23,831 research outputs found

    Efficient Computation of the Characteristic Polynomial

    Full text link
    This article deals with the computation of the characteristic polynomial of dense matrices over small finite fields and over the integers. We first present two algorithms for the finite fields: one is based on Krylov iterates and Gaussian elimination. We compare it to an improvement of the second algorithm of Keller-Gehrig. Then we show that a generalization of Keller-Gehrig's third algorithm could improve both complexity and computational time. We use these results as a basis for the computation of the characteristic polynomial of integer matrices. We first use early termination and Chinese remaindering for dense matrices. Then a probabilistic approach, based on integer minimal polynomial and Hensel factorization, is particularly well suited to sparse and/or structured matrices

    Fast algorithms for computing isogenies between ordinary elliptic curves in small characteristic

    Get PDF
    The problem of computing an explicit isogeny between two given elliptic curves over F_q, originally motivated by point counting, has recently awaken new interest in the cryptology community thanks to the works of Teske and Rostovstev & Stolbunov. While the large characteristic case is well understood, only suboptimal algorithms are known in small characteristic; they are due to Couveignes, Lercier, Lercier & Joux and Lercier & Sirvent. In this paper we discuss the differences between them and run some comparative experiments. We also present the first complete implementation of Couveignes' second algorithm and present improvements that make it the algorithm having the best asymptotic complexity in the degree of the isogeny.Comment: 21 pages, 6 figures, 1 table. Submitted to J. Number Theor

    Nearly Optimal Algorithms for the Decomposition of Multivariate Rational Functions and the Extended L\"uroth's Theorem

    Get PDF
    The extended L\"uroth's Theorem says that if the transcendence degree of \KK(\mathsf{f}_1,\dots,\mathsf{f}_m)/\KK is 1 then there exists f \in \KK(\underline{X}) such that \KK(\mathsf{f}_1,\dots,\mathsf{f}_m) is equal to \KK(f). In this paper we show how to compute ff with a probabilistic algorithm. We also describe a probabilistic and a deterministic algorithm for the decomposition of multivariate rational functions. The probabilistic algorithms proposed in this paper are softly optimal when nn is fixed and dd tends to infinity. We also give an indecomposability test based on gcd computations and Newton's polytope. In the last section, we show that we get a polynomial time algorithm, with a minor modification in the exponential time decomposition algorithm proposed by Gutierez-Rubio-Sevilla in 2001

    Computational linear algebra over finite fields

    Get PDF
    We present here algorithms for efficient computation of linear algebra problems over finite fields

    Fast algorithms for computing isogenies between elliptic curves

    Get PDF
    We survey algorithms for computing isogenies between elliptic curves defined over a field of characteristic either 0 or a large prime. We introduce a new algorithm that computes an isogeny of degree ℓ\ell (ℓ\ell different from the characteristic) in time quasi-linear with respect to ℓ\ell. This is based in particular on fast algorithms for power series expansion of the Weierstrass ℘\wp-function and related functions

    Black Box White Arrow

    Full text link
    The present paper proposes a new and systematic approach to the so-called black box group methods in computational group theory. Instead of a single black box, we consider categories of black boxes and their morphisms. This makes new classes of black box problems accessible. For example, we can enrich black box groups by actions of outer automorphisms. As an example of application of this technique, we construct Frobenius maps on black box groups of untwisted Lie type in odd characteristic (Section 6) and inverse-transpose automorphisms on black box groups encrypting (P)SLn(Fq){\rm (P)SL}_n(\mathbb{F}_q). One of the advantages of our approach is that it allows us to work in black box groups over finite fields of big characteristic. Another advantage is explanatory power of our methods; as an example, we explain Kantor's and Kassabov's construction of an involution in black box groups encrypting SL2(2n){\rm SL}_2(2^n). Due to the nature of our work we also have to discuss a few methodological issues of the black box group theory. The paper is further development of our text "Fifty shades of black" [arXiv:1308.2487], and repeats parts of it, but under a weaker axioms for black box groups.Comment: arXiv admin note: substantial text overlap with arXiv:1308.248

    Homomorphic encryption and some black box attacks

    Full text link
    This paper is a compressed summary of some principal definitions and concepts in the approach to the black box algebra being developed by the authors. We suggest that black box algebra could be useful in cryptanalysis of homomorphic encryption schemes, and that homomorphic encryption is an area of research where cryptography and black box algebra may benefit from exchange of ideas
    • …
    corecore