165 research outputs found

    Classification of Camellia (Theaceae) Species Using Leaf Architecture Variations and Pattern Recognition Techniques

    Get PDF
    Leaf characters have been successfully utilized to classify Camellia (Theaceae) species; however, leaf characters combined with supervised pattern recognition techniques have not been previously explored. We present results of using leaf morphological and venation characters of 93 species from five sections of genus Camellia to assess the effectiveness of several supervised pattern recognition techniques for classifications and compare their accuracy. Clustering approach, Learning Vector Quantization neural network (LVQ-ANN), Dynamic Architecture for Artificial Neural Networks (DAN2), and C-support vector machines (SVM) are used to discriminate 93 species from five sections of genus Camellia (11 in sect. Furfuracea, 16 in sect. Paracamellia, 12 in sect. Tuberculata, 34 in sect. Camellia, and 20 in sect. Theopsis). DAN2 and SVM show excellent classification results for genus Camellia with DAN2's accuracy of 97.92% and 91.11% for training and testing data sets respectively. The RBF-SVM results of 97.92% and 97.78% for training and testing offer the best classification accuracy. A hierarchical dendrogram based on leaf architecture data has confirmed the morphological classification of the five sections as previously proposed. The overall results suggest that leaf architecture-based data analysis using supervised pattern recognition techniques, especially DAN2 and SVM discrimination methods, is excellent for identification of Camellia species

    TENDENCY OF PLAYERS IS TRIAL AND ERROR: CASE STUDY OF COGNITIVE CLASSIFICATION IN THE COGNITIVE SKILL GAMES

    Get PDF
    To assess the cognitive level of player ability is difficult; many instruments are potentially biased, unreliable, and invalid test. Whereas, in serious game is important to know the cognitive level. If the cognitive level can be measured well, the mastery learning can be achieved. Mastery learning is the core of the learning process in serious game. To classify the cognitive level of players, researchers propose a Cognitive Skill Game (CSG). CSG improves this cognitive concept to monitor how players interact with the game. This game employs Learning Vector Quantization (LVQ) for optimizing the cognitive skill input classification of the player. Training data in LVQ use data observation from the teacher. Populations of cognitive skill classification in this research are pupils when playing the game. Mostly players cognitive skill game have cognitive skill category are Trial and Error. Some of them have Expert category, and a few included in the group carefully. Thus, the general level of skill of the player is still low. Untuk menilai tingkat kognitif dari kemampuan pemain sangatlah sulit; banyak instrumen yang berpotensi bias, tidak dapat diandalkan, dan merupakan tes yang tidak valid. Padahal, dalam serious game penting untuk mengetahui tingkat kognitif. Jika tingkat kognitif dapat diukur dengan baik, penguasaan pembelajaran dapat dicapai. Penguasaan belajar adalah inti dari proses belajar dalam serious game. Untuk mengklasifikasikan tingkat kognitif pemain, kami mengusulkan Cognitive Skill Game (CSG). CSG meningkatkan konsep kognitif untuk memantau bagaimana pemain berinteraksi dengan permainan. Permainan ini menggunakan Learning Vector Quantization (LVQ) untuk mengoptimalkan input klasifikasi keterampilan kognitif pemain. Data trining dalam observasi LVQ menggunakan data dari guru. Populasi klasifikasi keterampilan kognitif dalam penelitian ini adalah siswa saat memainkan permainan. Sebagian besar pemain CSG berkategori keterampilan kognitif adalah coba-coba. Beberapa dari mereka memiliki kategori Ahli, dan sedikit yang termasuk dalam kelompok hati-hati. Dengan demikian, secara umum kemampuan pemain masih rendah

    A Cognitive Skill Classification Based on Multi Objective Optimization Using Learning Vector Quantization for Serious Games

    Get PDF
    Nowadays, serious games and game technology are poised to transform the way of educating and training students at all levels. However, pedagogical value in games do not help novice students learn, too many memorizing and reduce learning process due to no information of player's ability. To asses the cognitive level of player ability, we propose a Cognitive Skill Game (CSG). CSG improves this cognitive concept to monitor how players interact with the game. This game employs Learning Vector Quantization (LVQ) for optimizing the cognitive skill input classification of the player. CSG is using teacher's data to obtain the neuron vector of cognitive skill pattern supervise. Three clusters multi objective target will be classified as; trial and error, carefully and, expert cognitive skill. In the game play experiments employ 33 respondent players demonstrates that 61% of players have high trial and error, 21% have high carefully, and 18% have high expert cognitive skill. CSG may provide information to game engine when a player needs help or when wanting a formidable challenge. The game engine will provide the appropriate tasks according to players' ability. CSG will help balance the emotions of players, so players do not get bored and frustrated.

    Multi-image classification and compression using vector quantization

    Get PDF
    Vector Quantization (VQ) is an image processing technique based on statistical clustering, and designed originally for image compression. In this dissertation, several methods for multi-image classification and compression based on a VQ design are presented. It is demonstrated that VQ can perform joint multi-image classification and compression by associating a class identifier with each multi-spectral signature codevector. We extend the Weighted Bayes Risk VQ (WBRVQ) method, previously used for single-component images, that explicitly incorporates a Bayes risk component into the distortion measure used in the VQ quantizer design and thereby permits a flexible trade-off between classification and compression priorities. In the specific case of multi-spectral images, we investigate the application of the Multi-scale Retinex algorithm as a preprocessing stage, before classification and compression, that performs dynamic range compression, reduces the dependence on lighting conditions, and generally enhances apparent spatial resolution. The goals of this research are four-fold: (1) to study the interrelationship between statistical clustering, classification and compression in a multi-image VQ context; (2) to study mixed-pixel classification and combined classification and compression for simulated and actual, multispectral and hyperspectral multi-images; (3) to study the effects of multi-image enhancement on class spectral signatures; and (4) to study the preservation of scientific data integrity as a function of compression. In this research, a key issue is not just the subjective quality of the resulting images after classification and compression but also the effect of multi-image dimensionality on the complexity of the optimal coder design

    On the Synthesis of fuzzy neural systems.

    Get PDF
    by Chung, Fu Lai.Thesis (Ph.D.)--Chinese University of Hong Kong, 1995.Includes bibliographical references (leaves 166-174).ACKNOWLEDGEMENT --- p.iiiABSTRACT --- p.ivChapter 1. --- Introduction --- p.1Chapter 1.1 --- Integration of Fuzzy Systems and Neural Networks --- p.1Chapter 1.2 --- Objectives of the Research --- p.7Chapter 1.2.1 --- Fuzzification of Competitive Learning Algorithms --- p.7Chapter 1.2.2 --- Capacity Analysis of FAM and FRNS Models --- p.8Chapter 1.2.3 --- Structure and Parameter Identifications of FRNS --- p.9Chapter 1.3 --- Outline of the Thesis --- p.9Chapter 2. --- A Fuzzy System Primer --- p.11Chapter 2.1 --- Basic Concepts of Fuzzy Sets --- p.11Chapter 2.2 --- Fuzzy Set-Theoretic Operators --- p.15Chapter 2.3 --- "Linguistic Variable, Fuzzy Rule and Fuzzy Inference" --- p.19Chapter 2.4 --- Basic Structure of a Fuzzy System --- p.22Chapter 2.4.1 --- Fuzzifier --- p.22Chapter 2.4.2 --- Fuzzy Knowledge Base --- p.23Chapter 2.4.3 --- Fuzzy Inference Engine --- p.24Chapter 2.4.4 --- Defuzzifier --- p.28Chapter 2.5 --- Concluding Remarks --- p.29Chapter 3. --- Categories of Fuzzy Neural Systems --- p.30Chapter 3.1 --- Introduction --- p.30Chapter 3.2 --- Fuzzification of Neural Networks --- p.31Chapter 3.2.1 --- Fuzzy Membership Driven Models --- p.32Chapter 3.2.2 --- Fuzzy Operator Driven Models --- p.34Chapter 3.2.3 --- Fuzzy Arithmetic Driven Models --- p.35Chapter 3.3 --- Layered Network Implementation of Fuzzy Systems --- p.36Chapter 3.3.1 --- Mamdani's Fuzzy Systems --- p.36Chapter 3.3.2 --- Takagi and Sugeno's Fuzzy Systems --- p.37Chapter 3.3.3 --- Fuzzy Relation Based Fuzzy Systems --- p.38Chapter 3.4 --- Concluding Remarks --- p.40Chapter 4. --- Fuzzification of Competitive Learning Networks --- p.42Chapter 4.1 --- Introduction --- p.42Chapter 4.2 --- Crisp Competitive Learning --- p.44Chapter 4.2.1 --- Unsupervised Competitive Learning Algorithm --- p.46Chapter 4.2.2 --- Learning Vector Quantization Algorithm --- p.48Chapter 4.2.3 --- Frequency Sensitive Competitive Learning Algorithm --- p.50Chapter 4.3 --- Fuzzy Competitive Learning --- p.50Chapter 4.3.1 --- Unsupervised Fuzzy Competitive Learning Algorithm --- p.53Chapter 4.3.2 --- Fuzzy Learning Vector Quantization Algorithm --- p.54Chapter 4.3.3 --- Fuzzy Frequency Sensitive Competitive Learning Algorithm --- p.58Chapter 4.4 --- Stability of Fuzzy Competitive Learning --- p.58Chapter 4.5 --- Controlling the Fuzziness of Fuzzy Competitive Learning --- p.60Chapter 4.6 --- Interpretations of Fuzzy Competitive Learning Networks --- p.61Chapter 4.7 --- Simulation Results --- p.64Chapter 4.7.1 --- Performance of Fuzzy Competitive Learning Algorithms --- p.64Chapter 4.7.2 --- Performance of Monotonically Decreasing Fuzziness Control Scheme --- p.74Chapter 4.7.3 --- Interpretation of Trained Networks --- p.76Chapter 4.8 --- Concluding Remarks --- p.80Chapter 5. --- Capacity Analysis of Fuzzy Associative Memories --- p.82Chapter 5.1 --- Introduction --- p.82Chapter 5.2 --- Fuzzy Associative Memories (FAMs) --- p.83Chapter 5.3 --- Storing Multiple Rules in FAMs --- p.87Chapter 5.4 --- A High Capacity Encoding Scheme for FAMs --- p.90Chapter 5.5 --- Memory Capacity --- p.91Chapter 5.6 --- Rule Modification --- p.93Chapter 5.7 --- Inference Performance --- p.99Chapter 5.8 --- Concluding Remarks --- p.104Chapter 6. --- Capacity Analysis of Fuzzy Relational Neural Systems --- p.105Chapter 6.1 --- Introduction --- p.105Chapter 6.2 --- Fuzzy Relational Equations and Fuzzy Relational Neural Systems --- p.107Chapter 6.3 --- Solving a System of Fuzzy Relational Equations --- p.109Chapter 6.4 --- New Solvable Conditions --- p.112Chapter 6.4.1 --- Max-t Fuzzy Relational Equations --- p.112Chapter 6.4.2 --- Min-s Fuzzy Relational Equations --- p.117Chapter 6.5 --- Approximate Resolution --- p.119Chapter 6.6 --- System Capacity --- p.123Chapter 6.7 --- Inference Performance --- p.125Chapter 6.8 --- Concluding Remarks --- p.127Chapter 7. --- Structure and Parameter Identifications of Fuzzy Relational Neural Systems --- p.129Chapter 7.1 --- Introduction --- p.129Chapter 7.2 --- Modelling Nonlinear Dynamic Systems by Fuzzy Relational Equations --- p.131Chapter 7.3 --- A General FRNS Identification Algorithm --- p.138Chapter 7.4 --- An Evolutionary Computation Approach to Structure and Parameter Identifications --- p.139Chapter 7.4.1 --- Guided Evolutionary Simulated Annealing --- p.140Chapter 7.4.2 --- An Evolutionary Identification (EVIDENT) Algorithm --- p.143Chapter 7.5 --- Simulation Results --- p.146Chapter 7.6 --- Concluding Remarks --- p.158Chapter 8. --- Conclusions --- p.159Chapter 8.1 --- Summary of Contributions --- p.160Chapter 8.1.1 --- Fuzzy Competitive Learning --- p.160Chapter 8.1.2 --- Capacity Analysis of FAM and FRNS --- p.160Chapter 8.1.3 --- Numerical Identification of FRNS --- p.161Chapter 8.2 --- Further Investigations --- p.162Appendix A Publication List of the Candidate --- p.164BIBLIOGRAPHY --- p.16

    Data Mining

    Get PDF
    corecore