global minimum fast with a high learning
rate at the beginning and will come close to the global minimum by a decreased learning rate in the later
training process.
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Figure 3.6: Different learning rates illustrated in a 2D scheme. The white circle represents the starting
point as the initial parameter setting. A learning rate set too low (blue) is likely to find a local minimum
but not the global minimum. A learning rate set too high (red) is not able to find the global minimum
but will oscillate around it or diverge. An optimal or dynamic learning rate (green) decreases over time
avoiding to get stuck in a local minimum while advancing preferable close to the correct global minimum.
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3.1 Artificial Neural Networks

where Nb denotes the number of input examples, also called batch size. The number of
input examples is a subset ofDTrain. It is a common technique to split the dataset into small
subsets of batches and evaluate the error over these subsets as a mean. This strategy speeds
up the training process while providing faster convergence due to a more consistence data
distribution.

The output of the network is computed by a forward pass (Equation 3.4). Therefore,
the chain rule can be applied and the derivative of L(W, b) for one training example(

x(n), y(n)) can be denoted as

∂L(W, b)

∂w(t)
i,j

=
∂L(W, b)

∂h(t+1)
i

∂h(t+1)
i

∂w(t)
i,j

=
∂L(W, b)

∂h(t+1)
i−1

∂h(t+1)
i−1

∂h(t+1)
i

∂h(t+1)
i

∂w(t)
i,j

=

(
nt+2

∑
k=1

∂L(W, b)

∂h(t+2)
k

∂h(t+2)
k

∂h(t+1)
i−1

)
∂h(t+1)

i−1

∂h(t+1)
i

∂h(t+1)
i

∂w(t)
i,j

=

(
nt+2

∑
k=1

∂L(W, b)

∂h(t+2)
k

w(t+1)
k,i

)
σ′
(
h(t+1)

i
)
h(t)j−1 ,

(3.9)

where nt+2 is the number of units in layer t + 2. The error δt
i that is propagated backwards

through the network and can be defined by

δt
i :=

∂L(W, b)

∂h(t)i

=

(
nt+1

∑
k=1

σ
(t+1)
k w(t+1)

k,i

)
σ′
(
h(t)i
)

(3.10)

for layers with i = 1, ..., L− 1 and

δL
i :=

∂L(W, b)

∂h(L)
i

=
∂L(W, b)

∂a(L)
i

∂a(L)
i

∂h(L)
i

=
∂L(W, b)

∂a(L)
i

σ′
(
h(L)

i
)

(3.11)

for the output layer with i = L. The error terms δt
i store the errors of each neuron i in layer

t and is propagated backwards through the network starting with δL
i .

The algorithm of training a neural network can thus be depicted as follows:

1. Initialization of the network parameters θ = W, b.

2. Computation of the forward propagation of hout
i for every layer (Equation 3.4).

3. Computation of the error terms δt
i (Equations 3.10 and 3.11).

4. Update of the parameters according to Equation 3.6 and repeat from step 2.
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Figure 3.7: Relationship of how the model complexity leads to underfitting and overfitting and thus affects
the testing error.

An important prerequisite for a reasonable training procedure is the splitting of training
data. Generally the dataset, which a model is trained on, is called training dataset. To
supervise the training procedure a validation dataset should be utilized in addition. This
dataset serves for frequently validating the trained model and to intervene by adjusting
hyperparameters or interrupt the training process in an early stage if necessary. In contrast
to the training dataset, the validation dataset does not contribute to the adjustment of the
learnable model parameters θ directly. The network’s input is solely data from the training
dataset. With progressing training, the model is fitted more and more to the training data.
The validation set helps to find the breaking point between underfitting and overfitting of
the model. The relationship of how model complexity leads to underfitting and overfitting
and affects the testing error is depicted in Figure 3.7.

3.2 Convolutional Neural Networks

CNNs are a kind of ANNs for processing data that has a known grid-like topology
where a special kind of layer is utilized that shares parameters between units by so-called
convolutions. Therefore, this type of layer is called convolutional layer. A pioneering
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3.2 Convolutional Neural Networks

paper on CNNs is published applying such networks for hand-written character and digit
recognition being applied practically to read several million checks per day [LeC+98].
Generally convolutional networks are neural networks that use convolution operations in
place of a general matrix multiplication in at least one layer of the model. The convolution
operations, also called kernels, takes a multi-dimensional quadratic grid of neurons in
layer t and a set of s filters as input. Each kernel k(t,s) has a size of (2r(t) + 1)× (2r(t) + 1).
These kernels contain the learnable weights of the network. Depending on the size of a
kernel, only a part in layer t is connected to a single neuron in layer t + 1. In contrast to fully
connected layers, convolutional layers are sparse connected layers. The rectangular region
in the input layer t that is connected to a neuron in layer t + 1 is called the receptive field.
The size of the receptive field depends on the size of the convolution filter and increases
with network depth considering the original input. The neurons which are activated by
the convolution determine the output volume of layer t + 1, which is called activation
map or feature map (Figure 3.8). A convolutional layer is defined by the hyperparameters

1 activation mapinput layer

3

40

40

1

34

34

7
7

convolve over all
spatial locations

1
1

Figure 3.8: Convolutional layer. In this exemplary illustration the input layer has a dimension of 40× 40
and a 7× 7 filter is applied for convolutions. The generated activation map has a dimension of 34× 34
when no zero-padding is applied and the convolution is carried out with a stride of 1. The input layer has
3 channels (e.g. a RGB image patch), whereas the filters third dimension has to be 3 accordingly. The
activation map is reduced to one channel after the convolution. The third dimension of the final output
volume equals the number of convolution filters that are applied to the input. Only the first convolution is
depicted exemplary in this figure.

filter size, stride and zero padding. The filter size is simply the width and height of the
convolution filter, that is the quadratic field of neurons that serve as input from layer t. The
stride determines the step size, which the filter is shifted for each convolution. The stride
is usually set to a small number as 1 or 2 to not decrease the resolution of the subsequent
layers throughout the network too much. The zero padding is a technique to preserve
the layer size of t after a convolution. Filter sizes larger than 1× 1 and a stride larger
than 1 reduce the size of the layers. To avoid such behavior, zeros are added to the border
of an input layer. The number of filters of a convolutional layer determine the depth of
the output layer. The activation maps are stacked and form a 3D layer. The depth of the
convolutional filters of layer t + 1 equals the number filters in the respective precedent
layer t. The depth of the initial input layer represents the number of spectral channels
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of the input image. Figure 3.8 illustrates a convolutional layer with its receptive field,
activation map and hyperparameters.

Convolutional layers utilize a set of weights (filters) to generate an activation map, whereas
fully connected layers utilize single weights for each pair of neurons in layers t and
t + 1. Therefore the number of learnable parameters for a convolutional layer is generally
multiple-times smaller than the number of weights for a fully connected layer. That is
an efficient regularization technique and helps to speed up the training process. This
parameter sharing also supports better generalization of the network since particular
features occur potentially at several locations within an image and can be extracted with
the same filter.

The number of weights can be further decreased by the utilization of pooling layers in
between convolutional layers. A pooling layer decreases the dimension of the activation map
by transferring the maximum or the average value of a limited region from the previous layer
(Figure 3.9). This reduces the number of learnable parameters considering fully connected
layers and aims to alleviate overfitting by limiting the model complexity. The relation
between the error from overfitting and underfitting is depicted with respect to the model
complexity in Figure 3.7. However, in the pooling process information is irrevocable lost.
An alternative method is to increase the stride of a convolutional layer which also decreases
the size of the subsequent layer, but without a general loss of information. A further
technique that helps prevent overfitting is dropout. Dropout randomly deactivates neurons
in the network during particular training iterations. Therefore, a slightly different network
is trained at each iteration, driving the network to learn a more general representation.

output layerinput layer

1

4 max pooling with 2× 2 filters
and a stride of 2

6

1
2

2

13

5
6 4

Figure 3.9: Pooling layer. In this exemplary illustration the input layer has a dimension of 4× 4 and a 2× 2
filter is applied for pooling. The generated output layer has a comprised dimension of 2× 2 when no
zero-padding is applied and the pooling is carried out with a stride of 2. The overall size of the input layer
is reduced by a factor of four by the pooling layer. A loss of information is a drawback of such pooling
layers. Alternatively, an average pooling layer would transfer more information to the next layer. Only the
first pooling operation is depicted exemplary in this figure.
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3.3 Generative Adversarial Networks

3.3 Generative Adversarial Networks

GANs are a machine learning architecture consisting of two networks which compete with
each other, whereas one network generates artificial data and the other rates this data as
real or fake. Introduced by Goodfellow et al. [Goo+14] GANs are successfully established
in several fields of computer vision including image inpainting [Yua+19], semantic
segmentation [Luc+16], image-to-image translation [Ano+19; Ano+18] by CycleGAN
[Zhu+17] or text-to-image synthesis [Ree+16].

The two competing networks are a generator and a discriminator. The generator network
G produces fake images whereas the discriminator network D tries to distinguish the fake
images produced by the generator from real images given by a training dataset. Both
networks are jointly trained in a competitive way. The goal is to train the generator network
to map random noise z to output images y as artificial image samples. In other words, the
goal of G is to estimate the data distribution of a training dataset as good as possible and
to generate samples from this learned distribution. To train G, the discriminator network
D is introduced to optimize G by distinguishing between real images y and fake images
y = G(z) generated by G. Formally, the generator maps a noise vector z in the latent space
to an image y

G(z)→ y , (3.12)

whereas the discriminator is defined as

D(y)→ [0, 1] (3.13)

and classifies an image y as real (close to 1) or as fake (close to 0). The two networks are
trained in a competitive fashion with backpropagation. The loss function is generally
formulated as

min
G

max
D
LGAN(G, D) = min

G
max

D
Ey∈Y [logD(y)] + Ez∈Z [log(1− D(G(z)))] , (3.14)

where E denotes the expected value, Y the set of real images and Z denotes the
latent space. This loss function (Equation 3.14) is called adversarial loss. The term
Ey∈Y [logD(y)] represents the predicted log probability of D that y is real and the term
Ez∈Z [log(1− D(G(z)))] represents the predicted log probability of D that G(z) is fake. D
is generally a classification network that determines the probability that an image belongs
to class 0 (fake) or 1 (real). After completion of the training procedure the generator
network G is used to generate artificial data, while D is only utilized during the training
process to optimize the former.

Specifically, the networks are optimized by alternating the training of D and G by
maximizing the GAN loss with respect to the parameters of the discriminator network θD

and then minimizing that loss with respect to the parameters of the generator network θG.
Therefore, D tries to get the term D(G(z)) from Equation 3.14 close to 0. That is, when
all (fake) images generated by G are detected and labeled accordingly correct as fake
by D. On the other hand, G tries to get the term D(G(z)) close to 1. That is, when all
(fake) images are not detected by D and wrongly labeled as real. With this strategy G will
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consequently learn an estimation of the real data distribution from the training dataset.
The discriminator network is trained from fake samples, generated by G and real samples
given from the training set. The general scheme of a GAN is illustrated in Figure 3.10.
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Figure 3.10: Overview of a GAN scheme. The generator G produces images yF as fake samples given a noise
vector z from a latent space. The discriminator D takes real images yR from the training samples and fake
samples as input and classifies them as fake (0) or real (1). Depending on the outcome, the network weights
of the generator network θG and discriminator network θD are updated. When the training converges, the
generator improves and generates fake images that look like images from the training dataset.

In practice, the first image samples produced by G are of low quality. The discriminator
D will therefore quickly learn this discrepancy and easily detect the fake images while
labeling them correctly with 0. That means that D(G)(z) will be close to zero. That leads to
log((1−D(G(z))) being close to zero and hence the loss of the generator and its gradients
are close to zero as well. Small gradients for G will slow down the training process of the
generator network extremely. It is therefore a practical way to to minimize−log(D(y, G(z)))
instead of log((1− D(G(z))). This modification leads to stronger gradients for G and
keeps the optimum unchanged.

The overall training problem of a GAN is a minimax game. The optimal solution of such a
problem is referred to as Nash Equilibrium [Nas51] in game theory. The Nash Equilibrium
for GANs can be defined as the local maximum of LGAN with respect to θD and a local
minimum of LGAN with respect to θG. At this point – which could be pictured as a saddle
point – G and D are best optimized. Compared to the training of a neural network, finding
a saddle point is more difficult than finding a single minimum or maximum. However,
GANs have the advantage to not tend to overfitting, since the generator network is getting
information about the training data only in an indirect way via the discriminator, therewith
it is unable to learn a direct mapping by simply replicating the training data.

Images generated with GANs are usually less blurred and more realistic compared to
other generative models such as Variational Auto Encoders [KW13]. Optimal GANs, where
the generator produces perfect images and the discriminator always produces 0.5 are
theoretically proven to exist [Goo+14].
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There are several benchmark datasets for image re-localization. The 7 Scenes dataset is
popular for evaluating indoor applications [Sho+13b]. The Cambridge Landmarks benchmark
is an outdoor dataset consisting of six outdoor scenes [KGC15]. Camera re-localization
datasets generally consist of images (separated in training and evaluation datasets) and
their corresponding poses. Optionally, datasets provide depth images, 3D models, or
images in varying domains such as day and night, summer and winter or others. In the
following sections, the most important datasets acquired and/or utilized in this thesis are
presented. The Atrium, Puzzle and Shop Façade datasets are introduced which are used for
training and evaluation in the experiments throughout this thesis.

4.1 Atrium

The Atrium dataset is an outdoor set consisting of captured images showing the atrium of
a building. The dimension of the scene is approximately 39× 36× 18 m3. The training
dataset consists of 864 captured images collected within the LaFiDa1 benchmark collection
[UJ17]. The images are captured by two different DSLR cameras and a smartphone camera.

Furthermore, the dataset contains two evaluation datasets, the medium coverage set and
the low coverage set. The images for these sets are captured with a 4K resolution camera
attached to an UAV. The medium coverage set consists of 145 images captured at ground
level which show a medium coverage to the training data. The low coverage set consists of
198 images captured at an altitude of up to 18m which are spatially far away and have high
discrepancies in perspectives compared to the images of the training dataset. As no images
with high altitude and a downward facing field of view are present in the training data,
this evaluation set shows a low coverage to the training data and represents challenging
characteristics.

A high coverage can be stated, if training and evaluation images share similar poses, e.g.
when they are spatially close to each other (position) and share a similar field of view
(orientation). The low coverage set is therefore challenging for a pose regression CNN, as
the network is not trained on similar images nor poses during the training process with
respect to the evaluation data. The image poses for the training and evaluation images are
derived by SfM [Agi17]. Side views of the 3D model are shown in Figure 4.1. Example
images of the Atrium dataset are shown in Figure 4.2. Figure 4.2 (a) shows an evaluation

1 https://www.ipf.kit.edu/lafida.php (last access 10th September 2019)
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(a) (b)

Figure 4.1: Side views of the reconstructed 3D model of the atrium. The red bricked walls show very
similar structures, leading to a challenging scene for computer vision algorithms.

(a) (b)

(c) (d)

Figure 4.2: Image examples of the atrium. (a) Windows in the scene cause reflections, this is challenging for
computer vision tasks. (b) Image captured with high angular motion and therefore shows motion blur. (c)
Image shows ambiguous structures. (d) Evaluation image of the low coverage set captured at high altitude.
A similar perspective is not present in the training dataset, therefore pose is unsimilar to any training pose.

image depicting reflections in the upper windows. Figure 4.2 (b) shows image blur caused
by angular motion during the image acquisition process, both effects are challenging for
general computer vision tasks. Figure 4.2 (c) shows the ambiguous structures of the walls.
Figure 4.2 (d) shows an evaluation image of the low coverage set. A similar image is not
contained in the training dataset. The position as well as the orientation are far away from
any training pose.
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4.2 Puzzle

4.2 Puzzle

The Puzzle dataset is a small sized set of captured images of a usual jigsaw puzzle showing
an ancient map of a world with some embellishments. The spatial dimensions of the puzzle
are approximately 114× 83 cm2. The base Puzzle dataset consists of 19 images captured
in nadir perspective of a puzzle serving as training images and additionally 48 captured
images serving as evaluation images. The images are captured with a smartphone camera.
A photo-realistic 3D model is generated from these 19 captured images. Figure 4.3 shows
the model in nadir view. The images and the 3D model are utilized in Chapter 6.

Figure 4.3: Nadir view of the reconstructed 3D model from the Puzzle dataset. This model is generated
with 19 captured images and serves for DA.

4.3 Shop Façade

The Shop Façade dataset is an outdoor set of captured images mostly showing two façades
of a shop. The dimension of the area in which the images are captured is denoted with
35× 25 m2. The dataset generally serves as a benchmark for camera re-localization and
contains three video sequences recorded with a smartphone camera and their extracted
image frames separated in 231 training and 103 evaluation images. A pose is provided
for every image. The dataset is part of the Cambridge Landmarks benchmark [KGC15]
and is available online2. Two example images are illustrated in Figure 4.4. High coverage
between training and evaluation data can be stated for this dataset. A 3D model, shown in
Figure 4.5, is generated from the training images and serves for image-to-image translation
in Chapter 7.

2 http://mi.eng.cam.ac.uk/ (last access 4th October 2019)
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(a) (b)

Figure 4.4: Example images of the Shop Façade dataset. The dataset images show two façades of a shop,
including reflections and dynamic objects in the scene.

Figure 4.5: Front view of the reconstructed 3D model of the Shop Façade dataset. This model is generated
from the training dataset and serves for image rendering in Chapter 6. The illustrated view of the model is
generated with meshlab [Cig+08].
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5 Localization without Data
Augmentation

This chapter is focused on visual localization without DA, whereas the main interest lies
in the benefits of lightweight CNNs for the localization of mobile devices such as UAVs.
The general performance of such data-driven end-to-end approaches for localization is
investigated, whereas prioritization is set on the general model size of utilized networks.
Fields that potentially profit from camera localization is autonomous driving, pedestrian
navigation or AR and VR. The devices on which such localization pipelines are embedded
are computationally weak due to space limitations of mobile platforms. A network
architecture with a significantly reduced number of parameters compared to typical
recently presented architectures is introduced in this chapter. Investigative experiments
are carried out in Chapter 8.

Parts of this chapter have been published in the conference paper

M. S. Müller, S. Urban and B. Jutzi. SqueezePoseNet: Image Based Pose Regression
with Small Convolutional Neural Networks for Real Time UAS Navigation. ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences - Inter-
national Conference on Unmanned Aerial Vehicles in Geomatics. Vol.: IV-2/W3, 49–57. 2017.

The chapter is outlined as follows. A brief introduction is given in Section 5.1 focusing on
localization methods by CNNs and their model sizes. Related work is reviewed in Section 5.2
covering different kinds of localization solutions as well as CNN-based approaches. A
modified network for localization with a lightweight architecture is introduced and
outlined in Section 5.3. Subsequently the training procedure is clarified in Section 5.4. All
experiments are described in Chapter 8.1, whereas the utilized data for the experiments is
presented in Chapter 4.1.

5.1 Introduction

Camera localization is a valuable part of navigation systems for robots, aerial vehicles,
cars or pedestrians and has high potential to improve such. The number of Unmanned
Aerial Systems (UASs) operating in commercial and private fields increased with the
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rise of robust and easy-to-use UAVs. Hence, the research in the fields of navigation, path
planning, localization, data acquisition or obstacle avoidance for such vehicles is increasing.
These systems need reliable navigation solutions which are mostly based on GNSS and
are likely combined with alternative methods such as Inertial Navigation Systems. As
failures due to gaps in signal coverage caused by occlusions or multi-path effects weaken
the navigation solution via satellites, alternative methods for a reliable navigation of UASs
are desired. GNSS provides a position estimate in a global reference system. Alternative
methods for navigating in a global reference system, are usually based on digital surface
models, digital terrain models or CAD models. The large memory consumption of such
models renders these approaches unfeasible for on-board processing on computational
weak devices which are mounted on UAVs, small robots or used by pedestrians.

Further methods to obtain a global position are aerial image matching using feature
detection, correlations or Neural Networks. Feature detection or correlation-based methods
are computational intensive, especially for navigating in a huge area where potentially
millions of descriptors have to be stored and matched. Thus, losing real time capability
and making them inefficient for real-time navigation. CNNs in contrast perform forward
passes even on small on-board Graphical Processing Units in little time while having a
limited memory demand and power consumption [Nvi17]. Considering small platforms,
nano drones demand processing devices that are lightweight and consume low power
[Pal+19]. CNNs with small model sizes fit the conditions of such devices better than CNNs
with large model sizes.

Local navigation methods like visual SLAM or VO on the other hand provide potential
solutions for relative positioning [ESC14; MMT15; EKC17]. However, these methods
lack navigation in a global reference system without providing additional information,
like relevant geo-referenced key points or the initialization to a referenced model. For
short travel-paths these methods have a high accuracy but are subject to drift when the
traveled distance increases. However, considering camera re-localization, SLAM and VO
are a dissimilar tasks. Camera re-localization is a global localization task, that focuses on
estimating an image pose in a global reference frame, whereas SLAM and VO approaches
estimate relative poses between consecutive image frames and are therefore considered
local localization approaches. Global localization methods are operational as standalone
systems, whereas approaches with a high frame rate provide a dense trajectory like local
localization methods. Running complex localization on computational weak computers
or embedded devices may lead to limited real-time capability and inadequately results.
Considering running a localization framework on small UAVs, respectively Micro Aerial
Vehicles (MAVs), the computation power is limited due to maximum payload of such
vehicles and the along going fact that small and light processing devices have lower
computational power than common processors. Localization approaches that aim to be
deployed for mobile localization are therefore subject to the limited computational power
of utilized on-board processing units and need to be carefully designed with the target
hardware in mind.

A solution for this problem could be provided by CNNs. CNNs have little processing
requirements during runtime, since only forwards passes have to be computed contrary to
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the training of CNNs which is computational ambitious, due to the computational expensive
backpropagation. The training can be performed offline and is not impacting the feasibility
of CNN-based localization approaches considering mobile platforms. Considering deep
CNNs – like the VGG16-Net [SZ14b] – with a high number of parameters, the storage (some
hundreds of megabytes) and processing requirements tend to exceed the capability of
on-board devices and are cumbersome to process on weak processing devices. A forward
pass takes up to a few seconds loosing real-time requirements for real-world applications.
In contrast to this, a small CNN which is efficient in terms of processing while maintaining
a satisfying accuracy for localization is desirable. For this purpose, a CNN-based solution
for the localization is introduced in this chapter. A variant of SqueezeNet [Ian+16], which
is a CNN that solves classification while maintaining accuracy of deeper nets like AlexNet
[KSH12] built with 50× less parameters. This network is modified to solve for pose
regression. The modified network is called SqueezePoseNet, since it is adapted from
SqueezeNet but solves for poses.

5.2 Related Work

In general, localization can be tackled in various ways. Concerning GNSS-free localization,
image-based approaches are able to determine poses in a global reference frame. Hand-
crafted solutions are provided by finding correlations between aerial images and images
taken by UAVs for subsequent image matching followed by the localization of the aerial
vehicle [CD09; CD11]. Methods based on feature matching utilize remotely sensed data
[Li+09] or oblique images [HSY12] to find image poses. 3D models or building models are
used to determine camera poses from images for AR [RD06a] or the estimation of UAV
positions [URH16]. For real-time localization in indoor scenes, simple CAD models are
utilized to get spatial information [UWS09; Urb+13; MV16]. CNNs are utilized to find
matching pairs of aerial and UAV images [Alt+16] or matches between terrestrial and UAV
images [Lin+15].

Alternatively to these methods that provide a localization solution with respect to a
global reference frame, solutions that provide poses in a local frame are popular for
relative localization. These approaches include visual SLAM or VO, which both reconstruct
a trajectory of image poses by determining relative poses between consecutive image
frames. Efficient solutions are ORB-SLAM [MMT15], Large-Scale Direct Monocular SLAM
(LSD-SLAM) [ESC14] or Direct Sparse Odometry (DSO) [EKC17]. These methods provide
satisfying solutions according to accuracy and real-time capability. However, providing
localization in a global reference frame can only be achieved by fusing these local solutions
with global localization methods. Even though SLAM or VO solutions show impressive
results and do drift only slightly for short trajectories, they will drift over long distances
particularly if there are no loop closures or when no global information is provided. The
restriction to global information leads to failures of such approaches, especially when the
track is lost. In that case, restoring a track is impossible without moving back to a known
or mapped position.
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Camera re-localization in a data-driven end-to-end pipeline by CNNs is firstly tackled
successfully with PoseNet [KGC15], a CNN that determines image poses of a known scene.
For this purpose the CNN is trained with images and their corresponding poses in order
to estimate the pose of an unseen image. Hence the training is carried out with global
poses, the pose estimates during runtime are determined with respect to this reference
frame. In contrast to SLAM or VO, every particular pose estimate is independent from
previous or posterior pose estimates. An enhancement of this approach is the Bayesian
PoseNet [KC16] which provides an additional localization uncertainty by adding dropout
layers after each convolutional layer. Furthermore the localization accuracy is improved
by simply averaging over multiple forward passes. For outdoor datasets the accuracy
for a pose estimate is approximately 2 m and 6◦. The architecture of PoseNet is based
on the architecture of GoogLeNet [Sze+15], a CNN to solve classification tasks like the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [Rus+15; Den+09]. Enhanced
accuracies for data-driven learning are derived by further improvements using LSTM
layers, with a type of RNN which is combined with CNNs [Wal+17]. LSTM handles the
problem of a dissolving gradient during the backpropagation using so called gates. LSTM
not only shows great success in handwriting or speech recognition but also in localization.

The main target of this chapter is to investigate data-driven learning approaches for
localization with focus on the networks model sizes. Considering, that deep CNNs with a
large number of parameters need a higher computation power than smaller CNNs, the
latter is preferred. Exemplary, the VGG16-Net [SZ14b] has a model size of 528 MB. The
model size of PoseNet or the LSTM-based CNN which are both based on GoogLeNet have
sizes of about 50 MB. In Section 5.3, SqueezeNet, a small CNN designed for classification
tasks is adapted and modified for camera re-localization. SqueezeNet is especially designed
with a reduced number of weight parameters to keep the model size low. With a model
size of only 4.8 MB, this network is 10 times smaller than GoogLeNet.

5.3 Methodology

For the demands of camera re-localization, the architecture of SqueezeNet is adapted
and modified to solve for pose regression. Therefore the architecture that is designed to
solve classification tasks with a distinction of 1000 classes is modified. The original design
strategy with little parameters lies in the fire modules. Each fire module first decreases the
number of input channels from the previous layer by 1 × 1 convolutions in a squeeze
operation [Ian+16]. Subsequently an expand operation that is a combination of 1 × 1
and 3 × 3 filters increases the number of activation maps while keeping the number of
parameters low. The architecture of a fire module is depicted in Figure 5.1.

In addition, the SqueezeNet architecture lacks a final fully connected layer as these
layers increase the number of parameters significantly. It is instead substituted by a final
convolutional layer, that consists of as many 1× 1 filters as classes. Subsequently average
pooling is used to yield a vector whose length equals the number of target classes. To
modify for pose regression, the classification layer is substituted by a fully connected layer
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Figure 5.1: Architecture of a fire module. A squeeze operation [Ian+16] is performed by the 1 × 1
convolutional layer. Subsequently an expand operation that is a combination of 1 × 1 and 3 × 3 filters
increases the number of activation maps while keeping the number of parameters low.

with 500 neurons. This layer serves as a descriptor and is meant to enable the distinction
of different poses. Finally, two fully connected layers for actual pose estimation are added.
A three neuron layer is added for the position component and a four neuron layer is
added for the orientation component. The rotation is parametrized as quaternions for all
computations.

Figure 5.2 depicts the architecture of the modified network. It is named SqueezePoseNet
since it solves camera re-localization by pose regression, while holding the squeeze
operations from the fire modules.

Further modifications include, the substitution of the activation functions from ReLU to
Leaky ReLU [MHN13]. This is meant to help convergence. In addition, batch normalization
[IS15] is added after each convolutional layer, making higher learning rates possible.

For evaluation purpose, an additional CNN, the VGG16-Net [SZ14b], which is designed
to solve classification tasks is modified in a similar manner as SqueezeNet to solve for
pose regression. Two dense layers for pose regression are added and the layers activation
functions are set to Leaky ReLUs. This modified network is deeper and has more parameters
than SqueezePoseNet, which leads to a bigger model size of more than 500 MB. Deeper
networks generally tend to be more accurate than small ones [Ian+16]. CNNs are optimized
during the training process by iteratively updating their weighting parameters using
backpropagation. To optimize SqueezePoseNet for pose regression the following loss
function is minimized [KGC15]

Lossi = ‖xi − x̂i‖2 + β ‖qi −
q̂i
‖q̂i‖

‖2 . (5.1)
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Figure 5.2: Architecture of SqueezePoseNet. A fully connected layer with 500 neurons is added after the
last pooling layer. For pose regression, two fully connected layers, one for the position component with
three neurons and one for the orientation component with four neurons is added.

The sum of the position error and the weighted orientation error build the computed loss.
x̂i and xi are ground truth and estimated position in a metric space. q̂i and qi are ground
truth and estimated orientation in quaternions. Since position and orientation are not in
the same unit space a weighting is realized by the hyperparameter β to keep the errors
terms in the same range. This prevents the CNN to minimize only one of the two error
terms with priority. Typically, β is set between 250 and 2000 for outdoor datasets. For the
experiments in Section 8.1, β is set to 500.

5.4 Training

CNNs usually need a huge amount of training data to work well, which is often not
available. Transfer learning and DA are valuable processes to overcome this issue. While
localization supported by DA is addressed in Chapters 6 and 7, the training is supported
merely by transfer learning in this chapter. Generally, considering transfer-learning, a
network is initially pre-trained with a huge amount of data, which is often publicly
available, to determine weights for the network’s layers. These weights are used as initial
values for later training.

In this case, the original SqueezeNet layers, that are not considered in the modification
process, are initialized with weights derived from training on the ImageNet dataset. It is
shown that training on the Places dataset [Zho+16; Zho+14] leads to further improvement
in terms of accuracy [KGC15], as it is a more suitable dataset for localization. Whereas the
ImageNet dataset consists of images showing animals, vehicles and other objects, the Places
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dataset is mainly showing architectural classes as buildings and generally man-made
structures. The training is therefore subsequently carried out on the Places dataset.

Prior to starting training on the actual Atrium dataset (Section 4.1) for evaluation, the CNNs
are trained on a localization benchmark dataset, the Shop Façade dataset (Section 4.3). Only
the weights of the modified layers are updated within this training process, since the
preceding layers are already initialized with weights obtained from the pre-training. The
network is then fine-tuned on the Atrium dataset consisting of 864 images. The inputs
for the CNNs are 757 training images and 95 evaluation images with their corresponding
camera poses. The training errors on SqueezePoseNet are 4.45 m for position and 14.35◦

for orientation.

For the evaluation of SqueezePoseNet concerning accuracy, the deeper VGG16-Net, which
should tend to be more accurate is considered. The VGG16-Net again is built to solve
classification tasks. It is modified in a similar manner as SqueezeNet is modified as
described above to estimate poses. The network’s layers are initialized with weights
obtained by training on the Places dataset. The adaptation is trained on the Shop Façade
dataset to obtain initial weights for the added layers. Therefore, the modified network
is trained on the Atrium dataset. The training errors on the modified VGG16-Net result
in 2.35 m and 9.09◦ for position respectively orientation. All experiments on the trained
networks for camera re-localization are carried out in Section 8.

The workflow can be summarized as follows: (i) Selection of a suitable CNN for a
classification tasks. (ii) Initialization of the CNN with pre-trained weights. (iii) Transfer
learning on a dataset more suitable for localization, here: Places dataset. (iv) Modification
of the CNN to solve camera re-localization. (v) Training of the network on the actual
training data for evaluation, whereas the trainable layers are restricted to the last fully
connected layers. (vi) Evaluation of the CNN on the evaluation dataset.

The training procedure is carried out on a 64 GB RAM computer equipped with an Intel R©

CoreTM i7− 3820 3.6 GHz processor and an 8 GB GeForce GTX 980 graphics card.
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6 Localization with Data Augmentation
by Image Rendering

Visual localization is progressively solved by data-driven deep learning methods or hybrid
approaches, which combine hand-crafted image analysis and data-driven learning. The
performance of data-driven methods highly depends on the underlying training datasets
and their characteristics. The characteristics of datasets, which CNNs are trained on, are
jointly responsible for the resulting behavior of a trained network. An exemplary behavior
of such is proven to be changed from CNNs focusing on texture of objects to focus on the
shape of objects instead [Gei+18]. Such behaviors of CNNs are driven and can be actively
driven by the user from the choice of the characteristics of the training data and their
distribution. Therefore, it is of interest how DA can improve such data-driven learning
for network-based pose regression. DA is widespread in the computer vision community
to boost performance of data-driven methods. In this chapter, image rendering for DA
to boost the performance on camera re-localization tasks is presented. 3D models are
generated from training datasets and utilized to create synthetic images from novel views
to augment an existing training dataset. Camera re-localization pipelines are trained on
these augmented datasets and evaluated in various experiments. The 3D models are thus
not utilized directly during runtime, giving the advantage to not provide them online
which could be cumbersome for applications running on mobile devices with low storage
capacity. In this chapter, improvements of data-driven end-to-end learning for camera
re-localization supported by DA with image rendering are investigated.

Parts of this chapter have been published in the following conference paper respectively
journal article:

M. S. Müller and B. Jutzi. UAS Navigation with SqueezePoseNet - Accuracy Boosting
for Pose Regression by Data Augmentation. Drones, Vol. 2, 1, pp. 7–27. 2018.

M. S. Müller, A. Metzger and B. Jutzi. CNN-Based Initial Localization Improved
by Data Augmentation. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial
Information Sciences – TC I Midterm Symposium “Innovative Sensing – From Sensors to
Methods and Applications”, Volume IV-2/W3, pp. 117–124. 2018.
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This chapter is organized as follows. The following section introduces to image rendering
and DA. After reviewing the related work in Section 6.2, visual localization by CNNs and
feature matching is outlined in Section 6.3. Experiments for quality assessment are carried
out in Section 6.4. All experiments on camera re-localization are depicted in Chapter 8.

6.1 Introduction

In this chapter, the problem of camera re-localization by image pose estimation in six
DoF is addressed whereas the focus is set on DA by image rendering to improve such
localization. DA is especially introduced to investigate the benefit of rendered images in the
training process. Therefore a 3D model of the considered scene is utilized to render images
from arbitrary viewpoints. The topics of localization and generally CNNs are addressed
previously in the Chapters 2.3 and 3.2, whereas DA and 3D models are addressed in the
following paragraphs of this section. For quality assessment (Section 6.4), feature matching
and image retrieval are carried out and briefly introduced in the following.

Data Augmenation could potentially improve camera re-localization processes. Improving
the performance of data-driven methods like CNNs for general computer vision tasks
by augmenting the underlying training datasets is widely known and well established.
Such DA includes the modification of existing training data as well as the simulation of
purely new data to expand training datasets. Common methods include shifting, scaling,
rotating, flipping, cropping, compressing or blurring the training images to generate new
images that extend the training database with new characteristics. In this thesis purely
new images are rendered in the target scene to augment a training dataset. Therewith,
training is carried out on a set of training images enriched with synthetic images. CNNs
and other data-driven methods benefit from a high distribution of training data. The more
varying the representations in the training samples, the more robust and accurate can
a model be optimized. Therefore, DA is introduced to overcome recent drawbacks on
camera re-localization.

3D Models are utilized for the demands on DA in this thesis. The amount of 3D models or
3D city models increased in the last years and covers large parts of the globe nowadays.
Simultaneously, such models became more realistic concerning geometry and texture, and
are updated more frequently. Taking this into account, navigation methods for vehicles
and pedestrians could utilize this knowledge of the scene for localization and subsequent
for navigational purposes or alike. It is underscored, that a 3D model is not utilized
directly for the demands of localization in this thesis. That would presume to provide
the 3D model at runtime, which conflicts with real-time processing on mobile platforms.
Fast computations are mandatory for navigation frameworks on small UAVs or MAVs
due to limited computational processing power. Rather, a 3D model is utilized to render
additional images for offline training. During application time, merely forward passes
are carried out, which can be computed fast. Therefore, a navigation application could
run on a small on-board device, supporting autonomous navigation for mobile platforms.
The reconstruction of the 3D scene is realized by only accessing the already existing
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training data. Therefore, no additional data is necessary for the approach on DA by image
rendering.

Feature Matching is a fundamental task in image analysis and widely used for different
kinds of applications. Local features are extracted and characterized by their descriptors at
distinct locations of an image. These descriptors can be compared and matched according
to their similarity over multiple images. Therewith, a relation between multiple images can
be determined. A lot of computer vision tasks utilize feature matching, e.g. classification,
segmentation, detection, image retrieval, 3D reconstruction, tracking methods or image
alignment.

Image Retrieval is the task of finding the most similar image in a set of images given a query
image. One of such image retrieval methods is CBIR, where colors, shapes or textures
of an image are analyzed by computer vision tasks to find similarities between two or
more images. In this chapter feature extraction followed by histogram intersection is
carried out to find the most similar training image(s) given a query image. In this case,
poses are provided for each training image. Thereby, a pose for an evaluation image can
be determined by simply assigning the pose of its nearest neighbour or more complex
variants like the weighted pose of multiple nearest neighbours. Hence, image retrieval is
not merely used to find similar images, but to compute distinct image poses. As depicted
above, training datasets are extended by rendered and translated images to increase the
quantity and distribution of provided images and poses. An increased number of poses
and a denser distribution of such, potentially increase the localization accuracy of a query
image by image retrieval. Experiments on image retrieval with DA are carried out in
Section 7.4.2.

6.2 Related Work

The focus on related work is set on methods of DA and how 3D models are utilized to
support such augmentation. Since feature matching and image retrieval are utilized for
quality assessment in Section 6.4, related work on this subjects is also covered in the
following. Related work on localization and CNNs is tackled previously in Chapter 5.

Data Augmentation is a well established technique in computer vision [Gha+16; LBC17]. It is
shown to boost performance in fields of classification [Tu05; Kar+14; Ng+15], segmentation
[Goy+17], object recognition [MS15], object detection [Pen+15], hand gesture estimation
[Mol+15] or human pose estimation [RS16]. DA further supports data-driven methods like
CNNs to handle invariance which helps to generalize and further boost accuracy [PVZ15;
CGK15]. Recently, general DA using GANs showed promising results [SN18]. Furthermore,
augmenting training data by generating synthetic images is a valuable process of DA.
Synthetic images of text in clutter were generated to train a Fully-Convolutional Regression
Network [GVZ16]. Data augmentation regarding camera re-localization is carried out
using a CNN to estimate depth values for RGB images followed by synthetic viewpoint
generation to enhance the training data [NB17]. This data augmentation in 3D space leads
to additional pose coverage and furthermore improves localization accuracy.
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3D Models have a high potential to serve for DA. Synthetic images rendered from 3D
models have long been used in computer vision to generate extensive training data [SGS10;
MSN05]. Rendering images from 3D objects is also practiced to expand training data and
improve performance of CNNs [Su+15; Gup+15]. 3D models support the learning process
for deep object detectors [Pen+15] or serve for DA for segmentation [Goy+17]. Furthermore
such models are utilized to augment datasets for dense 3D object reconstructions [Yan+18]
or human 3D pose estimation [RS16]. It is also shown that CNNs trained on synthetic images
generalize well to captured images [RS16]. In addition hand gesture estimation is also
supported by DA with 3D models [Mol+15; LA17]. The 3D model of a target scene can be
utilized to render images for the demands of training localization networks. Reconstructing
3D models is of high interest in researches communities like photogrammetry, computer
vision or geo-information sciences [SJ06; PY08; Iva14].

3D models or images with known six DoF poses are the basis to train CNNs for camera
re-localization. Such camera re-localization by pose estimation with CNNs is limited by
the coverage and possible lack of training data regarding the target scene. It is shown,
that pose regression in areas with less training data scores worse compared to pose
regression in areas with a dense distribution of training samples (Chapter 5). Utilizing
3D models to overcome lack of training data by DA has high potential. Such models
are often available for city scale scenes. In addition, they are simple to reconstruct with
automatic and open source SfM and MVS pipelines. Research continuously focuses on
the reconstruction of such models and its automation [SJM13; SJ06; Pol+00]. Moreover,
recently various benchmark datasets for visual localization [KGC15] and with varying
conditions are published [Sat+18a].

Feature Matching is a core task in computer vision and is applied to numerous applications.
Preceding to feature matching is the detection and description of such features. There are
several established algorithms in this context like SIFT, SURF, BRISK or ORB. Computer
vision tasks like image classification [BZM06], object detection [LZ13], tracking [ZYS09],
3D reconstruction [SF16], SLAM [MMT15] or visual localization [SLK16] can be tackled
by the support of these algorithms. It is shown that rendering images in point clouds
created by laser scans and images improved feature matching and visual localization
[Sib+13].. However, in contrast to their work, all 3D models generated or utilized within
this thesis are reconstructed automatically only utilizing image data and are therefore
less detailed. Techniques considering laser scans are not applicable in this case. Aerial
images are matched to terrestrial images by the support of rendered images of a 3D model
[Sha+14]. The quality of the rendered images is in this case compensated by rendering
from wide distances.

Image Retrieval is an efficient solution to find similar images from databases and became
popular with the emergence of large-scale image collections. CBIR considers colors,
shapes or textures to associate a query image to its most similar image(s) in an image
database. There are several approaches present for image retrieval. Solutions utilize grey
values [SM97], Eigenfeatures [SW96], Vector of Locally Aggregated Descriptors [Jég+10]
- a compact descriptor to make image retrieval more efficient concerning runtime and
storage [AZ13] - or CNNs [Sha+15; BL15]. Image retrieval is improved for situations
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where the scene appearance changes due to variable illuminations over time by generating
virtual views from Google street-view panoramas [Tor+15]. In contrast to this thesis, only
individual depth maps are used and no global 3D model.

6.3 Methodology

This section covers the methodology on the utilized camera re-localization pipelines as
well as the image rendering for DA on the Puzzle and Atrium datasets. DA by image
rendering and the training processes are described in Section 6.3.1. As part of quality
assessment for rendered images, feature matching and image retrieval are applied on the
Atrium dataset and described in Section 6.4.

For investigating DA, three different CNNs and two datasets are utilized. The investigation
leads with an initial experiment on the Puzzle dataset, a small sized dataset that serves
for feasibility of the approach of DA by image rendering. PoseNet and the modified
VGG16-Net introduced in Chapter 5 serve for the subsequent experiments. The complex
outdoor dataset of the atrium serves for further experiments. SqueezePoseNet and the
modified VGG16-Net serve for the experiments on this dataset. All experiments on camera
re-localization are carried out in Chapter 8, whereas experiments on DA by image rendering
are tackled in Section 8.2.

6.3.1 Image rendering

CNNs demand training on a huge amount of training data to assure robust and accurate
performance. The lack of such training data is a major problem in many fields of data-driven
learning. These circumstances also apply for pose regression with CNNs. Therefore,
transfer learning is priorly applied as a valuable intermediate step to overcome issues
of sparse training data (Section 5). Therewith, the localization accuracy and the training
duration could be improved. However, even though transfer learning is a valuable process
to help convergence and to speed up the training process, drawbacks caused by sparse
training data, unfavorable distributed training data or simple lack of training data are
not covered by transfer learning. DA by image rendering is introduced to overcome these
drawbacks and to improve the accuracy of localization. In this chapter, DA is realized
by image rendering. The general idea is to generate additional images to augment the
training dataset. Such image rendering requires a 3D model of the considered scene. An
arbitrary amount of images can be rendered within such a 3D model. Thus images with
purely new poses are generated, which advance not only the distribution of images, that
are fed to the network during training but also increase the space of training poses. A
wider distribution of training images and a more diverse space of training poses should
contain valuable information for data-driven learning. Therewith, CNNs should be able to
learn the appearance of images and their poses in a more extended space compared to
training on merely the original training data.
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The actual rendering process for the Puzzle dataset and the Atrium dataset is covered in the
following. Datasets for localization usually persist of RGB images and their corresponding
poses. To generate such data, 3D models, that serve for rendering are reconstructed. For
this purpose, PhotoModeler [Pho] – a software to reconstruct 3D models from images –
is utilized to generate the geometry and the texture from the Puzzle dataset. Due to the
geometric simplicity of the scene, which is a single plane, the model is reconstructed with
photo-texture with little effort. Since, the textures of the model are created directly from
the input images, a photo-realistic model is reconstructed by mosaicking. To render images
from arbitrary views in such a 3D model, the camera intrinsics and the poses of these views
have to be set. The camera intrinsics are obtained within the 3D model reconstruction
and are adopted for the purpose of image rendering. The poses of the new views are
generated automatically within the space of the ground truth evaluation poses from the
original dataset. The actual rendering is carried out by simulating a virtual camera with
the obtained intrinsic parameters in the virtual scene, consisting of the reconstructed 3D
model. The simulation and rendering is carried out with gazebo [KH04; Fou], a software
for simulating sensors and robots.

The rendered images appear accordingly realistic compared to the captured images, as can
be seen in Figure 6.1. The Figure shows exemplary two captured images in the top row
and their corresponding rendered images in the bottom row. The pose of Figure 6.1 (a) is
determined incorrectly within the reconstruction process, leading to an incorrect rendered
image shown in Figure 6.1 (c). The pose of Figure 6.1 (b) is determined correctly, whereby
the corresponding image in Figure 6.1 (d) is rendered accordingly correct. Images with
wrong determined poses are not added to the dataset nor utilized for further processing.
Overall, 479 rendered images are generated to augment the original dataset of 19 captured
images. It is highlighted, that no additional data beside the original training data nor any
assumptions are necessary to realize this DA approach.

Concerning the Atrium dataset, image rendering is carried out slightly different compared
to the image rendering for the Puzzle dataset. The atrium is a scene with more complex
geometry, rather than a single plane. Therefore, the 3D model is reconstructed with Agisoft
[Agi17] – a SfM software. The triangulated mesh is colored by the RGB information from
the dataset images. The camera intrinsics are obtained within the 3D model reconstruction
and are adopted for subsequent rendering. Multiple augmented sub-datasets are created
for the experiments on the Atrium dataset. Therefore, poses for the new views are generated
to serve for rendering additional images. In total, four sub-datasets with the following
properties are generated. One dataset is augmented with rendered images from views with
the exact poses as the ground truth evaluation poses. A second dataset is augmented with
rendered views from poses generated near the ground truth evaluation poses. Therefore,
a translational and rotational offset is added to each of the original evaluation poses
to generate the new poses. Such offset is added to each pose individually, whereas the
offset corresponds to a Gaussian noise, generated with a mean of 0 and a σ of 1 m for the
translational component and a mean of 0 and a σ of 0.1 for the rotational component. The
dataset that consists of rendered images with the same poses as the evaluation images
is named Coincide. The dataset with the noise offset on each pose is named Diverge. Two
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(a) (b)

(c) (d)

Figure 6.1: Captured images of the Puzzle dataset (top row) and their corresponding rendered images
(bottom row). The pose of the captured image (a) is determined incorrectly within the reconstruction
process leading to an erroneous rendered image (c). Images with incorrect poses were disregarded in all
subsequent processes. The pose of image (b) is determined correctly, whereby the corresponding rendered
image (d) is accordingly correct.

further datasets are created by a combination of the original dataset consisting of captured
images and the datasets with rendered images. The captured images combined with
the Coincide dataset form the Captured+Coincide dataset. Likewise, the Diverge dataset,
combined with the captured images from the original dataset form the Captured+Diverge
dataset. The actual rendering of the images is carried out by simulating a virtual camera
with the intrinsics obtained within the SfM process. The rendered images of the Atrium
dataset appear not as realistic as the ones from the Puzzle dataset. This is a result of the
more complex scene and the 3D model consisting of a high number of surfaces affecting
geometry and texture similarly. Figure 6.2 shows exemplary two captured images in the
top row and their corresponding rendered images in the bottom row. Since the rendered
images are generated with the camera model of the captured images, the corresponding
images have the same scene view. Diverse camera models could technically be chosen to
enrich a training dataset with even more various images if desired.

To show the benefit of the utilization of rendered images, training is carried out with
the original Puzzle training dataset and the augmented Puzzle dataset as well as with the
original Atrium dataset and the augmented Atrium dataset. Regarding the Puzzle dataset,
the evaluation is realized on two CNNs, PoseNet and the modified VGG16-Net. The
focus is set on relative performance improvements of the network’s accuracy. The training
process with the original Puzzle dataset – without any rendered images – by PoseNet
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(a) (b)

(c) (d)

Figure 6.2: Captured images of the Atrium dataset (top row) and corresponding rendered images (bottom
row). The rendered images are generated utilizing the same camera model as the captured images. Diverse
camera models could technically be chosen to enrich a training dataset with even more various images if
desired.

ended in training errors of 0.13 m, 6.00◦ The training of the modified VGG16-Net ended
with training errors of 0.20 m, 5.00◦. The training with the added 479 rendered images
ended for PoseNet with a training error of 0.18 m, 6.44◦ and for the modified VGG16-Net
with 0.04 m, 1.98◦ respectively.

Regarding the Atrium dataset, training is carried out on the Coincide and Diverge datasets
with initial weights obtained by transfer learning on the Shop Façade data. The model
weights of the Captured dataset are furthermore used to initialize the networks for
training on the Captured+Coincide and Captured+Diverge datasets for faster convergence.
Concluded, the datasets of Places and Shop Façade are utilized for transfer learning to
preserve initial network weights. For the medium and low coverage set training is carried
out on the following training dataset types. Captured, Coincide, Captured+Coincide, Diverge
and Captured+Diverge, whereas a single dataset of the dataset type Captured is utilized for
training on the medium and low coverage set. For each of the other dataset types, two distinct
datasets exist corresponding to each of the two evaluation sets. Therefore, nine different
training datasets are utilized. A more detailed description of the datasets is denoted in
Section 4.1. The CNNs are evaluated on the medium and low coverage set in Chapter 8.

6.3.2 Tasks for Quality Assessment

The challenging conditions of the Atrium dataset are highlighted by feature matching and
image retrieval in Section 6.4. The methodology to these tasks is briefly introduced in the
following.
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Feature Matching

A prerequisite for many computer vision tasks is feature matching. Considering DA, such
feature matching is investigated for comparison to the introduced data-driven end-to-end
approaches. Implicitly, feature matching is investigated based on the number of inlier
matches between images from training datasets to images from an evaluation dataset.
To save computational effort and avoid matching every evaluation image to each single
training image of the training dataset, Bag of Visual Words (BoVW) is applied. The goal is
to compare a single evaluation image to a data base of training images. A visual vocabulary
is created by utilizing SURF to extract features and descriptors from every training image.
Based on the visual words, a histogram for every training image is derived. Subsequently
the features and descriptors of the evaluation images are derived. Adjacent, a histogram
of visual words of the evaluation image is derived and compared to the BoVW by using
histogram intersection. Therewith, the best matching images are obtained and classical
feature matching between every evaluation image and its top three closest training images
is performed. As a measure of quality the number of inlier matches between evaluation
images and training images is taken into account.

Image Retrieval

A retrieval pipeline based on 3D color histograms to describe each image is used for
quality assessment [Ros]. These histograms are extracted from each image in the training
datasets and each evaluation image. Subsequently, histograms from the evaluation images
are compared by a similarity measure based on chi-squared distances to all images in
the training datasets. The chi-squared measure is used to compare discrete probability
functions, which is very suitable for histograms as they depict such probability distributions.
As labeled poses exist for each training image and each evaluation image, pose differences
can be computed between corresponding images.

d = ‖xi − x̂i‖2 , (6.1)

where xi is the position of an evaluation image and x̂i is the position of a training image.‖·‖2
depicts the Euclidean Norm.

The difference of rotation between an evaluation image and a training image θ is computed
by

θ = 2 ∗ arccos
(

qi ·
q̂i
‖q̂i‖2

)
, (6.2)

where qi is the normalized quaternion of an evaluation image and q̂i is the quaternion of a
training image. θ therefore depicts the angle between the orientation of a training and an
evaluation image.
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6.4 Quality Assessment

The challenging conditions of the Atrium dataset are highlighted by carrying out feature
matching between the training dataset and the evaluation datasets. The potential benefit
of the rendered images within the augmented sub-datasets is analyzed regarding their
suitability for image analysis by image retrieval subsequently.

6.4.1 Feature Matching

Preceding to the experiments on camera re-localization in Chapter 8, feature matching
is applied on the original dataset of the atrium scene to show the difficulties concerning
image analysis methods on that particular dataset.

The experiments shall expose the challenges of the evaluation datasets due to low coverage.
Satisfying image matching between the training images of the Captured dataset and the
evaluation data could not successfully be determined due to insufficient number of inlier
matches for homography estimation. Explicitly the evaluation images of the medium
coverage set have on average 152.2 matches between an evaluation image and its assigned
nearest training images according to BoVW. After inlier test by RANSAC the confidential
matches drop to 6.2 on average. The analogous test on the low coverage set shows 120.3
matches per image and 3.4 inlier on average. An overview including additionally the
maximum number of matches and inlier is given in Table 6.1.

Feature matching
medium

coverage set
low

coverage set
# matches (max.) 254 208
# matches (avg.) 152.2 120.3
# inlier matches (max.) 38 13
# inlier matches (avg.) 6.2 3.4

Table 6.1: Evaluation of feature matching on the medium and low coverage set. The number of matches
and inlier matches between evaluation images and nearest training images according to BoVW from the
Captured dataset are depicted. The evaluation images are assigned to their nearest training images by
BoVW. On average 152.2 respectively 120.3 matches between an evaluation image and its nearest training
image could be found. However, the number of average inlier with 6.2 respectively 3.4 is unsatisfying for
subsequently image matching, which shows the difficulty of this dataset.

A visualization of an evaluation image of the low coverage set and its nearest neighbor
from the training dataset determined by BoVW is visualized in Figure 6.3. Due to wide
baselines, perspective changes and low coverage sufficient image matching could not
be determined. This circumstances appear all over the dataset. The quality assessment
by feature matching depicts the difficulty of this dataset and its challenges due to wide
baselines between training and evaluation data. Camera re-localization suffers from the
same deficiencies in such datasets, wherefore DA is considered to overcome the drawbacks
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(a)

(b)

Figure 6.3: Evaluation image (a) of the low coverage set and its nearest neighbour from the training dataset
(b) according to BoVW. A feature matching between these two images could not be determined sufficient
due to low number of corresponding image features.

of wide baselines by generating additional data for a more dense distribution of training
images and poses.

6.4.2 Image Retrieval

Image retrieval is carried out on the original dataset of captured images and all datasets
augmented with rendered images. The mean pose differences are computed between each
evaluation image and its top 1, top 4 and top 10 nearest neighbours for each training
dataset. The results are depicted in Tables 6.2 and 6.3.

Mean Pose Difference
Dataset type Top 1 Top 4 Top 10
Captured 35.3 m, 126.1◦ 35.0 m, 114.1◦ 33.5 m, 107.5◦

Coincide 22.4 m, 90.1◦ 22.8 m, 86.6◦ 22.3 m, 84.1◦

Captured+Coincide 24.7 m, 100.6◦ 24.9 m, 96.0◦ 24.4 m, 93.7◦

Diverge 22.6 m, 97.0◦ 22.9 m, 94.7◦ 22.6 m, 93.2◦

Captured+Diverge 26.2 m, 107.2◦ 26.2 m, 101.1◦ 25.7 m, 97.7◦

Improvement 35.5%, 28.5% 34.9%, 24.1% 33.4%, 21.8%

Table 6.2: Mean pose differences of evaluation images to their nearest neighbours from the training datasets
for the medium coverage set. The mean pose differences are computed between each evaluation image and
its top 1, top 4 and top 10 nearest neighbours for each training dataset. Best results are highlighted in bold
style.

Augmenting the original training dataset with rendered images clearly leads to better
results than using merely the captured images. Image retrieval is benefiting from a denser
distribution of training images, hence finding images in the database closer to the query
image and thus improving the pose estimate. The translational component is improved
significantly on both, the medium and the low coverage evaluation set by about 33%− 55%.
The rotational component regarding the low coverage set with about 5%− 29% is not
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Mean Pose Difference
Dataset type Top 1 Top 4 Top 10
Captured 22.17 m, 80.8◦ 21.2 m, 81.0◦ 20.6 m, 88.2◦

Coincide 12.6 m, 93.8◦ 12.1 m, 91.9◦ 12.0 m, 94.2◦

Captured+Coincide 11.2 m, 80.0◦ 11.6 m, 80.7◦ 10.5 m, 83.3◦

Diverge 9.9 m, 79.8◦ 9.6 m, 78.3◦ 9.6 m, 79.2◦

Captured+Diverge 11.8 m, 76.5◦ 11.1 m, 77.1◦ 10.9 m, 80.5◦

Improvement 55.3%, 5.3% 54.7%, 4.8% 53.4%, 10.2%

Table 6.3: Mean pose differences of evaluation images to their nearest neighbours from the training datasets
for the low coverage set. The mean pose differences are computed between each evaluation image and its
top 1, top 4 and top 10 nearest neighbours for each training dataset. Best results are highlighted in bold
style.

improved as much. Concluded, all datasets enhanced by DA score better results than the
original dataset without augmentation. The experiments on camera re-localization with
DA by image rendering are carried out in Section 8.2.
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by Image-to-Image Translation

In this chapter, image-to-image translation is introduced to enhance the quality of images
by mapping them between multiple domains. Generally, image-to-image translation is a
constrained synthesis process of mapping an input image to an output image. An image is
synthesized with respect to a specified constraint such as another image. In this chapter,
the process of DA by image-to-image translation to enhance image analysis tasks is
investigated. DA is meant to help overcome limitations and boost performance for further
image processing. Parts of this chapter have been published in the conference paper

M. S. Müller, T. Sattler, M. Pollefeys and B. Jutzi. Image-to-Image Translation for
Enhanced Feature Matching, Image Retrieval and Visual Localization. ISPRS Annals
of Photogrammetry, Remote Sensing and Spatial Information Sciences - Photogrammetric Im-
age Analysis & Munich Remote Sensing Symposium. Volume IV-2/W7. pp. 111–119. 2019.

This chapter is organized as follows. The following section introduces the idea of DA
by image-to-image translation and selected computer vision tasks that are utilized for
evaluation purposes subsequently. After reviewing related work on image-to-image
translation, camera re-localization as well as related work on selected tasks for quality
assessment which are feature matching and image retrieval in Section 7.2, the methodology
is depicted in Section 7.3. Experiments for quality assessment are carried out in Section 7.4.
The main experiments on camera re-localization are carried out in Chapter 8.

7.1 Introduction

The performance of data-driven learning methods scales with the quantity and quality of
the underlying training dataset utilized for the optimization in the training process. Deep
learning with CNNs and GANs enables the development of new data-driven approaches.
Both are affected by the characteristics of the utilized training data. With growing interest
of deep learning, the demand for suffice and versatile training data is increased and
training datasets for numerous tasks are recently published. In this chapter, new training
images are generated to augment training datasets by image-to-image translation to
investigate the performance of common computer vision and photogrammetry tasks.

61



7 Localization with Data Augmentation by Image-to-Image Translation

Again the focus is set on camera re-localization. The general term for generating new
training samples to enlarge given datasets is DA. Augmenting training data is a powerful
option to overcome challenges in several fields of computer vision, like feature matching,
image retrieval and visual localization. Such DA includes the modification of existing
training images as well as the generation of new images to expand training datasets.
Common methods in image processing among others are to shift, rotate, scale, flip, crop,
transform, compress or blur training images to extend a basis dataset and generate a
higher versatility of characteristics within the training data. In this chapter, new images are
rendered and furthermore translated by a GAN to augment a dataset of images. Whereas
the rendering is carried out in a similar way as described in Chapter 6, the main focus is
set on the image-to-image translation. CNNs and other data-driven methods benefit from
versatile training datasets. The higher the versatility of training samples provided for the
optimization, the more robust and accurate networks can be expected to be trained.

Image-to-Image Translation made a huge leap with the progression of deep learning
algorithms and a better understanding of such. Image-to-image translation is the process
of translating an images from one domain into another. This could be translations between
daytime and nighttime, translations between the four seasons spring, summer, autumn and
winter or even the translation of artistically styles. The success of data-driven algorithms
like deep learning depends much on the provided training dataset, hence suffering from
deficient training data. An insufficient variation of training images weakens the estimates
in terms of robustness or accuracy. Typical training datasets for camera re-localization
consist of images captured in a specific scene, their corresponding poses and optionally
the parameters of the camera intrinsics. Augmenting such training datasets to generate
a higher quantity and versatility of training samples over the original dataset has the
potential to enhance methods that learn from this data. An augmentation could be
undertaken by capturing additional images manually, determining their poses and adding
them to an existing training set. However, this is cumbersome and not constructive to
tackle the problem of insufficient data. In this chapter, existing training data is augmented
by synthetic images. This is carried out by rendering new images as in Chapter 6 and
furthermore mapping them from their rendered domain to a captured domain to provide
higher similarity to the evaluation data. The rendered images are generated by utilizing
only the pre-existing captured data of the original training dataset. There is no necessity
for further assumptions or manual capturing of new data. Given a dataset consisting
of images and their corresponding poses of a specific scene, a 3D model of the scene is
generated by utilizing a SfM pipeline. Images with arbitrary poses are rendered in this
model and used to enhance the original training dataset. However, the rendered images
differ strongly in appearance from the original captured training images since the 3D
model is no photo-realistic representation of the scene. Since the direct utilization of such
rendered images may not suffice as training data for further applications, image-to-image
translation is applied subsequently. By image-to-image translation, the rendered images
are transformed from their rendered domain into the captured domain, thus enhancing
their appearance to be more realistic. Therefore, the translated images have a higher
similarity to the originally captured images including the evaluation images. The higher
similarity to the original training images increases the feasibility for potentially serving as
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additional training data. As for image rendering, the image-to-image translation approach
requires no need to capture new data or to make any assumptions. The image-to-image
translation pipeline is trained only on the original training dataset and the rendered
images. In summary, image rendering is combined with image-to-image translation for
DA to enhance common computer vision tasks with focus on camera re-localization. The
evaluation of the newly generated training data, namely the images translated from the
rendered domain into the captured domain, is carried out by performing common computer
vision tasks. In detail, feature matching and image retrieval is performed as a part of
quality assessment in this chapter (Section 7.4). Experiments on camera re-localization are
carried out in Chapter 8 to investigate the beneficial impact of image-to-image translation.

Camera Re-Localization is the task of determining a camera pose of one or multiple query
images in a specific scene. Camera re-localization carried out using CNNs steadily
improved in terms of accuracy over the last years. In general, CNNs are trained on training
datasets containing images of a scene and their corresponding poses. The neural network
is optimized by iteratively updating the model weights with respect to a loss function. For
camera re-localization, this loss function is often based on pose differences or reprojection
errors. Camera re-localization could benefit by expanding the training datasets with a more
versatile distribution of images and poses. Again, these training datasets are extended
by utilizing a 3D model to render new images and apply image-to-image translation
to transform rendered images into a more realistic captured domain. All experiments
on camera re-localization are carried out in Chapter 8, whereas DA by image-to-image
translation is tackled in Section 8.3 explicitly.

7.2 Related Work

DA is well established in the field of computer vision to augment training datasets. DA boosts
performance in classification [Ng+15], segmentation [Goy+17], object recognition [MS15],
object detection [Pen+15], hand gesture estimation [Mol+15], camera pose regression
[MMJ18] or human pose estimation [RS16]. Data-driven methods like CNNs can be trained
to improve handling invariances like translation or rotation which helps for generalization
of such networks [PVZ15]. An augmentation process is introduced, where a network
generates augmented data during the training process of a target network to reduce
that networks loss, showing improvements on several datasets [LBC17]. Furthermore
augmenting training data by synthesizing completely new images is known as a valuable
process of DA. Synthetic images of text in clutter are generated to train a Fully-Convolutional
Regression Network [GVZ16] successfully.

Image-to-Image Translation refers to a synthesis process where an input image is mapped
to an output image. Approaches considering paired training data, where images of the
source and target domain are provided in corresponding pairs have been addressed for
translations between domains like grayscale and color [ISI16], day and night, aerial and map
and others [Iso+17]. One of these networks, pix2pix [Iso+17] utilizes conditional GANs,
where an additional conditioning input information is provided for the generator and the
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discriminator during the training process. However, paired training data does often not
exist and is cumbersome to generate. To address this issue, an unpaired image-to-image
translation framework is proposed, called cycle-consistent GAN or CycleGAN [Zhu+17].
CycleGAN consists of two separate GANs, where one network maps an image from one
domain into another and the other network provides the inverse translation. The two
GANs are jointly trained adding a cycle-consistency loss that considers the output of both
networks simultaneously. Image-to-image translation trained on unpaired data, has been
addressed for artistically style transfer [JAF16; GEB15] or other domain translations like
horse to zebra, summer to winter or vice versa [Zhu+17]. Such image-to-image translation
showed beneficial impact for feature matching and image retrieval translating nighttime
to daytime images [Ano+19; PMN18]. With recent research, the number of domains is
extended to numerous, e.g. 16 translations between artistically styles or four domains for
translations between the seasonal domains as spring, summer, autumn and winter [Ano+18].
These translations are predominantly carried out utilizing GANs [Goo+14]. Adversarial
networks are also used to generate training data by transforming rendered images of eyes
to more realistic samples for eye gaze estimation [Shr+17a].

Camera re-localization by pose regression with CNNs is firstly solved with the publication
of PoseNet [KGC15]. Further development of loss functions [KC17] or the implication
of Long-Short Term Memory [Wal+17] boosted performance of camera re-localization.
Other research focuses on transferring pose regression from large to small networks
reducing memory requirements [MUJ17] (Chapter 5). DA is tackled by adding rendered
images to the training dataset to improve performance of a pose regression pipeline [MJ18]
(Chapter 6). Latest developments are combining deep learning and the well-studied PnP
problem [Gao+03] to regress six DoF poses from images [BR18]. The pipeline applies
DSAC, a framework of a differentiable RANSAC for finding 2D-3D matches, followed
by a pose hypothesis estimation. This approach scores similar results as feature-based
methods on camera re-localization. The determination of image poses in challenging
scenes with changing weather, lighting or seasonable conditions is important for the
navigation of self-driving vehicles and the localization for augmented-reality applications.
Therefore, datasets covering these characteristics are published recently [Sat+18a]. Another
work, focuses on matching paintings and historical photographs to a 3D model for pose
estimation, whereas features are learned to match between paintings and rendered images
[ARS14].

Considering the general camera re-localization pipeline introduced in Chapter 2, the focus
on improving the final pose estimate is tackled by improving the DA module. Therefore,
the rendered images are adjusted by image-to-image translation to fit the target domain in
this chapter.

7.3 Methodology

The focus is set on image-to-image translation and the workflow to augment a training
dataset with translated images in this section. Experiments for quality assessment are
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carried out in Section 7.4, where DA for feature matching and image retrieval is investigated.
All experiments on camera re-localization by data-driven learning are carried out in
Chapter 8.

A general workflow of how image-to-image translation is employed to translate images
from a training dataset of captured images and embedding them into a localization pipeline
is shown in Figure 7.1. A training dataset containing captured images ( 1© in Figure 7.1)
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Figure 7.1: A general workflow of how image-to-image translation is employed to translate images from a
training dataset of captured images and embedding them into a localization pipeline. All data is depicted
in blue boxes whereas methods are depicted in green boxes. Captured training images 1© are used to
reconstruct a 3D model through SfM and MVS. Rendered images are generated with arbitrary poses and
camera intrinsics within this 3D model 2©. These rendered images and the original captured images serve
as input to train an image-to-image translation network. This network translates images in the rendered
domain into translated images in the captured domain 3©. Captured 1© and translated images 3© are used to
train a localization pipeline. Training is also carried out with merely rendered images 2©. All experiments
are carried out on the captured images from an evaluation set 4©. None of the evaluation images is utilized
in the prior training process. For comparison purpose each experiment is carried out on the captured
images, the rendered images and the translated images in Section 8.3. It is highlighted, that all images in
the rendered 2© and captured 3© domain are generated by utilizing merely the captured images 1© from the
original dataset.

serves to reconstruct a 3D model through SfM and MVS [SF16; Sch+16]. The model is used
to render images with arbitrary poses and camera intrinsics 2©. These rendered images
and the original captured images serve as input for training an image-to-image translation
network. The trained network then translates images from the rendered domain to the
captured domain 3©. Captured 1© and translated images 3© are used to train a localization
pipeline. Training is also carried out with merely rendered images 2©. All experiments
are carried out on the captured images from an evaluation set 4©. None of the evaluation
images is utilized in the prior training process. For comparison purpose, each experiment
is carried out on the captured images, the rendered images and the translated images in the
experiments chapter (Chapter 8). The Shop Façade dataset (Section 4.3) from the Cambridge
Landmarks benchmark [KGC15] serves for these experiments. The scene mainly shows two
façades of a shop. The training dataset consists of 231 images and their corresponding
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7 Localization with Data Augmentation by Image-to-Image Translation

poses, whereas the evaluation dataset consist of 103 images and poses. Quality assessment
regarding feature matching as well as image retrieval is carried out in Section 7.4.

7.3.1 Image-to-Image Translation

Image-to-image translation is carried out utilizing ToDayGAN [Ano+19], a GAN based
on CycleGAN [Zhu+17]. GANs generally consist of two independent neural networks
which compete with each other. A so-called generative network generates synthetic images
while a discriminative network tries to distinguish the output of the generative network
between real and synthetic data. This procedure allows to generate a vast amount of
synthetic data while retaining a realistic appearance and thus potentially serves for DA.
The fundamentals of GANs are described in-depth in Section 3.3. An image-to-image
translation network computes a mapping of images between two domains C and R,
corresponding to the captured and rendered domain. Unpaired samples of both domains ci

and rj, where i = 1, ..., N and j = 1, ..., M are provided during training. An alignment
of training samples is not necessary due to the cycle consistency loss introduced with
CycleGAN. The network consists of two generators GR : R→ C and GC : C → R to translate
images between the domains as well as two discriminators DC and DR to distinguish
between translated and captured images (Figure 7.2).

Cycle
Consistency

Loss

Rendered
Image R

Generator
GR : R→ C

Translated
Image C

Discriminator
DC

Adversarial
Loss

Translated
Image R

Generator
GC : C → R

Discriminator
DR

Figure 7.2: Overview of the utilized GAN system. The training pass for the direction from a rendered
image to a captured image R→ C is shown. Besides the adversarial loss, a cycle consistency loss is utilized
to encourage inverse mappings such that GR(GC(c)) ≈ c. The training pass for the opposite direction
C → R is executed likewise. Discriminator DR is illustrated for completeness.

The cycle consistency loss specifies the constraint in such way that a translation R→ C
followed by C → R is hold to lead to the same image as the original input image.

GR(GC(c)) ≈ c (7.1)

For the purpose on augmenting the Shop Façade dataset, rendered images are translated
from the rendered domain to the captured domain. Therefore, the rendered-to-captured
generator GR : R→ C is used. The training images from the Shop Façade dataset serve as
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training samples for the captured domain. Images rendered from multiple poses in the 3D
model of the scene serve as training samples for the rendered domain. The 3D model is
reconstructed using COLMAP. Poses for rendering additional images are generated in
a grid with a spacing of 25 cm. Poses are only generated up to three meters away from
the nearest original training pose. The orientation of each generated pose is set to the
orientation of the nearest training image. Thereby, additional poses have been generated
to render images from new positions and with different points of view. In total 2652
images are rendered, which serve together with the 231 captured images for training
the image-to-image translation network. Figure 7.3 shows synthetic generated poses of
the rendered images (dark red), training poses of captured images (red) and evaluation
poses of the captured images (green). Only every tenth of the synthetic generated poses is
depicted for visualization purpose in this figure. An exemplary rendered image from the
3D model is illustrated in Figure 7.4 (a). Figure 7.4 (b) shows the image after translation
into the captured domain by the image-to-image translation network.

Figure 7.3: Visualization of synthetic generated poses for the rendered respectively translated images (dark
red), poses of of the captured training images (red) and poses of the captured evaluation images (green).

7.3.2 Tasks for Quality Assessment

The impact of image-to-image translation on different computer vision tasks – namely
feature matching, image retrieval and camera re-localization – is evaluated. Quality
assessment by feature matching and image retrieval is carried out in Section 7.4. All
experiments on camera re-localization are carried out in Chapter 8.
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7 Localization with Data Augmentation by Image-to-Image Translation

(a)

(b)

Figure 7.4: Exemplary rendered image (a) and corresponding translated image (b). The translated image
is generated by image-to-image translation whereas the rendered image serves as input. The image in
figure (b) is rendered from a pose, which does not exist in the original dataset. Hence, additional value is
generated with the rendering (of new views) followed by image-to-image translation.
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Feature Matching

Feature matching is performed to evaluate the quality of the images generated by rendering
and image-to-image translation. The performance of feature matching is measured based
on the number of inliers between images from a training dataset and images from the
evaluation dataset. Inliers are depicted within a geometric similarity transformation
[HZ03] while a variant of MLESAC [TZ00] for model fitting is applied. Feature detection
and description is carried out using SURF. The actual feature matching is performed by an
approximate nearest neighbour search [ML09]. To ensure matching by an overlapping
field of view between evaluation images and training images, a BoVW [Csu+04] approach
is deployed. Concerning feature matching, according to a query image the ten nearest
neighbours in the training set are considered. As a measure of quality, the number of
inliers between evaluation images and their nearest training images are taken into account,
whereas a high number of inliers corresponds to a high quality. Feature matching is
performed on the three training datasets of the captured, rendered and translated domain in
Section 7.4.1.

Image Retrieval

For further evaluation of the feasibility of image-to-image translation, image retrieval
is applied using a BoVW approach. The goal is to compare single evaluation images as
query images to a set of training images and to find the images with the highest similarity.
Subsequently, a pose difference is computed by taking the pose of the evaluation image
and the poses of the most similar training images into account. A localization of evaluation
images is realized that way. Therefore, a visual vocabulary with 250 visual words is created
by utilizing SURF to extract features and their descriptors from all training images. All
features are clustered using k-means [Llo82] with 250 clusters, whereby every cluster
represents a visual word. Based on these visual words a histogram for every training
image is derived. Subsequently the features and descriptors of the evaluation images
are derived with the same strategy and added to one of the 250 clusters by using a
nearest neighbour approach. Adjacent, a histogram of visual words of the evaluation
image is derived and compared to the BoVW by using histogram intersection. Therewith,
the best matching histograms of the images from the training set are identified and
assigned to an evaluation image. The images corresponding to these histograms are
considered as the nearest neighbours for the evaluation image. To evaluate image-to-image
translation in Section 7.4.2 the performance of image retrieval on the three datasets, which
are captured images, rendered images and translated images, is investigated. Besides
a visual comparison, a numerical evaluation is carried out as mentioned by computing
pose differences between ground truth and estimated poses. The ground truth poses for
training and evaluation datasets are given from the Shop Façade benchmark dataset. The
estimated poses again are derived by determining the mean poses of the nearest training
images as introduced in Chapter 6.
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Camera Re-Localization

For further investigation on the feasibility of translated images to enhance image analysis,
camera re-localization is performed utilizing DSAC++ [BR18]. This approach consists of
a neural network and a pose estimation pipeline based on 2D-3D correspondences. The
network takes RGB images, their corresponding poses and intrinsic camera calibrations as
input for the training procedure and regresses a six DoF pose for single evaluation images.
Initially a CNN predicts scene coordinates for image patches from a given input image.
This leads to 2D-3D correspondences between pixels and their corresponding point in
the 3D scene from predicted scene coordinates. By solving the PnP problem, a camera
pose is estimated from such 2D-3D correspondences. Multiple camera pose hypotheses
are computed – each from four of such 2D-3D correspondences. This is followed by
a pose hypothesis selection and a pose hypothesis refinement leading to a final pose
estimate. The network is optimized by minimizing a pose loss in an end-to-end training
using backpropagation. The training sets consist of the captured images from the Shop
Façade dataset, the rendered images generated from a 3D model and the translated images
generated by image-to-image translation.

The experiments on DA by image-to-image translation for camera re-localization by
data-driven methods are carried out in Section 8.3 in the experiments chapter.

7.4 Quality Assessment

For quality assessment of the images generated by rendering and image-to-image translation
feature matching and image retrieval are carried out in this section preceding to camera
re-localization in Chapter 8. All of these experiments are carried out on the Shop Façade
dataset from the Cambridge Landmarks visual localization benchmark.

7.4.1 Feature Matching

The improvement of feature matching on translated images is investigated in contrast
to feature matching on captured and rendered images. Therefore, SURF features are
extracted from all training images and evaluation images. The training images include the
original captured training images, the rendered images and the translated images. Since
matching every evaluation image to each training image would include matching images
that do not share a joint view of the scene, the matching candidates are preselected by the
image retrieval approach mentioned in Section 7.3.2. Therewith, every evaluation image is
compared to its ten nearest neighbours according to the image retrieval results. Figure
7.5 depicts results of an evaluation image – in the left column – matched to a training
image from the (top), rendered (mid) and translated (bottom) dataset in the right column.
Table 7.1 shows the average number of matches respectively inliers between the evaluation
images and the images of the training datasets. Image-to-image translation on rendered
images increases the number of inliers significantly from 12 to 79. The average number of
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Figure 7.5: Exemplary visual results for feature matching. Each row shows matched features between a
captured evaluation image (left) and a training image (right). The white bounding boxes depict the borders
of the projected evaluation images. Training images are from top to bottom in the captured, rendered and
translated domain. No image could be projected for the rendered domain, due to a lack of model computation
from an insufficient number of inliers.

Dataset Avg. # of matches Avg. # of inliers %
Captured 678 244 35.9
Rendered 240 12 5.0

Translated 396 79 19.9

Table 7.1: Average numbers of total matches and inliers between training images and evaluation images.
The evaluation images are the captured images from the Shop Façade evaluation set. The last column shows
the percentage of the average inliers in relation to the average matches.
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7 Localization with Data Augmentation by Image-to-Image Translation

12 inliers derived on the rendered images is generally not satisfying for computer vision
tasks. However, after image-to-image translation the average number of inliers rises to
79, which is a decent amount of matches to successfully solve image registration or other
image analysis tasks.

7.4.2 Image Retrieval

Image retrieval is evaluated on the captured training images, the rendered images and
the translated images. The captured evaluation images serve for evaluation on all three
training datasets. A visual representation of results is illustrated in Figure 7.6. Figure 7.6 (a)
shows one of the evaluation images, whereas Figure 7.6 (b), (c) and (d) each show the four
nearest neighbours of the training sets (Captured, Rendered, Translated) corresponding to the
evaluation image. The mean pose differences are computed between each evaluation image
and its top 1, top 4 and top 10 nearest neighbours for each training dataset (Table 7.2).

Mean Pose Difference
Dataset Top 1 Top 4 Top 10

Captured 0.72m, 0.43◦ 0.69m, 0.42◦ 0.82m, 0.50◦

Rendered 2.62m, 0.84◦ 2.73m, 0.85◦ 2.88m, 0.89◦

Translated 0.49m, 0.29◦ 0.38m, 0.28◦ 0.49m, 0.31◦

Improvement 31.9%, 32.5% 44.9%, 33.3% 40.2%, 38.0%

Table 7.2: Mean pose differences of evaluation images to their nearest neighbours from the training
datasets. The mean pose differences are computed between each evaluation image and its top 1, top 4 and
top 10 nearest neighbours for each training dataset. Best results are highlighted in bold style.

Utilizing translated images clearly leads to better results over the usage of merely captured
images. Image retrieval benefits from the higher number of images leading to a denser
sampling compared to captured images, hence finding images in the database closer to the
query image and thus improving the pose estimate. Image retrieval trained on rendered
images shows a decreased accuracy compared to retrieval on captured images due to high
dissimilarity to the evaluation images.
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(a) (b)

(c) (d)

Figure 7.6: Exemplary results on image retrieval. (a) Shows an evaluation image in the captured domain.
(b), (c) and (d) each show the four nearest neighbours to (a) in the captured, rendered and translated domain.
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8 Experiments

This chapter presents the experiments on camera re-localization by data-driven methods
under varying experimental setups. Experiments without DA are conducted in Section 8.1,
experiments with DA by image rendering are conducted in Section 8.2 and experiments
with DA by image-to-image translation are conducted in Section 8.3. Parts of this chapter
have been published in the conference papers and journal article mentioned in the
Chapters 5, 6 and 7.

8.1 Localization without Data Augmentation

In this section, experiments on localization without DA are carried out. The focus is set
on the evaluation of SqueezePoseNet which is compared to PoseNet and the modified
VGG16-Net. The methodology covering these experiments is outlined in Chapter 5. The
medium and low coverage evaluation sets in the atrium’s scene introduced in Section 4.1 serve
for the experiments. In Section 8.1.1 and 8.1.2 visual results as well as metric evaluations
compared to ground truth are presented.

8.1.1 Medium coverage set

The medium coverage set shows a medium coverage of training and evaluation data in
terms of similarity with respect to scene views as well as poses. Figure 8.1 (a) shows the
training poses in green and the evaluation poses in blue for the medium coverage set. The
estimated poses derived by the modified VGG16-Net and SqueezePoseNet are visualized
in Figure 8.1 (b) respectively Figure 8.1 (c).

The histograms in Figure 8.2 show the derived errors to the ground truth poses. Figure 8.2 (a)
and 8.2 (b) show the spatial errors of the modified VGG16-Net and SqueezePoseNet.
Figure 8.2 (c) and 8.2 (d) show the related angular errors likewise.

The numerical results in Table 8.1 are represented by the median spatial and angular errors.
The pose estimation accuracy is 4.91 m and 33.30◦ for the modified VGG16-Net, 5.19 m
and 29.28◦ for SqueezePoseNet and 8.60 m and 50.83◦ for PoseNet. The table includes the
numerical results of the low coverage set which is covered in the subsequent section.
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(a) (b) (c)

Figure 8.1: Medium coverage set. Training poses (green), evaluation poses (blue) and estimated poses (red).
Visualization of (a) training poses and evaluation poses, (b) pose estimates derived by the modified
VGG16-Net and (c) pose estimates derived by SqueezePoseNet.
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Figure 8.2: Medium coverage set. The histograms show the spatial and angular errors of the CNN-derived
poses to ground truth. Whereas (a) and (b) depict the spatial errors of the modified VGG16-Net respectively
SqueezePoseNet and (c) and (d) the angular errors likewise.

Dataset PoesNet VGG16-Net (mod.) SqueezePoseNet
Medium coverage set 8.60 m, 50.83◦ 4.91 m, 33.30◦ 5.19 m, 29.28◦

Low coverage set 11.47 m, 46.40◦ 11.34 m, 37.33◦ 15.18 m, 65.02◦

Table 8.1: Evaluation errors on the medium and high coverage set. Bold text marks best result on a set.
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8.1 Localization without Data Augmentation

(a) (b) (c)

Figure 8.3: Low coverage set. Training poses (green), evaluation poses (blue) and estimated poses (red).
Visualization of (a) training poses and evaluation poses, (b) pose estimates derived by the modified
VGG16-Net and (c) pose estimates derived by SqueezePoseNet.

8.1.2 Low coverage set

This set shows a low coverage between training poses and evaluation poses. Figure 8.3 (a)
shows the training poses in green and the evaluation poses in blue for the low coverage
set. The estimated poses derived by the modified VGG16-Net and SqueezePoseNet are
visualized in Figure 8.3 (b) respectively 8.3 (c).

The histograms in Figure 8.4 show the derived errors to the ground truth poses. Figure 8.4 (a)
and 8.4 (b) show the spatial errors of the modified VGG16-Net and SqueezePoseNet.
Figure 8.4 (c) and 8.4 (d) show the related angular errors likewise.

The numerical results in Table 8.1 represent the spatial and angular errors. The pose
estimation accuracy is 11.34 m and 37.33◦ for the modified VGG16-Net, 15.18 m and 65.02◦

for SqueezePoseNet and 11.47 m and 46.40◦ for PoseNet.

The experiments on both, the medium and the low coverage set, depict an improvement
of the modified VGG16-Net over the shallower PoseNet (Table 8.1). The lightweight
SqueezePoseNet scores confident results on the medium coverage set with similar per-
formance as the modified VGG16-Net and even outperforming PoseNet while having a
smaller model size than both of these networks. Experiments on the low coverage set depict
unsatisfying results over all utilized CNNs. The pose errors assumedly arise due to the
low similarity between training and evaluation data. Figure 8.5 shows an overview of the
distribution of training poses (green), evaluation poses (blue) and estimated poses (red). It
is clearly visible that the network is not capable of extrapolating from the training poses –
which are mainly on the bottom of the scene – to the evaluation poses – which are at the
top of the scene. The estimates lie in between and are not extrapolated to the full extent.
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Figure 8.4: Low coverage set. The histograms show the spatial and angular errors of the CNN-derived poses
to ground truth. Whereas (a) and (b) depict the spatial errors of the modified VGG16-Net respectively
SqueezePoseNet and (c) and (d) the angular errors likewise.

Figure 8.5: Camera poses of the training images (green), evaluation images (blue) and estimates (red) of
the low coverage set. Is is clearly visible that the network is not capable of extrapolating from the training
poses – which are mainly on the bottom of the scene – to the evaluation poses – which are at the top of the
scene. The estimates lie in between, and are not extrapolated to the full extent.
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8.2 Localization with Data Augmentation by Image
Rendering

Concerning the localization results in Section 8.1 which are shown to be highly affected
by the insufficient distribution of training data, image rendering is utilized to tackle
this issue in this section. The feasibility of utilizing rendered images for DA to improve
localization is initially evaluated on the Puzzle dataset and subsequently on the more
complex Atrium dataset. A profound description of both datasets can be found in Section 4.
The methodology covering these experiments is outlined in Chapter 6.

8.2.1 Puzzle

To tackle and overcome the issue of the experienced limited extrapolation capability
of CNNs for camera re-localization due to a disadvantageous distribution of training
and evaluation data, the Puzzle dataset is created and augmented with rendered images.
The limitation considering extrapolation is in large parts caused by the training data,
specifically by the lack of training data in the spatial neighborhood of the evaluation data.
Therefore, a network is not able to learn, that poses appear in particular locations. By
adding images of the scene in the spatial neighborhood of the evaluation data, the results
could be enhanced. However, such images do generally not exist and it is expectable that
on application level, such data is neither available. Therefore, images are rendered in the
scene of the puzzle to augment the training dataset.

In these experiments, PoseNet and the modified VGG16-Net are trained and evaluated on
the original Puzzle dataset and on the Puzzle dataset augmented with rendered images. The
results on PoseNet and the modified VGG16-Net are visualized in Figure 8.6 respectively
Figure 8.7.

(a) (b)

Figure 8.6: Visualization of pose results by PoseNet on the Puzzle dataset. (a) Pose results for PoseNet
trained on the original Puzzle dataset. (b) Pose results trained on the augmented Puzzle dataset. Green
cameras depict training poses of the original Puzzle dataset, blue cameras depict evaluation poses and red
cameras depict estimated poses derived by PoseNet. The black points indicate the puzzle’s point cloud. It
is clearly shown, that the rendered images in the augmented dataset support the extrapolation potential of
the network.
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(a) (b)

Figure 8.7: Visualization of pose results by the modified VGG16-Net on the Puzzle dataset. (a) Pose results
for the modified VGG16-Net trained on the original Puzzle dataset. (b) Pose results for the modified
VGG16-Net trained on the augmented Puzzle dataset. Green cameras depict training data of the original
Puzzle dataset, blue cameras depict the ground truth and red cameras depict estimated poses derived by
the modified VGG16-Net. The black points indicate the puzzle’s point cloud. It is clearly shown, that the
rendered images in the augmented dataset support the extrapolation potential of the network.

The numerical results for PoseNet and the modified VGG16-Net are shown in Table 8.2.
For PoseNet trained on the original Puzzle dataset, the evaluation errors are 0.47 m and
16.07◦ for the spatial respectively angular component. The evaluation errors on PoseNet,
trained on the augmented dataset with rendered images are 0.18 m and 7.53◦. This is an
improvement of 61.7% for the spatial component and 53.1% for the angular component. In
Figure 8.8 the evaluation errors of PoseNet are visualized in histograms.

Dataset PoseNet modified VGG16-Net
original Puzzle 0.47 m, 16.07◦ 0.39 m, 17.07◦

augmented Puzzle 0.18 m, 7.53◦ 0.16 m, 4.10◦

Improvement 61.7%, 53.1% 59.0%, 76.0%

Table 8.2: Evaluation errors for PoseNet and the modified VGG16-Net trained on the original Puzzle dataset
and the augmented Puzzle dataset. The bottom column shows the percental improvement of training on the
augmented dataset against the original. The best results for each CNN is marked bold.

For the modified VGG16-Net trained on the original Puzzle dataset, the evaluation errors
are 0.39 m and 17.07◦ for the spatial respectively angular component. The evaluation errors
on the modified VGG16-Net, trained on the augmented dataset with rendered images are
0.16 m and 4.10◦. This is an improvement of 59.0% for the spatial component and 76.0% for
the angular component. In Figure 8.9 the evaluation errors of the modified VGG16-Net are
visualized in histograms.

It is clearly visible from the numerical results in Table 8.2 and from the histograms in
Figure 8.8 and 8.9, that DA by image rendering achieves better localization results than
localization without DA. This is confirmed by the visual representations in Figure 8.6 and
8.7.
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Figure 8.8: The histograms show the spatial and angular pose errors derived by PoseNet. Histograms (a)
and (c) depict the spatial respectively angular errors based on training on the original Puzzle dataset.
Histograms (b) and (d) depict the spatial and angular errors based on training on the Puzzle dataset
augmented with rendered images. The errors could be decreased from 0.47 m and 16.07◦ to 0.18 m and
7.53◦ by the augmentation.

8.2.2 Atrium

Analogous to the experiments in Section 8.2.1, DA by image rendering is carried out
on the Atrium dataset. In contrast to the 3D model of the puzzle, where only a single
textured plane forms the scene, the atrium represents a more complex scene consisting
of multiple geometric objects and diverse textures. Experiments are carried out with the
modified VGG16-Net and SqueezePoseNet. Both networks are trained on the different
training datasets Captured, Coincide, Captured+Coincide, Diverge and Captured+Diverge as
introduced in Section 6. The evaluation is carried out on the medium and low coverage
set. The results on the medium and low coverage set are depicted in Table 8.3 respectively
Table 8.4. A visual representation of the evaluation errors separated by the utilized CNNs
is depicted in Figure 8.10. The figure depicts the position and orientation errors separated
by the medium and low coverage set.

An illustration of the best results for the medium coverage set and the low coverage set is
depicted in Figure 8.11. The single figures show estimated poses on the Captured dataset
(a), (c), (e), (g) as well as the estimated poses on the respective augmented datasets scoring
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Figure 8.9: The histograms show the spatial and angular pose errors derived by VGG16-Net. Histograms
(a) and (c) depict the spatial respectively angular errors on the original Puzzle dataset. Histograms (b) and
(d) depict the spatial and angular errors on the Puzzle dataset augmented with rendered images. The errors
could be decreased from 0.39 m and 17.07◦ to 0.16 mand4.10◦ by the augmentation.

Dataset modified VGG16-Net SqueezePoseNet
Captured 4.91 m, 33.30◦ 5.19 m, 29.28◦

Coincide 3.36 m, 21.83◦ 5.18 m, 27.45◦

Captured+Coincide 3.37 m, 19.63◦ 3.91 m, 19.01◦

Diverge 3.90 m, 21.79◦ 5.32 m, 25.99◦

Captured+Diverge 3.14 m, 18.40◦ 3.89 m, 19.90◦

Improvement 36.05%, 44.74% 24.66%, 35.08%

Table 8.3: Evaluation errors on the medium coverage set. The improvement corresponds to the best result
per method, which is marked in bold.
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Dataset modified VGG16-Net SqueezePoseNet
Captured 11.34 m, 37.33◦ 15.18 m, 65.02◦

Coincide 4.53 m, 16.67◦ 5.26 m, 24.90◦

Captured+Coincide 4.46 m, 20.90◦ 6.60 m, 31.88◦

Diverge 4.48 m, 26.76◦ 4.65 m, 24.96◦

Captured+Diverge 6.38 m, 19.02◦ 6.86 m, 26.43◦

Improvement 60.05%, 55.34% 69.37%, 61.61%

Table 8.4: Evaluation errors on the low coverage set. The improvement corresponds to the best result per
method, which is marked in bold.

mod. VGG16-Net
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SqueezePoseNet
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Figure 8.10: Visualization of evaluation errors. The Figure depicts the position errors (striped bars) and
orientation errors (untextured bars) errors separated by the medium and low coverage set evaluated on the
modified VGG16-Net and SqueezePoseNet. The experiments are carried out on the training datasets types
Captured, Coincide, Captured+Coincide, Diverge and Captured+Diverge.

best results (b), (d), (f), (h). The best results are scored by the following networks: (a)
Modified VGG16-Net trained on the Captured dataset. (b) Modified VGG16-Net trained
on the Captured+Diverge dataset. (c) SqueezePoseNet trained on the Captured dataset.
(d) SqueezePoseNet trained on the Captured+Coincide dataset. (e) Modified VGG16-Net
trained on the Captured dataset. (f) Modified VGG16-Net trained on the Coincide dataset.
(g) SqueezePoseNet trained on the Captured dataset. (h) SqueezePoseNet trained on the
Diverge dataset.

The experiments show a clear improvement of utilizing DA by image rendering. The
rendered images are used to extend the distribution of scene views and poses for the
training of CNNs. The accuracy is improved when utilizing DA for all experiments.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.11: Visualization of evaluation poses (blue) and estimated poses (red) for the medium coverage set
in the top row and the low coverage set in the bottom row. The single figures show estimated poses on
the Captured dataset (a), (c), (e), (g) as well as the estimated poses on the respective augmented datasets
scoring best results (b), (d), (f), (h). (a) Modified VGG16-Net trained on the Captured dataset. (b) Modified
VGG16-Net trained on the Captured+Diverge dataset. (c) SqueezePoseNet trained on the Captured dataset.
(d) SqueezePoseNet trained on the Captured+Coincide dataset. (e) Modified VGG16-Net trained on the
Captured dataset. (f) Modified VGG16-Net trained on the Coincide dataset. (g) SqueezePoseNet trained on
the Captured dataset. (h) SqueezePoseNet trained on the Diverge dataset.

8.3 Localization with Data Augmentation by
Image-to-Image Translation

In this section, experiments on localization with DA by image-to-image translation are
carried out. Experiments are carried out on the Shop Façade dataset and the Atrium dataset.
Both datasets are introduced in Chapter 4. Image-to-image translation on the Atrium
dataset leads to unsatisfying results. Experiments on camera re-localization are therefore
not carried out on this dataset. Reasons on this are discussed in Chapter 9 nevertheless. The
localization pipeline utilized for the experiments on the Shop Façade dataset is based on
DSAC++ [Bra+17]. The image-to-image translation and the localization methods described
in Chapter 7 are utilized for the subsequent experiments.

8.3.1 Shop Façade

For the evaluation of image-to-image translation, the localization approach presented in
Chapter 7 is adapted. The datasets of the captured, rendered and translated images of
the Shop Façade scene serve for training the network. The network is trained on each of
the mentioned training sets separately. Additionally, a training of a joint training dataset
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containing the captured images and the translated images is realized. The evaluation of
the networks is carried out on the evaluation dataset with the captured images on all
four trained models, which are Captured, Rendered, Translated and Captured+Translated.
All experiments are processed with the same settings of hyperparameters to maintain
comparability. The results are depicted in Table 8.5. The network achieves a pose accuracy
as median translation and rotation errors of 0.14 m/0.7◦ on the captured data, 8.86 m/39.5◦

on the rendered data and 0.16 m/0.6◦ on the translated data. Training on the joint dataset
of captured and translated images scores 0.12 m and 0.4◦, which depicts the best result.
Training on rendered images leads to unsatisfying results. Training on merely translated
images scores similar results as training on the captured images, which is promising.

Total Number Median
Dataset of Images Pose Error

Captured 231 0.14 m, 0.7◦

Rendered 2652 8.86 m, 39.5◦

Translated 2652 0.16 m, 0.6◦

Captured+Translated 231 + 2652 0.12 m, 0.4◦

Table 8.5: Median pose errors on the Captured, Rendered, Translated and Captured+Translated datasets. The
joint Captured+Translated dataset scores the best results. Training on rendered images leads to unsatisfying
results. Training on merely translated images scores similar results as training on the captured images,
which is promising.
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9 Discussion

In this chapter, the results of the experiments are concluded and discussed. The chapter is
subdivided into discussions according to localization without DA, localization with DA
by image rendering and localization with DA by image-to-image translation.

9.1 Localization without Data Augmentation

The experiments on localization without DA in Section 8.1 show that CNNs are generally
capable to estimate image poses but are limited in terms of extrapolation. That means,
the bare space of training poses limits the performance of such networks profoundly.
The evaluation is carried out on several CNNs, including SqueezePoseNet which has a
small model size and is therefore well suited for mobile applications like small robots,
MAVs or mobile handheld devices. The approach on building a small network is evaluated
on the medium and the low coverage set of the Atrium dataset and compared to deeper
networks, like PoseNet and the modified VGG16-Net. The modified VGG16-Net as well as
SqueezePoseNet score similar results on the medium coverage set, whereas the modified
VGG16-Net has a deeper network structure, therefore more parameters and a bigger
model size. Both networks, with a position estimation error of 4.91 m respectively 5.19 m,
could provide initial poses for a further and optional pose refinement step or generally
could serve for pose initialization for subsequent processes. The estimation of poses with
SqueezePoseNet is processed in less than 5 ms, representing real-time capability for almost
all applications.

Less accurate results are obtained on the low coverage set, where hardly any similarity to
the evaluation data is provided in the training dataset. The spatial differences of 11.34 m
and 15.18 m in a scene of about 39× 36× 18 m3 does not satisfy the needs on camera
re-localization. Also the orientation estimates between 37.33◦ and 65.02◦ are deficient to
serve for further processing. The majority of the position error is contributed by a spurious
estimation of the height component. The poses are systematically estimated spatially too
low. It is reasonable that the CNN can not extend its knowledge too far from the trained
data, as it has never learned such extends from the training data. Even though interpolation
works well, the extrapolation on the other hand performs less accurate. It can be stated,
that a high coverage of training data serves better to train CNNs for pose regression than
a low coverage. The higher the similarity and overlapping views between training and
testing images is, the better are the pose estimates.
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To overcome the limitation of dissimilar training and evaluation data, solutions utilizing
DA are presented in Chapter 6. Since it is unpractical to collect such missing data of the
scene with a high density, additional views are rendered to augment the original training
dataset and to achieve such density.

9.2 Localization with Data Augmentation by Image
Rendering

The general performance of CNNs for localization can potentially be improved by providing
a higher distribution of training data. This can be achieved with DA by image rendering.
The methodology of this process is outlined in Chapter 6 and the associated experiments
are provided in Section 8.2. In this section, the results of the experiments are outlined and
discussed.

The results of the training processes enhanced by DA show thoroughly positive outcome.
The experiments on the Puzzle dataset depict the benefits of DA by image rendering as the
training space of poses and images is enhanced leading to accuracy improvements of about
60% in position and up to 70% in orientation. The rendered images from the Puzzle dataset
are generated with a high realistically appearance as a photo-realistic 3D model could be
provided. Since such models are seldom provided, a 3D model with lower quality is used
for subsequent experiments. Therefore, the Atrium dataset serves for further experiments.

The accuracy of pose estimation is increased for the modified VGG16-Net and
SqueezePoseNet on both evaluation datasets of the Atrium dataset, the medium cov-
erage set and the low coverage set. The improvements for the medium coverage set are up to
36.05% for the translation component and up to 44.74% for the orientation component. The
improvements for the low coverage set are up to 69.37% for the translation component and
up to 61.61% for the orientation component. From the numerical and visual presentations
of the results, it can be seen that the pose estimates move closer the the ground truth
when adding rendered images to the training process. However, the knowledge transfer
from captured images to rendered images is merely moderate by the CNN due to the
dissimilarity of the image domains. Considering the medium coverage set, this can be stated
since the Coincide dataset, which shares the exact poses as the evaluation images does
improve the accuracy, but still scores not remarkable results. The same applies for the
Diverge dataset, which also contains solely rendered images. However, a combination
of captured and rendered images improves the accuracy significantly, leading to clearly
better results than training on captured images only. Considering the low coverage set,
reviewing the numerical results shows also a clear improvement of localization with
DA. Whereas training on the Captured dataset scores insufficient results, the training
on the proposed datasets enhanced by DA improved the pose estimation. However, by
visualizing the pose estimates in Figure 8.11 (e) – (h) it is shown that the poses are still
not determined satisfactorily. The numerical improvement is mainly caused by the fact of
better distributed training data, hence the estimated image poses are shifted more towards
the actual evaluation poses.
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9.3 Localization with Data Augmentation by
Image-to-Image Translation

In the experiments concerning DA by image-to-image translation (Section 8.3), images in
the rendered domain are translated to images in the captured domain. The methodology
of this procedure is outlined in Chapter 7. With the experiments on translated images,
enhancements over the usage of rendered images are shown for localization.

DA by image-to-image translation shows beneficial impact compared to training on merely
captured data. The utilized localization network scores higher accuracies training on a
joint dataset of captured and translated images than on merely captured or rendered
images. Training on only translated images scores similar results as training on captured
images. The network trained on rendered images achieves results that are insufficient.
That implies that the network potentially learns representations for rendered images,
which can not be transferred to the captured images for evaluation. Overall, it is shown
that image-to-image translation can translate rendered images into valuable training
data. Compared to captured images, the experiments on translated images also show
improvements regarding image retrieval (Section 7.4).

In the following a few failure cases of image-to-image translation are shown. In contrast to
the experiments on the Shop Façade dataset, tests are also carried out on more complex
scenes. These tests are carried out on the introduced Atrium dataset and the Dancing House
dataset [Sat+18b]. Exemplary results of the image-to-image translation are illustrated
in the Figures 9.1, 9.2 and 9.3. Rendered images are each depicted on the left and their
corresponding translated images on the right. Figure 9.1 depicts two images pairs of
unsatisfying translations in the atrium scene. In both examples, several windows are
rotated about 90◦. Assumedly, high level features describing a window trigger at wrong
locations, which could be caused by scale or orientation variances within the network
since windows are present in different scales and orientations over the training samples.
Figure 9.2 depicts example images of more satisfying translations in the atrium scene. The
windows in image (b) appear more realistic than in the previous example. The example
in image (d) looks promising, showing that image-to-image translation can generate
satisfactory output for that scene. The images in Figure 9.3 show the Dancing House scene
with decent results illustrated in Figure 9.3 (b). Figure 9.3 (c) shows a rendered image
generated far away from the original space of poses given by the training data. Within
the image-to-image translation pipeline, no image with a similar pose is provided for
that view. The translated image in Figure 9.3 (d) is generated deficient and can not be
considered for subsequent processing. The network is not able to generate a realistic image
from a view, where no training samples with similar views exist nearby. The extrapolation
capability is therefore limited.
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(a) (b)

(c) (d)

Figure 9.1: Negative examples of image-to-image translation. Input images in the rendered domain are on
the left and corresponding translated images in the captured domain are on the right. In both examples, it
seems that high-level features like windows are firing at the position of the windows joists. Assumedly,
they are activated in a lower-scale level as they should be.

(a) (b)

(c) (d)

Figure 9.2: Positive examples of image-to-image translation. Input images in the rendered domain are on
the left and corresponding translated images in the captured domain are on the right. Both examples depict
satisfying results and an improvement regarding visual appearance of the scene. The windows in the back
of image (b) are depicted correct, whereas the same windows in Figure 9.2 (b) are depicted false.
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(a) (b)

(c) (d)

Figure 9.3: Negative examples of image-to-image translation. Input images in the rendered domain are on
the left and corresponding translated images in the captured domain are on the right. Image (b) shows
decent results being mapped from image (a). Image (c) shows an image rendered far away from any
original training pose. Within the image-to-image translation pipeline, no image with a similar view is
therefore provided. The translated image in (d) is generated deficient and can not be considered for
subsequent processing.
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10 Conclusion and Outlook

This chapter summarizes and concludes the results and contributions of the preceding
chapters in Section 10.1 and gives an outlook in Section 10.2 as well as insights of potential
future work.

10.1 Conclusion

CNN-based solutions for camera re-localization can satisfy the needs of estimating image
poses within a few milliseconds. The accuracy and robustness of approaches based on end-
to-end learning merely are less accurate than hand-crafted or hybrid localization approaches
combining well-known models with end-to-end learning. End-to-end approaches, like
PoseNet, SqueezePoseNet or image-based localization using LSTMs can serve to estimate
coarse poses in little time to initialize navigation frameworks or for subsequent pose
refinement. Besides, SqueezePoseNet is a lightweight framework with a small number of
parameters and therefore has a small model size, being advantageous considering mobile
platforms with low hardware capacity.

A drawback of the data-driven approaches is the necessity of providing adequate training
data. A pose can only be determined if sufficient training data of the scene is available. If
no sufficient training data is given or when the training should generally be improved
with additional data, DA is a valuable process and covered in the Chapters 6 and 7.
These chapters introduce localization with DA by image rendering respectively DA by
image-to-image translation. Image rendering allows to generate training data with a
higher distribution of scene views and image poses. This enriches training data and leads
to improved performance of networks trained on such enhanced data. Image rendering
has shown to enhance the localization thoroughly with improvements of up to 69% for
translation and up to 61% for rotation in a complex scene. Further, DA by image-to-image
translation has improved the localization by mapping images from a rendered domain into
images in a captured domain on a benchmark dataset, where image rendering failed due
to low quality rendering. Therewith, a hybrid network for camera localization is trained
merely on synthetic data (translated images) and achieves results in the same quality
compared to training on manually captured data. The accuracy of camera re-localization
is improved by the supported training with translated images. Camera re-localization
tasks with challenging training data will likely benefit even more from image-to-image
translation, e.g. training data with a high spatial dissimilarity between training and
evaluation images respectively higher discrepancies between their poses. Furthermore,
image-to-image translation clearly improves the performance on image retrieval tasks,
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profiting from the higher distribution of training poses. Quality assessment on feature
matching shows also an improvement utilizing translated images over rendered images.

10.2 Outlook

In this thesis, a workflow of improving data-driven learning tasks for camera re-localization
is presented by DA from reconstructed 3D models. These 3D models are especially
reconstructed only by the provided training data necessary for the re-localization task. A
general drawback of the re-localization problem is this necessity of captured images that
have to be provided or pre-captured at any time. However, image data is captured all over
the globe and commercially provided by companies or publicly available shared by private
persons. A well known example is the reconstruction of parts of the city of Rome by using
merely publicly available online data [Aga+11]. Furthermore, there is satellite and aerial
imagery available covering urban and rural areas. Such data can serve easily for training
data for camera re-localization. Likewise to image data, 3D models of the entire earth’s
surface and its objects – partly indoors – are existing. Such 3D models are increasingly
generated over the last decade and refined concerning their quality constantly. Such
models are of interest for methods of autonomous driving, AR and general navigation or
path planning. Tasks, that are addressed in computer vision, photogrammetry, robotics or
geo-information sciences. The development of such 3D models is therefore of high interest
for a wide range of users. That way 3D models serve for localization. Simultaneously,
applications of visual localization may in return provide the most recent data to update such
3D models continuously while operating in-situ. This is therefore a win-win situation, as
the models provide information for a localization and in return the localization applications
provide captured image data that serves to update the 3D models. Therefore, the 3D model
is kept prevailed up-to-date which in turn improves the localization. Considering high
performance data transfer, this interaction could probably be provided in real-time. A
linked network of cars, UAVs and/or pedestrians could therefore support each other with
valuable information.

Of further interest is the amount of data content which can generally be learned by CNNs,
especially by small CNNs. Even though the model size of CNNs does not increase with a
rising amount of training images, a CNN should only be able to recognize a finite part of
the training data. Small CNNs like SqueezePoseNet may fail or at least lose accuracy with
an increase of the spatial dimension of a training scene. Investigations on network sizes
and their capability to effectively learn from large distributions of data is of interest for
future work.

The hybrid camera re-localization approach DSAC++, that combines a CNN followed by a
spatial estimation method reaches state-of-the-art accuracies and outperforms methods
based on hand-crafted features on several indoor and small-scale outdoor benchmark
datasets. However, on large-scale datasets feature-based localization methods like AS
score higher accuracies. This implies, that the hybrid network may not recognize the
training data in its full extent. Considering a large or ambiguous scene, single networks
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may not cover the domain well. Therefore Mixture of Experts [Jac+91] is used to improve
localization [BR19]. Multiple networks are trained on a local part of the scene to solve
these ambiguities. A gating network chooses which of the expert models is responsible for
a given input during runtime. It is of further interest to tackle the issue of limited capacity
of CNNs considering the quantity of training data.

Many problems that have been successfully tackled with data-driven learning have in
common, that the mapping from the input to the output is difficult to characterize
by distinct mathematical models. It is suggested that mathematical models, that are
well known to the user, should be implemented with respect to that knowledge in a
hand-crafted manner. Exceptions are mathematical models that are computationally too
expensive for real-time applications and be better substituted with learned algorithms.
An example are the Navier-Stokes equations, describing the movement of fluid particles.
Although the mathematical model is known, it is too complex to be solved in real-time
manner for common applications and is substituted with a Random Forest approach being
faster and more stable than numerical approaches [Lad+17]. Any mappings between an
input and output that can not be described thoroughly with hand-crafted mathematical
models should be considered to be learned in a data-driven manner. Considering camera
re-localization, the generation of suitable features is challenging considering variational
input. Finding suitable features under changing scene conditions like day and night is
hard to achieve by hand-crafted methods. Such tasks should be tackled in a data-driven
manner. On the other hand, the computation of camera poses from corresponding features,
like 2D-3D correspondences, is well known and should be designed in a hand-crafted
way. Therefore, the methodological focus should be set on the development of hybrid
methods for localization. Processes in the pipeline that are well known or can be precisely
described with mathematical models should be designed by hand. Processes that are not
well known or unknown should be learned from data. This statement applies not only on
camera re-localization, but in general.

Future work should further focus on the generalization of CNNs. Humans train their
neural system from the date of birth. By time, a human can solve problems in different
fields with satisfying robustness and accuracy. New problems can be approached fast by
transfer learning with the knowledge from previous solved tasks. Even though, inspired by
the human brain, CNNs are not identical to it. However, compared to humans, CNNs are
trained a narrow with amount of data and often only for one particular and specific task. It
is shown that transfer learning on CNNs improves the speed of convergence, the robustness
and the accuracy. For the future, it will be interesting to trace two ways. One may focus on
developing deep learning architectures that can be trained on a little amount of data – like
zero-, one-, or few-shot learning [FFP06] and still achieve satisfactory outcome. The other
is depending on hardware and software development and is to create frameworks that can
be efficiently trained on enormous amounts of data. Up to now training on such enormous
amounts is time-consuming, while the training itself is a bottleneck for fast research.

Considering image-to-image translation for DA, it is shown in this thesis to improve
camera re-localization. In terms of utilizing 3D models for renderings, it is valuable to
map such rendered images to a more realistic domain that shares the characteristics
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of potential evaluation respectively application data. Bigger gains are possible when
translating rendered images from views that are substantially different from the captured
views. However, generating plausible mappings for such views is harder, creating the
necessity for further research to handle large pose changes between captured and rendered
images. Also considering style transfer to extend the distribution of characteristics in the
training data may serve for better generalization to unseen data and is therefore proposed
for future work.
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A Camera Pose

The pose of an object (or camera) specifies its position (or camera center) and orientation
in space. The position and orientation of an object in space can be directly described by the
translation and rotation of this object referenced to a coordinate frame in the same space.
In a three-dimensional space the position or center c ∈ R3 is defined by three parameters
denoted as cx-, cy-, and cz-coordinates, which correspond to three DoF concerning the
freedom of movement for a specific object in space. Therefore, parameters cx-, cy-, and cz

describe the translation of an object on the corresponding X-, Y- and Z-axis of a coordinate
frame.

The rotation R ∈ SO(3) is minimally parameterized three parameters, whereas SO(3)
is the 3D rotation group of all rotations about the origin of a R3 Euclidean space.
Such a parametrization can be given by the Euler Angles (Section A.1) parametrized by
the parameters φ, θ and ψ. However, this minimal parametrization has disadvantages
concerning gimbal lock and interpolation. Quaternion parameterization overcomes this
issues and is therefore utilized in computer vision algorithms more widely (Section A.2). A
parameterization by quaternions consists of four parameters denoted in the following as w,
q1, q2 and q3, which correspond to three DoF of the rotation for a specific object. The three
parameters of translation and the (at least) three parameters of rotation are collectively
defining the six parameters of the pose. The camera pose is therefore defined with six DoF.
In this thesis the terms camera pose and image pose are referred synonymously, whereas
the image pose is representing the pose of an image acquired from a camera with the
identical pose. The higher level coordinate frame is termed world frame.

The camera’s position or camera center c in world coordinates and the camera’s orientation
Rc can be expressed by its translation and rotation as

c = −R-1t , Rc = RT , (1)

whereas t is the translation vector and R is the 3× 3 rotation matrix

t = [tx, ty, tz, 1]T , R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 . (2)

Moreover, the rotation R and the translation t form the extrinsic matrix E

E =

[
R t
0T 1

]
=


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

 . (3)

Given the extrinsic matrix, a transformation from the camera frame to world frame can be
expressed. A transformation from the world frame to the camera frame is given by E-1
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E-1 =

[
R T −R Tc
0T 1

]
. (4)

where R−1 = RT from R being orthogonal. With the extrinsic matrix E respectively E−1,
a point in the world frame XW = [xW , yW , zW , 1]T can be transformed to a point in the
camera frame XC or vice versa

XC = E-1XW =

[
R T −R Tc
0T 1

]
[xW , yW , zW , 1]T . (5)

Given multiple corresponding points in the world and image frame, Equation 5 can be
solved for the camera pose E. This is used for camera pose estimation in feature-based
methods solving the PnP problem or SfM (Section 2.3. Figure 1 depicts the relation [R, t]
between the camera center C0 and the world reference frame W0 over 3D points in the
scene X.

[R, t]

w0c0

xc

X
xw

Figure 1: A point X in the world reference frame W0 can be described by its world coordinates XW . The
same point can be found in a camera coordinate system C0 and is described by the vector XC . The camera
pose is defined by the extrinsics matrix E composed by the camera’s rotation R and translation t. The point
XC in the camera frame can be transformed from point XW by multiplying XW by E-1 (Equation 5).

Although, a homogeneous representation is a practical notation for camera poses and
transformation, it contains more parameters than required. A minimum of six parameters
defines a camera pose or a rigid transformation in R3 which relates to six DoF. Three
parameters are already well encoded by the translation component t. The rotation matrix R
however contains nine elements. Notations by Euler angles or quaternions which manage
to describe rotations with three respectively four parameters follow in the subsequent
sections.

A.1 Euler Angles

Euler angles are the most intuitive expression of rotations and describe the orientation
of an object in R3 with respect to a reference frame. With three parameters the euler
angles represent a minimal parameterization while any orientation can be achieved by
composing elemental rotations. There are twelve different orders of rotation, where the
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so-called x-rotation (z-x-z) is the most common definition. Let φ, θ, ψ be the euler angles
that represent the rotation about the respective coordinate axis. The rotation matrices that
represent such a rotation about are then composed as

RZ(φ) =

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

 , RX(θ) =

1 0 0
0 cos θ − sin θ

0 sin θ cos θ

 ,

RZ(ψ) =

 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

 . (6)

The first rotation is about the z-axis using RZ(φ), the second rotation is about the former
x-axis by RX(θ) and the third rotation is about the former z-axis by RZ(ψ). Three rotations
are always sufficient to reach any state of orientation. However, disadvantages of such
a representation is the so-called gimbal lock problem and interpolation issues. Gimbal
lock is a degenerate state of rotation and occurs when two axis are rotated into a parallel
constellation reducing the DoF to two, thus making a unique determination of the angles
impossible. This occurs when the second rotation has a value of π

2 + nπ where n ∈ Z. The
interpolation problem occurs due to the numerical range of the angles from [0, ..., 2π].

While euler angles have the advantages of an easy human interpretation of rotation and
representing a minimum parameterization of rotation. While this is an advantage over
quaternions in terms of optimization processes, the mathematical drawbacks predominate.
Quaternions avoid the drawbacks and are introduced in the next following.

A.2 Quaternions

A parametrization by quaternions consists of four parameters which correspond to three
DoF of the rotation for a specific object. A quaternion has one real part w and three
imaginary parts q1 · i, q2 · j, q3 · k. The quaternion q ∈ H, where q ∈ H is the set of
quaternions, is then denoted as

q = w + q1 · i + q2 · j + q3 · k , (7)

where w, q1, q2, q3 are real numbers and i, j, k can be interpreted as the unit vectors pointing
along the three spatial axis X, Y, Z. For simplicity only the real part is often denoted and
the imaginary multipliers i, j and k are assumed by the order of position leading to

q = w + q1 + q2 + q3 . (8)

w represents the scale of the quaternion, whereas q1, q2, q3 denote the vector part.
Four parameters to define a rotation in R3 is an over-parametrization. However, a
parametrization by quaternions has computational advantages over an Euler angle
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parametrization since it is less accurate when the rotation is incrementally estimated
or interpolated. Additionally arbitrary 4D values are easier to normalize to unit length
compared to the ortho-normalization of rotation matrices.

Furthermore, the difference between two normalized quaternions qnorm and q̂norm is
computed as

Θ = 2 arccos
(
qnorm · q̂norm

)
, (9)

where q∗norm are normalized quaternions given by a `2 normalization

qnorm =
q
‖q‖2

, (10)

with ‖q‖2 as the `2-norm

‖q‖2 =
√

w2 + q2
1 + q2

2 + q2
3 . (11)
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